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on anomaly detection exists [9], most of the existing meth-

ods follow a general two-phase strategy: (i) learn a model,

 , for the normal behavior of the underlying system, and

(ii) score a data instance, x, with respect to  using a

scoring function, s (). Typically, the score is uncalibrated,

though some methods produce a calibrated score (prob-

ability). However, to identify anomalies, every method

requires a notion of a threshold, ÿ, such that the data

instances whose score is above (or below) ÿ are anoma-

lous. While unthresholded scores are sufficient for evalu-

ation purposes, for example, generating an ROC curve or

comparing different methods on a validation dataset, an

optimal threshold is necessary in an operational setting.

A very high threshold could potentially result in missing

many anomalies while a low threshold would have a high

false positive rate. The issue is exacerbated in a stream-

ing setting, where both and ÿ can evolve. While current

streaming anomaly detection methods allow updates to

 , none of them allow for updating the threshold, ÿ.

Second challenge is specific to clustering-based anomaly

detection methods. Traditional methods learn the clus-

tering structure from the observed data as a surrogate

for the normal behavior,  . Adapting such methods for

streaming data requires the ability to allow the cluster-

ing to evolve, that is, new clusters can form and old

clusters can grow or split. Current clustering-based meth-

ods are not equipped to adapt to such evolving stream

behavior.

One possible solution would be to explicitly learn a

model,, for the anomalous behavior, and then compare
the scores, s (x) and s(x), to declare if a data instance is
normal or anomalous. By allowing bothmodels to <evolve=

in a streaming setting, a robust streaming anomaly detec-

tor can be developed. However, given the lack of sufficient

(or any) anomalous data, learning  is not possible. We

advocate the use of extreme value theory (EVT) [10] to

learn a surrogate for . The core idea is to assume that
the anomalous observations are the extreme values of .

Using a key result in EVT, which states that the extreme

values can be modeled as a parameterized distribution

(referred to as an extreme value distribution or EVD), one

can learn for a given .

In principle, this is a fundamental breakthrough in

anomaly detection, and some initial work has been

recently published in this direction [50]. However, current

EVT supports a limited class of base distributions ( ); in

fact, while dealing with extremes of a univariate and uni-

modal distribution is well understood in EVT, handling

multivariate and/or richer distributions, for example, mix-

ture models, is a challenge. In this paper, we propose an

EVT driven strategy that can admit a richer class of n dis-

tributions. A generalization of EVT to multivariate and

multimodal distributions [12] is employed, which uses

EVT on the likelihood of the observations, thus reducing

the problem to a univariate setting.

As an instantiation of the EVT driven strategy, we

propose an anomaly detection method in which the nor-

mal behavior, , is modeled as a nonparametric mixture

model—Dirichlet process mixture model (DPMM) [21],

or DPMM—which allows clustering the data without pre-

specifying the number of clusters. This, especially when

adapted to the streaming setting, is an invaluable feature

for anomaly detection, where the normal clustering pat-

tern can evolve with the stream. This is an invaluable

feature for anomaly detection in an online setting, where

the normal clustering pattern can evolve with incremen-

tal data addition. The anomalous distribution,, is also a
DPMMwith a coupling with which forces the parame-

ters of to be generated from the extremes of the prior dis-

tribution that generates the parameters for . The result-

ing method can perform joint clustering and anomaly

detection and can be adapted to a streaming setting,

with robustness to the choice of threshold for identifying

anomalies. Experimental results on synthetic and publicly

available datasets are provided to demonstrate the effec-

tiveness of the proposed method over state of art methods.

1.1 Paper contributions

The paper makes the following key contributions:

1. We propose a method called integrated clustering and

anomaly detection (INCAD),1 that couples Bayesian

nonparametric modeling and EVT to simultane-

ously perform clustering and anomaly detection.

INCAD uses a dynamic definition of anomalous and

non-anomalous behavior, which makes it well-suited

for continuous monitoring applications. At the same

time, by using a nonparametric clustering mechanism,

that is, DPMMs, the model permits formation of new

clusters at subsequent processing steps. This feature

helps in address issues in open set classification [4,

25]. Moreover, by explicitly modeling the anomalous

behavior, the model can directly produce an anomaly

label, instead of relying on a user-defined threshold on

a score.

2. We provide a key theoretical result that enables us to

extend the EVT formulation to multidimensional data,

via the extended generalized Pareto distribution (GPD)

modification.

3. We put forward a streaming extension to the INCAD

model that captures drift or evolution in streams as

illustrated in Figure 1.

1A preliminary version of INCAD was published here [33].
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F IGURE 1 Illustration of INCAD performance on a synthetic streaming dataset. (A) Before streaming phase: After the initial batch

phase, INCAD correctly and automatically identifies three clusters in the data, along with some peripheral data instances as anomalies

(denoted by a ◦, where the transparency intensity denotes the probability of observation being anomalous). (B) After initial part of streaming:

As new instances arrive in the stream, INCAD first identifies them as anomalies, and then, (C) after introducing all instances for fourth

cluster: identifies a new cluster. (D) End of streaming phase: The truly anomalous instances in the stream are labeled as anomalies with

higher probability than the false positives (instances on the periphery of the clusters)

4. We provide a comprehensive evaluation of the model

on a variety of benchmark datasets to highlight its

effectiveness and provide a comparison against existing

models.

1.2 Paper organization

An overview of the existing literature on clustering-based

anomaly detection and anomaly detection in streaming or

online settings is provided in Section 2. Section 3 presents

a short overview on EVT along with the extended GPD to

high-dimensional settings. The origins of themethodology

for a basic one cluster scenario using EVT is introduced in

Section 4. The proposed INCADmodel (which is an exten-

sion to multiple clusters), the Gibbs sampling algorithm

for INCAD and its key features are discussed in detail

Section 5. The experimental setup for the INCADmodel is

detailed in Section 6. The results and final evaluations of
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the model against state-of-the-art algorithms in the litera-

ture are studied in detail in Section 7.

2 RELATED WORK

This section examines the different aspects of

clustering-based anomaly detection. We review existing

research on clustering-based and EVT-based approaches

and the research extensions that are necessary for study-

ing evolving anomalous behaviors. This section reflects

on the need for a synchronized agglomerated clustering

and anomaly detection particularly in streaming settings

and justifies the extended approach studied in the paper.

2.1 Clustering-based anomaly detection

Motivated by the natural tendency of complex systems

to exhibit clustering behavior, clustering-based methods

rely on the assumption that data corresponding to normal

behavior would form natural clusters, whereas anoma-

lous data would either form insignificant clusters or

get weakly associated with the natural clusters. Thus,

clustering-based anomaly detection methods serve a dual

purpose: (a) system identification by discovering clusters

in the observed data, and (b) identifying critical anoma-

lies in the system behavior. Traditional methods that first

perform clustering, followed by an anomaly detection step,

risk the negative impact of anomalies on the clustering

step [36, 43]. However, recent solutions have been pro-

posed that avoid this risk by jointly identifying the clusters

and anomalies [11, 24, 42].

Existing anomaly detection methods, clustering based

or otherwise, have a significant shortcomingwhen applied

in practical settings, that is, they cannot adapt to evolv-

ing notions of normal and anomalous behavior. Most

methods have rigid definitions of such behavior, encoded

as parameters (number of clusters, neighborhood size,

etc.) or thresholds, which result in poor performance

when the underlying behavior changes. For instance, a

clustering-based algorithm that assumes the existence of

fixed k clusters, will fail if a new cluster evolves over time.

For the most fundamental problem of identifying

anomalies within a set of observations, also referred to

as unsupervised anomaly detection, existing methods

[36, 43] employ different strategies to model the normal

and/or anomalous behavior in the data. In particular,

clustering-based techniques rely on the assumption that

normal observations cluster together into significant clus-

ters, while anomalies either exist as singletons or very

small clusters or are far away from the center of the cluster

that they are assigned to. While earlier methods operate

in two phases, that is, clustering followed by anomaly

detection, methods that simultaneously identify clusters

and anomalies have been recently proposed [11, 24, 42].

However, these methods require the user to prespecify

the number of clusters, which makes them unsuitable for

scenarios where that information is not available or could

evolve.

2.2 Anomaly detection using DPMM

Bayesian approach for nonparametric modeling was first

introduced by Ferguson [17] and Antoniak [3]. Modern

variants of these models [46] were introduced for unsu-

pervised clustering. Blei et al. [6] and Yerebakan et al.

[60] present hierarchical extensions of the DPMM model

that enable more flexible clustering for multimodal and

skewed clusters. The models are not tailored to incor-

porate the order of the observations, which makes them

unsuitable for studying streaming data. [60] and, Blei and

Frazier [5] propose variational inference based variants

that address complexity challenges. Additionally, there

exists exemplary work that has explored DPMM for the

task of anomaly detection [15, 23, 26, 49, 55, 59] that iden-

tify anomalies post clustering in a non-streaming setting.

But unlike existing work that are based on exchangeable

DPMM models, we propose a non-exchangeable evolving

model that studies the dependencies in the order of the

observations to jointly study clusters and anomalies.

2.3 Anomaly detection using EVT

A large body of research exists in the area of anomaly

detection [9]. There have been limited applications of EVT

for detecting anomalies [2, 20, 50–52]. However, these

solutions are limited to one-dimensional (1D) data and

typically assume that the normal data follows a unimodal

distribution (e.g., Gaussian), though limited extensions to

multivariate case [12] have been proposed.

