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Sparse Identification of Nonlinear Dynamics (SINDy) is a method of system discovery that 
has been shown to successfully recover governing dynamical systems from data [6,39]. 
Recently, several groups have independently discovered that the weak formulation provides 
orders of magnitude better robustness to noise. Here we extend our Weak SINDy (WSINDy) 
framework introduced in [28] to the setting of partial differential equations (PDEs). The 
elimination of pointwise derivative approximations via the weak form enables effective 
machine-precision recovery of model coefficients from noise-free data (i.e. below the 
tolerance of the simulation scheme) as well as robust identification of PDEs in the large 
noise regime (with signal-to-noise ratio approaching one in many well-known cases). This 
is accomplished by discretizing a convolutional weak form of the PDE and exploiting 
separability of test functions for efficient model identification using the Fast Fourier 
Transform. The resulting WSINDy algorithm for PDEs has a worst-case computational 
complexity of O(ND+1 log(N)) for datasets with N points in each of D + 1 dimensions. 
Furthermore, our Fourier-based implementation reveals a connection between robustness 
to noise and the spectra of test functions, which we utilize in an a priori selection algorithm 
for test functions. Finally, we introduce a learning algorithm for the threshold in sequential-
thresholding least-squares (STLS) that enables model identification from large libraries, and 
we utilize scale invariance at the continuum level to identify PDEs from poorly-scaled 
datasets. We demonstrate WSINDy’s robustness, speed and accuracy on several challenging 
PDEs. Code is publicly available on GitHub at https://github .com /MathBioCU /WSINDy _PDE.

 2021 Elsevier Inc. All rights reserved.

1. Introduction

Stemming from Akaike’s seminal work in the 1970’s [1,2], research into the automatic creation of accurate mathemat-

ical models from data has progressed dramatically. In the last 20 years, substantial developments have been made at the 
interface of applied mathematics and statistics to design data-driven model selection algorithms that are both statistically 
rigorous and computationally efficient (see [5,22,23,48,55,56] for both theory and applications). An important achievement 
in this field was the formulation and subsequent discretization of the system discovery problem in terms of a candidate 
basis of nonlinear functions evaluated at the given dataset, together with a sparsification measure to avoid overfitting [9]. 
In [50] the authors extended this framework to the context of catastrophe prediction and used compressed sensing tech-
niques to enforce sparsity. More recently, this approach has been generalized as the SINDy algorithm (Sparse Identification 
of Nonlinear Dynamics) [6] and successfully used to identify a variety of discrete and continuous dynamical systems.
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The wide applicability, computational efficiency, and interpretability of the SINDy algorithm has spurred an explosion of 
interest in the problem of identifying nonlinear dynamical systems from data [8,34,10,11,15,49,27]. In addition to the sparse 
regression approach adopted in SINDy, some of the primary techniques include Gaussian process regression [31,36], deep 
neural networks [26,25,24,40,51,22], Bayesian inference [61,62,54] and classical methods from numerical analysis [16,19,57]. 
The variety of approaches for model discovery from data qualitatively differ in the interpretability of the resulting data-
driven dynamical system, the computational efficiency of the algorithm, and the robustness to noise, scale separation, 
etc. For instance, a neural-network based data-driven dynamical system does not easily lend itself to physical interpreta-
tion.1 The SINDy algorithm allows for direct interpretations of the dynamics from identified differential equations and uses 
sequential-thresholding least-squares (STLS) to enforce a sparse solution x ∈ Rn to a linear system Ax = b. STLS has been 
proven to converge to a local minimizer of the non-convex functional F (x) = ‖Ax− b‖22 + λ2 ‖x‖0 in at-most n iterations 
[60].

The aim of the present article is to extend the Weak SINDy method (WSINDy) for recovering ordinary differential equa-
tions (ODEs) from data to the context of partial differential equations (PDEs) [28]. WSINDy is a Galerkin-based data-driven 
model selection algorithm that utilizes the weak form of the dynamics in a sparse regression framework. By integrating in 
time against compactly-supported test functions, WSINDy avoids approximation of pointwise derivatives which are known 
to result in low robustness to noise [39]. In [28] we showed that by integrating against a suitable choice of test functions, 
correct ODE model terms can be identified together with machine-precision recovery of coefficients (i.e. below the tolerance 
of the data simulation scheme) from noise-free synthetic data, and for datasets with large noise, WSINDy successfully re-
covers the correct model terms without explicit data denoising. The use of integral equations for system identification was 
proposed as early as the 1980’s [9] and was carried out in a sparse regression framework in [42] in the context of ODEs, 
however neither works utilized the full generality of the weak form.

Sparse regression approaches for learning PDEs from data have seen a tremendous spike in activity in the years since 
2016. Pioneering works include [41], [39], and [43], where the Douglas-Rachford algorithm, sequential-thresholding least 
squares (STLS), and basis pursuit with denoising, respectively, are used to regularize the NP-hard problem of finding an opti-
mal sparse solution. Many other predominant approaches for learning dynamical systems (Gaussian processes, deep learning, 
Bayesian inference, etc.) have since been extended to the discovery of PDEs [7,30,21,22,52,53,59,58,45,55]. A significant dis-
advantage for the vast majority of PDE discovery methods is the requirement of pointwise derivative approximations. Steps 
to alleviate this are taken by the authors of [35] and [58], where neural network-based recovery schemes are combined with 
integral and abstract evolution equations to recover PDEs, and in [53], where the finite element-based method Variational 
System Identification (VSI) is introduced to identify reaction-diffusion systems and uses backward Euler to approximate the 
time derivative.

WSINDy is a method for discovering PDEs without the use of any pointwise derivative approximations, black-box routines 
or conventional noise filtering. Through integration by parts in both space and time against smooth compactly-supported 
test functions, WSINDy is able to recover PDEs from datasets with much higher noise levels, and from truly weak solutions 
(see Fig. 3 in Section 5). This works surprisingly well even as the signal-to-noise ratio approaches one. Furthermore, as in the 
ODE setting, WSINDy achieves high-accuracy recovery in the low-noise regime. These overwhelming improvements resulting 
from a fully weak2 identification method have also been discovered independently by other groups [37,13]. WSINDy offers 
several advantages over these alternative frameworks. Firstly, we use a convolutional weak form which enables efficient 
model identification using the Fast Fourier Transform (FFT). For measurement data with N points in each of the D + 1

space-time dimensions (ND+1 total data points), the resulting algorithmic complexity of WSINDy in the PDE setting is at 
worst O(ND+1 log(N)), in other words O(log(N)) floating point operations per data-point. Subsampling further reduces the 
cost. Furthermore, our FFT-based approach reveals a key mechanism behind the observed robustness to noise, namely that 
spectral decay properties of test functions can be tuned to damp noise-dominated modes in the data, and we develop a 
learning algorithm for test function hyperparameters based on this mechanism. WSINDy also utilizes scale invariance of the 
PDE and a modified STLS algorithm with automatic threshold selection to recover models from (i) poorly-scaled data and 
(ii) large candidate model libraries.

The outline of the article is as follows. In Section 2 we define the system discovery problem that we aim to solve and the 
notation to be used throughout. We then introduce the convolutional weak formulation along with our FFT-based discretiza-
tion in Section 3. Key ingredients of the WSINDy algorithm for PDEs (Algorithm 4.2) are covered in Section 4, including a 
discussion of spectral properties of test functions and robustness to noise (4.1), our modified sequential thresholding scheme 
(4.2), and regularization using scale invariance of the underlying PDE (4.3). Section 5 contains numerical model discovery 
results for a range of nonlinear PDEs, including several vast improvements on existing results in the literature. We conclude 
the main text in Section 6 which summarizes the exposition and includes natural next directions for this line of research. 
Lastly, additional numerical details are included in the Appendix.

1 There have been efforts to address the interpretability of neural networks, see e.g. [29,47,38].
2 The underlying true solution need only have bounded variation and the only derivatives approximated are weak derivatives.
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2. Problem statement and notation

Let U be a spatiotemporal dataset given on the spatial grid X ⊂ � over timepoints t ⊂ [0, T ] where � is an open, bounded 
subset in RD , D ≥ 1. In the cases we consider here, � is rectangular and the spatial grid is given by a tensor product of 
one-dimensional grids X = X1 ⊗ · · · ⊗ XD , where each Xd ∈ RNd for 1 ≤ d ≤ D has equal spacing �x, and the time grid 
t ∈ RND+1 has equal spacing �t . The dataset U is then a (D + 1)-dimensional array with dimensions N1 × · · · × ND+1 . We 
write h(X, t) to denote the (D + 1)-dimensional array obtained by evaluating the function h : RD × R → C at each of the 
points in the computational grid (X, t). Individual points in (X, t) will often be denoted by (xk, tk) ∈ (X, t) where

(xk, tk) = (Xk1,...,kD , tkD+1
) = (xk1 , . . . , xkD , tkD+1

) ∈ R
D × R.

In a mild abuse of notation, for a collection of points {(xk, tk)}k∈[K ] ⊂ (X, t), the index k plays a double role as a sin-
gle index in the range [K ] := {1, . . . , K } referencing the point (xk, tk) ∈ {(xk, tk)}k∈[K ] and as a multi-index on (xk, tk) =
(Xk1,...,kD , tkD+1

), where kd references the dth coordinate. This is particularly useful for defining a matrix G ∈ CK× J of the 
form

Gk, j = h j(xk, tk)

(as in equation (3.6) below) where (h j) j∈[ J ] is a collection of J functions h j : RD × R → C evaluated at the set of K points 
{(xk, tk)}k∈[K ] ⊂ (X, t).

We assume that the data satisfies U = u(X, t) + ǫ for i.i.d. noise3 ǫ and weak solution u of the PDE

Dα0
u(x, t) = Dα1

g1(u(x, t)) + Dα2
g2(u(x, t)) + · · · + DαS

gS(u(x, t)), x ∈ �, t ∈ (0, T ). (2.1)

The problem we aim to solve is the identification of functions (gs)s∈[S] and corresponding differential operators (Dαs
)s∈[S]

that govern the evolution4 of u according to Dα0
u given the dataset U and computational grid (X, t). Here and throughout 

we use the multi-index notation αs = (αs
1, . . . , α

s
D , αs

D+1) ∈ ND+1 to denote partial differentiation5 with respect to x =
(x1, . . . , xD) and t , so that

Dαs

u(x, t) = ∂αs
1+···+αs

D+αs
D+1

∂x
αs
1

1 . . . ∂x
αs
D

D ∂tα
s
D+1

u(x, t).

We emphasize that a wide variety of PDEs can be written in the form (2.1). In particular, in this paper we demonstrate 
our method of system identification on inviscid Burgers, Korteweg-de Vries, Kuramoto-Sivashinsky, nonlinear Schrödinger’s, 
Sine-Gordon, a reaction-diffusion system and Navier-Stokes. The list of admissable PDEs that can be transformed into a 
weak form without any derivatives on the state variables includes many other well-known PDEs (Allen-Cahn, Cahn-Hilliard, 
Boussinesq,. . . ).

3. Weak formulation

To arrive at a computationally tractable model recovery problem, we assume that the set of multi-indices (αs)s∈[S]
together with α0 enumerates the set of possible true differential operators that govern the evolution of u and that 
(gs)s∈[S] ⊂ span( f j) j∈[ J ] where the family of functions ( f j) j∈[ J ] (referred to as the trial functions) is known beforehand. 
This enables us to rewrite (2.1) as

Dα0
u =

S∑

s=1

J∑

j=1

w⋆
(s−1) J+ jD

αs

f j(u), (3.1)

so that discovery of the correct PDE is reduced to a finite-dimensional problem of recovering the true vector of coefficients 
w⋆ ∈ RS J , which is assumed to be sparse.

