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ABSTRACT

Analysis of morphological data is central to a broad class of scien-
tific problems in materials science, astronomy, bio-medicine, and
many others. Understanding relationships between morphologies
is a core analytical task in such settings. In this paper, we propose
a graph-based framework for measuring similarity between mor-
phologies. Our framework delivers a novel representation of a mor-
phology as an augmented graph that encodes application-specific
knowledge through the use of configurable signature functions. It
provides also an algorithm to compute the similarity between a pair
of morphology graphs. We present experimental results in which
the framework is applied to morphology data from high-fidelity
numerical simulations that emerge in materials science. The results
demonstrate that our proposed measure is superior in capturing
the semantic similarity between morphologies, compared to the
state-of-the-art methods such as FFT-based measures.
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1 INTRODUCTION

The term morphology, in science and engineering, refers to shapes
and structures of objects. The objects of interests may be nebulae
or galaxies in astronomy [14], vesicles, and tissues in biology and
medicine [10], or phases in materials science [19], to name just
a few. In this work, our focus is on morphologies emerging in
materials science (although the techniques we propose are generic
and can be applied in other contexts). Here morphology refers to
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the distribution of components (or phases) within a material (see,
e.g., Figure 1). Morphology reflects a complex internal organization
of a material, which is a result of the manufacturing process applied
to obtain it. It also directly controls material’s physical properties
(e.g., stiffness, conductivity, etc.). Consequently, by performing data
analytics on materials’ morphologies we can gain insights into how
materials’ manufacturing processes relate to materials’ properties.
This question is critical as it is the key to smart materials design
in which manufacturing process is tailored on demand to obtain a
material with a specific set of desired characteristics.

In order to perform meaningful data analytics we first need a
notion of similarity between morphologies. However, the currently
available approaches, which we review in Section 5, either take
highly simplified view of the morphology, e.g., focusing on pixels
in the morphology images, or apply transformations that average
out structural properties of morphologies or relay on sometimes
difficult to satisfy assumptions. To address these shortcomings, we
propose a new computationally efficient and configurable similarity
measure that is based on graph abstraction. Our main idea is to
simplify complex morphologies by abstracting them as graphs, that
are weighted with domain specific information, and then express
similarity as a distance between morphology graphs. Because both
morphology graph structure and its weights have clear interpreta-
tion, our similarity can be easily tailored to the specific applications.
To address computational complexity of graphs comparison, we
take advantage of inherent properties of the morphology graphs to
devise a linear time solution. Our experimental results demonstrate
superior performance of our approach in capturing morphologies
similarity on both synthetic as well as real world data, including in
real-world applications (like morphologies clustering).

2 PRELIMINARIES

Consider a set X = {Xj,...,Xn} of N morphologies, where the
morphology X; is represented by a (n X m) bitmap, i.e, X; €
{0, 1}™*™M and X;(x, y) is a bitmap pixel at position (x, y). All mor-
phologies in the set X represent some state of the same physical
phenomena or process we want to study. For instance, in Figures 1
and 2 we show a sample of images and their corresponding mor-
phologies that capture the evolution of the separation of two ma-
terials within a fixed volume. The study of such phase separation
process turns out to be one of the fundamental problems in mate-
rials science [6]. The process can be modeled via a set of complex
differential equations, in which case the resulting morphologies are
represented via a composition field, ¢ : Q — R, where Q € RP is
the D-dimensional domain over which ¢ is defined. On the other
hand, the same process can be physically executed and observed
using microscopy. In such case, the resulting morphologies are di-
rectly represented as multi-channel images. In our example, the
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Figure 1: Example micrographs representing different
phases of organic materials blending process. The top row
shows predictions from a computational model. The bot-
tom row shows related observation from atomic force mi-
croscope [16]. Corresponding morphologies are presented
in Figure 2.
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Figure 2: Morphologies corresponding to the micrographs
in Figure 1.

three morphologies in the top row are the visualizations of the
composition field gathered for the final state of three different nu-
merical simulations. The three morphologies in the bottom show
the actual state of the same materials as captured by microscopy.
The key point here is that irrespective of the original representa-
tion, morphology can be ultimately captured as a fixed-sized bitmap.
We note that this is true not only for morphologies appearing in
materials science, but also in cosmology, biometry, tomography, etc.

