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Abstract

Data-driven anomaly detection methods typically build a model for the normal
behavior of the target system, and score each data instance with respect to this
model. A threshold is invariably needed to identify data instances with high (or
low) scores as anomalies. This presents a practical limitation on the applicability
of such methods, since most methods are sensitive to the choice of the thresh-
old, and it is challenging to set optimal thresholds. The issue is exacerbated in a
streaming scenario, where the optimal thresholds vary with time. We present a
probabilistic framework to explicitly model the normal and anomalous behav-
iors and probabilistically reason about the data. An extreme value theory based
formulation is proposed to model the anomalous behavior as the extremes of the
normal behavior. As a specific instantiation, a joint nonparametric clustering
and anomaly detection algorithm (INCAD) is proposed that models the normal
behavior as a Dirichlet process mixture model. Results on a variety of datasets,
including streaming data, show that the proposed method provides effective
and simultaneous clustering and anomaly detection without requiring strong
initialization and threshold parameters.

KEYWORDS
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1 | INTRODUCTION

Anomalies are unusual, unexpected, and surprising phe-
nomena that need to be detected and explained. Identify-
ing, understanding, and prediction of anomalies from data
forms one of the key pillars of modern data mining, and
has applications in almost every application domain. For
instance, effective detection of anomalies can reveal crit-
ical information needed to stop malicious attacks, detect
and repair faults, and, ultimately, understand the behav-
ior of a complex system. In fact, one of the most prac-
tical applications of anomaly detection is for monitoring
system behavior and detecting when the system exhibits

anomalous behavior due to external or internal stress
factors [22]. In this regard, two types of anomaly detec-
tion methods, viz., online anomaly detection [1, 50, 53] and
clustering-based anomaly detection [16, 34, 39], are highly
relevant. Online methods, that can simultaneously iden-
tify clusters and the anomalies from streaming data, are
especially beneficial, as complex system behavior typically
falls into multiple regimes or clusters.

However, existing anomaly detection methods face
two key challenges in this context. First challenge is the
reliance of existing anomaly detection methods on an a pri-
ori user-defined threshold, which makes them highly sen-
sitive to the choice of the threshold. While a large literature
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on anomaly detection exists [9], most of the existing meth-
ods follow a general two-phase strategy: (i) learn a model,
N, for the normal behavior of the underlying system, and
(ii) score a data instance, x, with respect to N using a
scoring function, s (). Typically, the score is uncalibrated,
though some methods produce a calibrated score (prob-
ability). However, to identify anomalies, every method
requires a notion of a threshold, 6, such that the data
instances whose score is above (or below) § are anoma-
lous. While unthresholded scores are sufficient for evalu-
ation purposes, for example, generating an ROC curve or
comparing different methods on a validation dataset, an
optimal threshold is necessary in an operational setting.
A very high threshold could potentially result in missing
many anomalies while a low threshold would have a high
false positive rate. The issue is exacerbated in a stream-
ing setting, where both A" and § can evolve. While current
streaming anomaly detection methods allow updates to
N, none of them allow for updating the threshold, §.
Second challenge is specific to clustering-based anomaly
detection methods. Traditional methods learn the clus-
tering structure from the observed data as a surrogate
for the normal behavior, M. Adapting such methods for
streaming data requires the ability to allow the cluster-
ing to evolve, that is, new clusters can form and old
clusters can grow or split. Current clustering-based meth-
ods are not equipped to adapt to such evolving stream
behavior.

One possible solution would be to explicitly learn a
model, A, for the anomalous behavior, and then compare
the scores, s,-(x) and s 4(x), to declare if a data instance is
normal or anomalous. By allowing both models to “evolve”
in a streaming setting, a robust streaming anomaly detec-
tor can be developed. However, given the lack of sufficient
(or any) anomalous data, learning .A is not possible. We
advocate the use of extreme value theory (EVT) [10] to
learn a surrogate for .4. The core idea is to assume that
the anomalous observations are the extreme values of V.
Using a key result in EVT, which states that the extreme
values can be modeled as a parameterized distribution
(referred to as an extreme value distribution or EVD), one
can learn A for a given V.

In principle, this is a fundamental breakthrough in
anomaly detection, and some initial work has been
recently published in this direction [50]. However, current
EVT supports a limited class of base distributions (N); in
fact, while dealing with extremes of a univariate and uni-
modal distribution is well understood in EVT, handling
multivariate and/or richer distributions, for example, mix-
ture models, is a challenge. In this paper, we propose an
EVT driven strategy that can admit a richer class of n dis-
tributions. A generalization of EVT to multivariate and
multimodal distributions [12] is employed, which uses

EVT on the likelihood of the observations, thus reducing
the problem to a univariate setting.

As an instantiation of the EVT driven strategy, we
propose an anomaly detection method in which the nor-
mal behavior, NV, is modeled as a nonparametric mixture
model—Dirichlet process mixture model (DPMM) [21],
or DPMM—which allows clustering the data without pre-
specifying the number of clusters. This, especially when
adapted to the streaming setting, is an invaluable feature
for anomaly detection, where the normal clustering pat-
tern can evolve with the stream. This is an invaluable
feature for anomaly detection in an online setting, where
the normal clustering pattern can evolve with incremen-
tal data addition. The anomalous distribution, A, is also a
DPMM with a coupling with A” which forces the parame-
ters of A to be generated from the extremes of the prior dis-
tribution that generates the parameters for N'. The result-
ing method can perform joint clustering and anomaly
detection and can be adapted to a streaming setting,
with robustness to the choice of threshold for identifying
anomalies. Experimental results on synthetic and publicly
available datasets are provided to demonstrate the effec-
tiveness of the proposed method over state of art methods.

1.1 | Paper contributions

The paper makes the following key contributions:

1. We propose a method called integrated clustering and
anomaly detection (INCAD),! that couples Bayesian
nonparametric modeling and EVT to simultane-
ously perform clustering and anomaly detection.
INCAD uses a dynamic definition of anomalous and
non-anomalous behavior, which makes it well-suited
for continuous monitoring applications. At the same
time, by using a nonparametric clustering mechanism,
that is, DPMMs, the model permits formation of new
clusters at subsequent processing steps. This feature
helps in address issues in open set classification [4,
25]. Moreover, by explicitly modeling the anomalous
behavior, the model can directly produce an anomaly
label, instead of relying on a user-defined threshold on
a score.

2. We provide a key theoretical result that enables us to
extend the EVT formulation to multidimensional data,
via the extended generalized Pareto distribution (GPD)
modification.

3. We put forward a streaming extension to the INCAD
model that captures drift or evolution in streams as
illustrated in Figure 1.

LA preliminary version of INCAD was published here [33].
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Tllustration of INCAD performance on a synthetic streaming dataset. (A) Before streaming phase: After the initial batch

phase, INCAD correctly and automatically identifies three clusters in the data, along with some peripheral data instances as anomalies
(denoted by a o, where the transparency intensity denotes the probability of observation being anomalous). (B) After initial part of streaming:
As new instances arrive in the stream, INCAD first identifies them as anomalies, and then, (C) after introducing all instances for fourth
cluster: identifies a new cluster. (D) End of streaming phase: The truly anomalous instances in the stream are labeled as anomalies with
higher probability than the false positives (instances on the periphery of the clusters)

4. We provide a comprehensive evaluation of the model
on a variety of benchmark datasets to highlight its
effectiveness and provide a comparison against existing
models.

1.2 | Paper organization

An overview of the existing literature on clustering-based
anomaly detection and anomaly detection in streaming or

online settings is provided in Section 2. Section 3 presents
a short overview on EVT along with the extended GPD to
high-dimensional settings. The origins of the methodology
for a basic one cluster scenario using EVT is introduced in
Section 4. The proposed INCAD model (which is an exten-
sion to multiple clusters), the Gibbs sampling algorithm
for INCAD and its key features are discussed in detail
Section 5. The experimental setup for the INCAD model is
detailed in Section 6. The results and final evaluations of
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the model against state-of-the-art algorithms in the litera-
ture are studied in detail in Section 7.

2 | RELATED WORK

This section examines the different aspects of
clustering-based anomaly detection. We review existing
research on clustering-based and EVT-based approaches
and the research extensions that are necessary for study-
ing evolving anomalous behaviors. This section reflects
on the need for a synchronized agglomerated clustering
and anomaly detection particularly in streaming settings
and justifies the extended approach studied in the paper.

2.1 | Clustering-based anomaly detection

Motivated by the natural tendency of complex systems
to exhibit clustering behavior, clustering-based methods
rely on the assumption that data corresponding to normal
behavior would form natural clusters, whereas anoma-
lous data would either form insignificant clusters or
get weakly associated with the natural clusters. Thus,
clustering-based anomaly detection methods serve a dual
purpose: (a) system identification by discovering clusters
in the observed data, and (b) identifying critical anoma-
lies in the system behavior. Traditional methods that first
perform clustering, followed by an anomaly detection step,
risk the negative impact of anomalies on the clustering
step [36, 43]. However, recent solutions have been pro-
posed that avoid this risk by jointly identifying the clusters
and anomalies [11, 24, 42].