To convert the PDE into its weak form, we multiply equation (3.1) by a smooth test function ψ(x, t), compactly-supported 
in � × (0, T ), and integrate over the spacetime domain,

〈
ψ, Dα0

u
〉
=

S∑

s=1

J∑

j=1

w⋆
(s−1) J+ j

〈
ψ, Dαs

f j(u)
〉
,

3 Here ǫ is used to denote a multi-dimensional array of i.i.d. random variables and has the same dimensions as U.
4 Commonly Dα0

is a time derivative ∂t or ∂tt , although this is not required.
5 We will avoid using subscript notation such as ux to denote partial derivatives, instead using Dαu or ∂xu. For functions f (x) of one variable, f (n)(x)

denotes the nth derivative of f .
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where the L2-inner product is defined 〈ψ, f 〉 :=
∫ T

0

∫
�

ψ∗(x, t) f (x, t) dxdt and ψ∗ denotes the complex conjugate of ψ , 
although in what follows we integrate against only real-valued test functions and will omit the complex conjugation. Using 
the compact support of ψ and Fubini’s theorem, we then integrate by parts as many times as necessary to arrive at the 
following weak form of the dynamics:

〈
(−1)|α

0|Dα0
ψ, u

〉
=

S∑

s=1

J∑

j=1

w⋆
(s−1) J+ j

〈
(−1)|α

s |Dαs

ψ, f j(u)
〉
, (3.2)

where |αs| :=
∑D+1

d=1 αs
d
is the order of the multi-index.6 Using an ensemble of test functions (ψk)k∈[K ] , we then discretize 

the integrals in (3.2) with f j(u) replaced by f j(U) (i.e. evaluated at the observed data U) to arrive at the linear system

b = Gw⋆

defined by



bk =

〈
(−1)|α

0|Dα0
ψk, U

〉
,

Gk,(s−1) J+ j =
〈
(−1)|α

s |Dαs
ψk, f j(U)

〉
,

(3.3)

where b ∈ RK , G ∈ RK×S J and w⋆ ∈ RS J are referred to throughout as the left-hand side, Gram matrix and model coefficients, 
respectively. In a mild abuse of notation, we use the inner product both in the sense of a continuous and exact integral in 
(3.2) and a numerical approximation in (3.3) which depends on a chosen quadrature rule. Building off of its success in the 
ODE setting, we use the trapezoidal rule throughout, as it has been shown to yield nearly negligible quadrature error with 
the test functions employed below (see Section 4.1 and [28]). In this way, solving b = Gw⋆ for the model coefficients w⋆

allows for recovery of the PDE (3.1) without pointwise derivative approximations. The Gram matrix G ∈ RK×S J and left-hand 
side b ∈ RK defined in (3.3) conveniently take the same form regardless of the spatial dimension D , as their dimensions 
only depend on the number of test functions K and the size S J of the model library, composed of J trial functions ( f j) j∈[ J ]
and S candidate differential operators enumerated by the multi-index set ααα := (αs)1≤s≤S .

3.1. Convolutional weak form and discretization

We now restrict to the case of each test function ψk being a translation of a reference test function ψ , i.e. ψk(x, t) =
ψ(xk − x, tk − t) for some collection of points {(xk, tk)}k∈[K ] ⊂ (X, t) (referred to as the query points). The weak form of the 
dynamics (3.2) over the test function basis (ψk)k∈[K ] then takes the form of a convolution:

(
Dα0

ψ
)

∗ u(xk, tk) =
S∑

s=1

J∑

j=1

w⋆
(s−1) J+ j

(
Dαs

ψ
)

∗ f j(u)(xk, tk). (3.4)

The sign factor (−1)|α
s | appearing in (3.2) after integrating by parts is eliminated in (3.4) due to the sign convention in the 

integrand of the space-time convolution, which is defined by

ψ ∗ u(x, t) :=
T∫

0

∫

�

ψ(x− y, t − s)u(y, s)dyds = 〈ψ(x− ·, t − ·), u(·, ·)〉 .

Construction of the linear system b = Gw⋆ as a discretization of the convolutional weak form (3.4) over the query points 
{(xk, tk)}k∈[K ] can then be carried out efficiently using the FFT as we describe below.

To relate the continuous and discrete convolutions, we assume that the support of ψ is contained within some rectan-
gular domain

�R := [−b1,b1] × · · · × [−bD ,bD ] × [−bD+1,bD+1] ⊂ R
D × R

where bd = md�x for d ∈ [D] and bD+1 = mD+1�t . We then define a reference computational grid (Y, t) ⊂ RD × R for 
ψ centered at the origin and having the same sampling rates (�x, �t) as the data U, where Y = Y1 ⊗ · · · ⊗ YD for Yd =
(n�x)−md≤n≤md

and t = (n�t)−mD+1≤n≤mD+1 . In this way Y contains 2md + 1 points along each dimension d ∈ [D], with 
equal spacing �x, and t contains 2mD+1 + 1 points with equal spacing �t . As with (X, t), points in (yk, tk) ∈ (Y, t) take the 
form

6 For example, with Dαs = ∂2+1

∂x2∂ y
, integration by parts occurs twice with respect to the x-coordinate and once with respect to y, so that |αs| = 3 and 

(−1)|α
s | = −1.

4



D.A. Messenger and D.M. Bortz Journal of Computational Physics 443 (2021) 110525

(yk, tk) = (Yk1,...,kD , tkD+1
)

where each index kd for d ∈ [D +1] takes values in the range {−md, . . . , 0, . . . , md}, and for valid indices k − j, the two grids 
(X, t) and (Y, t) are related by

(xk − x j, tk − t j) = (yk− j, tk− j). (3.5)

We stress that (Y, t) is completely defined by the integers m = (md)d∈[D+1] , specified by the user, and that the values of 
m have a significant impact on the algorithm. For this reason we develop an automatic selection algorithm for m using 
spectral properties of the data U (see Appendix A).

The linear system (3.3) can now be rewritten

{
bk = 
0 ∗U(xk, tk),

Gk,(s−1) J+ j = 
s ∗ f j(U)(xk, tk),
(3.6)

where 
s := Dαs
ψ(Y, t)�xD�t and the factor �xD�t characterizes the trapezoidal rule. We define the discrete (D + 1)-

dimensional convolution between 
s and f j(U) at a point (xk, tk) = (Xk1,...,kD , tkD+1
) ∈ (X, t) by


s ∗ f j (U) (xk, tk) :=
N1∑

ℓ1=1

· · ·
ND+1∑

ℓD+1=1


s
k1−ℓ1,...,kD+1−ℓD+1

f j
(
Uℓ1,...,ℓD+1

)
,

which, substituting the definition of 
s ,

:=
N1∑

ℓ1=1

· · ·
ND+1∑

ℓD+1=1

Dαs

ψ
(
Yk1−ℓ1,...,kD−ℓD , tkD+1−ℓD+1

)
f j
(
Uℓ1,...,ℓD+1

)
�xD�t (3.7)

truncating indices appropriately and using (3.5),

=
k1+m1∑

ℓ1=k1−m1

· · ·
kD+1+mD+1∑

ℓD+1=kD+1−mD+1

Dαs

ψ
(
Yk1−ℓ1,...,kD−ℓD , tkD+1−ℓD+1

)
f j
(
Uℓ1,...,ℓD+1

)
�xD�t (3.8)

=
k1+m1∑

ℓ1=k1−m1

· · ·
kD+1+mD+1∑

ℓD+1=kD+1−mD+1

Dαs

ψ (xk − xℓ, tk − tℓ) f j
(
Uℓ1,...,ℓD+1

)
�xD�t (3.9)

≈
T∫

0

∫

�

Dαs

ψ(xk − x, tk − t) f j (u(x, t)) dxdt. (3.10)

3.2. FFT-based implementation and computational complexity for separable ψ

Convolutions in the linear system (3.6) may be computed rapidly if the reference test function ψ is separable over the 
given coordinates, i.e.

ψ(x, t) = φ1(x1) · · ·φ2(xD)φD+1(t)

for univariate functions (φd)d∈[D+1] . In this case,

Dαs

ψ(Y, t) = φ
(αs

1)

1 (Y1) ⊗ · · · ⊗ φ
(αs

D )

D (YD) ⊗ φ
(αs

D+1)

D+1 (t),

so that only the vectors

φ
(αs

d
)

d
(Yd) ∈ R

2md+1, d ∈ [D] and φ
(αs

D+1)

D+1 (t) ∈ R
2mD+1+1,

need to be computed for each 0 ≤ s ≤ S and the multi-dimensional arrays (
s)s=0,...,S are never directly constructed. Con-
volutions can be carried out sequentially in each coordinate,7 so that the overall cost of computing each column 
s ∗ f j (U)

of G is

7 The technique of exploiting separability in high-dimensional integration is not new (see [33] for an early introduction) and is frequently utilized in 
scientific computing (see [4,14] for examples in computational chemistry).
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Fig. 1. Reduction in computational cost of multi-dimensional convolution 
s ∗ f j (U) when 
s and f j(U) have n and N points in each of D + 1 dimensions, 
respectively. Each plot shows the ratio T I I/T I (equations (3.13) and (3.11)), i.e. the factor by which the separable FFT-based convolution reduces the cost of 
the naive convolution, for D + 1 = 2 and D + 1 = 3 space-time dimensions and n ∈ [N]. The right-most plot shows that when N = 512 and D + 1 = 3, the 
separable FFT-based convolution is 104 times faster for 100 ≤ n ≤ 450.

T I (N,n, D) := CN log(N)

D+1∑

d=1

ND+1−d (N − n + 1)d−1 , (3.11)

if the computational grid (X, t) and reference grid (Y, t) have N and n ≤ N points along each of the D + 1 dimensions, 
respectively. Here CN log(N) is the cost of computing the 1D convolution between vectors x = (x1, . . . , xn) ∈ Rn and y =
(y1, . . . , yN ) ∈ RN using the FFT,

x ∗ y = PF
−1
(
F(x0) ⊙F(y)

)
, (3.12)

where x0 = (0, . . . , 0, x1, . . . , xn) ∈ RN , ⊙ denotes element-wise multiplication and P projects onto the first N − n + 1

components. The discrete Fourier transform F is defined

Fk(y) =
N∑

j=1

y je
−2π i( j−1)(k−1)

with inverse

F
−1
k

(z) = 1

N

N∑

j=1

z je
2π i( j−1)(k−1).

The projection P ensures that the convolution only includes points that correspond to integrating over test functions ψ that 
are compactly supported in (X, t), which is necessary for integration by parts to hold in the weak form. The spectra of the 

test functions φ
(αs

d
)

d
(Yd) can be precomputed and in principle each convolution 
s ∗ f j(U) can be carried out in parallel,8

making the total cost of the WSINDy Algorithm (4.2) in the PDE setting equal to (3.11) (ignoring the cost of the least-squares 
solves which are negligible in comparison to computing (G, b)). In addition, subsampling reduces the term (N − n + 1) in 
(3.11) to (N − n + 1)/s where s ≥ 1 is the subsampling rate such that (N − n + 1)/s points are kept along each dimension.