Given the set X, our objective is to capture the similarity between
any two morphologies X;,X; € X. Let f : X x X — [0, co) denote
such a similarity function. As discussed earlier, f is critical for a
variety of analyses one may want to perform on morphologies (e.g.,
searching, clustering, manifold learning, etc. [17]). In practice, the
function must capture the semantics of the morphology, i.e., its geo-
metric features that reflect the dynamics of its underlying process.
We note that this question is different from a traditional image com-
parison. Specifically, the focus is on interpretability and efficiency,
going beyond basic pixel, texture or color intensity matching (we
provide more discussion in Section 5).
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In order to be practical, the function f must satisfy two basic
requirements. First, it must be configurable, such that it is able to
capture the semantic properties of a morphology whose definition
may vary from application to application. For example, when ana-
lyzing morphologies in the material separation process (Figure 2)
in one application we may be interested only in shape of the fea-
tures (i.e., two morphologies are similar only if they have similar
droplets/grains). In another application, we may be looking in how
complex the features are, which may be captured by their fractal
dimension. The second requirement is that the function is spatially
invariant, meaning that it is flexible in how it uses information
about position of the features of interest within morphology. For
example, consider again Figure 2 and suppose that we are interested
in how well two materials separate in the bulk. If we focus only on
the shape of droplets and disregard their spatial distribution, the
first two morphologies are more similar to each other compared to
the third one. In this case, we want to disregard spatial information
since the process that generated morphologies is highly stochas-
tic, and hence the actual position of droplets carries little physical
information. However, in the presence of additional physical con-
straints (say morphology sandwiched between two electrodes in a
device [20]) droplets closer to the constraint may be of much high
importance and their location may have to be taken into account
when computing the similarity. Hence the function should have
some flexibility in handling such scenarios.

As noted above, it is inevitable that different applications will
require a specific function, tailored to their particular needs. Thus,
it is more appropriate to call f a family of functions. However,
for simplicity of presentation we will refer to f as a function, and
discuss its specific instances, whenever appropriate.

3 PROPOSED APPROACH

To satisfy the two requirements outlined in the previous section, we
express the similarity between two morphologies, using concepts
from graph theory. Specifically, we first show how a morphology
can be represented as a morphology graph — an undirected graph cap-
turing basic structural properties of the morphology, i.e., pairwise
relationship between its features of interest. Next, we introduce
the concept of a signature function to augment the morphology
graphs with application-specific knowledge. Finally, we propose
a graph comparison method that exploits properties of morphol-
ogy graphs to represent them as vectors and compare them in a
computationally and memory efficient way.

3.1 Representing Morphology as Graph

Recall that initially morphology X; € X is a (n X m) bitmap, derived
from an image representing some phenomena of interest. To gain
more flexibility in morphology description, we propose an alterna-
tive representation that abstracts a morphology via an undirected
graph. To achieve that, we first introduce the concept of connected
components. Intuitively, a connected component in a morphology
represents a local region with the same properties of interest (e.g.,
droplets in Figure 3). The collection of all connected components,
together with their pairwise relationships, will provide us with the
description from which we are going to build the target function f.
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Figure 3: Example morphology with its connected components and the resulting morphology graph.

To define connected components, we begin by formalizing the
notion of pixel neighborhood via the following definition.

DEFINITION 3.1 (PIXEL NEIGHBORHOOD). For any (n X m) bitmap,
the neighborhood of a pixel (i, j), denoted as nbd(i, j), is the set of its all
adjacent pixels in the bitmap, i.e., nbd(i, j) = {(i’,j’) : |i—i’|+|j—j’| =
1,Vi’e{1,...,n},j €{1,...,m}}.

We note that by definition pixel neighborhood is commutative,
which means that the following assertion always holds: (i’, ") €
nbd(i,j) © (i,j) € nbd(i’,j’). This allows us to define connected
component as:

DEFINITION 3.2 (MORPHOLOGY CONNECTED COMPONENT). For a
given morphology, X, a connected component, C, is a (n X m) bitmap
such that for every pair (i, j) and (i’,j"), where (i’,j’) € nbd(i, j), if
C(i,j) = 1 and X(i, j) = X(i’, j*) then C(i’, j’) = 1. We will denote by
value(C) the pixel value X(i, j) of any pixel (i, j) such that C(i, j) = 1,
and will refer to it as component value or just value.

