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Abstract6

This work compares the performance of 3 ocean model frameworks that currently produce7

outputs of the ocean properties specific to the US Caribbean ocean; the Global Ocean Forecast8

System (GOFS), US Navy Coastal Ocean Model for the American Seas (AMSEAS), and the9

Daily Global Physical Bulletin (PSY4). Separate comparisons are done for the ocean properties10

in the open ocean and the nearshore regions. For the open ocean, the model outputs are compared11

with the AVISO satellite altimetry data for the sea-surface height anomaly (SSHA), the OSCAR12

data for surface current velocities, and the G1SST satellite data for sea-surface temperature (SST).13

For the nearshore analysis, the model outputs are compared with in-situ buoy measurements and14

HOBO logger data in the nearshore regions. Our analysis shows that the PSY4 produces the15

most realistic outputs of SSHA and surface current velocities in the open ocean, whereas all the16

models produce a strong correlation in terms of the seasonal variability of the surface temperature17

when compared to the G1SST data. The AMSEAS model, despite being a fine resolution regional18

model, under-performs in terms of the surface current velocity outputs in the open ocean due to the19

influence of the simulated submesoscale turbulence on the mesoscale variability. In the nearshore20

regions, none of the models produce agreeable outputs on the SSHA and current velocities. These21

findings provide useful insight on the applicability of the model outputs for various operations22

that require oceanographic data specific to the US Caribbean ocean.23

1 Introduction24

The coastal ocean surrounding the US Virgin Islands (VI) and Puerto Rico (PR) boasts vibrant ma-25

rine ecosystems. Many of the drivers regulating the ecological processes in the coastal ecosystems of26

the region are strongly influenced by the physical and thermodynamic variables of the surrounding27

coastal waters. For example, larval transport in the coastal ocean is influenced by large-scale pro-28

cesses like O(100 km) mesoscale eddies, as well as small-scale processes like surface gravity waves,29

buoyancy-driven flows, atmospheric fluxes and both surface and internal tides [Pineda et al., 2007].30

Furthermore, the resilience of coral reef ecosystems can be impacted by a variety of factors like the31

seasonal variability of benthic temperature, the sedimentation rate and mechanical stress produced32

by surface waves [Pineda et al., 2007]. A necessary step towards understanding the factors that fa-33

cilitate or hamper the health and resilience of coastal ecosystems, is to have realistic estimates of34
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the circulation and thermodynamic characteristics of the surrounding ocean. Due to the complexity35

of the instrumentation involved in obtaining 3-dimensional (3D) gridded data on the physical and36

thermodynamic properties of the ocean, characterizing the ocean state and circulation is done using37

computational ocean models coupled with data assimilation algorithms.38

A numerical ocean circulation model with finite difference algorithm uses numerically discretized39

prognostic equations that advance the momentum and scalar variables with respect to time. The grid40

resolution of a numerical ocean model limits the dimension of the smallest circulation features that41

a model can resolve. For example, a horizontal resolution of 1 km permits the model to represent42

eddies with a minimum diameter of roughly 10 km. The inability to resolve turbulent fluxes at scales43

lower than the permitted scale based on the grid resolution, creates a bias in the simulated ocean prop-44

erties. This bias accumulates over time, producing unrealistic outputs of the momentum and scalar45

fields. This problem is partially mitigated by constraining and adjusting the model outputs towards46

the observed ocean properties using data assimilation [Marchesiello et al., 2001, Hoteit et al., 2018].47

Such a combined framework of ocean models and data assimilation algorithms had been successfully48

used to hindcast ocean circulation and scalar variability at various coastal and open ocean regions49

[Chassignet et al., 2007, Rowley and Mask, 2014]. Notable forecast systems in operation include the50

Global Ocean Forecast System (GOFS), the Relocatable nowcast/forecast system (RELO), the Global51

Ocean Physical Analysis at 1/120 (PSY4) by Mercator Ocean, Bluelink by the Commonwealth Sci-52

entific and Industrial Research Organization (CSIRO) for Australia, Forecasting Ocean Assimilation53

Model (FOAM) for the UK, and the Topaz Monitoring system for Norway [Hernandez et al., 2009,54

Madec, 2008, Rowley and Mask, 2014, Oke et al., 2008, Storkey et al., 2010]. Each modeling frame-55

work implements a unique set of parameters including but not limited to the vertical grid structure,56

advection and diffusion algorithms, grid resolution and subgrid mixing parameterizations. Depend-57

ing on the region of interest, these models use locally available observed data for assimilation and the58

surface flux outputs from atmospheric models to produce 3D gridded outputs of the ocean state and59

circulation.60

As part of an international research initiative by the Global Ocean Data Assimilation Experiment61

(GODAE), a comparative analysis between the different ocean forecasting systems have revealed the62

strengths and weaknesses of the different modeling frameworks. These strengths and weaknesses63

vary based on the model parameters, data used for assimilation, and the region of interest. These64

comparative studies, conducted in the Tasman and Coral seas and along the east coast of Australia,65

indicate that the Bluelink (CSIRO) provides the most realistic sea-surface height (SSH) variability,66

whereas FOAM (UK) provides the most realistic subsurface temperature and salinity specific to the67