For most practical combinations of n and N , (say n > N/10 and N > 150) using the FFT and separability provides a 
considerable reduction in computational cost. See Fig. 1 for a comparison between T I and the naive cost T I I of an (N + 1)-

dimensional convolution:

T I I (N,n, D) := (2nD+1 − 1)(N − n + 1)D+1. (3.13)

For example, with n = N/4 (a typical value) we have T I I =O(N2D+2) and T I =O(ND+1 log(N)), hence exploiting separabil-
ity reduces the computational complexity by a factor of ND+1/ log(N).

4. WSINDy algorithm for PDEs and hyperparameter selection

WSINDy for PDE discovery is given in Algorithm 4.2, where the user must specify each of the hyperparameters in Table 1. 
The key pieces of the algorithm are (i) the choice of reference test function ψ , (ii) the method of a sparsification, (iii) the 
method of regularization, (iv) selection of convolution query points {(xk, tk)}k∈K , and (v) the model library. At first glance, 

8 For the examples in Section 5 the walltimes are reported for serial computation of (G, b).
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Table 1

Hyperparameters for the WSINDy Algorithm 4.2. Note that f j piecewise continuous is sufficient (we just need convergence of the 
trapezoidal rule), m may be replaced by a spectral-decay tolerance τ̂ > 0 if test functions are automatically selected from the data 
using the method in Appendix A, and K is determined from m and s using (4.10).

Hyperparameter Domain Description

( f j) j∈[ J ] C(R) trial function library

ααα = (αs)s=0,...,S N(S+1)×(D+1) partial derivative multi-indices

m = (md)d∈[D+1] ND+1 discrete support lengths of 1D test functions (φd)d∈[D+1]
s = (sd)d∈[D+1] ND+1 subsampling frequencies for query points {(xk, tk)}k∈[K ]
λλλ [0,∞) search space for sparsity threshold λ̂

τ (0,1] ψ real-space decay tolerance

the number of hyperparameters is quite large. We now discuss several simplifications that either reduce the number of 
hyperparameters or provide methods of choosing them automatically. In Section 4.1 we discuss connections between the 
convolutional weak form and spectral properties of ψ that determine the scheme’s robustness to noise and inform the 
selection of test function hyperparameters. In Section 4.2 we introduce a modified sequential-thresholding least-squares 
algorithm (MSTLS) which includes automatic selection of the threshold λ and allows for PDE discovery from large libraries. 
In Section 4.3 we describe how scale invariance of the PDE is used to rescale the data and coordinates in order to regularize 
the model recovery problem in the case of poorly-scaled data. In Sections 4.4 and 4.5 we briefly discuss selection of query 
points and an appropriate model library, however these components of the algorithm will be investigated more thoroughly 
in future research.

4.1. Selecting a reference test function ψ

4.1.1. Convolutional weak form and Fourier analysis
Computation of G and b in (3.6) with ψ separable requires the selection of appropriate 1D coordinate test functions 

(φd)d∈[D+1] . Computing convolutions using the FFT (3.12) suggests a mechanism for choosing appropriate test functions. 
Define the Fourier coefficients of a function u ∈ L2([0, T ]) by

û(k) = 1√
T

T∫

0

u(t)e− 2π ik
T

t dt, k ∈ Z.

Consider data U = u(t) + ǫ ∈ RN for a T -periodic function u, tk = k T
N

= k�t , and i.i.d. noise ǫ ∼ N (0, σ 2I). The discrete 
Fourier transform of the noise F(ǫ) := ǫR + iǫI is then distributed ǫR , ǫI ∼N (0, (Nσ 2/2)I). In addition, there exist constants 
C > 0 and ℓ > 1/2 such that |̂uk| ≤ C |k|−ℓ for each k ∈ Z. There then exists a noise-dominated region of the spectrum F(U)

determined by the noise-to-signal ratio

NSRk := E

[ |Fk(ǫ)|2
|Fk(u(t))|2

]
= Nσ 2

|Fk(u(t))|2 ≈ Tσ 2

N |̂u(k)|2 ≥ 1

C2
�tσ 2k2ℓ,

where ‘≈’ corresponds to omitting the aliasing error. For NSRk ≥ 1 the kth Fourier mode is by definition noise-dominated, 
which corresponds to wavenumbers

|k| ≥ k∗ ≈
(

C

σ
√

�t

)1/ℓ

. (4.1)

If the critical wavenumber k∗ between the noise dominated (NSRk ≥ 1) and signal-dominated (NSRk ≤ 1) modes can be 
estimated from the dataset U, then it is possible to design test functions ψ such that the noise-dominated region of F(U)

lies in the tail of ψ̂ . The convolutional weak form (3.6) can then be interpreted as an approximate low-pass filter on the 
noisy dataset, offering robustness to noise without altering the frequency content of the data.9

In summary, spectral decay properties of the reference test function ψ serve to damp high-frequency noise in the con-
volutional weak form, which acts together with the natural variance-reducing effect of integration, as described in [13], to 
allow for quantification and control of the scheme’s robustness to noise. Specifically, coordinate test functions φd with wide 
support in real space (larger md) will reduce more variance, but will have a faster-decaying spectrum φ̂d , so that signal-
dominated modes may not be resolved, leading to model misidentification. On the other hand, if φd decays too swiftly in 
real space (smaller md), then the spectrum φ̂d will decay more slowly and may put too much weight on noise-dominated 
frequencies. In addition, smaller md may not sufficiently reduce variance. A balance must be struck between (a) effectively 
reducing variance, which is ultimately determined by the decay of ψ in physical space, and (b) resolving the underlying 
dynamics, determined by the decay of ψ̂ in Fourier space.

9 This is in contrast to explicit data-denoising, where a filter is applied to the dataset prior to system identification and may fundamentally alter the 
underlying clean data. The implicit filtering of the convolutional weak form is made explicit by the FFT-based implementation (3.12).
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Fig. 2. Plots of reference test function ψ and partial derivatives Dαs
ψ used for identification of the Kuramoto-Sivashinsky equation. The upper left plot 

shows ∂tψ , the bottom right shows ∂6
x ψ . See Tables 2-4 for more details.

4.1.2. Piecewise-polynomial test functions
Many test functions achieve the necessary balance between decay in real space and decay in Fourier space in order to 

offer both variance reduction and resolution of signal-dominated modes (defined by (4.1)). For simplicity, in this article we 
use the same test function space used in the ODE setting [28] and leave an investigation of the performance of different 
test functions to future work. Define S to be the space of functions

φ(v) =
{
C(v − a)p(b − v)q a < v < b,

0 otherwise,
(4.2)

where p, q ≥ 1 and v is a variable in time or space. The normalization

C = 1

ppqq

(
p + q

b − a

)p+q

ensures that ‖φ‖∞ = 1. Functions φ ∈ S are non-negative, unimodal, compactly-supported in [a, b], and have ⌊min{p, q}⌋
weak derivatives.10 Larger p and q imply faster decay towards the endpoints (a, b) and for p = q we refer to p as the degree
of φ. See Fig. 2 for a visualization of ψ and partial derivatives Dαs

ψ constructed from tensor products of functions from S . 
In addition to having nice integration properties combined with the trapezoidal rule (see Lemma 1 of [28]), (a, b, p, q) can 
be chosen to localize φ̂ around signal-dominated frequencies in F(U) using the fact that for any reference domain length 
L ≥ |b − a|,

|φ̂(k)| = o

(( |b − a|
L

|k|
)−⌊min{p,q}⌋−1/2

)
.

To assemble the reference test function ψ from one-dimensional test functions (φd)d∈[D+1] ⊂ S along each coordinate, we 
must determine the parameters (ad, bd, pd, qd) in the formula (4.2) for each φd . For convenience we center (Y, t) at the origin 
so that each φd is supported on a centered interval [ad, bd] = [−bd, bd], where bd =md�x for d ∈ [D] and bD+1 =mD+1�t , 
and set pd = qd so that ψ is symmetric.11 In this way only m := (md)d∈[D+1] and degrees p := (pd)d∈[D+1] need to be 

specified, hence the vectors (φ
(αs

d
)

d
(Yd))0≤s≤S can be computed from an analogous function φ pd

with support [−1, 1],

φpd
(v) :=

{
(1 − v2)pd , −1 < v < 1

0, otherwise,

10 S can also be seen as a scaled subset of the Bernstein polynomials, which, among other considerations, are used in the construction of B-Splines [12].
11 Test function asymmetry may provide an advantage in some cases, for instance along the time axis, however we do not investigate this here.
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using

φ
(αs

d
)

d
(Yd) = 1

b
αs
d

d

φ
(αs

d
)

pd

(
Yd

bd

)
= 1

(md�)α
s
d

φ
(αs

d
)

pd
(nd) ,

where nd := {−1 + n
md

: n ∈ {0, . . . , 2md}} is an associated scaled grid and � ∈ {�x, �t}.
The discrete support lengths m and degrees p determine the smoothness of ψ , as well as its decay in real and in Fourier 

space, hence are critical to the method’s performance. The degrees p can be chosen from m to ensure necessary smoothness 
and decay in real space using

pd = min

{
p ≥ αd + 1 :φp

(
1− 1

md

)
≤ τ

}
, (4.3)

where αd := max0≤s≤S(α
s
d
) is the maximum derivative along the dth coordinate and τ is a chosen (real-space) decay 

tolerance. By enforcing that φd decays to τ at the first interior gridpoint of its support, (4.3) controls the integration 

error (specifically, τ ≤
(

2md−1

m2
d

)q

ensures O(�xq+1) integration error for noise-free data), while p ≥ αd + 1 ensures that 

φd ∈ Cαd (R), which is necessary to integrate by parts as many times as required by the multi-index set ααα . The steps for 

arriving at the test function values on the reference grid (φ
(αs

d
)

d
(Yd))0≤s≤S are contained in Algorithm 4.1.

In the examples below, we set τ = 10−10 throughout12 and we use the method introduced in Appendix A to choose 
m, which involves estimating the critical wavenumber k∗ (defined in (4.1)) between noise-dominated and signal-dominated 
modes of F(U). We also simplify things by choosing a single test function for all spatial coordinates, φx = φ1 = φ2 = · · · = φD

where φx has degree px and support mx , and a (possibly different) test function φt = φD+1 for the time axis with degree pt
and support mt (recall that subscripts x and t are indices, not partial derivatives). This convention is used in the following 
sections.

Algorithm 4.1 WSINDy Test Function Creation (φ
(αs

d
)

d
(Yd))0≤s≤S = get_test_fcns (md,τ ; Xd,α).