Efficient algorithms that can adapt with streaming

data still remain a challenge [48].Anomaly detection

methods that use EVT have been proposed [12, 29], but

are not applicable in a streaming mode. Some stream-

ing algorithms based on EVT [2, 20, 50] have also been

recently proposed to adapt to the evolving behavior but

differ from our approach. In particular, the approaches in

[2, 50] are limited to univariate streams while the method

in [20] is tailored to spatiotemporal data. Although EVT9s

definition of anomalies is more adaptable for streaming

datasets, fitting an extreme value distribution on a mix-

ture of distributions or even multivariate distributions is

challenging. In [52], the authors proposed framework uses

EVT along with sliding windows for detecting outliers in
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nonstationary data stream. An approach based on EVT for

detecting outliers in streaming univariate and unimodel

time-series is proposed in [50]. This approach is shown

to be useful for both stationary and nonstationary stream-

ing data since there is no underlying assumption about

the distribution of data stream. A combined approach

with Gaussian process and EVT for detecting anoma-

lous behavior in streaming data for maritime vessel track

analysis is presented in [51]. This approach models the

dynamic properties of the distribution governing extreme

values through the use of Gaussian processes.

2.4 Anomaly detection on streaming
data

With pervasive use of sensors in different application

domains such as healthcare, smart infrastructure and

social networking [57], there is an exponential rise in

the availability of streaming data [1]. This can be largely

attributed to the rise of internet of things (IoT) which has

caused the network of real-time data sources to produce

infinite, continuous streams of data. Detecting anomalies

in streaming data poses challenges as compared to batch

data [48]. The significant challenge for an outlier detec-

tion technique is to effectively adapt with the changing

nature of the distribution of data streams while detecting

anomalies.

While most existing solutions operate in a batch or

offline mode, requiring the full dataset in advance, it is

challenging to adapt them for a streaming setting [31].

Moreover, existing solutions for anomaly detection with

streaming data have either focused on 1D data streams [1,

50] or focus on maintaining the density estimates using

a tree based data structure [53, 58] in an online fashion.

At the same time, several clustering algorithms that can

handle streaming data have been proposed [27, 41], which

allow the clustering to evolve with the streaming data,

that is, new clusters form, old clusters grow or split. How-

ever, none of these methods performs joint clustering and

anomaly detection.

3 EXTREME VALUE THEORY

EVT [10] is the study of extremes of data distributions.

The foundations were laid by Fisher and Tippett [18] and

Gnedenko [28] who demonstrated the closed forms of the

distributions of the extreme values of i.i.d. samples. In this

paper, we follow the theory by De Haan and Ferreira [13].

Broadly speaking, there are two principal approaches

to study extreme values. One of the approaches is to

study the block maxima, that is, the largest observations

TABLE 1 Relation between G and ÿ

Tail behavior

Tail

distribution Examples

Exponential tail Gumbel

(ÿ = 0)

Gaussian, Exponential,

Gumbel, Lognormal

Heavy tail Fréchet

(ÿ > 0)

Pareto, Fréchet

Bounded tail Reversed

Weibull

(ÿ < 0)

Uniform, Beta,

Reversed Weibull

in multiple large samples (or blocks) of identically

distributed observations. For instance, consider a random

variable, X , with G as the cumulative distribution func-

tion (CDF).2 Given n realizations of this random variable,

{X1,X2, … ,Xn}, let, Mn = max {X1,X2, … ,Xn}. If there

exists a sequence of constants an > 0, bn ∈ R, such that
Mn−bn
an

has a nondegenerate distribution as n → ∞, that is:

P

(
Mn − bn
an

f x

)
→ G(x) as n → ∞ (1)

for every continuity point x of the nondegenerate distribu-

tion GEV, then GEV is called an extreme value distribution

and the class of distributions G satisfying (1) are called the

domain of attraction of GEV.

For univariate data, the generalized extreme value

(GEV) distribution, GEV(x), takes the following form:

GEV(x) = exp

{
−

[
1 + ÿ

(
x − ÿ

ÿ

)]−1∕ÿ}
, (2)

where ÿ, ÿ and ÿ g 0 are the location, scale and shape

parameters of the distribution. For ÿ = 0 the distribution

takes the form

GEV(x) = exp

{
−exp

[
−
x − ÿ

ÿ

]}
, (3)

ÿ is typically referred to as the extreme value index and

depends on the shape of the tail of the data distribution,

G. For instance, if G is a univariate Gaussian distribution,

then ÿ = 0. Table 1 and Figure 2 show the shapes of the

tail for different distributions, and the corresponding value

for ÿ .

Given a distribution, G, and the corresponding

EVD, one can calculate the cumulative probability of

an observation x to be an extreme value with respect to

G. This requires estimation of the shape parameter, ÿ ,

which can be done directly from data. However, the above

2We will use GX to denote the CDF of the data X and GEV
X to denote the

corresponding tail distribution. Unless needed, the subscript is omitted

for ease of notation.
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F IGURE 2 Tail distribution for different F for different

values of ÿ

approach only utilizes maximal value in each block, and

is, thus, inefficient. A more economical approach to study

extremes, called peaks-over-threshold (POT) [44], stud-

ies all large observations which exceed a high threshold.

In POT, the excesses over a user-specified threshold, t,

that is, Z = X − t can be modeled as a GPD, given by the

following CDF:

GEV
Z (z) =

⎧⎪«⎪¬

1 −
(
1 + ÿ

(
z−ÿ

ÿ

))−
1

ÿ
if ÿ ≠ 0

1 − exp
(
−
z−ÿ

ÿ

)
if ÿ = 0

(4)

with ÿ, ÿ, and ÿ as the location, scale, and shape param-

eters, respectively. The choice of the threshold, t, is

often regarded as a bias-variance problem as very large

or extreme thresholds lead to fewer observations and

over-fitting whereas thresholds resulting in many tail

observations result in bias. In this paper, we favor the

POT approach due to simplicity in implementation and

explanation.

Of course, given a data distribution,G, there is no guar-

antee that a corresponding EVD exists. A simple theorem

from De Haan and Ferreira [13] on domains of attrac-

tion for univariate data is used to establish the necessary

conditions for the existence of the EVD for G.3

Theorem 1. Let G be a distribution of X with u as the right

upper limit on the realizations of X . Assume that second

order derivatives G′′ exists and the first order derivative G′ is

positive for all x in the left neighborhood of u. If

lim
x→u

(
1 − G

G′

)′

(x) = ÿ (5)

3The detailed mathematical proofs for the above theorems is given in De

Haan et al. [13].

or alternately,

lim
x→u

(1 − G(x))(G′′(x))

(G′(x))2
= −ÿ − 1 (6)

then G is in the maximum domain of attraction (MDA)4 of

GEV family of distributions GEV
ÿ
with shape parameter ÿ .

3.1 EVT for multivariate data

In the previous section, we posed the different approaches

in EVT in the univariate space. However, most datasets

are often multivariate rendering the above approach inap-

plicable. In this section, we develop the multivariate

approach to extreme values.

For the sake of notational simplicity we will discuss a

two-dimensional (2D) case, where the random variable, X ,

is denoted as a tuple (X1,X2).

Definition 1. Let
{(
X1,i,X2,i

)}n
i=1

be a sequence of inde-

pendent and identically distributed random tuples with

distribution G. Suppose that there exist sequences of

constants ai, ci > 0 and bi, di ∈ R and a distribution GEV

with nondegenerate marginals for all continuity points of

(x1, x2). Then any limit function of GEV given below with

nondegenerate marginals is called a multivariate extreme

value distribution,

lim
i→∞

P

(
MX1,i − bi

ai
f x,

MX2,i − di

ci
f y

)
= GEV(x, y), (7)

where MX1,i = max
(
X1,1,X1,2, … ,X1,i

)
and MX2,i =

max
(
X2,1,X2,2, … ,X2,i

)
.

Extending the univariate results to multivariate set-

tings is often arduous and computationally complex. How-

ever, as most data is often multivariate, we study using an

alternative approach where the probability image space is

used to identify anomalies.

3.2 Using probability image space
for handling multimodal and multivariate
distributions

Estimation of parameters for extreme value distributions

is often infeasible if the distribution is multimodal and/or

if the random variable is multivariate [13, 44]. To address

this challenge, recent work by Clifton et al. [12] shows

4The maximum domain of attraction can be seen as a family of

distributions with tail distributions that are unique up to location and

scale parameters.
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F IGURE 3 Extended GPD distribution using Probability Image Space for Bimodal Univariate Data. Two thousand observations from

two random normal distributions with mean and variance (0,2) and (6,2) respectively is shown. (A). Empirical density of the data is shown in

green. The observations with probability density less than 0.1 are considered tail observations (shown in red shaded region). The empirical

CDF GX is shown red. (B). The empirical density of the probability image space is shown in red. The cumulative distribution used in the

extended GPD approach is shown in blue. (A) Data density. (B) Extended GPD

that it is possible to construct, and examine, an equiva-

lent univariate distribution by considering the probability

image space. The result states that for a probability distri-

bution function, gX ∶ X → Y , where Y ∈ R
+ is the proba-

bility image space, let random variable Y be defined as a

distribution GY , with following CDF:

GY (y) = ∫g−1
Y
([0,y])

gX (x)dx, (8)

where g−1
Y
([0, y]) denotes all the values of the random vari-

ableX , whose probability density is between 0 and y. Using

the POT result [44], as discussed earlier, it can be shown

that for a small positive value, u, the tail of GY can be

modeled as a GPD for y ∈ [0,u], as u → 0, such that if an

observation x is extreme with respect to the original dis-

tribution, GX , if gX (x) < u, then y = gX (x) will be extreme

with respect to GY . The corresponding GPD for (u − y),

denoted as GEV
Y
, can be used to calculate the probability of

x to be extreme, with respect to GX .

A simulated example is shown in Figure 3, where

2000 observations from two univariate Gaussian distribu-

tions are studied. Unlike the traditional EVT approach

that can only study tail distributions for unimodal data,

the Ext-GPD approach is able to include rare observations

between the two modes as seen in the shaded red zone

in Figure 3A. The probability image space of the mix-

ture distribution is used to study the observations with

low probabilities, that is, the rare tail observations. The

resulting image space is considered as the 1D projections

of the original data and the anomalies are identified by

studying the left tail in Figure 3B. The Ext-GPD approach

is discussed in detail in Section 3.3. The theory behind

the extended GPD approach has not been presented ear-

lier [12]. Hence, we present the necessary conditions 1D

data in Section 3.3. The proof for multidimensional case is

similar and has been included in the Appendix.