Since the above definition ensures that any connected compo-
nent is maximal, i.e., no additional pixels can be added to it, we can
define the complete set of connected components for a morphology
Xas C = {Cy,Cy,. -Cielr

To illustrate the above definitions consider the example in Fig-
ure 3. Here, morphology X has seven connected components, i.e.,
|C| = 7, that correspond to neighborhoods of pixels with the
same value (for simplicity marked directly on the morphology
image). The value of components C; and Cy is white (or 1), i.e.,
value(Cq) = value(Cy) = 1, and the value of components C3 to Cy
is black (or 0).

We are now ready to introduce our key idea, which is the mor-

phology graph:

DEFINITION 3.3 (MORPHOLOGY GRAPH). Given a morphology X
and its morphology set, C, the morphology graph, Gx = (C,E), is
an undirected graph in which two vertices, C, € C and C,, € C, are
connected by an edge, if and only if they are adjacent. Here adjacent
means that there exists at least one pair of pixels, (i,j) and (i’,j’),
such that (i, j) € nbd(i’,j’) and C,(i,j) = 1 and C,,(i’,j’) = 1, or
equivalently Cy(i,j) # Cyu(i’,j’) or Co(i,j) # Co(i’,j’). We will
write G when morphology for which the graph is constructed is clear
from the context.

From the above definitions, we can infer several practical obser-
vations. First, the number of components in the morphology set
can range from 1, if all pixels in the morphology have the same
value, to n - m, if the pixel values alternate forming a checkered
pattern. Two connected components will be connected by an edge
in the corresponding morphology graph only if they have different
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values, which means that the morphology graph is always bipartite.
Furthermore, the graph must be acyclic (i.e., it is a tree), which will
enable us to design efficient comparison algorithms. The acyclic
property can be proven by noting that, if two nodes are connected
by an edge, then either one of the corresponding components is
contained inside the other component or the two components span
the full length or breadth of the entire morphology area. This means
that it is impossible to have another path between any pair of nodes
that share an edge. In Figure 3d, we show example morphology
graph where the color of each vertex corresponds to the value of
its connected component.

The graph abstraction directly and compactly describes rela-
tionships between components of the morphology (e.g., which
components are neighboring) disregarding components location
within the morphology. Hence it addresses the spatial invariant
requirement that we outlined in Section 2. Every morphology will
have a unique graph representation, but a single graph may repre-
sent multiple morphologies. For example, consider morphologies
X, X’ and X" in Figure 3. All three are represented by the same
graph in Figure 3d. The fact that morphologies X and X’ are repre-
sented by the same graph is highly desired (from our perspective,
these are essentially the same morphologies — they have identical
components though at varying positions). However, it is not so
with morphology X”’. Here, we cannot argue that components are
the same as in X (or X’), especially if we look at components Cy
and Cs. In fact, this morphology is sufficiently different to assume
that it has been generated by different process than the other two,
or represents different time-step of the same generating process.
To address this potential problem, we will extend our graph rep-
resentation such that it carries information about properties of
the individual components. Because it is very unlikely that two
dissimilar morphologies will have the same graph structure and
the same properties assigned to their components, the resulting
representation will be more robust.

Let function g : {0, 1} — R be a user-specified function that
quantifies some characteristic of interest for each component of the
morphology. We will call such function a signature function. The
signature function will be typically defined by a domain expert,
taking into account specifics of the considered physical phenomena
for which we obtained morphologies. It will allow us to characterize
each component independently of the remaining components in the
morphology. By weighting each node C in the morphology graph
by its corresponding value g(C) we will add critical information to
the graph, fulfilling the configurability requirement described in
Section 2.
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To provide concrete examples of function g, we list a few func-
tions that emerge in materials science [1]. These include surface-to-
SA©)

v(C)
V is a volume, fractal dimension where gp(C) is computed as the
d(C
where (dyx(C), dy(C)) are signed dimensions of the bounding box
around C. In real-world applications, gs 4.y captures porosity or
compactness of a component that directly affects its chemical reac-
tivity, gp provides information about how given component inter-
penetrates with its neighbors, which is important for the physical
properties such as conductivity, and ga,; is a proxy to characterize
directional stiffness of the material that the morphology represents.
We note that this list is by no means exhaustive, and the advantage
of our approach is that any function g can be plugged into our
general framework.