1: Nd = length(Xd)

2: �x = gridwidth(Xd)

3: if md >
Nd−1

2
or md ≤ 1 then

4: return (“ERROR: invalid support size md”)

5: BREAK

6: end if

7: Set αd = max0≤s≤S (α
s
d
)

8: Solve pd = min
{
p ≥ αd + 1 : φp

(
1− 1

md

)
≤ τ
}

9: Initialize A = 0 ∈ R(S+1)×(2md+1)

10: Set nd := {−1 + n
md

: n ∈ {0, . . . , 2md}}
11: for s = 0 : S do

12: Compute analytical order-(αs
d
) derivatives As = φ

(αs
d
)

pd
(nd)

13: Set φ(αs
d
)

d
(Yd) = 1

(md�x)
αs
d
As

14: end for

4.2. Sparsification

To enforce a sparse solution we present a modified sequential-thresholding least-squares algorithm MSTLS(G, b; λ), defined 
in (4.6), which accounts for terms that are outside of the dominant balance physics of the data, as determined by the 
left-hand side b, as well as terms with small coefficients. We then utilize the loss function

L(λ) =
∥∥G(wλ −wLS)

∥∥
2∥∥GwLS

∥∥
2

+ #{Iλ}
S J

(4.4)

to select an optimal threshold λ̂, where wλ is the output of MSTLS(G, b; λ) defined in equation (4.6), #{·} denotes cardi-
nality, Iλ := {1 ≤ i ≤ S J : wλ

i
�= 0} is the index set of non-zero coefficients of wλ , wLS :=

(
GTG

)−1
GT b is the least squares 

solution, and S J is the total number of terms in the library (S differential operators and J functions of the data). The first 
term in L penalize the distance between GwLS (the projection of b onto the range of G) and Gwλ (the projection of b onto 
the columns of G restricted to Iλ), while the second term penalizes the number of nonzero terms in the resulting model. 
The normalization simply enforces L(0) = L(∞) = 1.

12 WSINDy appears not to be particularly sensitive to τ , similar results were obtained for τ = 10−6, 10−10, 10−16 .
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The MSTLS(G, b; λ) iteration is as follows. For a given λ ≥ 0, define the set of lower bounds Lλ and upper bound Uλ by



Lλ
i = λmax

{
1,

‖b‖
‖Gi‖

}

Uλ
i

= 1
λ
min

{
1,

‖b‖
‖Gi‖

} , 1 ≤ i ≤ S J . (4.5)

Then with w0 = wLS , define the iterates

MSTLS(G,b;λ )

{
Iℓ = {1 ≤ i ≤ S J : Lλ

i
≤ |wℓ

i
| ≤ Uλ

i
}

wℓ+1 = argminsupp(w)⊂Iℓ ‖Gw− b‖22 .
(4.6)

The constraint Lλ
i

≤ |wℓ
i
| ≤ Uλ

i
is clearly more restrictive than standard sequential thresholding, but it enforces two desired 

qualities of the model: (i) that the coefficients wλ do not differ too much from 1, since 1 is the coefficient of the “evolution” 
term Dα0

u (assumed known), and (ii) that the ratio ‖wiGi‖2 / ‖b‖2 lies in [λ, λ−1], enforcing an empirical dominant balance 
rule (e.g. λ = 0.01 allows terms in the model to be at most two orders of magnitude from Dα0

u). Using previous results on 
the convergence of STLS [60], for MSTLS(G, b; λ) we employ the stopping criteria Iℓ \ Iℓ+1 = ∅, which must occur for some 
ℓ ≤ S J . The overall sparsification algorithm MSTLS(G, b; L, λλλ) is

MSTLS(G,b; L,λλλ)

{
λ̂ = min {λ ∈λλλ : L(λ) = minλ∈λλλ L(λ)}
ŵ = MSTLS(G,b; λ̂),

(4.7)

where λλλ is a finite set of candidate thresholds.13 The learned threshold λ̂ is the smallest minimizer of L over the range 
λλλ and hence marks the boundary between identification and misidentification of the minimum-cost model, such that {λ ∈
λλλ : λ < λ̂} results in overfitting. A similar learning method for λ̂ combining STLS and Tikhonov regularization (or ridge 
regression) was developed in [39]. We have found that our approach of combining MSTLS(G, b; L, λλλ) with rescaling, as 
introduced in the next section, regularizes the sparse regression problem in the case of large model libraries without adding 
hyperparameters14 and definitely deserves further study.

4.3. Regularization through rescaling

Construction of the linear system b = Gw involves taking nonlinear transformations of the data f j(U) and then inte-
grating against Dαs

ψ , which oscillates for large |αs|. This can lead to a large condition number κ(G) and prevent accurate 
inference of the true model coefficients w⋆ , especially when the underlying data is poorly scaled.15 In particular, identifi-
cation of polynomial terms such as ∂x(u2) from a large library of polynomial terms is ill-conditioned for large (or small) 
amplitude data. Naively rescaling the data can easily lead to unreliable inference of model coefficients, since characteris-
tic scales often effect the dynamics in nontrivial ways. For example, solution amplitude determines the wavespeed in the 
inviscid Burgers and Korteweg-de Vries equations, hence the solution and space-time coordinates must be rescaled in a 
principled manner in order to preserve the dynamics. To overcome this problem we propose to rescale the data using scale 
invariance of the PDE and choose scales that achieve a lower condition number, as described below. This approach allows 
for reliable identification of the Burgers and KdV equations from highly-corrupted large-amplitude data (U ∼ O(103), see 
Section 5.4).

First, we note that the true model is scale invariant in the following way. If u solves (3.1), then for any scales γx, γt , γu >

0, the rescaled function

ũ(̃x,̃ t) := γu u

(
x̃

γx

,
t̃

γt

)
:= γu u(x, t)

solves

D̃α0
ũ =

S∑

s=1

J∑

j=1

w̃(s−1) J+ j D̃
αs

f̃ j (̃u)

where D̃αs
denotes differentiation with respect to (̃x, ̃t) = (γxx, γtt). For homogeneous functions f j with power β j , we 

have f̃ j (̃u) = f j (̃u) = γ
β j

u f j(u), otherwise f̃ j (̃u) = f j

(
ũ
γu

)
= f j(u) (in which case we set β j = 0). The linear system in the 

rescaled coordinates b̃ = G̃w̃ is constructed by discretizing the convolutional weak form as before but with a reference 

13 Other methods of minimizing L can be used, however minimizers are not unique (there exists a set of minimizers - see Fig. 5). Our approach is 
efficient and returns the minimizer ̂λ which has the useful characterization of defining the thresholds λ that result in overfitting.
14 Tikhonov regularization involves solving ŵ = argminw ‖Gw− b‖22 + γ 2 ‖w‖22 .
15 A common remedy for this is to scale G to have columns of unit 2-norm, however this has no connection with the underlying physics.
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test function ψ̃ on the rescaled grid �̃R . We recover the coefficients16 ŵ at the original scales by setting ŵ = Mw̃, where 
M = diag (µµµ) is the diagonal matrix with entries

µ(s−1) J+ j := γ
−(β j−1)
u γ

∑D
d=1(α

s
d
−α0

d
)

x γ
(αs

D+1−α0
D+1)

t . (4.8)

There is flexibility in choosing the scales γu, γx, γt , and a natural choice is to enforce that the columns of G̃ are similar 
in norm. Motivated by this, we find that for polynomial and trigonometric libraries, the scales17

γu =




‖U‖2′∥∥∥Uβ

∥∥∥
2′




1/β

, γx = 1

mx�x

((
px

αx

2

)
αx!
)1/αx

, γt = 1

mt�t

((
pt
αt

2

)
αt !
)1/αt

(4.9)

are sufficient to regularize ill-conditioning due to poor scaling. Here αx and αt are the maximum spatial and temporal 
derivatives appearing in the library and β = max j β j is the highest monomial power of the functions ( f j) j∈[ J ] . From (4.9)
we get that

∥∥∥Ũβ
∥∥∥
2′

= ‖U‖2′

and

max
s

∥∥
s
∥∥
1′ ≤ max

s

∥∥∥Dαs

ψ̃

∥∥∥
∞

|�̃R | ≤ |�̃R |,

hence, using Young’s inequality for convolutions,
∥∥∥
s ∗ Ũβ

∥∥∥
2′

≤
∥∥
s

∥∥
1′

∥∥∥Ũβ
∥∥∥
2′

≤
∣∣�̃R

∣∣‖U‖2′ .

This shows that with scales γu, γx, γt set according to (4.9), the columns of G̃ are close in norm to the original dataset U. 
Similar scales γx, γt , γu can be chosen for different model libraries and reference test functions, and a more refined analysis 
will lead to scales that achieve closer agreement in norm. In the examples below we rescale the data and coordinates 
according to (4.9), which results in a low condition number κ (̃G) (see Table 4). Throughout what follows, quantities defined 
over scaled coordinates will be denoted by tildes.

4.4. Query points and subsampling

Placement of {(xk, tk)}k∈[K ] determines which regions of the observed data will most influence the recovered model.18

In WSINDy for ODEs ([28]), an adaptive algorithm was designed for placement of test functions near steep gradients along 
the trajectory. Improvements in this direction in the PDE setting are a topic of active research, however, for simplicity in 
this article we uniformly subsample {(xk, tk)}k∈[K ] from (X, t) using subsampling frequencies s = (s1, . . . , sD+1) along each 
coordinate, specified by the user. That is, along each one-dimensional grid Xd , ⌊ Nd−2md

sd
⌋ points are selected with uniform 

spacing sd�x for d ∈ [D] and sD+1�t for d = D + 1. This results in a (D + 1)-dimensional coarse grid with dimensions 
⌊ N1−2m1

s1
⌋ × · · · × ⌊ ND+1−2mD+1

sD+1
⌋, which determines the number of query points

K =
D+1∏

d=1

⌊
Nd − 2md

sd

⌋
. (4.10)

4.5. Model library

The model library is determined by the nonlinear functions ( f j) j∈[ J ] and the partial derivative indices ααα and is crucial to 
the well-posedness of the recovery problem. In the examples below we choose ( f j) j∈[ J ] to be polynomials and trigonometric 
functions as these sets are dense in many relevant function spaces. When the true PDE does not contain cross derivatives 
(e.g. ∂2

∂x1∂x2
), we remove them from the derivative library ααα and note that including these terms does not have a significant 

impact on the results.

16 Note that thresholding in equation (4.6) occurs on ŵ and the terms ‖b‖
‖Gi‖ in the bounds (4.5) become 

∥∥̃b
∥∥

µi

∥∥G̃i

∥∥ .
17 Here ‖U‖2′ is the 2-norm of U stretched into a column vector (and similarly for ‖·‖1′ ).
18 Note that the projection operation in (3.12) restricts the admissable set of query points to those for which ψ(xk − x, tk − t) is compactly supported 
within � × [0, T ], which is necessary for integration by parts to be valid.
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Algorithm 4.2 WSINDy for PDEs (ŵ, λ̂) = WSINDy(( f j) j∈[ J ], α, m, s, λλλ, τ ; U, (X, t)).
1: for d = 1 : D + 1 do

2: Compute (φ(αs
d
)

d
(Yd))0≤s≤S = get_test_fcns (md,τ ; Xd,α) using Algorithm 4.1

3: end for

4: Compute scales {γu , (γd)
D+1
d=1

} and scale matrix M = diag(µµµ) using (4.9)
5: Subsample query points {(xk, tk)}k∈[K ] ⊂ (X, t) using subsampling frequencies s = (s1, s2, . . . , sD+1);

6: Compute left-hand side ̃b = 
̃0 ∗ Ũ over {(xk, tk)}k∈[K ] using FFT and separability of ψ ;

7: for j = 1 : J do

8: Compute ̃ f j(Ũ);

9: for s = 1 : S do

10: Compute column (s − 1) J + j of Gram matrix ̃G:,(s−1) J+ j = 
̃s ∗ f̃ j(Ũ) over {(xk, tk)}k∈[K ] using FFT and separability of ψ
11: end for

12: end for

13: (ŵ, ̂λ) = MSTLS(̃G, ̃b; L, λλλ)

Table 2

PDEs used in numerical experiments, written in the form identified by WSINDy. Domain specification and bound-
ary conditions are given in Appendix B.