Tasman and Coral Sea region [Oke et al., 2012].68

For our region of interest, which is the US Caribbean ocean surrounding Puerto Rico (PR) and the69

Virgin Islands (VI), there is currently no operational regional ocean modeling framework available70

to aid to our ongoing marine research. Our long-term goal is to develop a coastal regional ocean71

forecasting system for the US Caribbean ocean capable of resolving the flow around the relatively72

small islands in the region with a sufficiently fine resolution that permits O(1 km) submesoscale73

eddies over a domain large enough to permit the modeling of O(100 km) mesoscale eddies. As an74

example, the blue rectangle in figure 1 depicts a typical domain for the proposed regional ocean model75

for the US Caribbean ocean containing PR and the VI. Such a regional model will require 3D gridded76

open-ocean data on the temperature, salinity and current velocities as boundary conditions. Since77

the 3D gridded observational data in the open ocean is impossible to obtain due to complexities of78

the instrumentation involved, we have to rely on the available coarse resolution model frameworks79

that produce simulated 3D outputs of the ocean properties in the open-ocean surrounding the islands.80

Therefore, it is necessary to compare the gridded outputs from existing model frameworks with the81

available observational datasets for PR and the VI and to determine the strengths and weaknesses of82

each model framework.83

In this work, we do a comparative analysis of the performance of 3 ocean model frameworks84
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that provide 3D gridded data for the coastal ocean surrounding the VI and PR; the Global Ocean85

Forecasting System (GOFS), the Navy Coastal Ocean Model for American Seas (AMSEAS), and86

the Global Ocean Physical Analysis at 1/120 (PSY4) by Mercator Ocean [Hernandez et al., 2009,87

Madec, 2008, Rowley and Mask, 2014]. While the PSY4 and GOFS are global ocean forecasting88

systems at a resolution of 10 km, the AMSEAS is a regional ocean forecasting system that operates89

3 separate grids for the Alaskan seas, the US East, and the American Seas (AMSEAS) covering the90

Gulf of Mexico and the Caribbean Sea at a resolution of 3 km. For assimilating observed data, both91

the GOFS and the AMSEAS regional system use the NCODA [Cummings and Smedstad, 2013],92

whereas the PSY4 uses the SEEK filter [Brasseur and Verron, 2006].93

We evaluate the performance of these model frameworks by comparing their outputs with avail-94

able observational data on the sea-surface height anomaly (SSHA), surface current velocities, seasonal95

variability of the sea-surface temperature (SST) and the in-situ benthic temperature. Section 2 pro-96

vides a brief overview of the circulation in the Caribbean Sea with a particular focus on the coastal97

circulation of the US Caribbean. Section 3 provides a brief overview of the currently available model98

frameworks for the islands in the region, namely the PSY4, GOFS and the AMSEAS. Section 4 pro-99

vides an overview of the available observational data and the nearshore ocean properties for the US100

Caribbean. In section 5, we explain the different metrics and analyses used to evaluate the model101

performance by comparing simulated outputs with the observed data mentioned above. Section 6 dis-102

cusses the results from the analysis of model performance and section 7 summarizes our conclusions103

regarding which circulation model frameworks are appropriate for use in the US Caribbean ocean.104

2 Ocean Circulation Surrounding Puerto Rico and the Virgin Is-105

lands106

Puerto Rico and the Virgin Islands lie along the northern arc of the Antilles islands, a group of islands107

bordering the northeastern rim of the Caribbean Sea (figure 1). The ocean circulation surrounding108

these islands is largely influenced by the westward inflow of the Atlantic gyre circulation into the109

Caribbean Sea through the passages between the islands of the lesser Antilles. The Caribbean Current,110

spanning the southern portion of the Caribbean Sea between latitudes 130 and 160 N, is largely driven111

by the inflow of the Atlantic Meridional Overturning Circulation (AMOC) through the Windward and112

Leeward island passages [Johns et al., 2002]. This inflow of the AMOC forms approximately two-113

thirds of the net inflow from the Atlantic Ocean into the Caribbean Sea. The remaining one-third of114

the inflow occurs between the passages of the islands in the Greater Antilles; the Anegada-Jungfern115

passage complex to the east separating the Virgin Islands from the Lesser Antilles beginning with116

Anguilla and St. Maarten, and the Mona passage to the west between Puerto Rico and Hispaniola117

[Johns et al., 2002]. The Anegada passage facilitates the flow of mid-depth Atlantic water into the118

Virgin Islands basin, and the Jungfern passage allows the flow of the Atlantic water into the Caribbean119

Sea [Fratantoni et al., 1997]. The strength of the Caribbean current is geostrophically enhanced by120

the intensification of the north-south density gradient due to the freshwater flux from the Orinoco and121

Amazon rivers [Chérubin and Richardson, 2007]. This freshwater plume can move northwestward122

through the Caribbean Sea at times reaching the southern coastline of St. Croix of the VI, creating123

turbulent wakes in the offshore region of the northeastern coast of St Croix [Chérubin and Garavelli,124