Existing anomaly detection methods, clustering based
or otherwise, have a significant shortcoming when applied
in practical settings, that is, they cannot adapt to evolv-
ing notions of normal and anomalous behavior. Most
methods have rigid definitions of such behavior, encoded
as parameters (number of clusters, neighborhood size,
etc.) or thresholds, which result in poor performance
when the underlying behavior changes. For instance, a
clustering-based algorithm that assumes the existence of
fixed k clusters, will fail if a new cluster evolves over time.

For the most fundamental problem of identifying
anomalies within a set of observations, also referred to
as unsupervised anomaly detection, existing methods
[36, 43] employ different strategies to model the normal
and/or anomalous behavior in the data. In particular,
clustering-based techniques rely on the assumption that
normal observations cluster together into significant clus-
ters, while anomalies either exist as singletons or very
small clusters or are far away from the center of the cluster
that they are assigned to. While earlier methods operate
in two phases, that is, clustering followed by anomaly

detection, methods that simultaneously identify clusters
and anomalies have been recently proposed [11, 24, 42].
However, these methods require the user to prespecify
the number of clusters, which makes them unsuitable for
scenarios where that information is not available or could
evolve.

2.2 | Anomaly detection using DPMM
Bayesian approach for nonparametric modeling was first
introduced by Ferguson [17] and Antoniak [3]. Modern
variants of these models [46] were introduced for unsu-
pervised clustering. Blei et al. [6] and Yerebakan et al.
[60] present hierarchical extensions of the DPMM model
that enable more flexible clustering for multimodal and
skewed clusters. The models are not tailored to incor-
porate the order of the observations, which makes them
unsuitable for studying streaming data. [60] and, Blei and
Frazier [5] propose variational inference based variants
that address complexity challenges. Additionally, there
exists exemplary work that has explored DPMM for the
task of anomaly detection [15, 23, 26, 49, 55, 59] that iden-
tify anomalies post clustering in a non-streaming setting.
But unlike existing work that are based on exchangeable
DPMM models, we propose a non-exchangeable evolving
model that studies the dependencies in the order of the
observations to jointly study clusters and anomalies.

2.3 | Anomaly detection using EVT

A large body of research exists in the area of anomaly
detection [9]. There have been limited applications of EVT
for detecting anomalies [2, 20, 50-52]. However, these
solutions are limited to one-dimensional (1D) data and
typically assume that the normal data follows a unimodal
distribution (e.g., Gaussian), though limited extensions to
multivariate case [12] have been proposed.

Efficient algorithms that can adapt with streaming
data still remain a challenge [48].Anomaly detection
methods that use EVT have been proposed [12, 29], but
are not applicable in a streaming mode. Some stream-
ing algorithms based on EVT [2, 20, 50] have also been
recently proposed to adapt to the evolving behavior but
differ from our approach. In particular, the approaches in
[2, 50] are limited to univariate streams while the method
in [20] is tailored to spatiotemporal data. Although EVT’s
definition of anomalies is more adaptable for streaming
datasets, fitting an extreme value distribution on a mix-
ture of distributions or even multivariate distributions is
challenging. In [52], the authors proposed framework uses
EVT along with sliding windows for detecting outliers in
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nonstationary data stream. An approach based on EVT for
detecting outliers in streaming univariate and unimodel
time-series is proposed in [50]. This approach is shown
to be useful for both stationary and nonstationary stream-
ing data since there is no underlying assumption about
the distribution of data stream. A combined approach
with Gaussian process and EVT for detecting anoma-
lous behavior in streaming data for maritime vessel track
analysis is presented in [51]. This approach models the
dynamic properties of the distribution governing extreme
values through the use of Gaussian processes.

24 |
data

Anomaly detection on streaming

With pervasive use of sensors in different application
domains such as healthcare, smart infrastructure and
social networking [57], there is an exponential rise in
the availability of streaming data [1]. This can be largely
attributed to the rise of internet of things (IoT) which has
caused the network of real-time data sources to produce
infinite, continuous streams of data. Detecting anomalies
in streaming data poses challenges as compared to batch
data [48]. The significant challenge for an outlier detec-
tion technique is to effectively adapt with the changing
nature of the distribution of data streams while detecting
anomalies.

While most existing solutions operate in a batch or
offline mode, requiring the full dataset in advance, it is
challenging to adapt them for a streaming setting [31].
Moreover, existing solutions for anomaly detection with
streaming data have either focused on 1D data streams [1,
50] or focus on maintaining the density estimates using
a tree based data structure [53, 58] in an online fashion.
At the same time, several clustering algorithms that can
handle streaming data have been proposed [27, 41], which
allow the clustering to evolve with the streaming data,
that is, new clusters form, old clusters grow or split. How-
ever, none of these methods performs joint clustering and
anomaly detection.

3 | EXTREME VALUE THEORY
EVT [10] is the study of extremes of data distributions.
The foundations were laid by Fisher and Tippett [18] and
Gnedenko [28] who demonstrated the closed forms of the
distributions of the extreme values of i.i.d. samples. In this
paper, we follow the theory by De Haan and Ferreira [13].
Broadly speaking, there are two principal approaches
to study extreme values. One of the approaches is to
study the block maxima, that is, the largest observations

TABLE 1 Relation between G and ¢
Tail
Tail behavior  distribution Examples
Exponential tail Gumbel Gaussian, Exponential,
¢€=0 Gumbel, Lognormal
Heavy tail Fréchet Pareto, Fréchet
(€>0
Bounded tail Reversed Uniform, Beta,
Weibull Reversed Weibull
(¢ <0

in multiple large samples (or blocks) of identically
distributed observations. For instance, consider a random
variable, X, with G as the cumulative distribution func-
tion (CDF).2 Given n realizations of this random variable,
{(X1,X5, ... . X}, let, M, = max {X1,X>, ... ,X,}. If there
exists a sequence of constants a, > 0,b, € R, such that
Mu=bi hasa nondegenerate distribution as n — oo, that is:

n

P<M"a—_b"§x>—>G(x) as n — oo (1)

for every continuity point x of the nondegenerate distribu-
tion GE, then GPV is called an extreme value distribution
and the class of distributions G satisfying (1) are called the
domain of attraction of GFV.

For univariate data, the generalized extreme value
(GEV) distribution, GE¥(x), takes the following form:

-1/t
GEV(x)zexp{—[1+C<x;V>] } )

where v, # and { > 0 are the location, scale and shape
parameters of the distribution. For ¢ = 0 the distribution

takes the form
X—v
, (3)
b

Gt (x) = exp {—exp [—
¢ is typically referred to as the extreme value index and
depends on the shape of the tail of the data distribution,
G. For instance, if G is a univariate Gaussian distribution,
then ¢ = 0. Table 1 and Figure 2 show the shapes of the
tail for different distributions, and the corresponding value
for ¢.

Given a distribution, G, and the corresponding
EVD, one can calculate the cumulative probability of
an observation x to be an extreme value with respect to
G. This requires estimation of the shape parameter, ¢,
which can be done directly from data. However, the above

*We will use Gy to denote the CDF of the data X and G" to denote the
corresponding tail distribution. Unless needed, the subscript is omitted
for ease of notation.
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approach only utilizes maximal value in each block, and
is, thus, inefficient. A more economical approach to study
extremes, called peaks-over-threshold (POT) [44], stud-
ies all large observations which exceed a high threshold.
In POT, the excesses over a user-specified threshold, t,
that is, Z = X — t can be modeled as a GPD, given by the
following CDF:

1= (142 (22))7 0

G (z) =
2 1—exp (—%‘)

(4)
if £=0

with p, o, and ¢ as the location, scale, and shape param-
eters, respectively. The choice of the threshold, ¢, is
often regarded as a bias-variance problem as very large
or extreme thresholds lead to fewer observations and
over-fitting whereas thresholds resulting in many tail
observations result in bias. In this paper, we favor the
POT approach due to simplicity in implementation and
explanation.

Of course, given a data distribution, G, there is no guar-
antee that a corresponding EVD exists. A simple theorem
from De Haan and Ferreira [13] on domains of attrac-
tion for univariate data is used to establish the necessary
conditions for the existence of the EVD for G.?

Theorem 1. Let G be a distribution of X with u as the right
upper limit on the realizations of X. Assume that second
order derivatives G” exists and the first order derivative G’ is
positive for all x in the left neighborhood of u. If

1m(légﬁm=g (5)

X—>Uu

3The detailed mathematical proofs for the above theorems is given in De
Haan et al. [13].

or alternately,

lim &= GONE" ™) _

’ -1 ©)
= (G()

then G is in the maximum domain of attraction (MDA)* of
GEYV family of distributions G;" with shape parameter ¢.

3.1 | EVT for multivariate data
In the previous section, we posed the different approaches
in EVT in the univariate space. However, most datasets
are often multivariate rendering the above approach inap-
plicable. In this section, we develop the multivariate
approach to extreme values.

For the sake of notational simplicity we will discuss a
two-dimensional (2D) case, where the random variable, X,
is denoted as a tuple (X3, X3).