Inviscid Burgers (IB) ∂tu = − 1
2
∂x(u

2)

Korteweg-de Vries (KdV) ∂tu = − 1
2
∂x(u

2) − ∂xxxu

Kuramoto-Sivashinsky (KS) ∂tu = − 1
2
∂x(u

2) − ∂xxu − ∂xxxxu

Nonlinear Schrödinger (NLS)

{
∂tu = 1

2
∂xxv + u2v + v3

∂t v = − 1
2
∂xxu − uv2 − u3

Anisotropic Porous Medium (PM) ∂tu = (0.3)∂xx(u
2) − (0.8)∂xy(u

2) + ∂yy(u
2)

Sine-Gordon (SG) ∂ttu = ∂xxu + ∂yyu − sin(u)

Reaction-Diffusion (RD)

{
∂tu = 1

10
∂xxu + 1

10
∂yyu − uv2 − u3 + v3 + u2v + u

∂t v = 1
10

∂xxv + 1
10

∂yy v + v − uv2 − u3 − v3 − u2v

2D Navier-Stokes (NS) ∂tω = −∂x(ωu) − ∂y(ωv) + 1
100

∂xxω + 1
100

∂yyω

5. Examples

We now demonstrate the effectiveness of WSINDy by recovering the PDEs listed in Table 2 over a range of noise levels. 
These examples show that WSINDy provides orders of magnitude improvements over derivative-based methods [39], with 
reliable and accurate recovery of four out of the eight PDEs under noise levels as high as 100% (defined in (5.1) and 
(5.2)) and for all examples under 20% noise. In contrast to the weak recovery methods in [37,13], WSINDy uses (i) the 
convolutional weak form (3.6) and FFT-based implementation (3.12), (ii) improved thresholding and automatic selection of 
the sparsity threshold λ̂ via (4.6) and (4.7), and (iii) rescaling using (4.9). The effects of these improvements are discussed 
in Sections 5.4 and 5.5.

To test robustness to noise, a noise ratio σNR is specified and a synthetic “observed” dataset

U = U⋆ + ǫ

is obtained from a simulation U⋆ of the true PDE19 by adding i.i.d. Gaussian noise with variance σ 2 to each data point, 
where

σ := σNR

∥∥U⋆
∥∥
RMS

:= σNR


 1

(N1 · · ·NDND+1)

N1∑

k1=1

· · ·
ND+1∑

kD+1=1

(
U⋆
k1,...,kD+1

)2



1/2

. (5.1)

We examine noise ratios σNR in the range [0, 1] and often refer to the noise level as σNR or equivalently that the data 
contains 100σNR% noise. We note that the resulting true noise ratio

σ ⋆
NR := ‖ǫ‖RMS

‖U⋆‖RMS

(5.2)

matches the specified σNR to at least four significant digits in all cases and so we only list σNR . When the state variable 
is vector-valued, as with the nonlinear Schrödinger, reaction-diffusion, and Navier-Stokes equations (see Table 2), a separate 
noise variance σ 2 is computed for each vector component so that the noise ratio σNR of each component satisfies (5.2).

19 Details on the numerical methods and boundary conditions used to simulate each PDE can be found in Appendix B.
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5.1. Performance measures

To measure the ability of the algorithm to correctly identify the terms having nonzero coefficients, we use the true 
positivity ratio (introduced in [22]) defined by

TPR(ŵ) = TP

TP+ FN+ FP
(5.3)

where TP is the number of correctly identified nonzero coefficients, FN is the number of coefficients falsely identified as 
zero, and FP is the number of coefficients falsely identified as nonzero. Identification of the true model results in a TPR 
of 1, while identification of half of the correct nonzero terms and no falsely identified nonzero terms results in TPR of 0.5 
(e.g. the 2D Euler equations ∂tω = −∂x(ωu) − ∂y(ωv) result in a TPR of 0.5 if the underlying true model is the 2D Navier-
Stokes vorticity equation). We will see that in several cases that the average TPR remains above 0.95 even as the noise 
level approaches 1. The loss function L(λ) (defined in (4.4)) and the resulting learned sparsity threshold ̂λ (defined in (4.7)) 
provide additional information on the algorithm’s ability to identify the correct model terms with respect to the noise level. 
In particular, sensitivity to the sparsity threshold suggests that automatic selection of λ̂ is essential to successful recovery 
in the relatively large noise regime.

To assess the accuracy of the recovered coefficients we use two metrics. We measure the maximum error in the true 
non-zero coefficients using

E∞(ŵ) := max
{ j : w⋆

j
�=0}

|ŵ j −w⋆
j
|

|w⋆
j
| , (5.4)

where | · | denotes absolute value, and the ℓ2 distance in parameter space using

E2(ŵ) := ‖ŵ−w⋆‖RMS

‖w⋆‖RMS

. (5.5)

E∞ determines the number of significant digits in the recovered true coefficients while E2 provides information about the 
magnitudes of coefficients that are falsely identified as nonzero. Often when a term is falsely identified and the resulting 
nonzero coefficient is small, a larger sparsity factor will result in identification of the true model.

Finally, when TPR(ŵ) = 1, we report the prediction accuracy between the true data U⋆ and a numerical solution Udd to 
the data-driven PDE using the same initial conditions. We compute the relative L2 error Pt(ŵ) at time t = 0.5T (i.e. at the 
half-way point in time) defined by

Pt(ŵ) :=
∥∥Udd

t −U⋆
t

∥∥
RMS∥∥U⋆

t

∥∥
RMS

(5.6)

where Udd
t , U⋆

t denote the numerical solutions over the spatial domain at time t . Since solutions to the data-driven dynamics 
and the true dynamics will eventually drift apart, we also measure

T tol(ŵ) := 1

T
inf{t ∈ [0, T ] : Pt(ŵ) > tol}, (5.7)

or, the first time t (relative to the final time T ) that the numerical solution Udd
t reaches a relative L2 distance of tol from 

the truth. The minimum in (5.7) is computed over t ∈ t and we set tol = 0.1. We provide results for P0.5T (ŵ) and T0.1(ŵ)

averaged over the weights ŵ satisfying TPR(ŵ) = 1.

For each system in Table 2 and each noise level σNR ∈ {0.025q : q ∈ {0, . . . , 40}} we run WSINDy on 200 instantiations 
of noise20 and average the results of error statistics (5.3)-(5.7). Computations were carried out on a University of Colorado 
Boulder Blanca Condo cluster.21

5.2. Implementation details

The hyperparameters used in WSINDy applied to each of the PDEs in Table 2 are given in Table 3. To select test function 
discrete support lengths we used a combination of the changepoint method22 described in Appendix A and manual tuning. 
Across all examples the real-space decay tolerance for test functions is fixed at τ = 10−10 .

In computing a sparse solution ŵ = MSTLS(G, b; L, λλλ) (see equation (4.7)), the search space λλλ for the learned threshold 
λ̂ is fixed for all examples at:

20 We find that 200 runs sufficiently reduces variance in the results.
21 2X Intel Xeon 5218 at 2.3 GHz with 22 MB cache, 16 cores per cpu, and 384 GB ram.
22 For Burgers, KdV, and KS we set ̂τ = 3 (defined in Appendix A.2) while for NLS, PM, SG, RD, and NS we used ̂τ = 1. For KS and NLS we chose (mx, mt )

values nearby that had better performance.
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Table 3

WSINDy hyperparameters used to identify each example PDE.

PDE U f j ααα (mx,mt ) (sx, st )

IB 256 × 256 (u j−1) j∈[7] ((ℓ,0))0≤ℓ≤6 (60,60) (5,5)

KdV 400× 601 (u j−1) j∈[7] ((ℓ,0))0≤ℓ≤6 (45,80) (8,12)

KS 256 × 301 (u j−1) j∈[7] ((ℓ,0))0≤ℓ≤6 (23,22) (5,6)

NLS 2× 256 × 251 (ui v j)0≤i+ j≤6 ((ℓ,0))0≤ℓ≤6 (19,25) (5,5)

PM 200× 200× 128 (ui−1)i∈[5] ((ℓ1, ℓ2,0))0≤ℓ1,ℓ2≤4 (37,20) (8,5)

SG 129 × 403× 205 (ui−1)i∈[5] , (sin( ju), cos( ju)) j=1,2 ((ℓ,0,0), (0, ℓ,0))0≤ℓ≤4 (40,25) (5,8)

RD 2× 256 × 256 × 201 (ui v j)0≤i+ j≤4 ((ℓ,0,0), (0, ℓ,0))0≤ℓ≤5 (13,14) (13,12)

NS 3× 324 × 149 × 201

{
(ωiu j vk)0≤i+ j+k≤2, |αs| = 0

(ωiu j vk)0≤i+ j+k≤3,i>0, |αs| > 0
((ℓ,0,0), (0, ℓ,0))0≤ℓ≤2 (31,14) (12,8)

Table 4

Additional specifications resulting from the choices in Table 3. The last column shows the start-to-finish walltime of Algorithm 4.2 with all computations 
in serial measured on a laptop with an 8-core Intel i7-2670QM CPU with 2.2 GHz and 8 GB of RAM.

PDE G̃ κ (̃G) (px, pt ) (γu ,γx,γt ) Walltime (sec)

IB 784 × 43 1.4× 106 (7,7) (4.5× 10−4,0.0029,1.1) 0.12

KdV 1443 × 43 3.2× 106 (8,7) (5.7× 10−4,8.3,1250) 0.39

KS 1806× 43 3.7× 103 (10,10) (0.26,0.74,0.091) 0.24

NLS 1804× 190 1.2× 105 (11,10) (0.33,3.1,9.4) 2.5

PM 4608× 65 2.4× 104 (8,10) (1.6,2.7,3.2) 16

SG 13000× 73 1.3× 104 (8,10) (0.23,8.1,8.1) 29

RD 11638 × 181 4.5× 103 (13,12) (0.86,6.5,1.4) 75

NS 3872 × 50 8.2× 102 (9,12) (0.53,0.72,2.4) 12

λλλ =
{
10−4+ j 4

49 : j ∈ {0, . . . ,49}
}

,

in other words λλλ contains 50 points with log10(λλλ) equally spaced from −4 to 0. This implies a stopping criteria of 50S J

thresholding iterations.23

We fix the subsampling frequencies (sx, st) to ( N1
50

, N2
50

) for PDEs in one spatial dimension and to ( N1
25

, N3
25

) for two spatial 
dimensions, where the dimensions (N1, N2, N3) depend on the dataset. Additional information about the convolutional weak 
discretization is included in Table 4, such as the dimensions and condition number of the rescaled Gram matrix ̃G (computed 
from a typical dataset with 20% noise), test function polynomial degrees (px, pt), scale factors (γu, γx, γt), and start-to-finish 
walltime of Algorithm 4.2 with all computations performed serially on a laptop with an 8-core Intel i7-2670QM CPU with 
2.2 GHz and 8 GB of RAM.

5.3. Comments on chosen examples

The primary reason for choosing the examples in Table 2 is to demonstrate that WSINDy can successfully recover models 
over a wide range of physical phenomena such as spatiotemporal chaos, nonlinear waves, nonlinear diffusion, shock-forming 
solutions, complex limit cycles, and pattern formation in reaction diffusion equations.