3.3 Ext-GPD approach

In this section,we derive the necessary conditions required

for the Extended GPD approach. For this, consider the

following setting in the univariate space.5

Let X ∈ R be the data space with pdf6 gX ∶ R → R
+.

Let Y ∈ R
+ be the corresponding image space, that is,

Y = gX (X) and Ym = sup (gX (X)). As the limit distribution

of the minima of Y is of interest, we wish to study the

limit distribution of maxima of Z = Ym − Y . Let the CDF

of Z is given by GZ. Then, we show that the Theorem 2

holds.

Theorem 2. GZ is in the maximum domain of attraction

of a GEV distribution GEV
ÿ
, iff

dgX (x)

dz
and

d2gX (x)

dz2
exists ∀x ∈

g−1
X (Ym − z) in some neighborhood of Ym.

Proof Toderive the necessary conditions for theExt-GDP

approach, we make the following claims.

Claim 1. GZ is a CDF.

Proof As the limit distribution of the minima of Y is of

interest, we wish to study the limit distribution of maxima

5The proof for the higher dimensional space is presented in the

Supporting Information.
6Note: g−1X represents an image set as the function gX is a many-to-one

(noninjective) function.
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of Z = Ym − Y . Then the CDF of Z is given by GZ is

GZ(z) = P(Z f z)

= P (Ym − Y f z)

= P (Y g Ym − z)

= 1 − GY (Ym − z)

= ∫g−1
X ([Ym−z,Ym])

gX (x)dx, (9)

∀z ∈ [0,Ym].

For, GZ, the corresponding maximum value, x∗ = Ym.

Claim 2. G′
z exists and is positive in some neighborhood

of Ym.

Proof If F be a distribution in 1D, ∃ {x1 = ∞, x1,

x2 … , x2N = ∞} and intervals I1, I2, … , IN−1 such that

In =
[
x n

2
, x n+1

2

]
∀ n = 1, 2, … ,N and g−1

X ([0,Ym − z]) =

∪Nn=1In

∫g−1
X ([0,Ym−z])

gX (x)dx = ∫∪Nn=1 In

gX (x)dx

=

N∑
n=1

∫In gX (x)dx

=

N∑
n=1

Gn(z), (10)

where Gn(z) = ∫
In
gX (x)dx and {x2, x2 … , x2N−1} are the

solutions to g−1
X (Ym − z).

Then,

G′
Z(z) =

d

dz ∫g−1
X ([Ym−z,Ym])

gX (x)dx

=
d

dz

(
1 − ∫g−1

X ([0,Ym−z])
gX (x)dx

)

= −
d

dz

N∑
n=1

Gn(z). (11)

Since Gn(z) = ∫
In
gX (x)dx = ∫ xn

xn−1
gX (x)dx, by Leibniz inte-

gral rule, we get,

d

dz
Gn(z) =

d

dz∫
xn

xn−1

gX (x)dx

= gX (xn)
dxn
dz

− gX (xn−1)
dxn−1
dz

+ ∫
xn

xn−1

d

dz
gX (x)dx

= (Ym − z)
(dxn
dz

−
dxn−1
dz

)

= −(Ym − z)
(|||
dxn
dz

||| +
|||
dxn−1
dz

|||
)
. (12)

Then,

G′
Z(z) =

2N∑
n=0

(Ym − z)
||||
dxn
dz

||||
= (Ym − z)

∑
x∈g−1

X (Ym−z)

||||
dx

dz

|||| . (13)

Claim 3. G′′
Z
exists iff

dgX (x)

dz
and

d2gX (x)

dz2
exists ∀x ∈ g−1

X

(Ym − z).

Proof

G′′
Z (z) =

d

dz
G′
Z(z)

=
d

dz

£
¤¤¥
(Ym − z)

∑
x∈g−1

X (Ym−z)

||||
dx

dz

||||
¦
§§̈ . (14)

It can be seen that G′′
Z
exists iff

dgX (x)

dz
and

d2gX (x)

dz2
exists

∀x ∈ g−1
X (Ym − z). This is true for all distributions in the

exponential family.

Claim 4. GZ is in the maximum domain of attraction of a

GEV distribution GEV
ÿ
, where ÿ ∈ R is the rate parameter

of the GEV distribution.

Proof By von Mises9 condition,7 and Claims 2 and 3, we

can see that theG′
Z
is positive andG′′

Z
exists in some neigh-

borhood of Ym. Hence, GZ is in domain of attraction of

GEV
ÿ
.

Using Claims 1–4, we get the necessary conditions for

the above claim.

The extension to the multivariate case is shown in

Theorem 3. The proof is included in the Appendix to keep

the presentation here focused.

Theorem 3. Let X⃗ ∈ R
n be the data space with pdf gX ∶

R
n
→ R

+.Let Y ∈ R
+ be the corresponding image space. Let

X⃗ ∈ Rn and g−1
X⃗

([0,Ym − z]) = D (Ym − z) be a n-manifold

with a boundary ÿD (Ym − z).GZ is in themaximumdomain

of attraction of a GEV distribution iff :

1. D (Ym − z) is an n-manifold with a boundary ÿD

(Ym − z),

2. The Eulerian velocity of the boundary v⃗b =
dD(Ym−z)

dz
exists,

3. dx
[
gX (x⃗)v⃗b ⋅ dÿ

]
exists, and

4. iv⃗
(
dx

[
gX (x⃗)v⃗b ⋅ dÿ

])
exists.

7von Mises9 condition: Let F be a distribution function and x∗ is its right

end point. Suppose F′′ exists and F′ is positive for all x in some

neighborhood of x∗. If limt→x∗

(
1−F

F′

)
(t) = ÿ then, F is in the MDA

of GEV
ÿ .
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F IGURE 4 Graphical representation of the proposed

probabilistic model

4 ANOMALY DETECTION USING
EVT FOR UNIMODAL DATA

EVT plays a significant role in studying rare events and

so, several methods have been proposed that incorporate

these features in anomaly detection. Here, we present a

novel methodology which involves both EVT and non-

parametric modeling for anomaly detection. The core

principles that lead to the development of the integrated

algorithm are discussed here. We start with a basic case of

one cluster data with anomalies.

Based on the EVT concepts discussed above,

we first propose a simple anomaly detection model

(Figure 4), which is equivalent to the following generative

distributions:

ÿ|ÿ ∼ G0(ÿ), (15)

ÿa|ÿ ∼ G
EV

0
(ÿ), (16)

ÿ|ÿ, ÿ ∼ Beta(ÿ, ÿ), (17)

ai|ÿ ∼ Bernoulli(ÿ), (18)

xi|ai, ÿ, ÿa ∼
{

G(ÿ) if ai = 1

G (ÿa) if ai = −1
, (19)

The model is a mixture of two components, and,
parameterized by ÿ and ÿa, respectively. ai is an indicator

latent variable denoting if xi is normal or anomalous, and

ÿ is the mixture weight with a Beta distribution prior.

The mixture of models representation allows us to

sketch a Gibbs sampling-based inference scheme, similar

to a mixture model [19], using the following conditional

posteriors:

p
(
ÿ|a, x, ÿ, ÿa, ÿ, ÿ, ÿ)

= Beta
(
ÿ + na, ÿ + n − na

)
,

(20)

where x denotes the vector of n observed data instances, a

is a binary indicator vector, that is, ai = −1 ⇒ xi is anoma-

lous, and na is the number of anomalous instances. The

posteriors for the indicators can be computed as:

p
(
ai = −1|a−i, x, ÿ, ÿa, ÿ, ÿ, ÿ)

∝ ÿpG
(
xi|ÿa) , (21)

p
(
ai = 1|a−i, x, ÿ, ÿa, ÿ, ÿ, ÿ)

∝ (1 − ÿ)pG (xi|ÿ) . (22)

Finally, the posteriors for the mixture parameters, ÿ and

ÿa, can be computed as:

p
(
ÿ|a, x, ÿ, ÿa, ÿ, ÿ, ÿ)

∝ pG
0
(ÿ|ÿ)

∏
i∶ai=1

pG (xi|ÿ) , (23)

p
(
ÿa|a, x, ÿ, ÿa, ÿ, ÿ, ÿ)

∝ pGEV
0

(
ÿa|ÿ) ∏

i∶ai=−1

pG
(
xi|ÿa) .

(24)

Starting from an initial estimate of the latent variables, ÿ ,

a, ÿ, and ÿa, the inference can be done via Gibbs update,

in which new estimates for the latent variables are sam-

pled from the conditional posteriors given in (20), (22), and

(24), respectively.

4.1 Modified posterior expressions

Let yi denote the pdf of an observation xi according the

to the normal distribution, that is, yi = pG (xi|ÿ). Using a
threshold u,8 we define the <tail= of the distribution GY

using samples {yi}i∶yifu. A GPD, GEV
Y
, is fitted on the sam-

ples {u − yi}i∶yifu. The conditional posteriors for ai for tail
instances can be written as:

p
(
ai = −1|a−i, x, ÿ, ÿa, ÿ, ÿ, ÿ)

∝ ÿ
(
1 − PEVY (u − yi)

)
,

(25)

p
(
ai = 1|a−i, x, ÿ, ÿa, ÿ, ÿ, ÿ)

∝ (1 − ÿ)PEVY (u − yi) , (26)

where PEV
Y (u − yi) is the probability of observing yi in the

tail of GY . Since GPD is a unimodal distribution, we use

the survival function value, 1 − GEV
Y (y − ui), instead of the

exact probability. For non-tail instances, that is, yi > u, the

conditional probability p (ai = −1| …) is set to 0. Under

thismodifiedmodel, computing the posterior for ÿa in (24)

is not needed anymore. If the form of the normal model

is known, for example, a unimodal Gaussian or a mix-

ture of Gaussians9 (Figure 5), the anomalies and themodel

8Note that u is not a threshold for determining if an observation is

anomalous or not; instead, it defines the <tail= of the original

distribution, which are then used to determine the parameters of the

corresponding GPD.
9In presence of multiple clusters, the prior G0 can be chosen as a mixture

of individual priors generating the non-anomalous components ensuring

that low probability or tail region of the distribution is associated with

generating parameters associated with anomalous components.
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F IGURE 5 Results for a synthetic 2D case, with a fixed

Gaussian mixture model as G0. The model identifies the anomalies

(red) with respect to the tail of G0 (green) as well as the parameters

for G0 (shown as contour lines)

parameters can be inferred via Gibbs sampling, using the

above mentioned conditional distributions. However, in

the next section, we show how the Bayesian formulation

can be extended to a richer class of the base distribution,

G0, that is, nonparametric mixture models.

