
Spectrum of tensor perturbations in warm inflation

Yue Qiu * and Lorenzo Sorbo†

Amherst Center for Fundamental Interactions, Department of Physics,
University of Massachusetts, Amherst, Massachusetts 01003, USA

(Received 1 August 2021; accepted 4 October 2021; published 27 October 2021)

We compute the spectrum of tensor perturbations in warm inflation. We find that the spectrum, besides
the standard component ∝ H2=M2

P associated to the amplification of the tensor vacuum fluctuations,
acquires a component ∝ lmfpT5=M4

P, where lmfp and T are, respectively, the mean free path and the
temperature of the thermal degrees of freedom. The new contribution is due to the direct production of
gravitational waves by the thermal bath and can exceed the standard one in a viable region of parameter
space. This contribution is dominated by thermal fluctuations at scales longer than lmfp.
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I. INTRODUCTION

In models of warm inflation [1,2], the inflaton interacts
with a thermal bath of relativistic particles with a slowly
evolving temperature T. In order to prevent the temperature
from redshifting away, the thermal bath must be continu-
ously replenished by some interaction with the inflaton—
the form of interactions being model dependent. The
spectrum of metric scalar perturbations in warm inflation
has been studied in several works, see, e.g., [1–4], and its
expression depends on the specific form of the interaction
between the thermal bath and the inflaton. The tensor
perturbations will see, as usual, their vacuum fluctuations
amplified by the accelerated expansion, which will lead to a
contribution to the their power spectrum with amplitude
Pt

vac ¼ 2
π2

H2

M2
P
. The thermal bath will provide an additional

source of tensors. In this work, we compute this
contribution.
Since the interaction of gravitational waves with the

thermal bath depends only on the properties of the latter,
our results do not depend on the specifics of the inflaton
sector. They do however depend on the strength of the
interactions that maintain the thermal bath in equilibrium.
Besides the Hubble parameter H and the temperature T,

a relevant scale for our system is given by the mean free
path lmfp of the particles in the thermal bath. For thermal
inflation to be at work, the hierarchy T ≳ l−1

mfp ≫ H must
be realized. The first inequality derives from the fact that
one cannot define a mean free path shorter than the thermal
wavelength. The second is equivalent to the requirement of
thermal equilibrium in an expanding Universe. In Sec. III,
we compute the contribution to the tensor spectrum from

modes at length scales much shorter than lmfp, whereas in
Sec. IV, we compute the contributions from larger scales,
that give the dominant effect.

II. THE SOURCED TENSOR SPECTRUM

Wework in conformal time and consider only transverse-
traceless perturbations hijðx; τÞ around a flat Friedmann-
Robertson-Walker background ds2 ¼ aðτÞ2½−dτ2 þ ðδijþ
hijÞdxidxj&.We approximate the inflatingUniversewith a de
Sitter space, aðτÞ ¼ −1=ðHτÞ. Then, in the presence of a
stress-energy tensor Tabðx; τÞ, that we assume to be gen-
erated by a bath of relativistic particles, the tensor fluctua-
tions satisfy the equation

h00ijðx; τÞ þ 2
a0

a
h0ijðx; τÞ − Δhijðx; τÞ

¼ 2

M2
P
Πij

abð∂xÞTabðx; τÞ; ð1Þ

where Πij
abð∂xÞ ¼ Πa

i ð∂xÞΠb
j ð∂xÞ − 1

2Πijð∂xÞΠabð∂xÞ is
the projector on the transverse-traceless modes, with
Πijð∂xÞ ¼ δij − ∂i∂j=Δ, while a prime denotes a derivative
with respect to the conformal time τ. The stress-energy tensor
is defined in such away that Tab ∼ ∂aϕ∂bϕþ ' ' ' for a scalar
field whose kinetic term is normalized as

R
dτ d3x a2

2 ϕ
02. A

transformation to canonically normalized fields brings
Tab → 1

a2 T
ðcÞ
ab , where the index superscript (c) refers to

comoving quantities. Note that Eq. (1) does not assume
thermalization of the gravitational waves. This possibility has
been considered in [5], where it was shown that such a
situation cannot be achieved consistently in warm inflation.
After taking the Fourier transform of Eq. (1) and solving

it in terms of the Green’s function Gpðτ; τ0Þ, we obtain the
correlator

*yqiu@umass.edu
†sorbo@physics.umass.edu

PHYSICAL REVIEW D 104, 083542 (2021)