Recovery of the inviscid Burgers and anisotropic porous medium equations demonstrates (i) that WSINDy can discover 
PDEs from solutions that can only be understood in a weak sense and (ii) that discovery in this case is just as accurate 
and robust to noise and scaling as with smooth data (i.e. no special modifications of the algorithm are required to discover 
models from non-smooth data, as conjectured in [13]). We use analytical weak solutions, with inviscid Burgers data forming 
a shock which propagates at constant speed (see Fig. 3 for plots of the characteristic curves) and porous medium data 
having a jump in the gradient ∇u. In addition, we discover the porous medium equation using an anisotropic diffusivity 
tensor to demonstrate that WSINDy can identify the cross-diffusion term ∂xy(u2) to high accuracy from a large candidate 
model library.

The inviscid Burgers and Korteweg-de Vries equations demonstrate that WSINDy successfully recovers the correct models 
for nonlinear transport data with large amplitude. Both datasets have mean amplitudes on the order of 103 (in addition KdV 
is given over a short time window of t ∈ [0, 10−3]), and hence are not identifiable from large polynomial libraries using naive 
approaches. The sparsification and rescaling measures in Sections 4.2 and 4.3 are essential to removing this barrier.

The Sine-Gordon equation24 is used to show both that trigonometric library terms can easily be identified alongside 
polynomials and that hyperbolic problems do not seem to present further challenges. Discovery of the Sine-Gordon equa-

23 In the examples shown here we observed an average of 5 thresholding iterations and a maximum of 14 in any given inner MSTLS(G, b; λ) loop (i.e. 
for each λ ∈ λλλ as in equation (4.6)), hence in practice the full MSTLS(G, b; L, λλλ) algorithm requires far fewer iterations than the theoretical maximum of 
#{λλλ}S J .
24 We have not included experiments involving multiple-soliton solutions to Sine-Gordon, however the success of WSINDy applied to KdV, nonlinear 
Schrödinger and Sine-Gordon suggests that the class of integrable systems could be a fruitful avenue for future research.
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Fig. 3. Characteristics of the shock-forming solution (B.2) used to identify the inviscid Burgers equation. A shock forms at time t = 2 and travels along the 
line x = 500(t − 2).

Fig. 4. Left: average TPR (true positivity ratio, defined in (5.3)) for each of the PDEs in Table 2 computed from 200 instantiations of noise for each noise 
level σNR . Right: average learned threshold ̂λ (defined in (4.7)). For the porous medium equation (PM), ̂λ increases to 0.2 as σNR approaches 1 (we omit 
this from the plot in order to make visible the ̂λ trends for the other systems).

tion also appears to be particularly robust to noise, which suggests that the added complexity of having multiple spatial 
dimensions is not in general a barrier to identification.

For the nonlinear Schrödinger and reaction-diffusion systems, we test the ability of WSINDy to select the correct mono-

mial nonlinearities from an excessively large model library. Using a library of 190 terms for nonlinear Schrödinger’s and 181 
terms for reaction-diffusion (see the dimensions of G̃ in Table 4), we demonstrate successful identification of the correct 
nonzero terms. Moreover, for the reaction-diffusion system, misidentified terms directly reflect the existence of a limit cy-
cle.25 Finally, the vortex-shedding limit cycle for the 2D Navier-Stokes equations is used primarily to compare to previous 
results in [39], and we find that at large-noise WSINDy conveniently selects the Euler equations.

5.4. Results: model identification

Performance regarding the identification of correct nonzero terms in each model is reported in Figs. 4 and 5, which 
include plots of the average TPR, the learned threshold ̂λ, and the loss function L(λ) (defined in (5.3), (4.7), and (4.4), re-
spectively). As we will discuss, significant decreases in average TPR are often accompanied by transitions in the identified λ̂.

Fig. 4 (left) shows that for inviscid Burgers, Korteweg-de Vries, Kuramoto-Sivashinsky and Sine-Gordon, the average TPR 
stays above 0.95 even for noise levels as high as 100% (i.e. WSINDy reliably identifies these models in the presence of 
noise that has the same L2-norm as the underlying clean data). The average TPR for the nonlinear Schrödinger and porous 
medium equations stays above 0.95 until 50% noise, after which identification of the correct monomial nonlinearity is not 
as reliable. For NLS, this is a drastic improvement over previous studies [39], especially considering the large library of 190 
terms used.

25 We note that discovery of the same reaction-diffusion system from a much smaller library of terms is shown in [39,37], but with different initial 
conditions that result in a spiral wave limit cycle. Our choice of initial conditions is motivated below in Appendix B.
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Fig. 5. Plots of the average loss function L(λ) and resulting optimal threshold ̂λ for the Kuramoto Sivashinsky, Sine-Gordon, Reaction diffusion and Navier-
Stokes equations.

We observe in Fig. 4 (right) that the learned threshold ̂λ increases with σNR , suggesting that automatic selection of ̂λ in 
the learning algorithm (4.7) is crucial to the algorithm’s robustness to noise. For example, the Kuramoto-Sivashinsky equa-
tion has a minimum nonzero coefficient of 0.5 (multiplying ∂x(u2)), and we find that ̂λ approaches 0.1 as σNR approaches 1, 
which implies that at higher noise levels the range of ̂λ values that is necessary26 for correct model identification is approx-
imately (∼ 0.1, ∼ 0.5). Since it is highly unlikely that this range of admissible values would be known a priori, the chances 
of manually selecting a feasible ̂λ for Kuramoto-Sivashinsky are prohibitively low in the large noise regime (see Fig. 5a for 
visualizations of the loss L applied to KS data). This effect is even greater for the porous medium equation. Automatic 
selection of ̂λ thus removes this sensitivity. In contrast, ̂λ is largely unaffected by increases in σNR for Burgers, Korteweg-de 
Vries and Sine-Gordon. In particular, Fig. 5b shows little qualitative changes in the loss landscape for Sine-Gordon in the 
range 0.1 ≤ σNR ≤ 0.4.

Intriguingly, for reaction-diffusion, the average TPR falls below 0.95 at 22% noise, after which WSINDy falsely identifies 
linear terms in u and v . If the true model is given by the compact form ∂tu = A(u) for u = (u, v)T , then the misidentified 
model in all trials for noise levels in the range 0.25 ≤ σNR ≤ 0.55 is given by

∂tu = βA(u) + α

(
0 1

−1 0

)
u (5.8)

for some α > 0 and β ≈ 1 dependent on σNR . This is explainable by the fact that the underlying solution settles into a limit 
cycle, which means that at every point in space the solution oscillates. Indeed, the falsely identified nonzero terms in (5.8)
exactly convey that at each point in space the solution is oscillating at a uniform frequency (albeit with variable amplitude 
and phase determined by the initial conditions27). Hence, in the presence of certain lower-dimensional structures (in this 
case a limit cycle), higher noise levels result in a mixture of the true model with a spatially-averaged reduced model. This 

26 By definition (4.7), ̂λ is the minimum value in λλλ that minimizes the loss L (4.7), hence values in λλλ below ̂λ are precisely the thresholds that result in 
misidentification of the correct model by overfitting, while thresholds above min{ j :w⋆

j
�=0} |w⋆

j
| necessarily underfit the model.

27 This is discussed further in Appendix B.7.
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Table 5

Accuracy of WSINDy applied to noise-free data (σNR = 0).

IB KdV KS NLS PM SG RD NS

E∞ 4.3× 10−5 3.1× 10−7 8.1× 10−7 9.4× 10−8 2.2× 10−6 4.3× 10−5 3.9× 10−10 1.1× 10−3

Table 6

Accuracy comparison between WSINDy and PDE-FIND with σNR = 0.01 (results for PDE-FIND reproduced from [39]).

KdV KS NLS RD NS

WSINDy 6.7× 10−4 1.8× 10−4 2.9× 10−4 6.0× 10−4 1.2× 10−3

PDE-FIND 7.0× 10−2 0.52 3.0× 10−2 3.8× 10−2 7.0× 10−2

shift between detection of the correct model and the oscillatory version (5.8) is also detectable in the learned threshold 
λ̂, which decreases at σNR = 0.22 (see RD data in Fig. 4 (right)), and in the loss function L (Fig. 5c). At σNR = 0.275

we see that L in Fig. 5c is minimized for λ in the approximate range (∼ 0.02, ∼ 0.05) but also has a near-minimum 
for λ ∈ (∼ 0.05, ∼ 0.1). These two regions correspond to discovery of the oscillatory model (5.8) and the true model, 
respectively, but since the true model has a slightly higher loss at σNR = 0.275, model (5.8) is selected. For σNR ≥ 0.4 there 
is no longer (on average) a region of λ that results in discovery of the true model, and WINSDy returns (5.8) to compensate 
for noise.

For Navier-Stokes we see an averaging effect at higher noise, similar to the reaction-diffusion system. TPR drops below 
0.95 for noise levels above 27% with the resulting misidentified model being simply Euler’s equations in vorticity form:

∂tω = −∂x(ωu) − ∂y(ωv).

This is due primarily to the small viscosity ν = 0.01 which prevents identification of the viscous forces at higher noise levels. 
Examining the loss function L, Fig. 5d shows that above σNR ≈ 0.275, minimizers of L are above 0.01, hence the viscous 
terms will be thresholded out. Another possible explanation is the low-accuracy simulation used for the clean dataset: in 
the noise-free setting, Table 5 shows that WSINDy recovers the model coefficients of Navier-Stokes to less than 3 significant 
digits in the absence of noise, which is the same level of accuracy exhibited on each of the other systems under 5% noise 
(see Fig. 6). Nevertheless, with reliable recovery up to 27% noise, WSINDy makes notable improvements on previous results 
([39]). Moreover, recovery of the Euler equations at high noise is desirable as this can be seen as the correct leader-order 
model.

5.5. Results: coefficient accuracy

Accuracy in the recovered coefficients is measured by E∞ and E2 (defined in (5.4) and (5.5), respectively) and shown in 
Table 5 for σNR = 0 and in Fig. 6 for σNR > 0. As in the ODE case, the coefficient error E∞ for smooth, noise-free data is 
determined by the order of accuracy of the numerical simulation method,28 since the error resulting from the trapezoidal 
rule is of lower order for the values (px, pt) used in Table 4 (see [28], Lemma 1). Table 5 also shows that the algorithm 
returns reasonable accuracy for non-smooth data, with E∞ = 4.3 × 10−5 and E∞ = 2.2 × 10−6 for the inviscid Burgers and 
porous medium equations, respectively. For reference, Table 6 shows that WSINDy improves over PDE-FIND by about two 
digits.29

For σNR > 0, in Fig. 6 it is apparent that E∞ scales approximately as a power law E∞ ∼ σ r
NR for some r approximately 

in the range (∼ 1, ∼ 2) in all systems except Navier-Stokes. It was observed in [13] that E∞ will approximately scale 
linearly with σNR for Kuramoto-Sivashinsky, however our results show that in general, for larger σNR , the rate will be 
superlinear and dependent on the reference test function and the nonlinearities present. A simple explanation for this 
in the case of normally-distributed noise is the following: linear terms 
s ∗ U will be normally-distributed with mean 


s ∗ U⋆ and approximate variance �xD�t

∥∥∥Dαs
ψ

∥∥∥
2

2
σ 2 , hence are unbiased30 and lead to perturbations that scale linearly 

with σNR . On the other hand, general monomial nonlinearities31 
s ∗ U j with j > 1 are biased and have approximate 

variance �xD�t

∥∥∥Dαs
ψ

∥∥∥
2

2
p2 j(σ ) for p2 j a polynomial of degree 2 j. Hence, nonlinear terms 
s ∗ f j(U) lead to biased 

columns of the Gram matrix G with variance scaling with σ 2r for some r > 1 and proportional to 
∥∥∥Dαs

ψ

∥∥∥
2
. Thus, for larger 

noise and higher-degree monomial nonlinearities, we expect superlinear growth of the error, as observed in particular with 

28 For example, Sine-Gordon and Navier-Stokes are both integrated in time using second-order methods, hence have lower accuracy than the other 
examples (see Appendix B for more details).
29 Results shown for σNR = 0.01 reproduced from [39] (note that PDE-FIND is unreliable at higher noise levels).
30 In other words, equal to the noise-free case in expectation (recall that U⋆ is the underlying noise-free data).
31 With the exception of j = 2 and odd |αs|, due to the fact that E[
s ∗ ǫ2] ≈ E[ǫ2] 

∫
�R

Dαs
ψ dxdt = 0.
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Fig. 6. Coefficient errors E∞ and E2 (equations (5.4) and (5.5)) for each of the seven models Table 2. Models in one and two spatial dimensions are shown 
on the left and right, respectively.

nonlinear Schrödinger’s, Sine-Gordon, and reaction-diffusion. Nevertheless, Fig. 6 suggests that a conservative estimate on 
the coefficient error is E∞ ≤ σNR

10
, indicating 1 − log10(σNR) significant digits (e.g. for σNR = 0.1 we have E∞ ≤ 10−2 for 

each system except KdV, indicating two significant digits), which is consistent with the ODE case [28].
For Burgers and Korteweg-De Vries, the average error E2 at higher noise levels is affected by outliers containing a falsely-

identified advection term ∂xu. This is due to the large amplitude datasets used, which lead to the closest pure-advection 
model for each system being given by32

(Burgers) ∂tu = −(498)∂xu, (KdV) ∂tu = −(512)∂xu.