Definition 1. Let {(X1;,X,;) }?:1 be a sequence of inde-
pendent and identically distributed random tuples with
distribution G. Suppose that there exist sequences of
constants a;,¢; > 0 and b;,d; € R and a distribution GEV
with nondegenerate marginals for all continuity points of
(x1,X%2). Then any limit function of GE given below with
nondegenerate marginals is called a multivariate extreme
value distribution,

My ; — b My, —d;
lim P < AT o x,—2 < y> =Gy, @

i—»>o0 a; Ci

where MXpi = max <X1,17X1,29 ’Xl,i)
max (Xz’l,Xz’z, ,Xz’[).

and MXz’i =

Extending the univariate results to multivariate set-
tings is often arduous and computationally complex. How-
ever, as most data is often multivariate, we study using an
alternative approach where the probability image space is
used to identify anomalies.

3.2 | Using probability image space
for handling multimodal and multivariate
distributions

Estimation of parameters for extreme value distributions
is often infeasible if the distribution is multimodal and/or
if the random variable is multivariate [13, 44]. To address
this challenge, recent work by Clifton et al. [12] shows

4The maximum domain of attraction can be seen as a family of
distributions with tail distributions that are unique up to location and
scale parameters.
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Extended GPD distribution using Probability Image Space for Bimodal Univariate Data. Two thousand observations from

two random normal distributions with mean and variance (0,2) and (6,2) respectively is shown. (A). Empirical density of the data is shown in
green. The observations with probability density less than 0.1 are considered tail observations (shown in red shaded region). The empirical
CDF Gy is shown red. (B). The empirical density of the probability image space is shown in red. The cumulative distribution used in the
extended GPD approach is shown in blue. (A) Data density. (B) Extended GPD

that it is possible to construct, and examine, an equiva-
lent univariate distribution by considering the probability
image space. The result states that for a probability distri-
bution function, gx : X — Y, where Y € R* is the proba-
bility image space, let random variable Y be defined as a
distribution Gy, with following CDF:

@w=/ gx(x)dx, ®)
g1 (10y)

where g;,l([O, y]) denotes all the values of the random vari-
able X, whose probability density is between 0 and y. Using
the POT result [44], as discussed earlier, it can be shown
that for a small positive value, u, the tail of Gy can be
modeled as a GPD for y € [0,u], as u — 0, such that if an
observation x is extreme with respect to the original dis-
tribution, Gy, if gx(x) < u, then y = gx(x) will be extreme
with respect to Gy. The corresponding GPD for (u —y),
denoted as G}, can be used to calculate the probability of
X to be extreme, with respect to Gx.

A simulated example is shown in Figure 3, where
2000 observations from two univariate Gaussian distribu-
tions are studied. Unlike the traditional EVT approach
that can only study tail distributions for unimodal data,
the Ext-GPD approach is able to include rare observations
between the two modes as seen in the shaded red zone
in Figure 3A. The probability image space of the mix-
ture distribution is used to study the observations with
low probabilities, that is, the rare tail observations. The
resulting image space is considered as the 1D projections
of the original data and the anomalies are identified by
studying the left tail in Figure 3B. The Ext-GPD approach
is discussed in detail in Section 3.3. The theory behind

the extended GPD approach has not been presented ear-
lier [12]. Hence, we present the necessary conditions 1D
data in Section 3.3. The proof for multidimensional case is
similar and has been included in the Appendix.

3.3 | Ext-GPD approach

In this section, we derive the necessary conditions required
for the Extended GPD approach. For this, consider the
following setting in the univariate space.’

Let X € R be the data space with pdf® gx : R — R™.
Let Y € R* be the corresponding image space, that is,
Y = gx(X) and Yy, = sup (gx(X)). As the limit distribution
of the minima of Y is of interest, we wish to study the
limit distribution of maxima of Z =Y,, — Y. Let the CDF
of Z is given by Gz. Then, we show that the Theorem 2
holds.

Theorem 2. Gy is in the maximum domain of attraction
2

of a GEV distribution G, iff %2 and "’g—;fx) exists Vx €

85" (Y — 2) in some neighborhood of Y,,.

Proof Toderive the necessary conditions for the Ext-GDP

approach, we make the following claims.

Claim 1. GzisaCDF.

Proof As the limit distribution of the minima of Y is of
interest, we wish to study the limit distribution of maxima

5The proof for the higher dimensional space is presented in the
Supporting Information.

®Note: g represents an image set as the function gy is a many-to-one
(noninjective) function.
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of Z =Y, — Y. Then the CDF of Z is given by G is

Gz(z) =P(Z <2
—P(Y,-Y <2
=PY>2Y,—2
=1-Gy(Yn—2)
-/ gx(a)dx, ©)
& ([Yn-2Y,])

X
vz € [0, Y.
For, Gz, the corresponding maximum value, x* = Yy,.

Claim 2. G, exists and is positive in some neighborhood
of Y,,.

Proof If F be a distribution in 1D, 3 {x; = 00,X3,

Xy ... ,Xoy = oo} and intervals I, I, ... ,Iy_; such that

I, = [xg,xn_ﬂ] V=12 . N and g (0, Y, —zl) =
2 2

N
Un:lln

/ gx(X)dx = gx(x)dx
;' ([0.Y,~z]) A

n

/ gx(x)dx
I

n

G
N

= Y Ga(), (10)
n=1

where G,(z) = [, gx(x)dx and {x;,X, ... ,xoy—1} are the

solutions to g;' (Y;n — 2).

Then,

d
G.(7) = — dx
20> & /g;qym—zxm]) 8

-l (1 - / 8X(x)dx>
dz & ([0.Y,,~2])

d N
= —d—Z;Gn(@. (11)

Since Gy,(z) = /1 gx(x)dx = /x x"_ 18x(x)dx, by Leibniz inte-
gral rule, we get,

d d [*
d_zG"(Z) = d—Z/xnng(X)dx

= gX(xn)(ZC_; _gX(xn_l)d-);nz—l + /xn dizgx(x)dx
-on-0( g -5
=_(Ym_Z)<|CZCZn +|dJ;"Z‘1|). (12)

WILEY_|

Then,
2N
dx
@)=Y (Y —2) |2
Y= 3 z)‘ -

=(¥Yn-2

xegy! (Yin—2)

Z—;“. 13)

; e see dgy(x) dgy(x) ; -1
Claim 3. G7 exists iff ;‘—Z and d—’z‘z exists Vx € gy
(Y —2).

Proof
d
Gy(z) = d—ZG’Z(z)
d dx
= |- X d—z’ Ty
xeg ' (V,,—z)
It can be seen that G} exists iff dg;‘—z(x) and dzg—’z‘z(x) exists

Vx € g;' (Y — 2). This is true for all distributions in the
exponential family.

Claim 4. Gz is in the maximum domain of attraction of a
GEV distribution G, where ¢ € R is the rate parameter
of the GEV distribution.

Proof By von Mises’ condition,” and Claims 2 and 3, we
can see that the G, is positive and G/, exists in some neigh-
borhood of Y,,. Hence, Gz is in domain of attraction of
G.".

Using Claims 1-4, we get the necessary conditions for
the above claim.

The extension to the multivariate case is shown in
Theorem 3. The proof is included in the Appendix to keep
the presentation here focused.

Theorem 3. Let X € R" be the data space with pdf gx :
R" —» R*.Let Y € R™ be the corresponding image space. Let
X e R" and g):(l ([0, Y, — 2]) = D(Yy, — 2) be a n-manifold
with a boundary oD (Yy, — z). Gz is in the maximum domain
of attraction of a GEV distribution iff:

1. D(Y, —2) is an n-manifold with a boundary oD
Y —2),

2. The Eulerian velocity of the boundary Vv, =
exists,

3. dy [gxR)V, - dX| exists, and

4. iy (dy [gxX)Vs - dX|) exists.

dD(Y,,—z)
dz

7von Mises’ condition: Let F be a distribution function and x* is its right
end point. Suppose F” exists and F’ is positive for all x in some
neighborhood of x*. If lim,_ . (‘;—F ) (t) = ¢ then, F is in the MDA

of G{".
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FIGURE 4
probabilistic model

Graphical representation of the proposed

4 | ANOMALY DETECTION USING
EVT FOR UNIMODAL DATA

EVT plays a significant role in studying rare events and
so, several methods have been proposed that incorporate
these features in anomaly detection. Here, we present a
novel methodology which involves both EVT and non-
parametric modeling for anomaly detection. The core
principles that lead to the development of the integrated
algorithm are discussed here. We start with a basic case of
one cluster data with anomalies.

Based on the EVT concepts discussed above,
we first propose a simple anomaly detection model
(Figure 4), which is equivalent to the following generative
distributions:

Oly ~ Go(y), (15)
0%y ~ G5V (w), (16)
vla, B ~ Beta(a, f), 17)
aily ~ Bernoulli(y), (18)

The model is a mixture of two components, A and A,
parameterized by 6 and 69, respectively. a; is an indicator
latent variable denoting if x; is normal or anomalous, and
7 is the mixture weight with a Beta distribution prior.