2470-0010=2021=104(8)=083542(5) 083542-1 © 2021 American Physical Society

https://orcid.org/0000-0003-3869-2850
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.083542&domain=pdf&date_stamp=2021-10-27
https://doi.org/10.1103/PhysRevD.104.083542
https://doi.org/10.1103/PhysRevD.104.083542
https://doi.org/10.1103/PhysRevD.104.083542
https://doi.org/10.1103/PhysRevD.104.083542


hhijðp; τÞhijðp0; τÞis ¼
4

M4
P

Z
τ dτ0

aðτ0Þ2

Z
τ dτ00

aðτ00Þ2
×Gpðτ; τ0ÞGp0ðτ; τ00ÞΠij

abð−ipÞΠij
cdð−ip0Þ

×
Z

d3xd3x0

ð2πÞ3
e−ipx−ip

0x0 hTðcÞ
ab ðx; τ0ÞT

ðcÞ
cd ðx0; τ00Þi; ð2Þ

where h…is refers to the component of the correlator
sourced by the thermal bath and where the propagator, in
the approximation of exact de Sitter background, reads

Gpðτ; τ0Þ ¼
1

p3τ02
½ð1þ p2ττ0Þ sin ðpðτ − τ0ÞÞ

− ðpðτ − τ0ÞÞ cos ðpðτ − τ0ÞÞ&Θðτ − τ0Þ: ð3Þ

In what follows, we consider the tensor spectrum
evaluated at the end of inflation, τ ¼ −1=H, at large scales
p ≪ H, so that we set τ ¼ 0 in the propagator.

III. CONTRIBUTION FROM SHORT
WAVELENGTH MODES

Let us start by computing the contribution to the graviton
two point function from the stress-energy correlators when
both comoving distances and (conformal) time differences
are much shorter than the comoving mean free path lðcÞ

mfp. In
this regime, we can neglect the effects of interactions and
treat our theory as that of a free field.
For definiteness, we assume that our system is given by a

conformally coupled, canonically normalized massless
scalar field φ in thermal equilibrium at comoving temper-
ature TðcÞ. As a consequence, the stress-energy tensor
correlator appearing in Eq. (2) takes the form

hTðcÞ
ab ðx; τ0ÞT

ðcÞ
cd ðx0; τ00Þi ¼ ∂ya

1
∂yb2

∂yc
3
∂yd4

½hφðy1; τ0Þφðy2; τ0Þφðy3; τ00Þφðy4; τ00Þi

− hφðy1; τ0Þφðy2; τ0Þihφðy3; τ00Þφðy4; τ00Þi&jy1¼y2¼x;y3¼y4¼x0 ; ð4Þ

where we ignored the part of the stress-energy tensor
proportional to δab that is projected out by Πij

abð∂xÞ.
To compute hφðy1; τ0Þφðy2; τ0Þφðy3; τ00Þφðy4; τ00Þi in a

thermal state, we Wick rotate to Euclidean spacetime with
periodic imaginary (conformal) time, φðiτþ1=TðcÞÞ¼φðiτÞ,
and we use Wick’s theorem to decompose the four-
point correlator into products of thermal Green’s functions.
The thermal Green’s function at comoving temperature
TðcÞ, in terms of the Euclidean conformal time τE ¼ iτ,
reads

GTðx; τEÞ ¼ −TðcÞ
Z

d3k
ð2πÞ3

X∞

n¼−∞

e2πinT
ðcÞτEþik·x

ð2πnTðcÞÞ2 þ k2

¼ −
TðcÞ

4πx
sinh ð2πTðcÞxÞ

cosh ð2πTðcÞxÞ − cos ð2πTðcÞτEÞ
; ð5Þ

that, rotating back to real conformal time, turns into [6]