2016]. The flow along the northern coastline of the Greater Antilles islands has been characterized125

as a discontinuous eddy field that transports warm water northwestward as it merges with the Florida126

current [Gunn and Watts, 1982]. Simulating the complexity of these features is beyond the capability127

of the currently operational global ocean models due to coarse resolutions. Therefore, it is necessary128

to develop a downscaled ocean circulation model with a resolution less than 1 km to realistically129

simulate the small-scale features and their impact on the mesoscale circulation.130
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3 Ocean Model Frameworks131

Currently, the model frameworks that provide simulated outputs of the coastal ocean circulation132

around PR and the VI are the GOFS [Hernandez et al., 2009], the AMSEAS [Rowley and Mask,133

2014] and the PSY4 [Madec, 2008]. Details on the parameters of these model frameworks are pro-134

vided in table 1.135

3.1 GOFS136

The Global Ocean Forecast System (GOFS1), created as part of the Global Ocean Data Assimila-137

tion Experiment (GODAE) [Hernandez et al., 2009], uses the Hybrid Coordinate Ocean Model (HY-138

COM) [Chassignet et al., 2007]. The HYCOM is a primitive equation general circulation model139

using a vertical coordinate system that shifts from isopycnal coordinates in the stratified open ocean140

to terrain-following coordinates in the shallow coastal regions and z-level coordinates in the upper141

ocean boundary layer [Chassignet et al., 2007]. The horizontal discretization in GOFS is based on an142

orthogonal curvilinear coordinate system with a horizontal grid resolution of 1/120. The surface forc-143

ing used by GOFS is obtained from the Navy Global Environmental Model (NAVGEM) [Whitcomb,144

2012]. There is no tidal forcing implemented in the GOFS model framework. Detailed specifics on145

the GOFS system are provided in table 1.146

The absence of realistic turbulent fluxes that occur at scales smaller than the grid resolution of147

an ocean model, results in a bias in the simulated ocean properties from the model outputs. To mit-148

igate this bias, observed data are assimilated into the model outputs using various data assimilation149

techniques. The GOFS uses the Navy Coupled Ocean Data Assimilation (NCODA), a 3D multi-150

variate optimum interpolation scheme [Cummings and Smedstad, 2013] that assimilates all quality-151

controlled observational data including satellite SST, altimetry derived SSHA, microwave-derived sea152

ice concentration, in-situ temperature and salinity measurements from ships, drifters, buoys, profiling153

floats, XBTs (Expendable Bathythermographs), CTDs (Conductivity, Temperature and Depth Sen-154

sors) and gliders. The NCODA version 3.1 generates subsurface temperature and salinity fields from155

the SST and SSHA using an Improved Ocean Synthetic Profile (ISOP) technique [Helber et al., 2013],156

and assimilates the subsurface fields into the model outputs using 3D Variational Data Assimilation157

(3DVAR, Barker et al. [2004]). The NCODA is tuned to process the observed data and constrain the158

model outputs towards the observed data on the order of spatial scales equivalent to or larger than the159

O(100 km) mesoscale [Carrier et al., 2019].160

The GOFS provides 3-hourly instantaneous outputs on the momentum and scalar properties of161

the global oceans. In our analysis, we use the previously simulated hindcast outputs from the GOFS162

model in the Northern Caribbean sea, averaged over 1 day. The outputs can be obtained from the163

HYCOM server.164

3.2 PSY4165

The Daily Global Physical Bulletin at 1/120 (PSY42), maintained by the non-profit company Mercator166

Ocean, uses version 3.1 of the NEMO (Nucleus for European Modeling of the Ocean) [Madec, 2008].167

The NEMO uses a tripolar ORCA grid [Madec and Imbard, 1996] with a horizontal resolution of168

1/120. The vertical coordinate is discretized into 50 levels with resolution increasing from 1 m near169

the surface to 450 m at the bottom. The PSY4 uses atmospheric forcing provided by the European170

Center for Medium Range Weather Forecasts (ECMWF) with a sampling time of 3 hours, and does171

not use any tidal forcing. For the data assimilation, the PSY4 uses the SEEK filter, which is a reduced-172

1https://tds.hycom.org/thredds/catalog.html
2https://marine.copernicus.eu/
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order Kalman filter with a 3D multivariate modal decomposition of the background error and a 7-day173

assimilation cycle [Brasseur and Verron, 2006].174

The PSY4 provides hourly hindcast data on the momentum and scalar properties of the global175

oceans. We use the daily averaged hindcast outputs from the PSY4 in the Northern Caribbean Sea,176

which can be accessed from the Copernicus Marine Service server.177

3.3 AMSEAS178

The Relocatable ocean nowcast/forecast system [Rowley and Mask, 2014], operated by the Naval179

Oceanographic Office (NAVOCEANO), uses the Navy Coastal Ocean Model (NCOM3) at a hori-180

zontal resolution of 1/360, along with the NCODA system for data assimilation. The NCOM is a181

primitive equation baroclinic, hydrostatic, Boussinesq ocean model with a free surface [Barron et al.,182