Challenges: If G0 is the conjugate prior ofG, one can get

an analytical form for the posterior in (24). The posterior

for ÿa is the main challenge here, for two reasons: (a) GEV
0

exists only for a limited base distributions,G0, and, (b) even

for known GEV
0
, it is unlikely that the posterior in (24) will

have an analytical form.

We first note that the quantity pG (xi|ÿa) is the probabil-
ity of the observation xi to be generated by the distribution

G, parameterized by ÿa, which, in turn, is sampled from

the EVD for G0, that is, GEV0 .

For distributions belonging to the exponential family,

one can show that ifG0 is the conjugate ofG, then sampling

xi from G (.|ÿa), where ÿa∼ G
EV

0
, is equivalent to (under

expectation): first sampling ÿ from G0, and then sampling

xi from the EVD of G (or GEV), parameterized by ÿ, that is,

Eÿa∼GEV
0

[
pG (xi|ÿa)] = Eÿ∼G

0

[
pGEV (xi|ÿ)].

We show that this claim will hold for the following

simple setting, and omit the general proof in the inter-

est of space. Let G ∼  (ÿ, 1), that is, G is a univariate

Gaussian distribution with fixed variance and the mean is

generated from a Gaussian prior, that is, G0 ∼  (
ÿ0, ÿ

2
0

)
.

Note that the EVD for a Gaussian distribution is a Gumbel

distribution, that is, GEV
0

∼ Gumbel (ÿ0, ÿ0).

Assuming that xi is an anomaly, that is, xi is sampled

from a Gaussian,  (ÿa, 1), where ÿa ∼ Gumbel (ÿ0, ÿ0),

then we can show that for any ÿ ∼  (
ÿ0, ÿ

2
0

)
, the proba-

bility that xi is not in the tail of (ÿ, 1) will be very small,

since:

EX∼ (ÿa,1)

[
G (ÿ,1)(X)

]

= ∫
1√
2ÿ

exp

(
−
(x − ÿ)2

2

)
1√
2ÿ

exp

(
−
(x − ÿa)2

2

)
dx

∝ exp

(
−
(ÿ − ÿa)2

4

)
.

Thus, the claim will hold in this case because the prior

distribution is Gaussian, for which |ÿ − ÿa| ≫ 0.

5 EXTENSION TO DATA WITH
MULTIPLE CLUSTERS

While the previous result is an interesting step toward

explicitly modeling the anomaly distribution, it is still lim-

ited to the case where the normal data is being generated

from a single cluster. A natural extension to the presented

preliminary model is the scenario where the normal data

could be generated from multiple clusters. The key chal-

lenge in performing anomaly detection on such data is the

method to identify the generative model that is robust to

anomaly presence.

Why integrate EVT and DPMM?: Anomalies with

significantly large deviations are inherently caught by

most anomaly detection algorithms including tradi-

tional DPMM. The distinction between the algorithms is

observed when identifying anomalies with relatively sim-

ilar behavior to normal data. Such anomalies are found in

the vicinity of clusters and are often clustered into being

normal. Traditional DPMM algorithm can identify such

anomalies by increasing the concentration parameter but

the choice of the new value has the same challenges as the

choice of a threshold thus arising a need for an external

algorithm like EVT that studies these tail points separately

and an integrated approach would ensure enhanced and

robust clustering.

5.1 Background on mixture models

Finite mixture models (FMM) are a useful clustering tool

to identify and study subpopulations within data. How-

ever, they require prespecifying the number of clusters,

which is not always known. This is especially important for

anomalous data for which accurate knowledge is not avail-

able, and can lead to some significantly inaccurate (and

in some cases unreliable) interpretations of the data. Non-

parametricmixturemodels, for example, DPMMs [21], can

be used in such settings.

DPMMs: A DPMM can be thought of as an infinite

extension of an FMM, which is equivalent to the following

distributions:

ÿ|ÿ ∼ Dir(ÿ∕K, … , ÿ∕K), (27)



166 GUGGILAM et al.

zi|ÿ ∼ Multi(ÿ), (28)

ÿk|ÿ ∼ G0(ÿ), (29)

xi|zi, {ÿk}Kk=1 ∼ G
(
ÿzi

)
. (30)

Each observation xi is generated by first sampling a cluster

index, zi from a multinomial distribution, parameterized

by aK length vector, ÿ. A symmetric Dirichlet prior is used

to generate ÿ. The observations are sampled from a cluster

specific distribution, G, parameterized by ÿk. The cluster

specific distribution parameters are also generated from a

prior (or base) distribution, G0, parameterized by ÿ .

A DPMM is an extension of FMM to the case

whereK → ∞.While several equivalent representations of

DPMMexist, wewill use the stick breaking representation,

which shows DPMM as a natural extension of FMM. The

stick breaking representation allows sampling themixture

weights, with possibly infinite components, as follows:

• Start with a unit-length stick and break it according to

ÿ1, where ÿ1 ∼ Beta (1, ÿ0), and assign ÿ1 to ÿ1;

• Break remaining stick according to the proportion ÿk ∼

Beta (1, ÿ0) and assign ÿk portion of the remaining stick

to ÿk.

The sequence ÿ = {ÿk}
∞
k=1 satisfies

∑∞
k=1ÿk = 1 and is

typically written as ÿ ∼ GEM(ÿ).10

5.2 Integrated nonparametric
clustering and anomaly detection

We propose an instance of the general Bayesian anomaly

detection algorithm described in Section 4 which uses a

DPMM as its base distribution, G0. The generative model

(Figure 6) consists of two coupled DPMM models, each

corresponding to the normal and anomalous behaviors,

respectively, and is equivalent to the following distribu-

tions11:

ÿ|ÿ ∼ GEM(ÿ), (31)

10Named after Griffiths, Engen, and McCloskey.
11GEM is a recursive process with an infinite number of clusters of

which only a finite number of them are populated. The number of the

populated clusters as well as the corresponding proportions are learned

sequentially as seen in the stick breaking process. Since the true number

of clusters is unknown, Dirichlet process priors, like the GEM

distribution, are traditionally used to sample the vectors ÿ and ÿa.

When sampling from the GEM distribution, we generate a vector (of

unknown but finite length) from a simplex that sums to one (as seen in

the stick breaking approach). The vector length can be regulated using

the concentration parameter (large concentration parameter returns

more number of populated clusters, i.e., vector of longer length).

F IGURE 6 Graphical representation of the proposed INCAD

model

ÿ
a|ÿ∗ ∼ GEM (ÿ∗) , (32)

ÿk|ÿ ∼ G0(ÿ), (33)

ÿa
k
|ÿ∼ G

EV
0 (ÿ), (34)

sign (zi) |ÿ ∼ Bernoulli(ÿ), (35)

|zi||||ÿ,ÿ
a, sign (zi) ∼

{
Multi(ÿ) if sign (zi) = 1

Multi (ÿa) if sign (zi) = −1
,

(36)

xi|zi, {ÿk}∞k=1,
{
ÿa
k

}∞

k=1
∼

⎧
⎪«⎪¬

G
(
ÿ|zi|

)
if sign (zi) = 1

G
(
ÿa|zi|

)
if sign (zi) = −1

.

(37)

The key difference from the model in Section 4 is the

additional variable, zi, that works as the cluster labels

as well as anomaly indicator. The sign (zi) represents the

presence of anomalous behavior where anomalous (or

non-anomalous) observations are assigned negative (or

positive) labels. Based on the observed labels, anomalies

can be classified into global, local and group anomalies.

Definition 2. (Global anomalies). A single observation is

defined as a group anomaly if it is an observation with dis-

tinctly novel behavior. INCAD classifies such observations

into singleton clusters with negative cluster labels.

Definition 3. (Group anomalies). Multiple observations

with similar behavior that is distinct fromexisting predom-

inant behaviors (normal clusters) are classified as group

anomalies. Such observations are classified into smaller

clusters with negative cluster labels.

Definition 4. (Local anomaly). Observations with behav-

iors that moderately deviate from normal clusters but are
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not distinct enough to form individual clusters are defined

as local anomalies. Such observations are classified into

normal clusters with similar behavior but with negative

labels to indicate diverging behavior. Anomalies that orig-

inate from an overlapping anomalous cluster are often

classified as local anomalies.

Since labels are assigned considering both clustering

as well as anomaly detection, we call this model, INCAD

(integrated nonparametric clustering and anomaly detec-

tion). Based on sign (zi), zi is sampled from a multinomial

distribution that is either parameterized by ÿ (if sign (zi) =

1) or ÿa (if sign (zi) = −1). The Multinomial parameters, ÿ

andÿa are sampled from the stick breaking construction of

a Dirichlet process, that is, ÿ ∼ GEM(ÿ) and ÿa ∼ GEM (ÿ∗).

The INCAD model goes beyond the illustrated sim-

ple case where we assume multiple anomalous sources,

each associated with a different concentration parameter

ÿ∗. The generative model can now be seen as a collec-

tion of multiple DPMMs of which all but one DPMM can

be perceived as sources for anomalous data and the set

of concentration parameters for anomalous data,
{
ÿ∗
d

}
,

would dictate the corresponding DPMM9s cluster propor-

tions
{
ÿ
a
d

}
.