GTðx; τÞ ¼ −
TðcÞ

4πx
sinh ð2πTðcÞxÞ

cosh ð2πTðcÞxÞ − cosh ð2πTðcÞτÞ
: ð6Þ

Note that in the limit TðcÞ → 0, we obtain the
Minkowskian Green’s function for a massless field,

G0ðx; τÞ ¼ −
1

4π2
1

x2 − τ2
: ð7Þ

To renormalize away the effects of the zero temperature
fluctuations of φ, we work with the subtracted Green’s
function

Gsub
T ðx; τÞ ¼ GTðx; τÞ −G0ðx; τÞ: ð8Þ

We are now in position to compute

hTðcÞ
ab ðx; τÞT

ðcÞ
cd ð0; 0Þi ¼ 2x̂ax̂bx̂cx̂dGsub

T;xxðx; τ0 − τ00Þ2; ð9Þ

where we denote Gsub
T;xxðx; τÞ ¼ ∂2

xGsub
T ðx; τÞ and where a

hat denotes a vector with unit length. We thus obtain

hhijðp; 0Þhijðp0; 0Þis;short ¼
4

M4
P
δðpþ p0Þ ×

Z
dτ0

aðτ0Þ2

Z
dτ00

aðτ00Þ2
Gpð0; τ0ÞGp0ð0; τ00ÞIðp; τ0 − τ00Þ; ð10Þ
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where we have defined

Iðp;ΔτÞ≡ 2Πij
abð−ipÞΠijcdð−ipÞ

×
Z

d3x e−ip·x x̂a x̂bx̂cx̂dGsub
T;xxðx;ΔτÞ2: ð11Þ

Since here we are considering only the short-distance
modes, the upper limit of integration in dx in the integral
above is given by ≈lðcÞ

mfp, but, since Gsub
T ðx; τÞ → 0 for

2πTðcÞx≳ 1, we can approximate it by infinity assuming
2πTðcÞlðcÞ

mfp ≫ 1.
Numerical evaluation then gives that for p ≪ 2πTðcÞ,

Iðp;ΔτÞ ≃ I0ðpjΔτjÞTðcÞ5; ð12Þ

where the function I0ðxÞ is plotted in Fig. 1. The modes
with p≳ 2πTðcÞ are suppressed and irrelevant.
The comoving temperature TðcÞ appearing in Eq. (12) is

time dependent, as it is given by aT, where the physical
temperature T is approximately constant during warm
inflation. This raises the question of whether TðcÞ should
be evaluated at time τ0 or at time τ00. The fact that we are
considering short-distance modes helps us here. In fact, for
those modes jτ0 − τ00j≲ lðcÞ

mfp ¼ −τ0ðlmfpHÞ and since ther-
malization requires ðlmfpHÞ ≪ 1, we have jτ0 − τ00j ≪
jτ0j ≃ jτ00j in our integral. As a consequence, the short
wavelength contribution to the graviton correlator will be
confined to the region of integration with τ0 ≃ τ00, and it
makes no difference whether TðcÞ is evaluated at τ0 or τ00. To
keep things symmetric, we assume TðcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðτ0Þaðτ00Þ

p
T

inside the integral.

The condition jτ0 − τ00j≲ lðcÞ
mfp also helps to simplify

the next step. Since the propagators multiplied by the factor
TðcÞ5 ¼ aðτ0Þ5=2aðτ00Þ5=2T5 give suppressed contribution
unless jpτ0j ≈ jpτ00j ¼ Oð1Þ, we obtain that pjτ0 − τ00j≲
jpτ0jðlmfpHÞ ¼ OðlmfpHÞ ≪ 1, so that we can approximate

Iðp;ΔτÞ ≈

(
I0ð0ÞTðcÞ5 ≃ :02TðcÞ5; pjΔτj≲ ðlmfpHÞ
0; pjΔτj≳ ðlmfpHÞ:

ð13Þ

We finally find the approximate result

Z
τ dτ0

aðτ0Þ2

Z
τ dτ00

aðτ00Þ2
Gpðτ; τ0ÞGp0ðτ; τ00ÞIðp; τ0 − τ00Þ

≈
ðlmfpHÞ

p

Z
τ dτ0

aðτ0Þ4
Gpðτ; τ0Þ2 × :02TðcÞ5

¼ 5 × 10−3

p3
lmfpT5: ð14Þ

Introducing the tensor power spectrum Pt through
hhijðp; τÞhijðp0; τÞi ¼ 2π2

p3 δð3Þðpþ p0ÞPtðpÞ, we finally
obtain

Pt
s;shortðpÞ ≈ 10−3

lmfpT5

M4
P

: ð15Þ

We now consider the contribution from hydrodynamic
modes with wavelengths larger than the mean free path, and
we find that they give the dominant contribution to the
sourced correlator.

IV. CONTRIBUTION FROM HYDRODYNAMIC
MODES

In the hydrodynamic regime (in which either distances or
time differences are larger than the mean free path of the
particles), we can apply a treatment analogous to that used
in [7,8] for the case of a radiation-dominated Universe. We
start from the relation [9]

hTðcÞ
ab ðx; τÞT

ðcÞ
cd ðx0; τ0Þi ¼ 2T

ðcÞ"
ηðcÞðδacδbd þ δadδbcÞ þ

#
ζðcÞ−

2

3
η
ðcÞ$

δabδcd

%
δðx − x0Þδðτ − τ0Þ; ð16Þ

where ηðcÞ and ζðcÞ are, respectively, the comoving shear
and the bulk viscosity. Inserting the expression above into
Eq. (2), we obtain

Pt
s;longðpÞ¼

24p3

π2M4
P

Z
dτ0

aðτ0Þ4
Gpð0;τ0Þ2TðcÞðτ0ÞηðcÞðτ0Þ; ð17Þ

where we used Πij
abð−ipÞΠij

abð−ipÞ ¼ 3.
Equation (17) is our main result. To proceed, we need to

specify the expression of ηðcÞ that depends on the details of
the interactions within the thermal bath.
The shear viscosity can take values between two limits.

2 4 6 8 10 12 14
x

0.005

0.01

0.015

0.02

I0(x)

FIG. 1. The function I0ðxÞ, defined in Eq. (12).
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A lower bound on ηðcÞ is conjectured [10] to be

ηðcÞ ≥
sðcÞ

4π
; ð18Þ

where sðcÞ ¼ 2π2
45 g(;ST

ðcÞ3 is the comoving entropy density
of the thermal gas, with g(;S denoting the effective number
of degrees of freedom in entropy. Applying the inequality
(18), we obtain

Pt
s;longðpÞ ≥

4

15πM4
P
g(;ST4p3

Z
dτ0Gpð0; τ0Þ2; ð19Þ

where we have assumed that the physical temperature
T ¼ TðcÞ=a is approximately constant. Evaluation of the
integral in dτ0 gives

Pt
s;longðpÞ ≥

2

45M4
P
g(;ST4 ≃

4

3π2
ρr
M4

P
; ð20Þ

where in the last step we have introduced the energy density
in the radiation, ρr ¼ π2

30 g(T
4 assuming g( ≃ g(;S.

Since by assumption the radiation must be subdominant
with respect to the inflaton energy, ρr ≪ 3H2M2

P, Eq. (20)
shows that if the inequality (18) is saturated, Pt

s;long ≪
Pt

vac ≡ 2
π2

H2

M2
P
.

An upper bound on Pt
s;long is induced by an upper bound

on ηðcÞ. The shear viscosity is approximately given by

ηðcÞ ≈ lðcÞ
mfpT

ðcÞ4: ð21Þ

Imposing that the mean free path is much shorter than the
horizon radius lðcÞ

mfp ≪ ðaHÞ−1, we obtain the upper bound

Pt
s;longðpÞ ≪

p3

M4
P

Z
τ dτ0

aðτ0Þ4
Gpðτ; τ0Þ2

TðcÞðτ0Þ5

aðτ0ÞH
≃

T5

HM4
P
;

ð22Þ

that, for relatively large values of the temperature, can
exceed Pt

vac even in a regime in which the energy density in
radiation is subdominant with respect to that in the back-
ground, T ≪

ffiffiffiffiffiffiffiffiffiffiffi
HMP

p
.