volume ratio gs 4.y (C) = where SA denotes surface area and

Hausdorff dimension [15], or anisotropy defined as g4,;(C) =

3.2 Vectorization of Morphology Graph

Given two morphologies described by their morphology graphs
with the same function g, the question of finding a similarity func-
tion f becomes now the problem of graph comparison. This prob-
lem, often referred to as graph alignment, is well studied especially
in the context of computational biology [9]. However, the exist-
ing approaches are usually extremely computationally demanding,
and relay on some additional function to establish isomorphism
between nodes of the graphs under consideration. In this work, we
address both challenges by exploiting properties of the morphol-
ogy graphs. The general idea derives from the observation that if
two morphologies are highly similar then their morphology graphs
should have roughly the same node degree and function g distribu-
tions. To test for that, we will first decide how each morphology
graph should be rooted (recall that each morphology graph is a
tree). Then, we will establish which nodes in one graph should be
compared to which nodes in the other graph by ordering them via
a Breadth-First-Search (BFS) traversal. By rooting and traversing
morphology graphs in the same consistent way, we will narrow
down the comparison space. Finally, to ensure that these tasks are
executed in a computationally efficient way, we will leverage the
fact that morphology graphs are bipartite. We note that the end
result of the proposed transformations is equivalent to representing
a morphology graph as a high dimensional vector, and hence will
refer to it as vectorization.

Choosing the Root Node. As we mentioned, the first step in our
approach is to select the root node for each morphology we wish to
compare. This step is critical as it directly affects the order in which
we are going to traverse our morphology graphs and hence the order
in which we will compare components between the morphologies.

In our approach, the root node will represent the most significant
component in the morphology. In cases where importance of the
components will be clearly defined by the morphology generating
process (recall our example in Section 2 where physical constraints
dictate importance) we will select the root node following that crite-
ria. In cases when such constraints will not be available, we will use
the following heuristic: we will root each morphology graph by the
node that is central in the graph to which it belongs. Because we are
dealing with trees, this means the node with the highest number of
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adjacent nodes. This heuristic is based on the observation that since
the central node captures the highest information about pairwise
interactions between the components, it will capture the most spa-
tial constraints (again, we expect that highly similar morphologies
will have similar constraints).

It is possible that given morphology graph will have multiple
nodes with the same maximal connectivity. In such cases, we will
break the tie by always choosing the node with a-priori agreed
component value (e.g., if two nodes are tied then pick the white
one) or the smallest signature (i.e., value of g).

Constructing the Feature Vector. Given the root node r of the
morphology graph G, the second step is to traverse the graph to
establish the ordering of its nodes, and thus build its vector repre-
sentation. The traversing algorithm is summarized in Algorithm 1.
In the essence, we perform BFS traversal over G starting at node r.
Whenever we visit a new vertex (i.e., morphology component), we
add a tuple with its corresponding signature and value to the ini-
tially empty output vector (lines 5-6). The order in which nodes are
visited at given BFS level is decided by the value of their function g.
Specifically, after extracting unexplored neighborhood of a vertex
(denoted by function Ng in line 7) we sort it in line 8, and use the
resulting order to continue exploration in lines 9-10. Observe that
by ordering the nodes we further constrain which nodes will be
compared with which.

To illustrate how our vectorization routine works, consider mor-
phology graph G in Figure 3d, and suppose that we have func-
tion g with the following property: g(C;) is the smallest value,
g(C3) < g(Cy) < g(Cs) and g(C7) < g(Csp). In that case, we would
select r = Cq to be the root, since it is tied with C5 but has smaller
signature, and by calling VECTORIZE(G, r) we would generate the
following vector:

v = [(9(C1), 1), (9(C3),0), (9(C4), 0), (9(C5), 0),
(9(C2), 1), (9(C7),0), (9(Cs), 0)].

In the vector representation of a morphology, the lower dimen-
sions of the vector, specifically the dimensions representing root
and its immediate neighbors, uniquely describe the graph for which
the vector has been derived (i.e., given the vector we can reconstruct
its graph). But as we consider higher dimensions, the representa-
tion is no longer unique. For example, the vector v presented above
could equivalently describe morphology graph in which component
C; is neighboring vertex C3 or C4. However, this is actually ad-
vantageous as it reflects our assumption that the actual location of
the components within morphology should not matter. The dimen-
sionality of the vector representing a morphology will be the same
as the number of components in that morphology. Consequently,
when comparing two vectors we will have to find a reliable way
to align them such that similar components between the two mor-
phologies are matched. Here similar means not only components
with the same value, but also potentially similar signature.