Inference for the INCADmodel includes inferring pos-

teriors for (zi)
n
i=1,

(
ÿk, ÿ

a
k

)∞
k=1

. While this follows the gen-

eral Gibbs sampling-based scheme discussed in Section 4

(omitting exact details in the interest of space), there are

some additional issues that are unique to the INCAD

model. In particular, the dependency between zi and

sign (zi) in Figure 6 means that one cannot consider the

model as a straightforwardmixture for two DPMMs. How-

ever, the relationship between the normal and anomalous

model parameters, via the EVT construct, means that we

can calculate the posteriors for sign (zi) using the modifi-

cation proposed earlier (26).

5.2.1 Inference when GEV
0
is available

MCMC and variational inference based algorithms [7, 40]

have been typically used for inference of the computa-

tionally expensive infinite mixture models. For INCAD,

we adopt an extension of a Gibbs sampling-based method

for a fixed mixture model that allows room for addi-

tional cluster formation. The algorithm is inspired by

the sampling-based MCMC method for conjugate priors

(Algorithm 1, [40]). Here, new clusters comprise anoma-

lous observations identified using EVT.
Gibbs sampling: The anomaly classification variable

sign (z.) is a unique feature of INCAD that distinguishes it

from traditional DPMM. Thus, the posterior probabilities

for the latent variables namely, the number of clusters K,

cluster and anomaly indicators {zi}
N
i=1 are computed using

Markov property and Bayes rule:

P
( |zi| = k |x., z−i, ÿ, ÿ∗,ÿ,ÿa, ÿ, {ÿk} ,

{
ÿa
k

}
,

sign (z.) , ÿ
)
= P

(|zi| = k
||| x.,

z−i, ÿ, ÿ
∗, {ÿk} ,

{
ÿa
k

}
, sign (zi)

)
, (38)

∝

⎧⎪⎪«⎪⎪¬

P (|zi| = k| z−i, ÿ, ÿk) sign (zi) = 1

×P
(
xi || |zi| = k, z−i, ÿk, ÿ

)
,

P
(|zi| = k |z−i, ÿ∗, ÿa

k

)
sign (zi) = −1

×P
(
xi || |zi| = k, z−i, ÿ

a
k
, ÿ∗

)
,

, (39)

=

⎧
⎪«⎪¬

nk
(n+ÿ−1)

G
(
xi

||| ÿk
)
, sign (zi) = 1

nk
(n+ÿ∗−1)

G
(
xi

||| ÿak
)
, sign (zi) = −1

, (40)

where ÿ∗ =
1

1−pi
, pi is the probability of xi being anomalous,

nk is the number of observations in the kth cluster and K

is the number of non-empty clusters. In the improved ver-

sions of INCAD, pi is the cumulative density function for

the extreme value distribution.

The posterior probability of forming a new cluster

denoted by K + 1 is given by:

P
(|zi| = K + 1 |x., z−i, ÿ, ÿ∗,

ÿ,ÿa, ÿ, {ÿk} ,
{
ÿa
k

}
, sign (z.) , ÿ

)

= P (|zi| = K + 1 |xi, z−i, ÿ, ÿ∗, ÿ, sign (zi)) , (41)

∝

⎧
⎪⎪«⎪⎪¬

P
(|zi| = K + 1|z−i, ÿ, ÿ)

sign(zi) = 1

×P
(
xi||zi| = K + 1, z−i, ÿ, ÿ, sign(zi)

)
,

P
(|zi| = K + 1|z−i, ÿ∗, ÿ

)
sign(zi) = −1

×P
(
xi||zi| = K + 1, z−i, ÿ∗, ÿ, sign(zi)

)
,

(42)

=

⎧⎪«⎪¬

ÿ

n+ÿ−1
∫ G

(
xi|ÿ)G0(ÿ|ÿ)

dÿ, sign (zi) = 1

ÿ∗

n+ÿ∗−1
∫ G

(
xi |ÿa)GEV0

(
ÿa|ÿ)

dÿa, sign (zi) = −1

.

(43)

Similarly, the parameters for clusters k ∈ {1, 2, … ,K}

are sampled from:

ÿk ∝ G0

(
ÿk |ÿ)(

xk|ÿk) if cluster is not anomalous,

(44)

ÿa
k
∝ G

EV

0

(
ÿa
k
|ÿ)(

xk|ÿak
)
if cluster is anomalous. (45)

where xk =
{
xi|| |zi| = k

}
is the set of all points in cluster k.

Finally, to identify the anomaly classification of the data,

the posterior probability of sign (zi) is given by:

P
(
sign (zi) = −1 |x., |z.|, ÿ, ÿ∗,ÿ,ÿa, ÿ, {ÿk} ,

{
ÿa
k

}
, ÿ

)

= P
(
sign (zi) = −1|xi, |z.|, ÿ∗, ÿ,

{
ÿa
k

}
, ÿ

)
, (46)
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∝

K+1∑
k=1

P
(
sign (zi) = −1 |xi, |zi| = k, z−i, ÿ

∗, ÿ,
{
ÿa
k

}
, ÿ

)

∗ P
(|zi| = k |xi, z−i, ÿ∗, ÿ,

{
ÿa
k

}
, ÿ

)
(47)

=

K∑
k=1

P
(
xi |ÿak

)
ÿ

nk
(n + ÿ∗ − 1)

+

(
∫ G

(
xi |ÿa)GEV0

(
ÿa|ÿ)

dÿa
)
ÿ

ÿ∗

n + ÿ∗ − 1
. (48)

Similarly,

P
(
sign (zi) = 1||xi, |z.|, ÿ, ÿ, {ÿk} , ÿ

)
(49)

∝

K∑
k=1

P
(
xi |ÿk)(1 − ÿ)

nk
(n + ÿ − 1)

+

(
∫ G

(
xi |ÿ)G0(ÿ |ÿ)

dÿ

)
(1 − ÿ)

ÿ

n + ÿ − 1
.

(50)

5.2.2 Inference when GEV
0
is not available

Existence of a tail distribution GEV
0
is not always feasible.

As the extreme value distribution might not belong to the

family of the conjugate priors of G, we assume ÿa ∼ G0 for

sampling the parameters
{
ÿa
k

}∞

k=1
for anomalous clusters.

Here, we perform rejection sampling to sample observa-

tions from the tail distribution. For this, we initially sample

P observations fromG0 and isolate observations with prob-

ability density less than a set threshold12 0 < t << 1. The

above procedure is repeatedM times till sufficient samples

Stail from the tail distribution have been identified. The

cluster means
{
ÿa
k

}∞

k=1
can be estimated by randomly sam-

pling from the tail observations Stail. However, this could

result in potential convergence issues. Thus, we propose

the closest observation in Stail to the sample estimate for

the respective anomalous cluster.

The pseudo-Gibbs sampling algorithm, presented in

Algorithm 2, has been designed to address the cases when

G
EV

0
is not available. For such cases, the modified concen-

tration parameter ÿ∗ is given by the function f where,

f (ÿ|xn, x, z) =
⎧
⎪«⎪¬

ÿ, if not in tail

1

1−pn
, if in tail

, (51)

12The choice of threshold governs the range of values that can be

considered in the tail. Larger threshold allows wider sample range and

therefore, better parameter estimation. However, collecting extreme tail

samples using rejection sampling could be difficult when using larger

thresholds. It must be noted that optimal choice specific to the data can

be made based on the data distribution. In our analysis, we set the

threshold to 15% (probability density) for ease of sampling.

Algorithm 1. Gibbs sampling algorithm when G
EV

0
is

available

Given z(t−1). ,
{
ÿ
(t−1)

k

}
,
{
ÿ
a(t−1)

k

}
from iteration (t − 1). Let

K be the total number of clusters at iteration (t − 1).

Set z. = |z(t−1). | and a. = sign(z(t−1). )

for each observation i do

Remove xi from its cluster zi.

if xi is the only point in its cluster then

Remove the cluster and update K to K-1.

end if

Drop empty clusters.

Sample zi from the Multinomial distribution given

by Equations (40) and (43)

if zi = K + 1 then

Sample new cluster parameters from the

following distribution.14

ÿ
||||xi, z.,

{
ÿ
(t−1)

k

}
,
{
ÿ
a(t−1)

k

}
, a(t−1). (52)

∝

⎧⎪⎪«⎪⎪¬

ÿG0(ÿ|ÿ)G(xi|ÿ) + ∑
ÿ≠i G(xi|ÿzÿ )

× ÿ(ÿ − ÿ
(t−1)
zÿ

)ÿ(a(t−1)
ÿ

), a(t−1)
i

= 1

ÿ∗
G
EV(ÿ|ÿ)G(xi|ÿ) + ∑

ÿ≠i G(xi|ÿzÿ )
× ÿ(ÿ − ÿ

(t−1)
zÿ

)ÿ(a(t−1)
ÿ

− 1), a(t−1)
i

= −1

(53)

Update K = K + 1

end if

for each cluster k ∈ {1, 2,… ,K} do

Sample cluster parameters ÿk and ÿ
a
k
using

Equations (44) and (45).

end for

Sample the anomaly classification ai using

Equations (48) and (50).

Set z(t)
i

= zi ∗ ai
end for

where pn is the cumulative density of xn for the extreme

value distribution of the tail data13 where, the cumulative

density is given by the extended GPD described in

Section 3.3.

5.2.3 Non-exchangeability and evolution
detection in stream

Exchangeable models are robust to alterations in the order

of the sequence of observations. However, for streaming

13The left and right continuous inverses of the function 1

1−GEV
0

(.)
are

broadly studied in EVT to understand the behavior of the tail

distributions.
14It must be noted that the above posterior distribution was derived

under the assumption of independence and exchangeability of priors

for mathematical ease.
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Algorithm 2. Gibbs sampling algorithm when GEV
0
is not

available

Given z(t−1). ,
{
ÿ
(t−1)

k

}
,
{
ÿ
a(t−1)

k

}
from iteration (t − 1). Let

K be the total number of clusters at iteration (t − 1).