The mixture of models representation allows us to
sketch a Gibbs sampling-based inference scheme, similar
to a mixture model [19], using the following conditional
posteriors:

p(r1a.x,0,0%a,p,y) =Beta (a+n*,f+n—n),

(20)
where x denotes the vector of n observed data instances, a
is a binary indicator vector, that is, a; = —1 = Xx; is anoma-

lous, and n? is the number of anomalous instances. The

posteriors for the indicators can be computed as:
p(ai=-1la_;,x,60,6%a,p,w) < ypc (x:16%), (21
p (ai = 1|a_i,X, 03 9!.1, a, ﬁ’ l//) X (1 - y)pG (xlle) . (22)

Finally, the posteriors for the mixture parameters, 6 and
0%, can be computed as:

P (9|a,X, 9’ ea,a7 ﬁ’ ll/) ochO(elll’) H Pc (xilg)’ (23)

irq;=1

p(6°12.%,0,6% a. p.y) < peev (0°lw) [ po (xil6°).

ira=-1

4

Starting from an initial estimate of the latent variables, y,
a, 0, and 0%, the inference can be done via Gibbs update,
in which new estimates for the latent variables are sam-
pled from the conditional posteriors given in (20), (22), and
(24), respectively.

4.1 | Modified posterior expressions

Let y; denote the pdf of an observation x; according the
to the normal distribution, that is, y; = pg (x;|6). Using a
threshold u,® we define the “tail” of the distribution Gy
using samples {y;};., o, A GPD, G}, is fitted on the sam-
ples {u —yi};.,, <,- The conditional posteriors for a; for tail
instances can be written as:

plai=-1a_,x0,0%a f.y) xy (1-PL (u—y)),
(25)

p(ai=1la_;,x,0,0% a,pw) < (1 - )P (u—y;), (26)

where PLV (u — ) is the probability of observing y; in the
tail of Gy. Since GPD is a unimodal distribution, we use
the survival function value, 1 — G5 (y — wy), instead of the
exact probability. For non-tail instances, that is, y; > u, the
conditional probability p (a; = —1] ...) is set to 0. Under
this modified model, computing the posterior for 6¢ in (24)
is not needed anymore. If the form of the normal model
is known, for example, a unimodal Gaussian or a mix-
ture of Gaussians® (Figure 5), the anomalies and the model

8Note that u is not a threshold for determining if an observation is
anomalous or not; instead, it defines the “tail” of the original
distribution, which are then used to determine the parameters of the
corresponding GPD.

°In presence of multiple clusters, the prior G, can be chosen as a mixture
of individual priors generating the non-anomalous components ensuring
that low probability or tail region of the distribution is associated with
generating parameters associated with anomalous components.
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FIGURE 5 Results for a synthetic 2D case, with a fixed

Gaussian mixture model as G,. The model identifies the anomalies
(red) with respect to the tail of G, (green) as well as the parameters
for Gy (shown as contour lines)

parameters can be inferred via Gibbs sampling, using the
above mentioned conditional distributions. However, in
the next section, we show how the Bayesian formulation
can be extended to a richer class of the base distribution,
Go, that is, nonparametric mixture models.

Challenges: If G is the conjugate prior of G, one can get
an analytical form for the posterior in (24). The posterior
for 6¢ is the main challenge here, for two reasons: (a) G5”
exists only for a limited base distributions, Gg, and, (b) even
for known GFY, it is unlikely that the posterior in (24) will
have an analytical form.

We first note that the quantity pg (x;|6?) is the probabil-
ity of the observation x; to be generated by the distribution
G, parameterized by 6%, which, in turn, is sampled from
the EVD for Gy, that is, G§".

For distributions belonging to the exponential family,
one can show that if Gy is the conjugate of G, then sampling
x; from G(.|6%), where 6°~ GV, is equivalent to (under
expectation): first sampling 8 from Gg, and then sampling
x; from the EVD of G (or GFV), parameterized by 8, that is,
Ege~cz [P6 (xi16%)] = Egpng, [porv (xi16)].

We show that this claim will hold for the following
simple setting, and omit the general proof in the inter-
est of space. Let G ~ N'(u, 1), that is, G is a univariate
Gaussian distribution with fixed variance and the mean is
generated from a Gaussian prior, that is, Gy ~ N ( Ho, og).
Note that the EVD for a Gaussian distribution is a Gumbel
distribution, that is, G ~ Gumbel (1o, 60).

Assuming that x; is an anomaly, that is, x; is sampled
from a Gaussian, N (u%, 1), where u® ~ Gumbel (uo, 6¢),
then we can show that for any y ~ N (o, 62), the proba-
bility that x; is not in the tail of V' (y, 1) will be very small,
since:

Ex-ne) [Gnun X))

a\2
_ ;exp<_M>Lexp<_M>dx
Var 2 /o 2

a\2
X €Xp <—%> .

Thus, the claim will hold in this case because the prior
distribution is Gaussian, for which |y — u?| > 0.

5 | EXTENSION TO DATA WITH
MULTIPLE CLUSTERS

While the previous result is an interesting step toward
explicitly modeling the anomaly distribution, it is still lim-
ited to the case where the normal data is being generated
from a single cluster. A natural extension to the presented
preliminary model is the scenario where the normal data
could be generated from multiple clusters. The key chal-
lenge in performing anomaly detection on such data is the
method to identify the generative model that is robust to
anomaly presence.

Why integrate EVT and DPMM?: Anomalies with
significantly large deviations are inherently caught by
most anomaly detection algorithms including tradi-
tional DPMM. The distinction between the algorithms is
observed when identifying anomalies with relatively sim-
ilar behavior to normal data. Such anomalies are found in
the vicinity of clusters and are often clustered into being
normal. Traditional DPMM algorithm can identify such
anomalies by increasing the concentration parameter but
the choice of the new value has the same challenges as the
choice of a threshold thus arising a need for an external
algorithm like EVT that studies these tail points separately
and an integrated approach would ensure enhanced and
robust clustering.

5.1 | Background on mixture models
Finite mixture models (FMM) are a useful clustering tool
to identify and study subpopulations within data. How-
ever, they require prespecifying the number of clusters,
which is not always known. This is especially important for
anomalous data for which accurate knowledge is not avail-
able, and can lead to some significantly inaccurate (and
in some cases unreliable) interpretations of the data. Non-
parametric mixture models, for example, DPMMs [21], can
be used in such settings.

DPMMs: A DPMM can be thought of as an infinite
extension of an FMM, which is equivalent to the following
distributions:

r|la ~ Dir(a/K, ... ,a/K), 27)



% | WILEY

GUGGILAM ET AL.

Zi|mr ~ Multi(r), (28)
Okly ~ Goly), (29)
xilzi, {6k} ey ~ G (67,) - (30)

Each observation X; is generated by first sampling a cluster
index, z; from a multinomial distribution, parameterized
by a K length vector, z. A symmetric Dirichlet prior is used
to generate z. The observations are sampled from a cluster
specific distribution, G, parameterized by 6. The cluster
specific distribution parameters are also generated from a
prior (or base) distribution, Gy, parameterized by .

A DPMM is an extension of FMM to the case
where K — oo. While several equivalent representations of
DPMM exist, we will use the stick breaking representation,
which shows DPMM as a natural extension of FMM. The
stick breaking representation allows sampling the mixture
weights, with possibly infinite components, as follows:

« Start with a unit-length stick and break it according to
f1, where ff; ~ Beta (1, ap), and assign f to zy;

 Break remaining stick according to the proportion fi ~
Beta (1, ap) and assign f portion of the remaining stick
to my.

The sequence z = {r;},- satisfies },,” 7, = 1 and is
typically written as & ~ GEM(a).°

5.2 | Integrated nonparametric
clustering and anomaly detection

We propose an instance of the general Bayesian anomaly
detection algorithm described in Section 4 which uses a
DPMM as its base distribution, Gy. The generative model
(Figure 6) consists of two coupled DPMM models, each
corresponding to the normal and anomalous behaviors,
respectively, and is equivalent to the following distribu-
tions!!:

| ~ GEM(a), (31)

1Named after Griffiths, Engen, and McCloskey.

GEM is a recursive process with an infinite number of clusters of
which only a finite number of them are populated. The number of the
populated clusters as well as the corresponding proportions are learned
sequentially as seen in the stick breaking process. Since the true number
of clusters is unknown, Dirichlet process priors, like the GEM
distribution, are traditionally used to sample the vectors = and z®.
When sampling from the GEM distribution, we generate a vector (of
unknown but finite length) from a simplex that sums to one (as seen in
the stick breaking approach). The vector length can be regulated using
the concentration parameter (large concentration parameter returns
more number of populated clusters, i.e., vector of longer length).

FIGURE 6
model

Graphical representation of the proposed INCAD

x%la* ~ GEM (a¥), (32)

Okly ~ Go(w), (33)

Oplw~ Gg' (w), G4

sign (z;) |y ~ Bernoulli(y), (35)
. Multi(z)  if sign(z) =1

|Zi||”’7’5 , Sign (z;) ~ , , )

Multi (z?) if sign(z;) = —1

(36)
G (0y) if sign(z) =1

xili O}y {05 )1y ~ :
G <9|az,-|) if sign(z;)) = -1
(37
The key difference from the model in Section 4 is the
additional variable, z;, that works as the cluster labels
as well as anomaly indicator. The sign (z;) represents the
presence of anomalous behavior where anomalous (or
non-anomalous) observations are assigned negative (or
positive) labels. Based on the observed labels, anomalies
can be classified into global, local and group anomalies.

Definition 2. (Global anomalies). A single observation is
defined as a group anomaly if it is an observation with dis-
tinctly novel behavior. INCAD classifies such observations
into singleton clusters with negative cluster labels.