3.3 Comparing Morphologies Using Vectors

We are now ready to bring all ingredients together to define func-
tion f. Given two morphologies X; and X; and a signature func-
tion g, to compute f(X;,X;) we will first vectorize graphs Gx, and
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X, VECTORIZE CoMPUTEF
UX; |9(C1)[g(C2)|9(Cs)[9(C4)|9(C5) 9(C1)[9(C2)|9(Cs)|9(C1)|9(C5)| O l 0 l 0 1
Xj VX, [9(C1)[g(Ca)[9(Cs)|9(C1)|9(C5)|a(Ce)|9(Cr) 9(C1)[9(C2)|9(C3)|9(Ca)| O |9(Cs)|a(Co)|a(Cr)

Figure 4: Two example morphologies together with their corresponding vector representation, and the alignment of the vectors

induced by the CompuTEF function.

Algorithm 1 VEcTORIZE(G, ')
1: Q — 0
2: Q.ENQUEUE(r)
3: v < () < output vector
4: while Q # 0 do
5. Cy <« Q.DEQUEUE()

6:  v.APPEND((g(Cy), value(Cy)))

7: L« Ng(cu)

8: SORT(L,Ci < Cj iffg(Ci) < g(Cj))
9: foreachC, € Ldo

10: Q.ENQUEUE(Cy)

11: return v

Gx;, and then we will compute the final distance between the vec-
tors taking into account the need for alignment. This is summarized
in Algorithm 2.

Algorithm 2 ComPUTEF(X;, X)

vx, < VECTORIZE(GX,, RoOT(GX;))

: vx; < VECTORIZE(GX,, ROOT(GX;))

s pi 1

pj 1

Uf — 0

: while p; < |in| A pj < |’0Xj| do

if vx, [pil.value = vx,[p;].value then
Uf.APPEND(UXi [pil-g — vX; [pjl.9)
pi—pi+1
pj—pjitl

11:  else

12: if vy, [pi].value # vx,[p; — 1].value then

13: vy . APPEND(vx, [pi].g — 0)

14: pi—pi+1

15: else

16: vp . APPEND(0 — vx; [pjl.9)

17: pj—pj+1

18: forp =p;...|vx,| do

191 v .APPEND(vX, [p].g — 0)

20: for p :pj...|vxj| do

21:  vp.APPEND(0 — vx;[p].g)

22: return f « [[vr|]

R A A >

-
<
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Given the vector representation of the input morphologies (lines
1-2), where function RooT is as described in Section 3.2, the algo-
rithm iteratively constructs vector vy to capture similarity between
signatures of the matching components. Here, the matching is es-
tablished by exploiting the fact that the graphs Gx, and Gx; are
bipartite, and components within given BEFS level are ordered by
their signature. The example of this process is visually presented in
Figure 4. The algorithm first checks whether components (dimen-
sions) to compare correspond to the same BFS level (line 7). Since
the graph is bipartite, this can be established by checking if the
corresponding component values are the same. If that is the case,
the algorithm compares signatures of the components, one-by-one
in the order in which they appear (lines 8-10). Because within a
BFS level components are ordered by their signature, this process
will be minimizing differences between similar morphologies and
amplifying differences between diverging morphologies. In case
when the number of components at given BFS level differs between
morphologies (else statement in line 11), the algorithm executes
the alignment step (lines 13 and 14) by penalizing the missing com-
ponents (loops in lines 18 and 20 are to handle corner case of that
idea). Finally, the algorithm computes and returns a norm of the
vector vy as the final similarity measure (line 22). Here, potentially
any norm can be used, however, in our applications we commonly
depend on L,.

The computational complexity of Algorithm 2 is linear and
bounded by the number of components in the input morpholo-
gies, i.e, it is O(Jvx, | + [vx;|). This is because the main iteration
requires that each component in the morphology will be visited
exactly once. The same holds true for functions VEcTORIZE and
RooT. The memory complexity is O(1) as we observe that the vector
vr does not have to be explicitly instantiated, and instead the com-
putation of the norm of vy can be integrated into the components
comparison in lines 8, 13 and 16. Considering that the typical graph
comparison algorithms have complexities above O(|vx, | - |UX,~ [) we
dare to call our algorithm efficient.