Set z. = |z(t−1). | and a. = sign(z(t−1). )

for each observation i do

Remove xi from its cluster zi.

if xi is the only point in its cluster then

Remove the cluster and update K to K-1.

end if

Drop empty clusters.

Sample zi from the Multinomial distribution given

by Equations (40) and (43)

if zi = K + 1 then

Set the cluster distribution to be multivariate

normal with the new cluster mean as xi
and cluster variance as Σ which is

pre-defined.

Update K=K+1.

end if

for each cluster k ∈ {1, 2,… ,K} do

Sample cluster parameters ÿk and ÿ
a
k
using

Equation (44).

end for

Sample the anomaly classification ai from the

Binomial(pi) where pi is given by

pi = p(xi) =

⎧
⎪«⎪¬

Probability of xi xi in tail

being anomalous,

0, otherwise

(54)

if most cluster instances are classified as anomalous

then

Classify all cluster9s instances as anomalies.

end if

Set z(t)
i

= zi ∗ ai
end for

data that evolves over time, it can be costly to assume

exchangeability among the observations. The instances

that mark the beginning of an evolution are captured and

monitored in INCAD. Additionally, relapse of outdated

and non-prevalent behaviors are identified and evaluated.

These features are possible due to the non-exchangeable

nature of the INCAD model.

To further understand the non-exchangeable nature of

INCAD, one can look at the joint probability of the cluster

assignments for the INCAD model,

P (z1, z2, .zn|x) = P (z1|x)P (z2|z1, x) .P (zn|z1∶n−1, x) . (55)

Without loss of generality, let us assume there are K

clusters. Let, for any, the joint probability of all the points

in cluster k be given by
(

ÿ ∗ pk,1

Ik,1 + ÿ − 1
+

ÿ∗ ∗
(
1 − pk,1

)
Ik,1 + ÿ∗ − 1

)
Nk∏
nk=2

×

(
(nk − 1) ∗ pk,nk
Ik,nk + ÿ − 1

+
(nk − 1) ∗

(
1 − pk,nk

)
Ik,nk + ÿ∗ − 1

)
, (56)

where Nk is the size of the cluster k, Ik,i is the index of the

ith instance joining the kth cluster and pk,i = pIk,i . Thus, the

joint probability for complete data is then given by

∏K
k=1

[ (
Ik,1 − 1

)
pk,1 (ÿ − ÿ∗) + ÿ∗

(
Ik,1 + ÿ − 1

)

×
∏Nk

nk=2
(nk − 1)

(
Ik,nk + ÿ − 1 + pk,nk (ÿ

∗ − ÿ)
]

∏N
i=1 ((i + ÿ − 1) (i + ÿ∗ − 1))

,

(57)

which is dependent on the order of the data. This shows

that themodel is not exchangeable unless ÿ = ÿ∗ or pk,nk =

0 or pk,nk = 1. These conditions effectively reduce the prior

distribution to a traditional CRP model. Hence, it can be

concluded that the INCAD model cannot be modified to

be exchangeable.

The non-exchangeable and nonparametric prior in the

INCAD model serves as an excellent platform to capture

drift or evolution in the behavior(s) locally and globally.

Such prior can detect the following trends:

1. Instances that signify new evolutionary behavior are

captured and classified as anomalous.

2. Increased prevalence in a previously rare behavior can

be reevaluated and conceived as normal.15

3. Outdated behaviors that are no longer prevalent would

be classified as anomalous. Additionally, relapse of

such behaviors are also branded as anomalous till suf-

ficient popularity is reached.

A clear streaming extension of the INCAD model

involves exclusive reevaluation of the tail instances as

opposed to updating with entire data. The Gibbs sampling

algorithm for the streaming INCAD model is given in

Algorithm 3.

5.2.4 Choice of priors

For computational ease, the base distribution that gener-

ates the parameters for the normal clusters, G0, is chosen

15As an alternate frame of reference, one can say that with sufficient

surge in the instances, group anomalies can eventually grow to become

normal clusters.
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Algorithm 3. Algorithm for streaming extension

Perform clustering on a small portion of the data (∼20%)

using non-streaming model

for each new data point xN do

Compute the mixture proportionsm_para and the

mixture density for all the data.

Compute t1 = qth percentile pdf value to identify

the tail points

For each xi s.t. g(xi) < t1 repeat steps 3→ 18 of

Algorithm 2

If cluster size f 0.05 ∗ N then, classify all the

cluster points as anomalies.

end for

to be the conjugate of the generative distribution for the

actual data, G. This makes the inference task consider-

ably simpler, though approximate methods have been dis-

cussed for non-conjugate prior choices as well [32, 40].

In this paper, we use a multivariate normal distribution

(MVN) as the data distribution, G, and the Normal Inverse

Wishart (NIW) as the base distribution,G0. Itmust be noted

that the model is not limited to MVN distribution. In par-

ticular, any univariate data distribution that satisfies the

necessary conditions in Theorem 2 could be used. Formul-

tivariate data, distributions from the exponential family

satisfy the necessary conditions needed for the Ext-GPD

approach. The required conditions for the multivariate

case have been presented in the Supporting Information

and in Theorem 3.

The concentration parameter, ÿ, and the prior for the

base distributions, ÿ , are treated as hyper-parameters,

though suitable vague priors maybe set to make the model

more robust to the choice of the hyper-parameters. ÿ con-

trols the final number of normal clusters, while ÿ∗
d
con-

trols the final number of anomalous clusters from the

dth DPMM. To ensure that a larger number of populated

non-anomalous clusters are formed with few instances

assigned to them, ÿ9s can be typically set to a higher values.

The parameter ÿ influences the number of anomalous

instances in the dataset, and is initialized based on the

expected proportion of anomalies in the given context. For

the results listed in this paper, we have used a standard set

of the parameter and hyper-parameter choices to show the

results in a generalized setting (detailed in Section 6.1). But

in other contexts, one can use the information from the

data to determine the hyper-parameters. For instance, the

ÿ value can be initially set to the proportion of anomalies

known in the data, and the concentration parameter ÿ can

be set higher if the true number of clusters is known to be

high. It must be noted that the choice of hyper-parameters{
ÿ∗
d

}
and parameter ÿ is updated and optimized using

Extreme Value distributions and Bayesian updates over

iterations.

6 EXPERIMENTAL SETUP

To comprehensively evaluate the capabilities of the pro-

posed INCAD model, results on both synthetically gener-

ated and publicly available benchmark datasets are pro-

vided. We evaluate the ability of the proposed model

to identify both clusters and anomalies, in both batch

and streaming settings. We also compare the model per-

formance with existing methods for anomaly detection

and clustering. Additionally, we study the role of various

user-defined parameters on the model performance.

6.1 Model initialization

The INCAD model has the following user-defined

hyper-parameters: the initial number of clusters (K),

the concentration parameter (ÿ), the initial mean and

covariance matrices for the clusters, and the prior for the

proportion of anomalies (ÿ). For the experiments, we set

K to 10 and ÿ to 1. For each dataset, the sample mean and

covariance are used as the initial values for the cluster

parameters. The proportion of anomalies (ÿ) is set to 0.1.

In the batch phase, the model is run until convergence is

achieved, with a maximum iteration limit of 1000.

6.2 Data description

We consider a variety of publicly available bench-

mark datasets from different domains (Table 2) for

the experimental evaluation. Additionally, a syntheti-

cally generated 2D dataset, SD, with 4 normal clusters

and scattered anomalies was generated to evaluate

the joint clustering and anomaly detection perfor-

mance. Each cluster consisted of 100 observations,

sampled from a 2D Gaussian distribution with means in

{(−40,−40), (−30, 10), (40,−60), (45, 30)}, for each cluster,

respectively. The covariance matrix for each cluster was

set to 5I, where I is the 2 × 2 identity matrix. Twenty-three

anomalies were added by sampling from a Gaussian dis-

tribution with mean at (0, 0) and covariance as 100I. For a

qualitative evaluation of the joint clustering and anomaly

detection performance, we use the MNIST handwrit-

ten digits dataset [37], which consists of 60,000 28 × 28

images, corresponding to 10 digits (clusters). We use a

10% sample of the original dataset and use principal com-

ponent analysis (PCA) to reduce the dimensionality of the

data from 784 to 25.

Finally, we use the gas sensor array drift dataset [56]

to understand the performance of the INCAD model in
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TABLE 2 Description of the benchmark datasets used

for evaluation of the clustering (Source: UCI-ML repository

[14]) and anomaly detection (Source: Outlier Detection

DataSets/ODDS [47]) capabilities of the proposed model

(a) Clustering

Name N d c

Pageb 5473 11 2

Wine-Cluster 6497 12 2

Heart Statlog 270 13 2

Zoo 101 16 7

Abalone 4177 8 2

Magic Gamma 19,020 10 2

Iono 351 33 2

Ecoli 336 7 8

Haberman 306 2 12

Concrete 1030 9 2

German 1000 7 9

Segment 2310 18 7

Iris 150 4 3

Yeast 1484 8 10

WDBC 569 31 2

Vehicle 846 18 4

Glass 214 9 6

Tae 151 3 3

Balance Scale 625 4 3

Vowel 990 10 11

(b) Anomaly detection

Name N d a

Annthyroid 7200 6 7.42%

Pen Global 809 16 11.12%

Cardio 1831 21 9.61%

Mammography 11,183 6 2.32%

Letter 1600 32 6.25%

Seismic Bumps 2584 11 6.58%

Cover 217 10 9.22%

Breast Cancer 367 30 2.72%

Smtp 113 3 11.5%

Wine-AD 129 13 7.75%

Pendigits 6870 16 2.27%

Abbreviations: a, fraction of known anomalies in the dataset;

c, number of true clusters; d, number of attributes; N, number of

instances.

a streaming setting. The dataset consists of 470 readings

from an array of 16 chemical sensors exposed to gas mix-

tures at three different concentration levels. First two

concentration levels were used as the batch dataset and

the third concentration level was injected in a streaming

fashion.