Definition 3. (Group anomalies). Multiple observations
with similar behavior that is distinct from existing predom-
inant behaviors (normal clusters) are classified as group
anomalies. Such observations are classified into smaller
clusters with negative cluster labels.

Definition 4. (Local anomaly). Observations with behav-
iors that moderately deviate from normal clusters but are
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not distinct enough to form individual clusters are defined
as local anomalies. Such observations are classified into
normal clusters with similar behavior but with negative
labels to indicate diverging behavior. Anomalies that orig-
inate from an overlapping anomalous cluster are often
classified as local anomalies.

Since labels are assigned considering both clustering
as well as anomaly detection, we call this model, INCAD
(integrated nonparametric clustering and anomaly detec-
tion). Based on sign (z;), z; is sampled from a multinomial
distribution that is either parameterized by =z (if sign (z;) =
1) or x° (if sign (z;) = —1). The Multinomial parameters, &
and x¢ are sampled from the stick breaking construction of
a Dirichlet process, that is, £ ~ GEM(«) and #? ~ GEM (a*).

The INCAD model goes beyond the illustrated sim-
ple case where we assume multiple anomalous sources,
each associated with a different concentration parameter
a*. The generative model can now be seen as a collec-
tion of multiple DPMMs of which all but one DPMM can
be perceived as sources for anomalous data and the set
of concentration parameters for anomalous data, {a;},
would dictate the corresponding DPMM’s cluster propor-
tions {73 }.

Inference for the INCAD model includes inferring pos-
teriors for (zl-)lf’zl, (Hk, 0]‘{’):’:1. While this follows the gen-
eral Gibbs sampling-based scheme discussed in Section 4
(omitting exact details in the interest of space), there are
some additional issues that are unique to the INCAD
model. In particular, the dependency between z; and
sign (z;) in Figure 6 means that one cannot consider the
model as a straightforward mixture for two DPMMs. How-
ever, the relationship between the normal and anomalous
model parameters, via the EVT construct, means that we
can calculate the posteriors for sign (z;) using the modifi-
cation proposed earlier (26).

52.1 | Inference when G}V is available

MCMC and variational inference based algorithms [7, 40]
have been typically used for inference of the computa-
tionally expensive infinite mixture models. For INCAD,
we adopt an extension of a Gibbs sampling-based method
for a fixed mixture model that allows room for addi-
tional cluster formation. The algorithm is inspired by
the sampling-based MCMC method for conjugate priors
(Algorithm 1, [40]). Here, new clusters comprise anoma-

lous observations identified using EVT.
Gibbs sampling: The anomaly classification variable

sign (z) is a unique feature of INCAD that distinguishes it
from traditional DPMM. Thus, the posterior probabilities
for the latent variables namely, the number of clusters K,

cluster and anomaly indicators {z; }fi , are computed using

Markov property and Bayes rule:
P(|zl =k|x,z,a a*, m 2%y, {0}, {07},
sign (z).y) = P(lzl = k| X,
i at, {0k}, {67} . sign (), (38)

P(|zi| = k| z-i, @, 6k)

XP (xi ||z = k, z-i, Ok, @) ,
= ( l||Zl| Z—is Uk ) - . (39)

P(|zl = k|z-i,a%,6%) sign (z;) = -1

XP (x;| |zi| = k,z_i,HZ,a*) ,

sign(z;) =1

e Glu] 00, sign @) =1 “
(n+zi—1)G(xi‘ 91?)’ sign(zj) = -1

where a* = ﬁ Di is the probability of x; being anomalous,
N, is the number of observations in the k™ cluster and K
is the number of non-empty clusters. In the improved ver-
sions of INCAD, p; is the cumulative density function for
the extreme value distribution.

The posterior probability of forming a new cluster
denoted by K + 1 is given by:

P(lzil =K +1|x,z- a,a",
m 7w, (0}, {0f } . sign(z),7)
=P(lz| =K +1|x, 2o, ¢, w,sign(z)), (41)

P(lzil =K + 1|z, o, w) sign(z;) = 1
XP(xi||z;] = K + 1, zi, a, y, 8ign(zy)),
* P(Izil =K+ 1|z_i,a*,1//) sign(z;)) = -1
XP(xi||zi| = K +1, 2, a*, y, sign(z;)),
(42)
—— [ G (x10)Go(61w) de, sign (z;) = 1

—— [ G (x:16%)GE" (6 w) d6°, sign(z) = -1
(43)

Similarly, the parameters for clusters k € {1,2, ... ,K}
are sampled from:

Ok x Go (Ok |w)L (x| Ok) if cluster is not anomalous,
(44)

07 « Gg¥ (67 |w)L (x| 6;) if cluster is anomalous. (45)
where x; = {x;||z;| = k} is the set of all points in cluster k.

Finally, to identify the anomaly classification of the data,
the posterior probability of sign (z;) is given by:

P (sign(z) = -1|x, |z|.a,a*, =, 2%y, (6}, {60} .7)
=P (Sign (Zl) = _1|xi9 |Z.|’a*’ v, {0;:} ,7) 5 (46)
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K+1
o ZP (sign (z;) = —=11x:, |zi| = k.2, 0"y, {67} .7)
k=1
« P(|zi| = k| Xz, 0%y, {07} .7) (47)

K
_ 1 pa N
= ;P("l | ek)”(n T —1)

+ </ G(xi|0a)va(6’a|y/) d0a> yrH—Z—;i—l (48)

Similarly,
P(Sign (Zl) = llxi7 |Z|’ a,y, {ek} ) y) (49)
L n
) _ k
S ;P(xl 1000 -1 T

+ (/G(xile)Go(le)d9> a —y)ﬁ.
(50)

5.2.2 | Inference when Gg" is not available

Existence of a tail distribution G§" is not always feasible.
As the extreme value distribution might not belong to the
family of the conjugate priors of G, we assume 6¢ ~ G, for
sampling the parameters {BZ}Z; for anomalous clusters.
Here, we perform rejection sampling to sample observa-
tions from the tail distribution. For this, we initially sample
P observations from Gy and isolate observations with prob-
ability density less than a set threshold!? 0 < ¢t << 1. The
above procedure is repeated M times till sufficient samples
Siaii from the tail distribution have been identified. The
cluster means {Bl‘j }Zo: , can be estimated by randomly sam-
pling from the tail observations S;. However, this could
result in potential convergence issues. Thus, we propose
the closest observation in Sy; to the sample estimate for
the respective anomalous cluster.

The pseudo-Gibbs sampling algorithm, presented in
Algorithm 2, has been designed to address the cases when
Gg" is not available. For such cases, the modified concen-
tration parameter a* is given by the function f where,

a, if not in tail

f(a|xn, X9 Z) = ’ (51)
s if in tail

1_pn

12The choice of threshold governs the range of values that can be
considered in the tail. Larger threshold allows wider sample range and
therefore, better parameter estimation. However, collecting extreme tail
samples using rejection sampling could be difficult when using larger
thresholds. It must be noted that optimal choice specific to the data can
be made based on the data distribution. In our analysis, we set the
threshold to 15% (probability density) for ease of sampling.

Algorithm 1. Gibbs sampling algorithm when G}" is
available

Given zU=D, {0;{’_1)} , {HZ(H)}

K be the total number of clusters at iteration (¢t — 1).

from iteration (t — 1). Let

Setz, = |z"Y| and a. = sign(z"~V)
for each observation i do
Remove x; from its cluster z;.
if x; is the only point in its cluster then
Remove the cluster and update K to K-1.
end if
Drop empty clusters.
Sample z; from the Multinomial distribution given
by Equations (40) and (43)
if zz = K + 1 then
Sample new cluster parameters from the
following distribution.'#

0 prz. {00} {6} oty (52)

aGo(01y)G(:10) + X, G(xil6,))
x50 -0, )o@, a™ =1

«{ (53)
@G (Oy)G010) + X, G0

X 5(0 — eg‘1>)5(a§.“” -1, a"V=-1

Update K =K +1
end if
for each cluster k € {1,2,...,K} do
Sample cluster parameters 6 and 0, using
Equations (44) and (45).
end for
Sample the anomaly classification a; using
Equations (48) and (50).
Set zﬁt) =Zi*q
end for

where p, is the cumulative density of x,, for the extreme
value distribution of the tail data!® where, the cumulative
density is given by the extended GPD described in
Section 3.3.

5.2.3 | Non-exchangeability and evolution
detection in stream

Exchangeable models are robust to alterations in the order
of the sequence of observations. However, for streaming

13The left and right continuous inverses of the function #EV() are
broadly studied in EVT to understand the behavior of the tz;il
distributions.