A. An example

To work out a specific example, let us consider a model
where the thermal bath is given by a real scalar field φ with
negligible mass and with self-interaction VðφÞ ¼ λ

4!φ
4.

The shear viscosity for this model, in the λ ≪ 1 limit,
was computed in [11], where it was found that
ηðcÞ ≃ 2860TðcÞ3=λ2. The mean free path is given by
½lðcÞ

mfp&
−1 ¼ σðcÞnðcÞ, where for a relativistic boson the

comoving number density reads nðcÞ ¼ ζð3Þ
π2 TðcÞ3, and the

cross section is σðcÞ ¼ λ2

32π2sðcÞMan

≃ λ2

128π2TðcÞ2 [using the comov-

ing Mandelstam invariant sðcÞMan ≃ ð2TðcÞÞ2].
Using these formulas, we obtain

ηðcÞ ≃ 2860TðcÞ3 ×
ζð3Þ
128π4

lðcÞ
mfpT

ðcÞ ≃ :2lðcÞ
mfpT

ðcÞ4; ð23Þ

and going back to physical quantities, we finally obtain

Pt
s longðpÞ ≃ :3

lmfpT5

M4
P

; ð24Þ

where thermalization requires the model-dependent quan-
tity lmfp ≪ 1=H. Comparison of the amplitude of Eq. (24)
with that of Eq. (15) shows that the hydrodynamic modes
dominate the sourced component of the tensor spectrum.
If, to fix ideas, we set lmfpH ≃ :2, we see that a tensor

spectrum as large as ∼10−10 (that saturates the current
observational bounds) can be obtained for temperatures
T ≃ 1013ðH=GeVÞ1=5 GeV, where the condition that the
radiation density is subdominant by a factor of at least 5
with respect to the background inflaton energy ≃3H2M2

P
allows for a Hubble parameter during inflation as low as
∼2 × 1012 GeV. For such a value of the Hubble parameter,
one gets Pt

vac ≃ 10−12. For this choice of parameters,
therefore, the presence of the thermal bath enhances the
tensor spectrum by about 2 orders of magnitude. This
amplitude can be reduced by the effects of damping by
anisotropic stress [12], whose effect is expected to be of the
order of T4=ðH2M2

PÞ.
To sum up, we have found that the spectrum of

gravitational waves generated during thermal inflation
includes a component ∝ lmfpT5=M4

P, sourced by long
wavelength thermal modes, that can dominate over the
vacuum component in a viable region of parameter space.
Our analysis has been agnostic regarding perturbations

in the scalar sector that depend on the details of the
interactions between the thermal bath and the inflaton.
For this reason, in particular, we give no expression of the
amplitude of the tensor-to-scalar ratio (note however that
[13] discussed how mechanisms sourcing tensor modes
will generally source scalar perturbations with higher
efficiency). While, as we noted in the Introduction, the
expression of the tensor spectrum does depend only on the
details of the interaction among particles in the thermal
bath, this quantity is also influenced by the interaction
between those particles and the inflaton, which in turn
affects the efficiency of the mechanism leading to warm
inflation. In fact, cross sections (and therefore the shear
viscosity) in the warm sector will get a contribution by
processes where thermal particles are exchanging virtual
quanta of the inflaton that are controlled by the same
parameters that control the dissipation of inflaton energy
into thermal degrees of freedom. Given the model
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dependence of the dissipation mechanisms, an analysis of
this process should be performed case by case.
A crucial prediction of standard inflation is a slightly red

spectrum of tensor modes. One can see that this is not the
case for warm inflation. For instance, for the simple
example with quartic self-interaction described above,
we get Pt

s ∝ T4=ðλ2M4
PÞ that can lead to a blue tensor

spectrum if the temperature T increases during inflation.
This is not impossible and is even generally expected as
dissipation (and therefore the temperature of the bath) is
typically an increasing function of the inflaton velocity that

typically increases during inflation. In particular, this
mechanism might lead to large amplitudes of tensor modes
towards the end of inflation that might be detectable by
gravitational interferometers, as discussed, for instance,
in [14].
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