6.3 State-of-the-art methods

We compare the performance of INCADwith several exist-

ing state-of-art anomaly detection and clusteringmethods,

as well as one method that has been proposed for joint

clustering and anomaly detection [11].

Anomaly detection: For anomaly detection,we consider

four existing methods: k nearest neighbor outlier detec-

tion (kNN) [45], local outlier factor (LOF) [8], one-class

support vector machines (oc-SVM) [54], and k-means—

[11]. The first two methods assign an anomaly score for

each data instance, while the last two methods assign an

anomaly label. Both kNN and LOF have been previously

shown to outperform other existing methods [30], and are

considered state-of-art methods. The k-means— method

performs joint clustering and anomaly detection, and thus

is the most similar to INCAD. All methods have one or

more user-defined parameters. We investigated a range of

values for each parameter, and report the mean results.

Clustering: We compare the clustering performance of

INCAD with k-means, k-means—, and a Bayesian Gaus-

sian Mixture model with a Dirichlet prior (BGM-DP).

While both k-means and k-means— are hard clustering

algorithms that require specifying the number of clusters

as a user-defined parameter, BGM-DP is a soft clustering

F IGURE 7 INCAD output for the synthetic data, SD.

Instances belonging to the normal clusters are shown as□ and

instances belonging to anomalous clusters are shown as ◦. The size

of the anomalous instances indicates the probabilistic anomaly

score. Inset: the average anomaly score for truly anomalous

instances (TP) and false positives (FP)
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TABLE 3 Comparing INCAD with existing anomaly detection algorithms using f-measure on the anomaly class as the evaluation

metric

Dataset LOF KMeans— KNN OCSVM INCAD INCAD (score)

COVER 0.36 (± 0.0331) 0.15 (± 0.0316) 0.15 (± 0.0) 0.15 (± 0.0554) 0.3 (± 0.1613) 0.18 (± 0.0714)

WINE 0.24 (± 0.08) 0.3 (± 0.0) 0.23 (± 0.0943) 0.1 (± 0.0419) 0.41 (± 0.1941) 0.1 (± 0.0)

SMTP 0.59 (± 0.1674) 0.54 (± 0.0) 0.53 (± 0.0921) 0.21 (± 0.0915) 0.31 (± 0.0669) 0.32 (± 0.102)

PENDIGITS 0.08 (± 0.0075) 0.19 (± 0.1537) 0.1 (± 0.0152) 0.06 (± 0.0124) 0.09 (± 0.0365) 0.07 (± 0.0138)

BREAST-CANCER 0.44 (± 0.0165) 0.6 (± 0.0) 0.39 (± 0.0598) 0.05 (± 0.0479) 0.19 (± 0.0638) 0.4 (± 0.015)

LETTER 0.44 (± 0.0409) 0.07 (± 0.04) 0.4 (± 0.0779) 0.11 (± 0.0162) 0.28 (± 0.0354) 0.45 (± 0.0265)

ANNTHYROID 0.21 (± 0.0121) 0.17 (± 0.0817) 0.3 (± 0.0084) 0.11 (± 0.019) 0.36 (± 0.0254) 0.39 (± 0.0455)

PEN-GLOBAL 0.23 (± 0.0365) 0.34 (± 0.0627) 0.25 (± 0.0278) 0.21 (± 0.0497) 0.53 (± 0.0662) 0.25 (± 0.0358)

CARDIO 0.21 (± 0.0173) 0.36 (± 0.3145) 0.31 (± 0.0772) 0.15 (± 0.0297) 0.2 (± 0.1045) 0.2 (± 0.0838)

MAMMOGRAPHY 0.19 (± 0.0455) 0.12 (± 0.1276) 0.22 (± 0.03) 0.05 (± 0.0354) 0.12 (± 0.0131) 0.24 (± 0.0216)

SEISMIC-BUMPS 0.07 (± 0.0113) 0.1 (± 0.0766) 0.15 (± 0.0068) 0.13 (± 0.0304) 0.23 (± 0.0191) 0.17 (± 0.0189)

Note: For scoring based methods, instances with top k scores are labeled as anomalous, where k is the actual number of anomalies in the dataset. The

average precision and recall on the anomaly class, across all datasets, is shown in the last two rows. Bold values indicate the best performance (in terms of

f-measure) across of the models (in each row).

TABLE 4 Comparing INCADwith existing clustering algorithms using purity score as the evaluationmetric

Dataset k-means k-means— BGM (DP prior) INCAD

PAGEB 0.9 0.9 0.94 0.99 (± 0.0114)

ABALONE 0.75 0.81 0.76 0.81 (± 0.0139)

ZOO 0.87 0.41 0.64 0.79 (± 0.0913)

WINE 0.63 0.63 0.69 0.79 (± 0.0719)

HEART-STATLOG 0.84 0.71 0.61 0.79 (± 0.033)

IONO 0.71 0.64 0.83 0.79 (± 0.0156)

MAGIC.GAMMA 0.65 0.73 0.77 0.78 (± 0.0103)

ECOLI 0.83 0.43 0.57 0.76 (± 0.0079)

HABERMAN 0.75 0.74 0.75 0.75 (± 0.0069)

SEGMENT 0.55 0.14 0.52 0.71 (± 0.0989)

GERMAN 0.7 0.7 0.7 0.7 (± 0.0036)

CONCRETE 0.6 0.87 0.65 0.69 (± 0.0324)

IRIS 0.81 0.33 0.76 0.67 (± 0.0096)

YEAST 0.66 0.66 0.66 0.66 (± 0.002)

WDBC 0.91 0.91 0.82 0.63 (± 0.0021)

GLASS 0.56 0.36 0.51 0.55 (± 0.0296)

TAE 0.44 0.4 0.44 0.54 (± 0.0145)

VEHICLE 0.37 0.35 0.5 0.49 (± 0.0416)

BALANCE-SCALE 0.65 0.65 0.59 0.46 (± 0.0016)

VOWEL 0.33 0.09 0.34 0.37 (± 0.0587)

Average purity 0.68 0.57 0.66 0.69
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F IGURE 8 Output of INCAD for the

MNIST 10% sample data. (A) Clusters:

Cluster centers identified by INCAD. Note

that the number of clusters (18) is

automatically inferred by the model. (B)

Anomalies: Anomalies identified by INCAD

algorithm that does not need the number of clusters to be

provided in advance. Thus, it is similar to INCAD in that

regard.

6.4 Evaluation metrics

For the anomaly detection methods that assign an

anomaly label to a test instance, that is, oc-SVM,

k-means—, and INCAD, f-measure16 on the anomaly class

is used as the evaluation metric. For the scoring meth-

ods, that is, kNN, LOF, and the scoring version of INCAD,

the instances with top p anomaly scores are labeled as

anomalies, and these labels are then used to calculate the

f-measure. For the clustering evaluation, we use average

cluster purity [11], as the evaluation metric, where the

purity of a cluster is defined as the fraction of the majority

class of the cluster with respect to the size of the cluster.

7 RESULTS

In this section, we discuss the overall performance of

the INCAD model against the state-of-the-art algorithms

with respect to clustering and anomaly detection, in both

streaming and batch settings on simulated as well as

benchmark datasets.

7.1 Simulated data

Batch scenario: For a given batch dataset, INCADproduces

two types of outputs. First, it assigns every data instance

to either a normal cluster (with a positive index) or an

anomalous cluster (with a negative index). The sign of the

cluster index is used as the anomaly label. Additionally,

the method also assigns a probability for each instance

to be in the tail of the overall data distribution, which is

used as the probabilistic anomaly score. For the SDdataset,

16The class-specific f-measure is defined as the harmonic mean of the

recall and precision on the given data set for that class.

the identified normal and anomalous clusters, as well as

the anomaly scores, are shown in Figure 7. We first note

that INCAD identifies the four main clusters in the data,

without the need to initially specify the number of clus-

ters. Additional anomalous clusters, with negative index,

were identified as well. While the method correctly labels

all the 23 anomalous instances, it also identified some

peripheral instances of the normal clusters as anomalies;

these would constitute false positives. However, the prob-

ability score is higher for the true anomalies (Figure 7,

inset). Thus, simple heuristics, such as a low threshold on

the anomaly probability, can be potentially employed, as a

post-processing step, to filter out these false positives.

Streaming scenario: To study the performance of

INCAD in a streaming mode, we simulate the follow-

ing streaming scenario: We first create a batch of data

consisting of instances belonging to three of the four clus-

ters in SD and present it to INCAD for batch learning.

INCAD identifies the three primary clusters, and some of

the peripheral instances as local anomalies, after the batch

phase (Figure 1A). The instances belonging to the fourth

cluster and the anomalies are sequentially presented to the

model. With each incoming streaming instance, the tail

data is reevaluated and the overall identified data distribu-

tion is updated. In the beginning of the streaming phase,

the new instances are identified as group anomalies, as

shown in Figure 1B. However, a fourth normal cluster is

identified after a sufficient number of instances belong-

ing to the fourth cluster are observed in the stream, as

shown in Figure 1C. Finally, the remaining truly anoma-

lous instances are identified as global anomalies, as they do

not form a tight enough group to become a normal cluster,

as shown in Figure 1D.