4 EXPERIMENTAL VALIDATION

In this section we demonstrate the efficacy of the proposed method
in capturing the semantic similarity between a pair of morphologies
on both synthetic and real-world data sets. To put our results in
context, we compare the proposed approach to two state-of-the-art
methods, one based on direct pixel-by-pixel comparison and the
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other based on FFT transformation. The prototype implementation
of our algorithms and our test data sets are freely available from
https://github.com/ubdsgroup/meads/.

4.1 Experimental Data

We show results on two data sets. The first set consists of synthetic
morphologies in which we control the complexity of the morpholo-
gies. This permits us to analytically reason about the distances
between them. The second set consists of real-world morpholo-
gies obtained via high-fidelity numerical simulations of spinodal
decomposition in polymer blends. These kind of simulations are fre-
quently used in materials science to understand physical processes
occurring in manufacturing of organic solar cells, bio-sensors, and
other organic thin-film based technologies [20]. They are also rep-
resentative of a broader class of physical phenomena in which the
stochastic nature of the underlying processes leads to similar but
not identical morphologies.

When analyzing both data sets, we use surface-to-volume ratio
(9sA:v) as our choice of signature function, since it best represents
the semantic features of the morphologies in the two data sets.

Synthetic Set. To generate set X of synthetic morphologies we use
the following process. First, we generate an initial morphology, Xj,
which consists of few randomly sized circles (although any basic
shape could be used). The circles are randomly placed within a
fixed area (see Figure 5a). Each such component has component
value of 0 (black), while the remaining part of the morphology has
component value of 1 (white). To generate subsequent morpholo-
gies, we iteratively apply transformation X; = #(X;—1), where ¢
randomly selects one of the following operations:

(1) Scale up one randomly selected morphology component. The
radius of the selected component is scaled by a factor y > 1
(see Figure 5b).

(2) Add a new component. If the component is placed within
component other than the one representing the entire mor-
phology area, it is centered and its radius is selected ran-
domly with the constraint that it must be smaller than the
radius of the surrounding component. The value of the new
component is set to be opposite to the value of the surround-
ing component (see Figure 5¢). Otherwise, the component is
just randomly placed with the component value of 1.

Figure 5 shows an example of the above generation process.
The process guarantees that for any i < j, the morphology X;
will have either more components, or have larger components than
morphology X;. This, in turn, means that the similarity measured by
an ideal similarity function should be inversely proportional to the
number of transformations separating two morphologies. Therefore,
when applied to the synthetic data, we expect that our similarity
function f should maintain the following property: f(X;, X;) o

1 o
f,\'/l<].
J—1

Organic Thin-film Set. This data set consists of morphologies repre-
senting a physical phenomenon called spinodal decomposition in
organic blends [8]. As mentioned earlier, morphologies in this data
set are generated using a computational model of morphology evo-
lution during thermal annealing of the thin organic films [20]. For
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a given input parameters representing blend ratio, ¢, and strength
of interaction, y, which reflect fabrication conditions, the model de-
livers a series of morphologies that capture temporal changes that
the material undergoes during the fabrication process. We refer to
such ordered set of morphologies as trajectory. In Figure 6, we show
example morphologies extracted at the beginning, in the middle
and at the end of one example trajectory with (¢, y) = (0.50, 2.4).
From the figure, we can see that even within a single trajectory
we may obtain topologically diverse morphologies: ranging from
bubble-like to highly interpenetrated structures. This diversity is
further amplified by the changes to parameters (¢, y), as we can
observe in Figure 10. Finally, for exactly the same parameters (¢, y)
different executions of the simulation deliver morphologies that are
not identical, however are semantically similar. This is because the
generation process is stochastic: in the underlying physics-based
model different seed values are used to initiate the random field.

To perform our tests we considered sixteen trajectories spanning
¢ € {0.5,0.53,0.56,0.59} and y € {2.2,2.8,3.4,4.0}, with five
replicas for each trajectory.

4.2 Results on Synthetic Data

In the first set of experiments, we consider X with 50 synthetically
generated morphologies. We compute similarity between each pair
of morphologies using three methods: 1) our proposed CoMPUTEF
function, 2) pixel-by-pixel distance in which distance between mor-
phologies is computed as difference between their corresponding
pixels, and 3) distance between the 2D Fourier transformed mor-
phologies (2D-FFT). Here we wish to note that the FFT-based mor-
phology distance is currently the most commonly used method in
the scientific community [11, 18].