2006]. It uses an orthogonal curvilinear grid for horizontal discretization. The vertical grid used183

by RELO consists of a number of terrain following σ coordinate levels from the surface, and Carte-184

sian z-levels below (table 1). The NCOM is used for regional simulation within the Alaskan domain185

covering the Gulf of Alaska and the Northeast Pacific, the US east coast (USEAST) and the Amer-186

ican seas (AMSEAS) spanning the Gulf of Mexico and the Caribbean Sea (figure 2). The NCOM187

AMSEAS uses the 15 km application of the Navy Coupled Ocean/Atmoshpere Mesoscale Prediction188

System (COAMPS) for surface forcing [Hodur, 1997], and the GOFS model outputs at 1/120 resolu-189

tion [Chassignet et al., 2007, 2009] for boundary conditions. Tidal forcing in the NCOM AMSEAS190

regional setup is provided by the OTIS tidal package [Egbert and Erofeeva, 2002].191

While the GOFS and PSY4 are global ocean forecast models, the NCOM AMSEAS is a regional192

model setup that uses the GOFS model outputs as boundary conditions and the NCODA for assimilat-193

ing the observed data. The AMSEAS provides 3-hourly instantaneous outputs on the momentum and194

scalar properties in the Caribbean sea. In our analysis, we use the previously simulated oceanographic195

outputs by the AMSEAS model in the US Caribbean ocean, averaged over 1 day. The AMSEAS out-196

puts are available on the NOAA NCOM server.197

4 Observed Data198

Gridded observed data available for the physical and thermodynamic properties of the Caribbean Sea199

are the sea-surface height anomaly (SSHA) produced by Archiving, Validation and Interpretation of200

Satellite Oceanographic data (AVISO, AVISO-Altimetry [1996], [Guerrero et al., 2004]), sea-surface201

temperature (SST) from the Group for High Resolution Sea Surface Temperature (G1SST, section202

4.3), and surface current velocity estimates from the Ocean Surface Current Analysis Real-time (OS-203

CAR, Bonjean and Lagerloef [2002], Johnson et al. [2007]).204

4.1 AVISO205

AVISO provides gridded satellite altimetry data products including SSHA and geostrophic velocities206

at a spatial resolution of 1/40 of latitude, and a temporal resolution of 1 day. The AVISO SSHA data207

is prepared by merging the altimetry measurements from altimeters aboard the TOPEX/Poseidon, En-208

visat, Jason-1 and OSTM/Jason-2, satellite platforms and estimated with respect to a 20-year average209

[Blanc et al., 1996, Guerrero et al., 2004]. In the open ocean, away from the influence of shallow210

coastal bathymetry, the SSHA variability is governed by wind-driven circulation, atmospheric pres-211

sure and internal density gradients. Hence, the SSHA variability in the open ocean is an important212

source of information for deducing the subsurface ocean characteristics. Detailed specifics of the213

AVISO data are provided in table 2.214

3https://www.ncei.noaa.gov/products/weather-climate-models/fnmoc-regional-navy-coastal-ocean
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4.2 OSCAR215

OSCAR is a NASA funded research project that provides surface current velocities averaged over216

the top 30 m of the ocean and is available at 5-day intervals. The OSCAR surface current data is217

developed by interpolation and analysis of SSHA, surface wind velocity and SST data obtained from218

satellite and in-situ measurements. The governing equations used to compute these velocities are219

based on a quasi-linear and quasi-steady approach with geostrophic balance, Ekman–Stommel shear220

dynamics and a complimentary term from the surface buoyancy gradient [Bonjean and Lagerloef,221

2002, Johnson et al., 2007]. The OSCAR data is available with a horizontal resolution of 1/30 and222

averaged over 5 days. The OSCAR provides reasonable estimates of the surface current velocities223

in the tropical open ocean [Sikhakolli et al., 2013]. Detailed specifics on the OSCAR dataset are224

provided in table 2.225

4.3 G1SST226

The Global 1 km Sea Surface Temperature Analysis (G1SST), maintained by the Group for High227

Resolution Sea Surface Temperature (GHRSST), uses satellite and in-situ data of ocean surface tem-228

perature and produces daily averaged SST data over a grid with 1 km resolution using a 2-dimensional229

variational data assimilation (2DVAR) algorithm [Chao et al., 2009]. The G1SST uses SST data from230

the Geostationary Operational Environmental Satellite (GOES), Advanced Very-High Resolution Ra-231

diometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Spinning Enhanced232

Visible and Infrared Imager (SEVIRI), Advanced Microwave Scanning Radiometer-EOS (AMSRE),233

Multi-Functional Transport Satellite 1R (MTSAT-1R) radiometer, and in-situ data from moored buoys234

and drifters in its analysis. The G1SST data is available for the Caribbean Sea and nearshore areas in235

gridded format with a sampling time of one day. Detailed specifics on the G1SST dataset are provided236

in table 2.237

4.4 Nearshore In-Situ Measurements238

While the open ocean circulation is governed by wind forcing and quasi-geostrophic (QG) instabili-239

ties, the nearshore circulation is mostly characterized by wind forcing, boundary-layer effects, surface240

gravity waves, and the impact of shallow coastal bathymetry on open ocean mesoscale flow [Vic et al.,241