7.2 Anomaly detection performance
on benchmark datasets

The f-measure performance of INCAD and the compet-

ing algorithms is shown in Table 3. For all the listed
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F IGURE 9 Evolving anomalies and clusters identified by INCAD for the gas sensor array drift data. Cluster assignments are shown

using colored symbols, anomalous observations are labeled using colored circles. While the original data has 16 dimensions, the data is

mapped to 2D using the t-SNE algorithm [38]. (A) Before streaming. (B) After adding 5 streaming observations. (C) After adding all

streaming observations

algorithms, results for the best parameter settings are

reported. The proposed INCAD model outperforms other

methods on 4 out of 11 datasets. While other methods,

especially LOF and KNN are better on other datasets, it

should be noted that these methods are highly sensitive

to the parameter settings. The k-means— method, which

is capable of both clustering and anomaly detection,

shows the best average performance. However, this model

requires specifying the proportion of true anomalies in

the dataset, which might not be feasible in a real-world

setting.17

A specific behavior noticed in the score based INCAD

model is the ranking of the anomalies. As INCAD is a

17For some real datasets with >30% anomalies, smaller clusters

identified by INCAD can be manually reclassified as anomalous.

conservative algorithm that identifies more anomalies, it

can be seen that the model recall is relatively higher than

the rest of the methods. However, the true anomalies

might not always be ranked as the most anomalous obser-

vations. This behavior can be best observed in two particu-

lar datasets, namely Pen-Global and Wine data where the

score based model has failed to rank most true anomalies

in the top while, the classification model still identified

some of the true anomalies.

7.3 Clustering performance
on benchmark datasets

Table 4 summarizes the performance of INCAD and other

competing clusteringmethods on the benchmark datasets.
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Overall, INCAD has the best average performance

compared to others, which is significant, despite not hav-

ing to provide a prior specification of the expected number

of clusters, unlike k-means and k-means—. Looking at

both anomaly detection and clustering performance, it is

clear that INCAD is effective in detecting both anomalies

and clusters in the data, and is superior to k-means—,

which also does the joint detection.

To further show the effectiveness of INCAD for the

joint detection task, we visualize the detected clusters

and anomalies for the MNIST handwritten digit dataset.

INCAD identified 18 clusters in the data. The cluster

centroids are shown in Figure 8A. The most interesting

outcome of clustering using INCAD was the identifica-

tion subtle writing behaviors identified in the data. For

instance, three different writing styles of digits 829 and 869

were identified, which corresponded to distinctive slants,

presence of loops, and so forth. The anomalous digits

(Figure 8B) identified by INCAD include unrecognizable

and ill-written digits.

7.4 Streaming anomaly detection
and clustering: Gas sensor array drift data

The experiment for the gas sensor array drift dataset, sim-

ulates a streaming scenario in which a gas at different

concentrations is being introduced into a chamber and the

concentration levels are being measured by an array of 16

chemical sensors. For these experiments, the observations

corresponding to two concentration levels are provided

for batch learning, and observations corresponding to the

third concentration level are added as a stream. The moni-

toring outputs of INCAD, at different phases of the stream,

are shown in Figure 9. At the end of the batch learn-

ing, INCAD is able to identify the two gas concentrations

(Figure 9A) present in the batch dataset. After the start

of the streaming phase, the new instances are identified

as anomalies (Figure 9B), as they belong to a previously

unseen concentration. However, as more data is observed

in the stream, a new novel cluster is identified (Figure 9C),

and all the instances belonging to the third concentration

are now considered normal.

7.5 Sensitivity to batch proportion

Previous results on streaming data show that INCAD

can identify anomalies and new clusters in a stream. The

performance, however, depends on the size of the initial

batch dataset. Figure 10 shows the performance of the

model, both in terms of computing time and accuracy in

identifying anomalies for the synthetic dataset, SD. While

the total size of the dataset is fixed, the proportion of the

F IGURE 10 Impact of the size of the batch dataset on INCAD

performance on the synthetic dataset (SD). For each batch size,

mean and standard deviation across five different runs are shown

instances in the batch is varied from 10% to 90%. The

computing time18 for processing the batch increases lin-

early with the increase in the batch size. At the same time,

the time taken to process a single stream instance also

increases as the size of the batch increases. This is because

the INCAD model has to update the tail probabilities

for the data observed so far. The quality of the detected

anomalies (shown using the f-measure for the anomalies

detected after all of the data is observed), improves as the

size of the batch increases. Additionally, the performance

is more stable (lower variance across multiple runs) when

the batch size is higher because the batch phase is able to

learn a stable clustering structure in the data.

8 CONCLUSIONS AND FUTURE
WORK

We have introduced a Bayesian framework for anomaly

detection that explicitly models the normal and anoma-

lous data. While in the past, lack of labeled anomalies

has prevented such solutions, we adopt concepts from

EVT, to model the anomalous data with respect to the

extremes of the model for the normal data. This is a fun-

damental breakthrough in anomaly detection as it permits

probabilistic reasoning for both types of instances, with-

out the need for a nonintuitive threshold, as is the case

for existing methods. Additionally, the proposed INCAD

algorithm combines EVT with another powerful model-

ing tool—DPMM which allows identifying clusters and

anomalies at the same time. The nonparametric prior

on the number of clusters ensures that the model is not

handicapped by the need to know the exact number of

clusters. Moreover, this sets the model up to be adapted

for a streaming scenario, where the number of clusters

can change over the stream.

18All the methods are implemented in Python and all experiments were

conducted on a 2.7 GHz Quad-Core Intel Core i7 processor with a 16 GB

RAM.



176 GUGGILAM et al.

As the results show, INCAD outperforms existing

methods that have been proposed exclusively for anomaly

detection or clustering, on each of the tasks, formost of the

datasets (Tables 3 and 4). Moreover, while existing meth-

ods rely on carefully specified, problem-specific, parame-

ters, INCAD requires specifying relaxed Bayesian priors,

and infers key parameters, such as the number of clus-

ters, from the data. Additionally, the probabilistic output

of INCAD allows for an interpretable setting of thresh-

olds on the anomaly score, something that is not possible

with most of the existing score based anomaly detection

algorithms. INCAD is especially effective in dealing with

streaming data, where the notion of normal clusters and

anomalies evolve over the duration of the stream, as shown

in Figure 9. This makes INCAD highly suitable for moni-

toring the behavior of complex systems over time, without

the need to explicitly retrain the underlying model.

One of the key shortcomings of the model is the com-

plexity of the iterative Gibbs algorithm. Variational infer-

ence methods that have been proposed for inference in

DPMM clustering [7, 35] can be used to improve the com-

plexity, and will be explored in the future.
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APPENDIX

Proof of Ext-GPD for n-D case

Let X ∈ R
n be the data space with pdf gX ∶ R

n
→ R

+.

Let Y ∈ R
+ be the corresponding image space.

Definition 5. ∀y ∈ Y , GY is defined as

GY (y) = ∫g−1
X
([0,y])

gX (x)dx. (A.1)

Claim 5. GY is a CDF.

As the limit distribution of the minima of Y is of inter-

est, we wish to study the limit distribution of maxima of

Z = Ym − Y . Then the CDF of Z is given by GZ is

GZ(z) = P(Z f z)

= P (Ym − Y f z)

= P (Y g Ym − z)

= 1 − GY (Ym − z)

= ∫g−1
X ([Ym−z,Ym])

gX (x)dx. (A.2)

∀z ∈ [0,Ym].

For, GZ, the corresponding maximum value, x∗ = Ym.

We need the necessary conditions for the above distri-

bution to be in the domain of attraction of a GEV distri-

bution. By von Mises9 condition, if we can prove that G′
Z
is

positive and G′′
Z
exists in some neighborhood of Ym, then

GZ is in domain of attraction of Gÿ .

Proof Let X⃗ ∈ Rn and g−1
X⃗

([0,Ym − z]) = D (Ym − z) be a

n-manifold with a boundary ÿD (Ym − z). Then,

G′
Z(z) =

d

dz ∫g−1
X⃗
([Ym−z,Ym])

gX⃗(x⃗)dx⃗

=
d

dz

[
1 − ∫g−1

X⃗
([0,Ym−z])

gX⃗(x⃗)dx⃗

]

= −
d

dz ∫D(Ym−z) gX⃗(x⃗)dx⃗, (A.3)

where dx⃗ = dx1 ∧ dx2 ∧ … ∧ dxn.

Then, using Reynolds transport theorem, we get,

d

dz
G(z) =

d

dz ∫D gX (x⃗)dx⃗
= ∫D(Ym−z)

ÿ

ÿz
gX (x⃗)dV + ∫ÿD(Ym−z)

gX (x⃗)v⃗b ⋅ dÿ,

(A.4)

where gX (x⃗), D(Ym − z) and ÿD(Ym − z) are as defined

above, v⃗b =
dD(Ym−z)

dz
is the Eulerian velocity of the bound-

ary,n is the outward unit normal, dS is the surface element

in Rd and dÿ = ndS.

Since, ÿ

ÿz
gX (x⃗) = 0,

G′
Z(z) = ∫ÿD(Ym−z)

gX (x⃗)v⃗b ⋅ dÿ (A.5)

Claim 6: G′′
Z
exists.

G′′
Z (z) =

d

dz
G′
Z(z)

=
d

dz ∫ÿD(Ym−z)
gX (x⃗)v⃗b ⋅ dÿ. (A.6)

Since, ÿD (Ym − z) an (n − 1)-closed manifold, that is,

(n − 1)-manifold without a boundary, we use the gen-

eral statement of the Leibniz integral rule to compute the

second order derivative,

G′′
Z (z) =

d

dz
G′
Z(z)

=
d

dz ∫ÿD(Ym−z)
gX (x⃗)v⃗b ⋅ dÿ

= ∫ÿD(Ym−z)
iv⃗

(
dx

[
gX (x⃗)v⃗b ⋅ dÿ

])
, (A.7)

where dx f is the exterior derivative of f w.r.t space vari-

ables only, v⃗ =
ÿx⃗

ÿz
is the vector field of the velocity and iv⃗

denotes the interior product with v⃗.

Thus, it can be seen thatGZ is in themaximumdomain

of attraction of a GEV distribution iff:

1. D (Ym − z) is an n-manifold with a boundary

ÿD (Ym − z),

2. The Eulerian velocity of the boundary v⃗b =
dD(Ym−z)

dz
exists,

3. dx
[
gX (x⃗)v⃗b ⋅ dÿ

]
exists, and

4. iv⃗
(
dx

[
gX (x⃗)v⃗b ⋅ dÿ

])
exits.