Using each of the three similarity measures we construct similar-
ity matrix and visualize it as a heat map, as shown in Figure 7. Here,
0 means that morphologies are identical, and 1 that morphologies
are highly dissimilar (in all cases, similarity is normalized by apply-
ing a linear transformation to the morphology distances). Since a
morphology is most similar to itself we expect to see zeros on diago-
nal. This is indeed the case for all three measures. As we move away
from the the diagonal, the number of transformations between the
morphologies increases and, as discussed in the previous section,
the distance between the morphologies should also increase pro-
portionally. Again, as we would expect this holds true for all three
measures, however, for each in slightly different way. Specifically,
the pixel-by-pixel (Figure 7a) and 2D-FFT (Figure 7c) similarities
show an abrupt jump as the gap between the morphology increases,
whereas in the CompUTEF the distance increases gradually. We
consider this behaviour more in inline with the characteristics of
our synthetic data discussed in the previous sub-section.

4.3 Results on Organic Thin-film Set

We further evaluate our framework using the organic thin-film
data. To perform the evaluation we compute three different types
of similarity matrices: 1) a within-trajectory matrix that captures
pairwise comparison between all morphologies within a trajectory
for given configuration parameters (¢, y), 2) a cross-replica matrix
that captures pairwise comparison between morphologies from
two different replicas of the same trajectory, and, 3) a late-state
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Figure 5: Example of the synthetic morphologies generation process together with the corresponding morphology graphs.

Figure 6: Example morphologies from one trajectory (¢ = 0.50, y = 2.4). For each morphology, we included the corresponding
graph.
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Figure 7: Comparison of morphologies from the synthetic set. Morphologies within the set are indexed starting from 0.
Please view in color.
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matrix that captures pairwise comparison of so called late-state
morphologies across different trajectories and their replicas. Here,
late-state morphology is a morphology reported at the end of tra-
jectory, where each trajectory covers the same duration of the
manufacturing process.

Within-trajectory Comparison. In this test, we perform comparison
of morphologies coming from the trajectory obtained for param-
eters ¢ = 0.56 and y = 2.4 (note that we observed similar results
for other parameter configurations). As before, we perform all-to-
all pairwise comparison using three different similarity measures.
The results of this experiment are summarized in Figure 8. Two
observations immediately emerge. First, both ComPUTEF and pixel-
by-pixel exhibit similar and desired behavior: as morphologies get
further apart in time (i.e., the distance between their indexes in-
creases) their similarity decreases. Moreover, morphologies at the
later stages of the trajectory (roughly with indexes above 40) tend
to be more similar to each other. This is explained by the physical
properties of the thin-film generating process: after the initial de-
velopment, morphologies stabilize and change at much slower pace.
The surprisingly good performance of pixel-by-pixel comparison
is explained by the fact that within trajectory the spatial invariant
requirement (which we discuss in Section 2) becomes irrelevant,
and hence difference between morphologies is directly reflected by
change in pixels composition. The second observation is about poor
performance of the 2D-FFT similarity measure. Because even small
changes to the size and shape of the components in the morphology
are amplified in the frequency domain the resulting similarity mea-
sure becomes very sensitive to such changes. Consequently, except
of the diagonal morphologies are deemed dissimilar. We note that
this result is visually strengthened by how we normalize the heat
map.

Cross-replica Comparison. In the next test, we compare morpholo-
gies belonging to two replicas of the same trajectory with y = 0.54
and ¢ = 2.4 but generated using a different initial seed value.
As stated before, the replica morphologies (i.e., morphologies be-
longing to different replica but representing the same stage of the
generating process) are semantically similar, and we would expect
that fact to be reflected by a good similarity measure. The result of
the experiment is summarized in Figure 9.

From the figure we can observe that CoMpUTEF reports high
similarity along the approximate diagonal, and within blocks corre-
sponding to early and late stages of the trajectory (similar to what
we saw in Figure 8). This indicates that the morphologies maintain
a degree of similarity at the corresponding steps across replicas,
which is expected based on what we know about the generating
process. The other two functions (pixel-by-pixel and 2D-FFT) are
clearly unable to detect meaningful similarities. This supports our
claim that good similarity measure must be spatially invariant.