2015, Pineda et al., 2007]. For a numerical model to realistically simulate these nearshore small-scale242

processes, the resolution of the model has to be sufficiently fine. Due to a finer resolution of 3 km243

in the AMSEAS model, the AMSEAS permits a more realistic representation of the complex coastal244

bathymetry compared to the GOFS and PSY4. Moreover, the fine resolution of the AMSEAS also245

enables it to partially resolve the O(10 km) submesoscale turbulence. Therefore, it is important to246

explore whether there is any improvement of model performance due to the fine resolution of the247

AMSEAS, compared to the coarse resolution of the GOFS and PSY4 in the nearshore regions.248

The resolution of the OSCAR and AVISO datasets are too coarse to capture the nearshore vari-249

ability associated with shallow bathymetry. Moreover, the OSCAR dataset does not take the coastal250

bathymetry into account in the computation of the current velocities. Therefore, a comparison of251

the model performance for the nearshore surface current velocity will require in-situ data measured252

in the nearshore areas of the VI and PR. This available in-situ data includes moored-buoy measure-253

ments of surface currents and surface temperature by the Caribbean Coastal Ocean Observing System254

(CariCOOS), and benthic temperature measurements by HOBO temperature data loggers at various255

coral reef sites near the coastline as part of the Territorial Coral Reef Monitoring Program (TCRMP)256

[Smith et al., 2015]. The Caribbean Coastal Ocean Observing System (CariCOOS) maintains a num-257

ber of moored buoys in coastal regions throughout the US Caribbean [Morell et al., 2015]. The buoys258

provide hourly data on the surface current velocities measured by Acoustic Doppler Current Profil-259

ers (ADCPs) and surface temperature measured by CTDs. In our analysis, we use the data from 4260
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different buoys; the Ponce buoy (17.860 N, −66.520 W), San Juan buoy (18.470 N, −66.10 W), St261

John buoy (18.250 N, −64.760 W) and the Vieques buoy (18.260 N, −65.460 W) (figure 3). The262

temperature at each of these locations were measured at a depth of 1 m below the water line. The263

ADCP current data at these locations were measured at multiple bins placed 1 m apart along a vertical264

profile at each location. The shallowest bin is at 2 m from the surface, whereas the deepest bin is at265

the benthic depth of the location which is 19 m at Ponce, 32 m at San Juan, 44 m at St John, and 30266

m at Vieques. The current data that we used in our analysis is a depth average of all the data collected267

at the bins for each location up to a depth of 30 m from the surface. We chose a depth of 30 m for268

the depth averaging because the mixed layer in the US Caribbean region varies from 20 m in summer269

to 60 m in the winter. The model outputs of the current velocities were obtained as a vertical average270

within the surface mixed layer.271

As part of the Territorial Coral Reef Monitoring Program (TCRMP), a program to monitor the272

status of coral reefs in the US Virgin Islands, HOBO data loggers were used to measure benthic273

temperature hourly at coral reef sites across the islands [Smith et al., 2015]. In this study, we compare274

the seasonal temperature variability of TCRMP sites at Jacks Bay, St. Croix, and two offshore Cays275

in St. Thomas, Savana (18.340 N, −65.080 W) and St. James (18.290 N, −64.830 W; figure 3) with276

the benthic temperature variability from the model outputs at the same locations. The HOBO loggers277

were placed at the benthic depths of 27 m at Jacks Bay, 16 m at Savana, and 13 m at St James.278

5 Validation Techniques279

We evaluate and compare the performance of the models with respect to the remotely estimated open-280

ocean data and the nearshore in-situ data in the US Caribbean in terms of the simulated SSHA, current281

velocities and the temperature. Due to sparse availability of data on the interior temperature and282

velocity fields in the Caribbean Sea, a comparison of the model derived interior fields with observed283

data is not possible. Therefore, we use the available gridded SSHA and surface current velocity284

datasets from AVISO and OSCAR respectively, and in-situ temperature data from CariCOOS and285

TCRMP to evaluate the accuracy of the individual model frameworks for the US Caribbean ocean.286

Our analysis is based on assessing the model performance in terms of the oceanographic properties in287

the open ocean and nearshore regions that will be useful for operational oceanography stakeholders288

in the US Caribbean islands (i.e. scientists, managers, fishermen and captains), and have the requisite289

observed or in-situ data for comparative analysis. As such, we have identified the open-ocean SSHA,290

mesoscale eddies, both open-ocean (100 km away from the coastlines, depth ∼4 km) and nearshore291

(less than 1 km from the coastlines, depth ∼0.5 km) surface currents, and the surface and benthic292

ocean temperature for our analysis.293

The coastal ocean circulation surrounding the islands is heavily influenced by the interaction of294

shallow coastal bathymetry with the mesoscale eddy variability in the open ocean. Mesoscale eddies295

can be identified in the AVISO SSHA as large meanders of O(100 km) diameter with a spatial gradient296

in the SSHA along their periphery. The resolution of the AMSEAS, GOFS and PSY4 models are297

adequate to resolve the mesoscale eddies in the Caribbean Sea. Hence, we compare the spatial extent298

of the O(100 km) mesoscale features in these model outputs with the observed features in the AVISO299

data using the following methods.300

5.1 SSHA Analysis301

We compare the spatial and temporal variability of SSHA from the AVISO and the model outputs in302