Hence, a falsely identified ∂xu term will have a large coefficient compared to the true model coefficients which have mag-

nitudes 0.5 or 1. In all other cases, the values of E2 and E∞ are comparable, which implies that misidentified terms do 
not have large coefficients and might be removed with a larger threshold. Lastly, the sigmoidal shape of E∞ and E2 for 
Navier-Stokes is due again to the unidentified diffusive terms at larger noise. It is interesting to note that for σNR ≤ 0.27 the 
coefficient error for Navier-Stokes is relatively constant, in contrast to the other systems, and does not exhibit a power-law. 
However, at present, we do not have a concrete explanation for this behavior.

5.6. Results: prediction accuracy

Lastly, Fig. 7 shows the prediction accuracy on a subset of the systems in Table 2 as measured by P0.5T (ŵ) and T0.1(ŵ)

(defined in (5.6) and (5.7), respectively). We report that data-driven solutions attain greater than 90% accuracy in the L2
sense up to time 0.8T (80% of the trajectory) for noise levels as high as 40%. (This excludes the KS equation, which exhibits 
spatiotemporal chaos and cannot be expected to remain close to the noise-free data.) Data-driven solutions to the KS 
equation, while eventually divergent, also attain 90% accuracy up to time 0.5T for noise levels below 15%. Lastly, we note 
that for lower noise levels (up to 10%), the accuracy of data-driven solutions to the inviscid Burgers, Korteweg-de Vries and 
Sine-Gordon equations is on average above 96% along the entire trajectory (not shown in the figures).

32 This is found by projecting the left-hand side b onto the column ∂xψ ∗U⋆ (i.e. in the noise-free case).
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Fig. 7. Prediction accuracy measured by P0.5T (ŵ) and T0.1(ŵ) (defined in (5.6) and (5.7), respectively).

6. Conclusion

We have extended the WSINDy algorithm to the setting of PDEs for the purpose of discovering models for spatiotempo-

ral dynamics without relying on pointwise derivative approximations, black-box closure models (e.g. deep neural networks), 
dimensionality reduction, or other noise filtering. We have provided methods for learning many of the algorithm’s hyperpa-
rameters directly from the given dataset, and in the case of the threshold ̂λ, demonstrated the necessity of avoiding manual 
hyperparameter tuning. The underlying convolutional weak form (3.4) allows for efficient implementation using the FFT. 
This naturally leads to a selection criterion for admissable test functions based on spectral decay, which is implemented 
in the examples above. In addition, we have shown that by utilizing scale invariance of the PDE together with a modified 
sparsification measure, models may be recovered from large candidate model libraries and from data that is poorly scaled. 
When unsuccessful, WSINDy appears to discover a nearby sparse model that captures the dominant spatiotemporal behavior 
(see the discussions surrounding misidentification of the reaction-diffusion and Navier-Stokes equations in Section 5.4).

We close with a summary of possible future directions. In Section 4.1 we discussed the significance of decay properties 
of test functions in real and in Fourier space, as well as general test function regularity. We do not make any claim that 
the class S defined by (4.2) is optimal, but it does appear to work very well, as demonstrated above (as well as in the ODE 
setting [28]) and also observed in [37,13]. A valuable tool for future development of weak identification schemes would be 
the identification of optimal test functions. A preliminary step in this direction is our use of the changepoint method described 
in Appendix A.

In the ODE setting, adaptive placement of test functions provided increased robustness to noise. Convolution query 
points can similarly be strategically placed near regions of the dynamics with high information content, which may be 
crucial for model selection in higher dimensions. Defining regions of high information content and adaptively placing query 
points accordingly would allow for identification from smaller datasets.

Ordinary least squares makes the assumption of i.i.d. residuals and should be replaced with generalized least squares to 
accurately reflect the true error structure. The current framework could be vastly improved by incorporating more precise 
statistical information about the linear system (G, b). The first step in this direction is the derivation of an approximate 
covariance matrix as in WSINDy for ODEs [28]. Previous results on generalized sensitivity analysis for PDEs may provide 
improvements in this direction [18,46].

Accuracy in the recovered coefficients is still not entirely understood and is needed to derive recovery guarantees. It is 
claimed in [13] that at higher noise levels the scaling will approximately be linear in σNR , while we have demonstrated that 
this is not the case in general: the scaling depends on the nonlinearities present in the true model, the decay properties of 
the test functions, and accuracy of the underlying clean data. Analysis of coefficient error dependence (on noise, amplitudes, 
number of datapoints, etc.) could occur in tandem with development of a generalized least-squares framework.

The examples above show that WSINDy is very robust to noise for problems involving nonlinear waves (Burgers, Ko-
rteweg de-Vries, nonlinear Schrödinger, Sine-Gordon), spatiotemporal chaos (Kuramoto-Sivashinsky), and even nonlinear 
diffusion (porous medium), but is less robust for data with limit cycles (reaction-diffusion, Navier-Stokes). Further, identi-
fication of Burgers, Korteweg de-Vries, and Sine-Gordon appears robust to changes in the sparsity threshold λ̂ (see Fig. 4
(right)). A structural identifiability criteria for measuring uncertainty in the recovery process based on identified structures 
(transport processes, mixing, spreading, limit cycles, etc.) would also be invaluable for general model selection.
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Appendix A. Learning test functions from data

We present the following algorithm for automatic selection of test functions which utilizes the implicit smoothing of 
high-frequency noise afforded by the convolution. This approach is useful in practice but we leave rigorous justification of 
it to future work. We proceed in two steps: (1) estimation of critical wavenumbers (k∗

1, . . . , k
∗
D+1) separating noise- and 

signal-dominated modes in each coordinate and (2) enforcing decay in real and in Fourier space.
We will describe the process for detecting k∗

x = k∗
1 from data U ∈ RN1×N2 given over the one-dimensional spatial grid 

x ∈ RN1 at timepoints t ∈ RN2 . Figs. 8-9 illustrate this approach using Kuramoto-Sivashinsky data with 50% noise. Below, 
F x and F t denote the discrete Fourier transform (DFT) along the x and t coordinates, respectively, while F denotes the full 
two-dimensional DFT.

A.1. Detection of critical wavenumbers

Assume the data has additive white noise U = U⋆ + ǫ with ǫ ∼ N (0, σ 2) and that F(U⋆) decays. The power spectrum 
of the noise |F x(ǫ)| is then i.i.d, hence as discussed in Section 4.1, there will be a critical wavenumber k∗

x in the power 
spectrum of the data F x(U) after which the modes become noise-dominated. To detect k∗

x , we collapse |F x(U)| into a 
one-dimensional array by averaging in time and then take the cumulative sum in x:

Hx
k :=

k∑

j=−N1/2

|F x
j
(U)| (A.1)

where |F x
j
(U)| is the time-average of the jth mode of the discrete Fourier transform along the x-coordinate. Since |F x(ǫ)|

is i.i.d., Hx will be approximately linear over the noise-dominated modes, which is an optimal setting for locating k∗
x as a 

changepoint, or in other words the corner point of the best piecewise-linear approximation33 to Hx using two pieces (see 
Fig. 8). An algorithm for this is given in [20] and implemented in MATLAB using the function findchangepts.

A.2. Enforcing decay

Having detected the changepoints k∗
x and k∗

t , we compute hyperparameters for the coordinate test functions φx and φt

using user-specified hyperparameters τ and τ̂ . As in Section 4.1, τ specifies the rate of decay of φx and φt in real space 
through equation (4.3). The hyperparameter τ̂ is introduced to specify the rate of decay of φx and φt in Fourier space. 
Specifically, for a chosen τ̂ we enforce that the changepoints k∗

x and k∗
t fall approximately τ̂ standard deviations into the 

tail of the spectra φ̂x and φ̂t . This is done by utilizing that φx and φt are functions of the form

φa,p(s) := C

(
1−

( s
a

)2)p

+
,

(i.e. centered, symmetric functions in the class S defined in (4.2)) which are well-approximated by Gaussians for large 
enough p and appropriate scaling C . Indeed, letting C be such that 

∥∥φa,p

∥∥
1

= 1 and setting σ := a/
√
2p + 3, we have that 

φa,p matches the first three moments of the Gaussian

33 In the weighted least-squares sense with weights ωk = |Hx
k
|−1 .
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Fig. 8. Visualization of the changepoint algorithm for KS data with 50% noise. Left: Hx (defined in (A.1)) and best two-piece approximation Lk∗
x along with 

resulting changepoint k∗
x = 24. The noise-dominated region of Hx (k > 24) is approximately linear as expected from the i.i.d. noise. (The time-averaged 

power spectrum |F x(U)| is overlaid and magnified for scale). Right: resulting test function φx and power spectrum |F(φx)| along with reference Gaussian 
ρσ with σ =mx�x/

√
2px + 3. The power spectra |F(φx)| and |F(ρσ )| are in agreement over the signal-dominated modes (k ≤ 24). (Note that the power 

spectrum is symmetric about zero.)

ρσ (s) := 1√
2πσ 2

e−s2/2σ 2
,

which provides a bound on the error in the Fourier transforms φ̂a,p and ρ̂σ for small frequencies ξ in terms of their 4th 
moments34:

|φ̂a,p(ξ) − ρ̂σ (ξ)| ≤ |ξ |4
(
a4

2

[
p + 3/2

(4p2 + 12p + 9)(4p2 + 16p + 15)

]
+ o(1)

)
= O(|ξ |4a4p−3).