141t must be noted that the above posterior distribution was derived
under the assumption of independence and exchangeability of priors

for mathematical ease.
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Algorithm 2. Gibbs sampling algorithm when G{" is not
available

Given z~V, {9,({[_1)} , {GZ(H) } from iteration (¢t — 1). Let
K be the total number of clusters at iteration (¢t — 1).
Setz = |z¢"P| and a. = sign(z*)
for each observation i do
Remove x; from its cluster z;.
if x; is the only point in its cluster then
Remove the cluster and update K to K-1.
end if
Drop empty clusters.
Sample z; from the Multinomial distribution given
by Equations (40) and (43)
if zz = K+ 1 then
Set the cluster distribution to be multivariate
normal with the new cluster mean as x;
and cluster variance as X which is
pre-defined.
Update K=K+1.
end if
for each clusterk € {1,2,...,K} do
Sample cluster parameters 6y and 0, using
Equation (44).
end for
Sample the anomaly classification a; from the
Binomial(p;) where p; is given by

Probability of x; X; in tail

pi = p(x)) = being anomalous, (54)

0, otherwise

if most cluster instances are classified as anomalous
then
Classify all cluster’s instances as anomalies.
end if
Setz\” =z *
end for

data that evolves over time, it can be costly to assume
exchangeability among the observations. The instances
that mark the beginning of an evolution are captured and
monitored in INCAD. Additionally, relapse of outdated
and non-prevalent behaviors are identified and evaluated.
These features are possible due to the non-exchangeable
nature of the INCAD model.

To further understand the non-exchangeable nature of
INCAD, one can look at the joint probability of the cluster
assignments for the INCAD model,

P (21,22, ZnlX) = P (21]X) P (22]21,X) .P (Zn|Z1:0-1,%) . (55)

Without loss of generality, let us assume there are K
clusters. Let, for any, the joint probability of all the points
in cluster k be given by

a * Py N at (1—pk,1) ﬁ
Ii+a-1 Igg+a*—1

=2
(ng — 1) * pyg. (nk—1) % (1 — pg,
x Plny L=pen) ) g
Lin +a—1 Ip, +a*—1

where Ny is the size of the cluster k, Ix; is the index of the
i™ instance joining the k'™ cluster and py; = py,,. Thus, the
joint probability for complete data is then given by

HIk<=1 [ (Ia = 1) pra (@ —a*) + a* (Ix1 + a — 1)
XHI,:Z;Z (nxk—1) (Ik,nk +a—1+4pgy (@ - a)]

MY, (G+a-1)G+a*—1))

bl

(57)

which is dependent on the order of the data. This shows
that the model is not exchangeable unless « = a* or py,, =
0 or pg, = 1. These conditions effectively reduce the prior
distribution to a traditional CRP model. Hence, it can be
concluded that the INCAD model cannot be modified to
be exchangeable.

The non-exchangeable and nonparametric prior in the
INCAD model serves as an excellent platform to capture
drift or evolution in the behavior(s) locally and globally.
Such prior can detect the following trends:

1. Instances that signify new evolutionary behavior are
captured and classified as anomalous.

2. Increased prevalence in a previously rare behavior can
be reevaluated and conceived as normal.!®

3. Outdated behaviors that are no longer prevalent would
be classified as anomalous. Additionally, relapse of
such behaviors are also branded as anomalous till suf-
ficient popularity is reached.

A clear streaming extension of the INCAD model
involves exclusive reevaluation of the tail instances as
opposed to updating with entire data. The Gibbs sampling
algorithm for the streaming INCAD model is given in
Algorithm 3.

5.2.4 | Choice of priors
For computational ease, the base distribution that gener-
ates the parameters for the normal clusters, G, is chosen

15As an alternate frame of reference, one can say that with sufficient
surge in the instances, group anomalies can eventually grow to become
normal clusters.
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Algorithm 3. Algorithm for streaming extension

Perform clustering on a small portion of the data (~20%)
using non-streaming model

for each new data point xy do

Compute the mixture proportions m_para and the
mixture density for all the data.
Compute t, = g' percentile pdf value to identify

the tail points

For each x; s.t. g(x;) < t; repeat steps 3 — 18 of
Algorithm 2
If cluster size < 0.05 * N then, classify all the
cluster points as anomalies.

end for

to be the conjugate of the generative distribution for the
actual data, G. This makes the inference task consider-
ably simpler, though approximate methods have been dis-
cussed for non-conjugate prior choices as well [32, 40].
In this paper, we use a multivariate normal distribution
(MVN) as the data distribution, G, and the Normal Inverse
Wishart (NIW) as the base distribution, Go. It must be noted
that the model is not limited to MVN distribution. In par-
ticular, any univariate data distribution that satisfies the
necessary conditions in Theorem 2 could be used. For mul-
tivariate data, distributions from the exponential family
satisfy the necessary conditions needed for the Ext-GPD
approach. The required conditions for the multivariate
case have been presented in the Supporting Information
and in Theorem 3.

The concentration parameter, «, and the prior for the
base distributions, y, are treated as hyper-parameters,
though suitable vague priors maybe set to make the model
more robust to the choice of the hyper-parameters. a con-
trols the final number of normal clusters, while “Z con-
trols the final number of anomalous clusters from the
d™" DPMM. To ensure that a larger number of populated
non-anomalous clusters are formed with few instances
assigned to them, a’s can be typically set to a higher values.

The parameter y influences the number of anomalous
instances in the dataset, and is initialized based on the
expected proportion of anomalies in the given context. For
the results listed in this paper, we have used a standard set
of the parameter and hyper-parameter choices to show the
resultsin a generalized setting (detailed in Section 6.1). But
in other contexts, one can use the information from the
data to determine the hyper-parameters. For instance, the
y value can be initially set to the proportion of anomalies
known in the data, and the concentration parameter a can
be set higher if the true number of clusters is known to be
high. It must be noted that the choice of hyper-parameters
{a;} and parameter y is updated and optimized using

Extreme Value distributions and Bayesian updates over
iterations.

6 | EXPERIMENTAL SETUP

To comprehensively evaluate the capabilities of the pro-
posed INCAD model, results on both synthetically gener-
ated and publicly available benchmark datasets are pro-
vided. We evaluate the ability of the proposed model
to identify both clusters and anomalies, in both batch
and streaming settings. We also compare the model per-
formance with existing methods for anomaly detection
and clustering. Additionally, we study the role of various
user-defined parameters on the model performance.

6.1 | Model initialization

The INCAD model has the following user-defined
hyper-parameters: the initial number of clusters (K),
the concentration parameter («), the initial mean and
covariance matrices for the clusters, and the prior for the
proportion of anomalies (y). For the experiments, we set
K to 10 and «a to 1. For each dataset, the sample mean and
covariance are used as the initial values for the cluster
parameters. The proportion of anomalies (y) is set to 0.1.
In the batch phase, the model is run until convergence is
achieved, with a maximum iteration limit of 1000.

6.2 | Datadescription

We consider a variety of publicly available bench-
mark datasets from different domains (Table 2) for
the experimental evaluation. Additionally, a syntheti-
cally generated 2D dataset, SD, with 4 normal clusters
and scattered anomalies was generated to evaluate
the joint clustering and anomaly detection perfor-
mance. Each cluster consisted of 100 observations,
sampled from a 2D Gaussian distribution with means in
{(—40, —40), (=30, 10), (40, —60), (45, 30)}, for each cluster,
respectively. The covariance matrix for each cluster was
set to 51, where [ is the 2 X 2 identity matrix. Twenty-three
anomalies were added by sampling from a Gaussian dis-
tribution with mean at (0, 0) and covariance as 100I. For a
qualitative evaluation of the joint clustering and anomaly
detection performance, we use the MNIST handwrit-
ten digits dataset [37], which consists of 60,000 28 x 28
images, corresponding to 10 digits (clusters). We use a
10% sample of the original dataset and use principal com-
ponent analysis (PCA) to reduce the dimensionality of the
data from 784 to 25.

Finally, we use the gas sensor array drift dataset [56]
to understand the performance of the INCAD model in
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TABLE 2
for evaluation of the clustering (Source: UCI-ML repository

(a) Clustering

Description of the benchmark datasets used

[14]) and anomaly detection (Source: Outlier Detection
DataSets/ODDS [47]) capabilities of the proposed model

Name N d c
Pageb 5473 11 2
Wine-Cluster 6497 12 2
Heart Statlog 270 13 2
Zoo 101 16 7
Abalone 4177 8 2
Magic Gamma 19,020 10 2
Tono 351 33 2
Ecoli 336 7 8
Haberman 306 2 12
Concrete 1030 9

German 1000 7 9
Segment 2310 18 7
Iris 150 4 3
Yeast 1484 8 10
WDBC 569 31 2
Vehicle 846 18 4
Glass 214 9 6
Tae 151 3 3
Balance Scale 625 4 3
Vowel 990 10 11
(b) Anomaly detection

Name N d a
Annthyroid 7200 6 7.42%
Pen Global 809 16 11.12%
Cardio 1831 21 9.61%
Mammography 11,183 6 2.32%
Letter 1600 32 6.25%
Seismic Bumps 2584 11 6.58%
Cover 217 10 9.22%
Breast Cancer 367 30 2.72%
Smtp 113 3 11.5%
Wine-AD 129 13 7.75%
Pendigits 6870 16 2.27%

Abbreviations: a, fraction of known anomalies in the dataset;

¢, number of true clusters; d, number of attributes; N, number of

instances.

a streaming setting. The dataset consists of 470 readings
from an array of 16 chemical sensors exposed to gas mix-
tures at three different concentration levels. First two
concentration levels were used as the batch dataset and
the third concentration level was injected in a streaming
fashion.