2016 using plan view plots and Hovmöller diagrams respectively. A plan view plot shows the spatial303

variability of an ocean property at a fixed time, whereas the Hovmöller diagram shows the temporal304

variability of the property along a fixed transect. Using the plan view plots, we examine the mesoscale305

variability at 4 randomly chosen dates in March, June, October and December 2016 (figure 6). At306
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each of these dates, we identify the O(100 km) mesoscale features in the AVISO SSHA and find out307

whether the model outputs show similar features at the same locations.308

Using the Hovmöller diagrams, we plot the SSHA from the AVISO data and model outputs along309

a meridional transect (figure 1) in the Anegada passage over a 1-year period in 2016 (figure 7). The310

Anegada passage is chosen because the flow through the Anegada passage largely governs the local311

circulation around PR and the VI [Fratantoni et al., 1997]. A comparison of the temporal variability of312

SSHA in this region can provide valuable insight on the capability of regional ocean models to resolve313

the local flow around the islands. Using a Hovmöller diagram, we study the temporal variability in314

the meridional gradient of the AVISO SSHA in the Anegada passage over a 1-year period in 2016.315

The temporal variability of the SSHA in the Anegada passage is further studied using the power316

spectral density (PSD) computed from the time series of the SSHA, averaged over the zonal range317

from 160 to 200 (figure 8). We examine the PSD plot to compare the magnitude of the variance of318

SSHA at different frequencies corresponding to the large and small temporal scales.319

5.1.1 Okubo-Weiss parameter320

We assess the mesoscale eddy variability from the modeled and observed SSHA using the Okubo-321

Weiss parameter, a measure of the strength of the vorticity field relative to the strain field [Isern-322

Fontanet et al., 2003, Okubo, 1970]. The Okubo-Weiss parameter W is given as323

W = S2
n + S2

s − ζ2 (1)

where Sn = ∂xu−∂yv is the compressive strain, Ss = ∂xv+∂yu is the shear strain, and ζ = ∂xv−∂yu324

is the relative vorticity. The variables u and v are the barotropic velocities derived from the SSHA. A325

mesoscale eddy is defined as a closed region of O(100 km) diameter where W ≤ −0.2σ where σ is326

the spatial standard deviation of theW field corresponding to the same sign of ζ [Isern-Fontanet et al.,327

2003]. Therefore, in order to separately identify the cyclonic and anti-cyclonic mesoscale eddies, we328

calculate the standard deviation σ separately for the regions corresponding to ζ > 0 and ζ < 0.329

The strain field is defined as a region where W > 0.2σ, implying that the strain field dominates the330

vorticity field by strength.331

5.1.2 Taylor Diagram332

The relative performance of a model output is best evaluated by the extent of the statistical deviation333

of each output from the observed data and the correlation of each output with the observed data.334

Taylor diagrams provide an effective means to visualize the statistical deviations and correlations335

of the model outputs. A Taylor diagram [Taylor, 2001] is a polar coordinate representation of the336

following statistical measurements: root mean square deviation (RMSD) of the model output from337

the observed data, cross-correlation (R) of the model output and the observed data, and the standard338

deviation (σ) of the model output. The RMSD of the model output with respect to the observed data339

is calculated as340

RMSD =

{
1

N
ΣN

n−1

[
(hn − h)− (on − o)

]2}1/2

(2)

where h and o are the model output and the observed dataset respectively and N is the sample size.341

The overline represents the mean.342

The standard deviation of the model output is calculated as343

σ =

√
1

N
ΣN

n=1(hn − h)2 (3)

The cross-correlation of model output with the observed data is calculated as344

R =
1

σhσo
.

1

N
ΣN

n=1(hn − h)(on − o) (4)
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where σh and σo are the standard deviations of the model output and the observed data respectively.345

The RMSD, σ and R satisfy the following relationship:346

RMSD2 = σ2
h + σ2

o − 2σhσoR (5)

In a Taylor diagram (figure 4), each model output and the observed data are represented by specific347

markers. The observed data marker lies at the base line where the correlation is 1, and the radial348

distance of each model output marker from the observed data marker denotes the RMSD. The349

distance of each marker from the center of the radial axis denotes the standard deviation σ of the350

model output or observed data. The arc length along the azimuthal axis (circumference) denotes the351

cross-correlation coefficient between the model output and the observed data. The performance of the352

model is interpreted from the relative distance of the model’s marker to the marker for the observed353

data. A larger radial distance from the origin implies a higher standard deviation, indicating that354

the model output contains more small-scale variability and is noisier than the observed data [Oke355

et al., 2012]. A shorter distance of the model output marker from the observed data marker implies356

a lower RMSD and a higher correlation with respect to the observed data. Both higher correlation357

and lower RMSD can be interpreted as better model performance. Henceforth, the assessment of the358

model performance is based on how similar the model output is to the observed data, and therefore is359

confined to the resolution of the available observed data.360

We evaluate the model performance in terms of the SSHA, surface current velocities and sea-361