This implies that for small ξ and a and large p, it suffices to use ρ̂σ (ξ) = ρ1/σ (ξ) to estimate φ̂a,p . Hence, we enforce decay 
of φ̂x (and similarly for φ̂t ) by choosing mx and px such that

2π

N1�x
k∗
x = τ̂

σ
= τ̂

√
2px + 3

mx�x

=⇒ 2πk∗
xmx = τ̂N1

√
2px + 3, (A.2)

so that k∗
x is τ̂ standard deviations into the tail of ρ̂σ (ξ), where σ = mx�x/

√
2px + 3. To solve (4.3) and (A.2) simultane-

ously, we compute mx as a root of

F (m) := F (m; kx,N1, τ̂ ,τ ) := log

(
2m − 1

m2

)(
4π2k∗

x
2
m2 − 3N2

1 τ̂
2
)

− 2N2
1 τ̂

2 log(τ ).

F (m) has a unique root mx ≥ 2 in the nonempty interval

[√
3

π

(
N1/2

k∗
x

)
τ̂ ,

√
3

π

(
N1/2

k∗
x

)
τ̂

√
1− (8/

√
3) log(τ )

]

on which F monotonically decreases and changes sign, provided N1 > 4, τ ∈ (0, 1) and 
√
3

π
τ̂
k∗
x

∈ [4/N1, 1], constraints which 
are easily satisfied. After finding mx we can solve for px using either (4.3) or (A.2).

Fig. 9 illustrates the implicit filtering of this process using the Burgers-type nonlinearity ∂x(U2) and the same KS dataset 
as in Fig. 9 with 50% noise. The top panel compares a one-dimensional slice in x taken at fixed time t = 99 of the clean data 
(U⋆)2 and noisy data (U)2 . The middle panel shows the Fourier transforms of (U⋆)2 and (U)2 along the given slice, showing 
that modes after k∗

x become noise-dominated. Finally, the bottom panel shows that after convolution with ∂̂xψ , where mx

and kx are chosen with τ = 10−10 and τ̂ = 2, the clean and noisy spectra agree well, indicating successful filtering of noise-
dominated modes (note that (U)2 is highly-corrupted, nonlinearly-transformed, and biased from the noise-free term (U⋆)2 , 
making this agreement in spectrum nontrivial).

34 This also shows that with σ = a/
√
2p + 3, if we take a =

√
2p then we get pointwise convergence φa,p → ρ1 as p → ∞.
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Fig. 9. Illustration of the test function learning algorithm using computation of ∂xψ ∗ (U2) along a slice in x at fixed time t = 99 for the same dataset used 
in Fig. 8. From top to bottom: (i) clean U⋆ and noisy U variables, (ii) power spectra of the clean vs. noisy data along with the learned corner point k∗

x , (iii) 
power spectra of the element-wise products F(∂xψ) ⊙ F((U⋆)2) and F(∂xψ) ⊙ F((U)2) (recall that these computations are embedded in the FFT-based 
convolution (3.12)).

Appendix B. Simulation methods

We now review the numerical methods used to simulate noise-free datasets for each of the PDEs in Table 2 (note that 
dimensions of the datasets are given in Table 3). Resolutions in space and time were chosen to limit computational overhead 
while exemplifying the dominant features of the solution. With the exception of the Navier-Stokes equations, which was 
simulated using the immersed boundary projection method in C++ [44], all computations were performed in MATLAB 2019b. 
An interesting extension for future work would be to examine the dependence of WSINDy on the resolution, similar to the 
work in [30].

B.1. Inviscid Burgers

∂tu = −1

2
∂x(u

2) (B.1)

We take for exact data the shock-forming solution
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u(x, t) =





A, t ≥ max
{

1
A
x+ 1

α , 2
A
x+ 1

α

}

− αx
1−αt , A

(
t − 1

α

)
< x ≤ 0

0, otherwise

, (B.2)

which becomes discontinuous at t = α−1 with a shock traveling along x = A
2

(
t − 1

α

)
(see Fig. 3). We choose α = 0.5 and 

an extreme value of A = 1000 to demonstrate that WSINDy still has excellent performance for large amplitude data. The 
noise-free data consists of (B.2) evaluated at the points (xi, t j) = (−4000 + i�x, j�t) with �x = 31.25 and �t = 0.0157 for 
1 ≤ i, j ≤ 256.

B.2. Korteweg-de Vries

∂tu = −1

2
∂x(u

2) − ∂xxxu (B.3)

A solution is obtained for (x, t) ∈ [−π , π ] × [0, 0.006] with periodic boundary conditions using ETDRK4 timestepping and 
Fourier-spectral differentiation [17] with N1 = 400 points in space and N2 = 2400 points in time. We subsample 25% of the 
timepoints for system identification and keep all of the spatial points for a final resolution of �x = 0.0157, �t = 10−5 . For 
initial conditions we use the two-soliton solution

u(x,0) = 3A2sech(0.5(A(x+ 2)))2 + 3B2sech(0.5(B(x+ 1)))2, A = 25, B = 16.

B.3. Kuramoto-Sivashinsky

∂tu = −1

2
∂x(u

2) − ∂xxu − ∂xxxxu. (B.4)

A solution is obtained for (x, t) ∈ [0, 32π ] × [0, 150] with periodic boundary conditions using ETDRK4 timestepping and 
Fourier-spectral differentiation [17] with N1 = 256 points in space and N2 = 1500 points in time. For system identification 
we subsample 20% of the time points for a final resolution of �x = 0.393 and �t = 0.5. For initial conditions we use

u(x,0) = cos(x/16)(1+ sin(x/16)).

B.4. Nonlinear Schrödinger

wt = − i

2
∂xxw + |w|2w (B.5)

For the nonlinear Schrödinger equation (NLS) we reuse the same dataset from [39], containing N1 = 512 points in space 
and N2 = 502 timepoints, although we subsample 50% of the spatial points and 50% of the time points for a final resolution 
of �x = 0.039, �t = 0.0125. For system identification, we break the data into real and imaginary parts (w = u + iv) and 
recover the system

{
∂tu = 1

2
∂xxv + u2v + v3

∂t v = − 1
2
∂xxu − uv2 − u3.

(B.6)

B.5. Anisotropic porous medium

∂tu = (0.3)∂xx(u
2) − (0.8)∂xy(u

2) + ∂yy(u
2). (B.7)

The equation can be rewritten

∂tu = ∇ ·
(
D∇(u2)

)

for diffusivity tensor

D =
(

0.3 −0.4

−0.4 1

)
.

For noise-free data we use the analytical weak solution (Fig. 10)

u(x, t) = 1√
t
max

(
C − xTD−1x

16
√
t

, 0

)
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Fig. 10. Noise-free data used for the anisotropic porous medium equation (B.7) at the initial time t = 0.5 (left) and final time t = 2.5 (right).

where x = (x, y)T and C =
(
8π

√
det (D)

)−1/2
is chosen to enforce that 

∫
R2 u(x, t) dx = 1 for all time. The solution has a 

finite jump in the gradient ∇u. For reference, this is the anisotropic version of the classical Barenblatt-Pattle solution to the 
(isotropic) porous medium equation [3,32]. For the computation grid we use 200 points equally spaced from −5 to 5 in 
both x and y and 128 timepoints equally spaced from 0.5 to 2.5. The resolution is then �x = 0.05 and �t = 0.0157.

B.6. Sine-Gordon

∂ttu = ∂xxu + ∂yyu − sin(u) (B.8)

A numerical solution is obtained using a pseudospectral method on the spatial domain [−π , π ] × [−1, 1] with 64 equally-
spaced points in x and 64 Legendre nodes in y. Periodic boundary conditions are enforced in x and homogeneous Dirichlet 
boundaries in y. Geometrically, waves can be thought of as propagating on a right cylindrical sheet with clamped ends. 
Leapfrog time-stepping is used to generate the solution until T = 5 with �t = 6e−5. We then subsample 0.25% of the 
timepoints and interpolate onto a uniform grid in space with N1 = 403 points in x and N2 = 129 points in y. The final 
resolution is �x = 0.0156, �t = 0.025. We arbitrarily use Gaussian data for the initial wave disturbance:

u(x, y,0) = 2π exp(−8(x− 0.5)2 − 8y2).

It is worth noting that when STLS is used instead of MSTLS (see Section 4.2) for sparsity enforcement, WSINDy returns a 
combination of sin(u) and terms from Taylor expansion of sin(u),

α

(
u − 1

6
u3 + · · ·

)
+ (1− α) sin(u). (B.9)

MSTLS removes this problem. Furthermore, the test function selection method in Appendix A is essential for allowing robust 
recovery of the Sine-Gordon equation as σNR → 1 (see Fig. 4).

B.7. Reaction-diffusion

{
∂tu = 1

10
∂xxu + 1

10
∂yyu − uv2 − u3 + v3 + u2v + u

∂t v = 1
10

∂xxv + 1
10

∂yyv + v − uv2 − u3 − v3 − u2v
(B.10)

The system (B.10) is simulated over a doubly-periodic domain (x, y) ∈ [−10, 10] ×[−10, 10] with t ∈ [0, 10] using Fourier-
spectral differentiation in space and method-of-lines time integration via MATLAB’s ode45 with default tolerance. The 
computational domain has dimensions N1 = N2 = 256 and N3 = 201, for a final resolution of �x = 0.078, �t = 0.0498. For 
initial conditions we use the spiral data




u(x, y,0) = tanh(

√
x2 + y2) cos

(
θ(x+ iy) − π

√
x2 + y2

)

v(x, y,0) = tanh(
√
x2 + y2) sin

(
θ(x + iy) − π

√
x2 + y2

)
,

where θ(z) is the principle angle of z ∈ C. Note that this is an unstable spiral which breaks apart over time but still settles 
into a limit cycle.

Using the traditional (stable) spiral wave data [39] (differing only from the dataset used here in that the term π
√
x2 + y2

in the initial conditions above is replaced by 
√
x2 + y2) we noticed an interesting behavior in that for high noise the 
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Fig. 11. Comparison between the full reaction-diffusion model (B.10) (left) and the pure-oscillatory reduced model (B.11) (right) at the final time T = 10

with both models simulated from the same initial conditions leading to a spiral wave (only the v component is shown, results for u are similar). The 
reduced model provides a good approximation away from the boundaries.

resulting model is purely oscillatory. In other words, the stable spiral limit cycle happens to be well-approximated by the 
pure-oscillatory model

∂tu = α

(
0 1

−1 0

)
u (B.11)

with α ≈ 0.91496. A comparison between this purely oscillatory reduced model and the full model simulated from the same 
initial conditions is shown in Fig. 11. For σNR ≤ 0.1 WSINDy applied to the stable spiral dataset returns the full model, while 
for σNR > 0.1 the oscillatory reduced model is more frequently detected. This suggests that although the stable spiral wave 
is a hallmark of the λ-ω reaction-diffusion system, from the perspective of data-driven model selection it is not an ideal 
candidate for identification of the full model.

B.8. Navier-Stokes

∂tω = −∂x(ωu) − ∂y(ωu) + 1

100
∂xxω + 1

100
∂yyω (B.12)

A solution is obtained on a spatial grid (x, y) ⊂ [−1, 8] × [−2, 2] with a “cylinder” of diameter 1 located at (0, 0). The 
immersed boundary projection method [44] with 3rd-order Runge-Kutta timestepping is used to simulate the flow at spatial 
and temporal resolutions �x = �t = 0.02 for 2000 timesteps following the onset of the vortex shedding limit cycle. The 
dataset (U, V, W) contains the velocity components as well as the vorticity for points away from the cylinder and boundaries 
in the rectangle (x, y) ∈ [1, 7.5] × [−1.5, 1.5]. We subsample 10% of the data in time for a final resolution of �x = 0.02 and 
�t = 0.2.
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