6.3 | State-of-the-art methods

We compare the performance of INCAD with several exist-
ing state-of-art anomaly detection and clustering methods,
as well as one method that has been proposed for joint
clustering and anomaly detection [11].

Anomaly detection: For anomaly detection, we consider
four existing methods: k nearest neighbor outlier detec-
tion (KNN) [45], local outlier factor (LOF) [8], one-class
support vector machines (oc-SVM) [54], and k-means—
[11]. The first two methods assign an anomaly score for
each data instance, while the last two methods assign an
anomaly label. Both kNN and LOF have been previously
shown to outperform other existing methods [30], and are
considered state-of-art methods. The k-means— method
performs joint clustering and anomaly detection, and thus
is the most similar to INCAD. All methods have one or
more user-defined parameters. We investigated a range of
values for each parameter, and report the mean results.

Clustering: We compare the clustering performance of
INCAD with k-means, k-means—, and a Bayesian Gaus-
sian Mixture model with a Dirichlet prior (BGM-DP).
While both k-means and k-means— are hard clustering
algorithms that require specifying the number of clusters
as a user-defined parameter, BGM-DP is a soft clustering
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FIGURE 7 INCAD output for the synthetic data, SD.
Instances belonging to the normal clusters are shown as [] and
instances belonging to anomalous clusters are shown as o. The size
of the anomalous instances indicates the probabilistic anomaly
score. Inset: the average anomaly score for truly anomalous
instances (TP) and false positives (FP)
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TABLE 3 Comparing INCAD with existing anomaly detection algorithms using f-measure on the anomaly class as the evaluation

metric
Dataset LOF KMeans— KNN OCSVM INCAD INCAD (score)
COVER 0.36 (+0.0331)  0.15(+0.0316)  0.15(+ 0.0) 0.15(+0.0554) 0.3(x0.1613)  0.18 (= 0.0714)
WINE 0.24 (+ 0.08) 0.3 ( 0.0) 0.23 (+0.0943) 0.1 (+0.0419)  0.41 (+0.1941) 0.1 (+ 0.0)
SMTP 0.59 (+ 0.1674)  0.54 (+ 0.0) 0.53 (£ 0.0921)  0.21 (+0.0915) 0.31 (+0.0669)  0.32 (+ 0.102)
PENDIGITS 0.08 (+0.0075)  0.19 (+0.1537) 0.1 (+0.0152)  0.06 (+ 0.0124)  0.09 (+ 0.0365)  0.07 (+ 0.0138)
BREAST-CANCER  0.44 (+ 0.0165) 0.6 (< 0.0) 0.39 (+ 0.0598)  0.05 (+0.0479)  0.19 (+ 0.0638) 0.4 (+ 0.015)
LETTER 0.44 (+ 0.0409)  0.07 (+ 0.04) 0.4 (+0.0779)  0.11 (+0.0162)  0.28 (+ 0.0354)  0.45 (+ 0.0265)
ANNTHYROID 0.21(+0.0121)  0.17 (£ 0.0817)  0.3(+0.0084)  0.11(+0.019)  0.36 (+ 0.0254)  0.39 (+ 0.0455)
PEN-GLOBAL 0.23 (% 0.0365)  0.34(x0.0627)  0.25(%0.0278)  0.21 (x0.0497) 0.53 (% 0.0662)  0.25 (z 0.0358)
CARDIO 0.21(+0.0173)  0.36 (+0.3145) 0.31(+0.0772) 0.15(%0.0297) 0.2 (= 0.1045) 0.2 (£ 0.0838)
MAMMOGRAPHY  0.19 (+ 0.0455)  0.12 (+0.1276)  0.22 (& 0.03) 0.05 (% 0.0354)  0.12(+0.0131)  0.24 (+ 0.0216)

SEISMIC-BUMPS

0.07 (+ 0.0113)

0.1 (+ 0.0766)

0.15 (< 0.0068)

0.13 (+ 0.0304)

0.23 (+ 0.0191)

0.17 (+ 0.0189)

Note: For scoring based methods, instances with top k scores are labeled as anomalous, where k is the actual number of anomalies in the dataset. The
average precision and recall on the anomaly class, across all datasets, is shown in the last two rows. Bold values indicate the best performance (in terms of
f-measure) across of the models (in each row).

TABLE 4 Comparing INCAD with existing clustering algorithms using purity score as the evaluation metric
Dataset k-means k-means— BGM (DP prior) INCAD
PAGEB 0.9 0.9 0.94 0.99 (+ 0.0114)
ABALONE 0.75 0.81 0.76 0.81 (= 0.0139)
Z00 0.87 0.41 0.64 0.79 (# 0.0913)
WINE 0.63 0.63 0.69 0.79 (+ 0.0719)
HEART-STATLOG 0.84 0.71 0.61 0.79 (# 0.033)
IONO 0.71 0.64 0.83 0.79 (x 0.0156)
MAGIC.GAMMA 0.65 0.73 0.77 0.78 (+ 0.0103)
ECOLI 0.83 0.43 0.57 0.76 (+ 0.0079)
HABERMAN 0.75 0.74 0.75 0.75 (+ 0.0069)
SEGMENT 0.55 0.14 0.52 0.71 (= 0.0989)
GERMAN 0.7 0.7 0.7 0.7 (+ 0.0036)
CONCRETE 0.6 0.87 0.65 0.69 (+ 0.0324)
IRIS 0.81 0.33 0.76 0.67 (+ 0.0096)
YEAST 0.66 0.66 0.66 0.66 (+ 0.002)
WDBC 0.91 0.91 0.82 0.63 (+ 0.0021)
GLASS 0.56 0.36 0.51 0.55 (= 0.0296)
TAE 0.44 0.4 0.44 0.54 (+ 0.0145)
VEHICLE 0.37 0.35 0.5 0.49 (+ 0.0416)
BALANCE-SCALE 0.65 0.65 0.59 0.46 (+ 0.0016)
VOWEL 0.33 0.09 0.34 0.37 (+ 0.0587)
Average purity 0.68 0.57 0.66 0.69
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FIGURE 8 Output of INCAD for the
MNIST 10% sample data. (A) Clusters:
Cluster centers identified by INCAD. Note
that the number of clusters (18) is
automatically inferred by the model. (B)
Anomalies: Anomalies identified by INCAD

algorithm that does not need the number of clusters to be
provided in advance. Thus, it is similar to INCAD in that
regard.

6.4 | Evaluation metrics

For the anomaly detection methods that assign an
anomaly label to a test instance, that is, oc-SVM,
k-means—, and INCAD, f-measure!® on the anomaly class
is used as the evaluation metric. For the scoring meth-
ods, that is, kNN, LOF, and the scoring version of INCAD,
the instances with top p anomaly scores are labeled as
anomalies, and these labels are then used to calculate the
f-measure. For the clustering evaluation, we use average
cluster purity [11], as the evaluation metric, where the
purity of a cluster is defined as the fraction of the majority
class of the cluster with respect to the size of the cluster.

7 | RESULTS

In this section, we discuss the overall performance of
the INCAD model against the state-of-the-art algorithms
with respect to clustering and anomaly detection, in both
streaming and batch settings on simulated as well as
benchmark datasets.

7.1 | Simulated data

Batch scenario: For a given batch dataset, INCAD produces
two types of outputs. First, it assigns every data instance
to either a normal cluster (with a positive index) or an
anomalous cluster (with a negative index). The sign of the
cluster index is used as the anomaly label. Additionally,
the method also assigns a probability for each instance
to be in the tail of the overall data distribution, which is
used as the probabilistic anomaly score. For the SD dataset,

16The class-specific f-measure is defined as the harmonic mean of the
recall and precision on the given data set for that class.
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the identified normal and anomalous clusters, as well as
the anomaly scores, are shown in Figure 7. We first note
that INCAD identifies the four main clusters in the data,
without the need to initially specify the number of clus-
ters. Additional anomalous clusters, with negative index,
were identified as well. While the method correctly labels
all the 23 anomalous instances, it also identified some
peripheral instances of the normal clusters as anomalies;
these would constitute false positives. However, the prob-
ability score is higher for the true anomalies (Figure 7,
inset). Thus, simple heuristics, such as a low threshold on
the anomaly probability, can be potentially employed, as a
post-processing step, to filter out these false positives.

Streaming scenario: To study the performance of
INCAD in a streaming mode, we simulate the follow-
ing streaming scenario: We first create a batch of data
consisting of instances belonging to three of the four clus-
ters in SD and present it to INCAD for batch learning.
INCAD identifies the three primary clusters, and some of
the peripheral instances as local anomalies, after the batch
phase (Figure 1A). The instances belonging to the fourth
cluster and the anomalies are sequentially presented to the
model. With each incoming streaming instance, the tail
data is reevaluated and the overall identified data distribu-
tion is updated. In the beginning of the streaming phase,
the new instances are identified as group anomalies, as
shown in Figure 1B. However, a fourth normal cluster is
identified after a sufficient number of instances belong-
ing to the fourth cluster are observed in the stream, as
shown in Figure 1C. Finally, the remaining truly anoma-
lous instances are identified as global anomalies, as they do
not form a tight enough group to become a normal cluster,
as shown in Figure 1D.