surface temperature (SST) by comparing the statistical deviations and cross-correlations of the model362

outputs with respect to the gridded satellite data. For the SSHA data, we conduct two separate analysis363

using Taylor diagrams for the model outputs in the Caribbean Sea and along a meridional transect in364

the Anegada passage (figure 1). Prior to the Taylor diagram analysis, the modeled SSHA outputs and365

the AVISO dataset are prepared in the following manner: (i) at each sampling time, the model output366

is re-mapped to the horizontal latitude-longitude grid of the AVISO dataset; (ii) for each model output367

and the AVISO dataset, the 1-dimensional arrays along the time-axis at each of the grid points on the368

re-mapped domain, are concatenated to form a single 1-dimensional flattened array; (iii) Standard369

deviation, RMSD and cross-correlation coefficients were calculated using the flattened 1-dimensional370

arrays of the model outputs and the observed datasets.371

5.1.3 Power Spectral Density (PSD)372

The contribution of submesoscale and quasi-geostrophic mesoscale turbulence to the variance of the373

momentum and scalar fields can be estimated using the power spectral density (PSD) of the data374

as a function of the wavenumber. With enhanced spatial resolution in the satellite observations and375

numerical models, the variance of different oceanographic properties like the sea-surface temperature376

(SST), current velocity or the sea-surface height anomaly (SSHA) had been discovered to be mostly377

governed by O(10 km) submesoscale turbulence along with O(100 km) mesoscale quasi-geostrophic378

turbulence [Callies and Ferrari, 2013]. In numerical models with a coarse resolution of O(10 km), the379

velocity variance is mostly dominated by quasi-geostrophic mesoscale turbulence, which results in380

the PSD being proportional of κ−3 where κ is the wavenumber. In contrast, submesoscale turbulence381

results in the velocity and tracer variances to be proportional to κ−2, which had been noted in fine-382

resolution glider measurements and numerical ocean models [Callies and Ferrari, 2013, Brannigan383

et al., 2015, Castro et al., 2017]. On a logarithmic plot of the PSD as a function of the wavenumber,384

submesoscale turbulence results in a flatter spectral slope compared to mesoscale turbulence.385

We compared the spatial variance of the current velocities, SSHA and SST from the model outputs386

at different spatial scales using the PSD (figure 5). For each data, the PSD is calculated as a function387

of the longitudinal wavenumber, followed by averaging over the entire range of latitudes and sampling388

times available in the data.389
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5.2 Surface Current Velocities390

Model performance of the simulated surface current velocities is assessed for both the open ocean391

and nearshore coastal waters. Open ocean refers to the regions of the Caribbean Sea surrounding392

the islands where the deep bottom bathymetry has negligible impact on the surface flow. Nearshore393

refers to the regions near the coastline where the flow is governed by the interaction of shallow coastal394

bathymetry and the open-ocean mesoscale flow. For the open ocean, we use Taylor diagrams to395

compare the statistical deviations and correlations of the simulated current velocities with respect to396

the OSCAR current velocities at the surface. However, due to coarse spatial resolution and lack of397

consideration of shallow bathymetry in the computation of the current velocities, the OSCAR data398

is unreliable for the comparative analysis of surface currents in the nearshore areas. Therefore, we399

compare time-series data of in-situ surface current velocity measured by a subset of the CariCOOS400

buoys moored near the coastline with the model outputs at the same locations (figure 3). Details on401

the CariCOOS buoy data is discussed in section 4.4. For both the open ocean and nearshore analysis,402

we do a comparison of the statistical variability of the surface currents using Taylor diagrams. For403

the open ocean Taylor diagram, (i) the model outputs are re-mapped to the grid corresponding to404

the OSCAR data; (ii) the OSCAR data and model outputs are flattened to 1-dimensional arrays by405

concatenating all the time series of data at each and every grid point in the re-mapped domain. For the406

nearshore analysis, we construct separate Taylor diagrams for the time series of the surface current407

data at 4 different buoys at Ponce, San Juan, Vieques and St John respectively.408

The temporal variability in the nearshore surface currents is further studied by comparing the409

magnitude of the variance of the current velocities at different time scales using PSD plots of the410

velocity variance from the buoy data compared with the model outputs at the same locations. We411

study the PSD plots from 4 different CariCOOS buoys; Ponce, San Juan, Vieques and St John (figure412

13).413

5.3 Surface Temperature Variability414

Marine biological production in the upper ocean is heavily influenced by the seasonal warming and415

cooling of the surface boundary layer due to surface heat fluxes [Behrenfeld and Falkowski, 1997].416

The summertime warming and wintertime cooling of the boundary layer had been noted in both417

observations and numerical simulations [Behrenfeld and Falkowski, 1997, Behera et al., 2000]. Since418

the SST is a good representative of the bulk temperature of the upper ocean boundary layer [Price419

et al., 1986], a comparison of the seasonal variability of the modeled SST provides an insight on the420

capability of the models to accurately represent the seasonal warming and cooling of the boundary421

layer. We conduct two separate comparisons for the open ocean and nearshore SST variability. For422

the open ocean, we (i) re-map the SST data from the model outputs to the G1SST domain, then (ii)423

flatten the re-mapped data by concatenating the time arrays at each and every grid points in the re-424

mapped domain. These flattened arrays are used to prepare a Taylor diagram to compare the standard425

deviation, RMSD and cross-correlation of the model outputs with respect to the G1SST data in the426