Late-state Morphologies Comparison. In the last set of experiments,
we focus on five replicas corresponding to the four different com-
binations of the design parameters such that ¢ € {0.50,0.56} and
x € {2.4,3.0}. From each of the resulting 20 trajectories, we se-
lect late-state morphologies. As previously, we expect that replica
morphologies will be similar to each other. At the same time, be-
cause we are using diverse configuration parameters, we expect
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that morphologies obtained for different design parameters will no-
ticeably differ. In Figures 10 and 11 we show the input morphologies
together with their morphology graphs.

To perform the analysis, we begin with comparison of similarity
matrices obtained for all 20 morphologies. From Figure 12 we can
see that CoMpUTEF function is able to capture the similarity be-
tween the morphologies within each replica, while pixel-by-pixel
and 2D-FFT are clearly under-performing. If we look at the regions
of the heat map that correspond to cross-replica comparison (re-
gions marked with boxes A-D) we can see that only CoMPUTEF
correctly reports minimal values within each block. At the same
time, it provides visible separation from other blocks (that corre-
spond to different parameters ¢ and y). However, that separation
is not entirely clear for blocks A and B. To investigate this fur-
ther, we provide an alternative visualization by embedding each
morphology onto a two dimensional manifold by applying the
Multi-dimensional Scaling (MDS) algorithm [13] on each similarity
matrix. The resulting embeddings are shown in Figure 13a.

The results reveal that embedding obtained using CoMPUTEF
similarity matrix delivers strong clustering of morphologies cor-
responding to the same design parameters (depicted by the same
color). One notable exception are morphologies with indexes 6 and
19, which are outliers. However, closer inspection of these mor-
phologies in Figure 10 shows that indeed these morphologies may
be considered semantically different from the remaining replicas.
In fact, upon investigation we discovered that the computational
model failed to converge (due to numerical instabilities) when sim-
ulating the trajectories to which outlier morphologies belong. This
demonstrates the robustness of our framework as well as its capa-
bility to quantify outliers and anomalous morphology data.

5 RELATED WORK

As we already discussed, the problem of morphology compari-
son emerges in many scientific applications. The commonly used
approaches focus on pixel-level algorithms, often combined with
2D-FFT to address the problem of spatial invariance [11, 18]. As
we demonstrated in our experiments, these strategies are usually
insufficient to handle complexity of the real-world morphologies,
and lack flexibility offered by our concept of signature function.
The idea of representing morphology by a graph structure has been
explored by Cecen et al. in [7], as well as Wodo et al. in [21]. How-
ever, in both works the focus was on capturing fine-grained details
of the morphology, not for the purpose of comparison, but to de-
liver a surrogate model. Consequently, in these approaches, each
pixel/voxel of a morphology is represented as a graph vertex. In our
work, the morphology is converted into a graph to represent both
higher-level morphology semantic and structural characteristics
sufficient to reliably compare different morphologies.

The idea of determining visual similarity on the basis of semantic
features has been explored in the past in the form of representing
images in terms of latent space embedding using convolution neural
networks. This along with several other approaches [12] often
referred as deep learning metrics fall short because of two keys
reasons. One, training such models usually require large amounts
of data, which are expensive to obtain as morphologies are often
generated as a result of complicated scientific procedures. Second,
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second, with morphologies indexed from 0. Please view in color.

we need interpretable methods, that can be understood by the
domain scientists. Metric learning methods are often used as “black-
boxes” and do not offer any explanation into why two morphologies
are considered similar or not.

In our work, we use a dedicated graph comparison method. As we
explained, this is because the existing general-purpose approaches
are too computationally expensive. The two most popular meth-
ods are the Graph Edit Distance [4] and Maximum Common Sub
Graph [5], which inspired several other [2]. The computation of
graph edit distance is NP-Complete. For graphs with more than
16 nodes, it becomes impossible to compute accurate results in a
reasonable amount of time [3].

6 CONCLUSIONS

Morphologies as objects of interest emerge in a diverse range of
scientific applications. We consider their significance in the domain
of materials science as a motivation to develop a framework that
helps us efficiently determine the similarities between different
morphologies. The proposed methodology uses structural and se-
mantic characteristics as a foundation and provides flexibility for
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the users to modify it according to their needs with the use of dif-
ferent signature functions. Furthermore, we demonstrate how the
similarity framework performs significantly better when compared
to the commonly used similarity measures such pixel-by-pixel com-
parison or 2D-FFT. The framework exposed certain outliers in the
morphology data sets that otherwise were hard to identify unless
observed manually. We hope that our framework will enable more
systematic use of data analytics in the analysis of morphologies
(especially in materials science).
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