7.2 | Anomaly detection performance
on benchmark datasets

The f-measure performance of INCAD and the compet-
ing algorithms is shown in Table 3. For all the listed
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Evolving anomalies and clusters identified by INCAD for the gas sensor array drift data. Cluster assignments are shown

using colored symbols, anomalous observations are labeled using colored circles. While the original data has 16 dimensions, the data is
mapped to 2D using the t-SNE algorithm [38]. (A) Before streaming. (B) After adding 5 streaming observations. (C) After adding all

streaming observations

algorithms, results for the best parameter settings are
reported. The proposed INCAD model outperforms other
methods on 4 out of 11 datasets. While other methods,
especially LOF and KNN are better on other datasets, it
should be noted that these methods are highly sensitive
to the parameter settings. The k-means— method, which
is capable of both clustering and anomaly detection,
shows the best average performance. However, this model
requires specifying the proportion of true anomalies in
the dataset, which might not be feasible in a real-world
setting.!”

A specific behavior noticed in the score based INCAD
model is the ranking of the anomalies. As INCAD is a

For some real datasets with >30% anomalies, smaller clusters
identified by INCAD can be manually reclassified as anomalous.

conservative algorithm that identifies more anomalies, it
can be seen that the model recall is relatively higher than
the rest of the methods. However, the true anomalies
might not always be ranked as the most anomalous obser-
vations. This behavior can be best observed in two particu-
lar datasets, namely Pen-Global and Wine data where the
score based model has failed to rank most true anomalies
in the top while, the classification model still identified
some of the true anomalies.

7.3 | Clustering performance
on benchmark datasets

Table 4 summarizes the performance of INCAD and other
competing clustering methods on the benchmark datasets.
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Overall, INCAD has the best average performance
compared to others, which is significant, despite not hav-
ing to provide a prior specification of the expected number
of clusters, unlike k-means and k-means—. Looking at
both anomaly detection and clustering performance, it is
clear that INCAD is effective in detecting both anomalies
and clusters in the data, and is superior to k-means—,
which also does the joint detection.

To further show the effectiveness of INCAD for the
joint detection task, we visualize the detected clusters
and anomalies for the MNIST handwritten digit dataset.
INCAD identified 18 clusters in the data. The cluster
centroids are shown in Figure 8A. The most interesting
outcome of clustering using INCAD was the identifica-
tion subtle writing behaviors identified in the data. For
instance, three different writing styles of digits 2’ and ‘6’
were identified, which corresponded to distinctive slants,
presence of loops, and so forth. The anomalous digits
(Figure 8B) identified by INCAD include unrecognizable
and ill-written digits.

7.4 | Streaming anomaly detection
and clustering: Gas sensor array drift data

The experiment for the gas sensor array drift dataset, sim-
ulates a streaming scenario in which a gas at different
concentrations is being introduced into a chamber and the
concentration levels are being measured by an array of 16
chemical sensors. For these experiments, the observations
corresponding to two concentration levels are provided
for batch learning, and observations corresponding to the
third concentration level are added as a stream. The moni-
toring outputs of INCAD, at different phases of the stream,
are shown in Figure 9. At the end of the batch learn-
ing, INCAD is able to identify the two gas concentrations
(Figure 9A) present in the batch dataset. After the start
of the streaming phase, the new instances are identified
as anomalies (Figure 9B), as they belong to a previously
unseen concentration. However, as more data is observed
in the stream, a new novel cluster is identified (Figure 9C),
and all the instances belonging to the third concentration
are now considered normal.

7.5 | Sensitivity to batch proportion

Previous results on streaming data show that INCAD
can identify anomalies and new clusters in a stream. The
performance, however, depends on the size of the initial
batch dataset. Figure 10 shows the performance of the
model, both in terms of computing time and accuracy in
identifying anomalies for the synthetic dataset, SD. While
the total size of the dataset is fixed, the proportion of the
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FIGURE 10 Impactofthesize of the batch dataset on INCAD
performance on the synthetic dataset (SD). For each batch size,
mean and standard deviation across five different runs are shown

instances in the batch is varied from 10% to 90%. The
computing time!® for processing the batch increases lin-
early with the increase in the batch size. At the same time,
the time taken to process a single stream instance also
increases as the size of the batch increases. This is because
the INCAD model has to update the tail probabilities
for the data observed so far. The quality of the detected
anomalies (shown using the f-measure for the anomalies
detected after all of the data is observed), improves as the
size of the batch increases. Additionally, the performance
is more stable (lower variance across multiple runs) when
the batch size is higher because the batch phase is able to
learn a stable clustering structure in the data.

8 | CONCLUSIONS AND FUTURE
WORK

We have introduced a Bayesian framework for anomaly
detection that explicitly models the normal and anoma-
lous data. While in the past, lack of labeled anomalies
has prevented such solutions, we adopt concepts from
EVT, to model the anomalous data with respect to the
extremes of the model for the normal data. This is a fun-
damental breakthrough in anomaly detection as it permits
probabilistic reasoning for both types of instances, with-
out the need for a nonintuitive threshold, as is the case
for existing methods. Additionally, the proposed INCAD
algorithm combines EVT with another powerful model-
ing tool—DPMM which allows identifying clusters and
anomalies at the same time. The nonparametric prior
on the number of clusters ensures that the model is not
handicapped by the need to know the exact number of
clusters. Moreover, this sets the model up to be adapted
for a streaming scenario, where the number of clusters
can change over the stream.

18 A1l the methods are implemented in Python and all experiments were
conducted on a 2.7 GHz Quad-Core Intel Core i7 processor with a 16 GB
RAM.
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As the results show, INCAD outperforms existing
methods that have been proposed exclusively for anomaly
detection or clustering, on each of the tasks, for most of the
datasets (Tables 3 and 4). Moreover, while existing meth-
ods rely on carefully specified, problem-specific, parame-
ters, INCAD requires specifying relaxed Bayesian priors,
and infers key parameters, such as the number of clus-
ters, from the data. Additionally, the probabilistic output
of INCAD allows for an interpretable setting of thresh-
olds on the anomaly score, something that is not possible
with most of the existing score based anomaly detection
algorithms. INCAD is especially effective in dealing with
streaming data, where the notion of normal clusters and
anomalies evolve over the duration of the stream, as shown
in Figure 9. This makes INCAD highly suitable for moni-
toring the behavior of complex systems over time, without
the need to explicitly retrain the underlying model.

One of the key shortcomings of the model is the com-
plexity of the iterative Gibbs algorithm. Variational infer-
ence methods that have been proposed for inference in
DPMM clustering [7, 35] can be used to improve the com-
plexity, and will be explored in the future.
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APPENDIX

Proof of Ext-GPD for n-D case

Let X € R" be the data space with pdf gy : R" — R™.
Let Y € R* be the corresponding image space.
Definition 5. Vy € Y, Gy is defined as

Gy(y) = / gx(x)dx. (A1)
g5 ([0

Claim 5. Gy isa CDF.

As the limit distribution of the minima of Y is of inter-
est, we wish to study the limit distribution of maxima of
Z =Yy, — Y. Then the CDF of Z is given by G is

Gz(z)=P(Z<2)
=PY,-Y<2
=P(Y>Yn—-2
=1-Gy(Ym—2)

_/gl([

X

gx(0dx. (A2)

-2, Ym])

Vz € [0, Yy].
For, Gz, the corresponding maximum value, x* = Yy,.
We need the necessary conditions for the above distri-
bution to be in the domain of attraction of a GEV distri-
bution. By von Mises’ condition, if we can prove that G, is
positive and G, exists in some neighborhood of Y,, then
Gz is in domain of attraction of G,.

Proof LetX € R"and g7 (0.Y,y —2]) =D (Y —2) be a
n-manifold with a boundary oD (Y;, — z). Then,
G,(z) = d / g5 X)dX
2 Jgr ([r,-arl)
d / I
=—|[1- gz (X)dx
dz l g ([0.Y,~2]) X ]
d / S
=—— g2 (X)dx, (A.3)
dz D(Y,,~z) X

above, v, = (Yz 2 is the Eulerian velocity of the bound-
ary, n is the outward unit normal, dS is the surface element
in R% and dX = ndS.

Since, g%gX(;() =
@) = / G @V, - dE (A.5)
oD(Y,,~z)
Claim 6: G, exists.
G//( ) _Gl (Z)
d -
== gx(X)v, - dX. (A.6)
dz Jop(v,,—z)

Since, 0D (Y,, — 2) an (n — 1)-closed manifold, that is,
(n — 1)-manifold without a boundary, we use the gen-
eral statement of the Leibniz integral rule to compute the
second order derivative,

—G' 7(2)
- i
dz Jop(v,,—z)

= / iy (dx [gx®)Vp - dX])
oD(Y,,—z)

GII(Z)

gxX)Vy - dZ
(A7)

where d, f is the exterior derivative of f w.r.t space vari-
ables only, Vv = 3—: is the vector field of the velocity and iy

denotes the interior product with v.

Thus, it can be seen that G is in the maximum domain
of attraction of a GEV distribution iff:

1. D(Y,—2) is
oD (Y, — 2),

2. The Eulerian velocity of the boundary v, =
exists,

3. dy [gx(R)V, - dZ] exists, and

4. iy (dy [gxX)Vp - dX|) exits.

an n-manifold with a boundary

dn(Y,,—z)
dz