Caribbean Sea.427

We further compare the open-ocean SST variability using a PSD plot of the model outputs and428

the G1SST data. The PST plot for the SST is prepared as a function of the longitudinal wavenumber,429

and is averaged over the full range of latitudes and sampling times in the data (figure 5).430

For the nearshore analysis, we compare time series data of the temperature measured at the Cari-431

COOS buoys and HOBO loggers located near the coastline with model outputs at the same locations.432

The CariCOOS buoys measure the surface temperature, whereas the HOBO loggers measure benthic433

temperature at nearshore coral reef sites. We evaluate the model performance by comparing prob-434

ability density functions (PDF) of the model error, where the model error is the absolute value of435

the difference between model output and the buoy data. The x-axis on the PDF plots denotes the436

maximum value of each bin that corresponds to the range of error with a bin size of 0.1 units (figure437
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15,16). The y-axis in the PDF plots denotes the number of points lying within each error bin divided438

by the total number of points in the time series. The relative performance of the model outputs is439

determined by estimating which model has the highest percentage of points in the bin corresponding440

to the lowest error.441

To compare the seasonal variability of the benthic temperature in the nearshore regions, we select442

three coral reef sites with the available HOBO logger data at Jacks Bay, Savana and St James (figure443

3). We compare the temperature measurements at these sites with the model outputs at the same444

locations using the PDF calculated from the errors in modeled temperature outputs (figure 16).445

6 Results446

Our analysis shows that in the open ocean regions of the US Caribbean, the cross-correlation of the447

SSHA and surface currents between the model outputs and observed data is highest for the PSY4 and448

lowest for the AMSEAS. The AMSEAS model, despite having a finer resolution, does not adequately449

simulate the mesoscale flow in the open ocean regions. In the nearshore regions, none of the model450

outputs show a strong correlation with the in-situ buoy measurements of the surface current velocities.451

The SST from both the open-ocean and nearshore model outputs strongly correlate with the observed452

data in terms of the seasonal variability. The results are discussed in detail below.453

6.1 SSHA454

Model performance of the SSHA variability is compared in the Caribbean Sea and along a meridional455

transect in the Anegada Passage using two separate Taylor diagrams (figure 4a,4b) over a 1-year long456

period in 2016. The Taylor diagram of the SSHA in the Caribbean Sea indicates that the highest457

cross-correlation (0.81), lowest RMSD (0.59) and lowest standard deviation (0.08) between mod-458

eled and observed SSHA were found for the PSY4. The AMSEAS and GOFS SSHA form similar459

correlation coefficients of 0.65 and 0.62 with the AVISO respectively. The standard deviations of the460

AMSEAS, GOFS and AVISO were 0.12, 0.11 and 0.08 respectively. One of the reasons for a larger461

standard deviation between 2 models with the same resolution, is the implementation of a weaker462

eddy viscosity which results in a stronger variance in the outputs [Ramachandran et al., 2013].463

The contribution to the variance of SSHA by the processes associated with different spatial scales464

is studied using a power spectral density (PSD) of the SSHA as a function of the wavenumber (figure465

5). A comparison of the PSD of the SSHA at different spatial scales shows that within a range of466

10 km to 100 km, the PSD of the AMSEAS SSHA has the highest magnitude, and is followed by467

the PSD of the GOFS, PSY4 and the AVISO SSHA (figure 5). The AMSEAS SSHA also shows a468

higher variance at scales larger than 100 km which is due to the combined influence of O(100 km)469

mesoscale eddies and radially coherent baroclinic tides of wavelength in the range of 100 km to 180470

km (figure 5) in the Caribbean Sea [Zaron, 2019]. The GOFS and PSY4 SSHA show a slightly higher471

variance compared to the AVISO data at scales larger than 100 km, which is synonymous with the472

higher peaks and deeper troughs of the mesoscale features in the GOFS and PSY4 outputs (figure 5a).473

The PSD curve for the AMSEAS SSHA shows a slope of κ−3 (κ is the wavenumber) at spatial scales474

near 100 km, but falls rapidly with a steeper slope at the lesser scales near 10 km. The slopes of the475

GOFS and PSY4 PSD are close to κ−4 and the AVISO PSD shows the steepest slope larger than κ−4.476

The steeper slopes of the wavenumber spectra associated with the SSHA indicates the dominance477

of mesoscale quasi-geostrophic turbulence and reduced influence of submesoscale turbulence in the478

GOFS, PSY4 and AVISO SSHA [Callies and Ferrari, 2013]. Since the AMSEAS model can partially479

resolve submesoscale features, it shows a relatively flatter slope in the SSHA PSD compared to GOFS,480

PSY4 and the AVISO data.481

In the Anegada Passage, standard deviations of the GOFS and PSY4 outputs from the AVISO482

SSHA were nearly equal at 0.035 (figure 4b). The RMSD and cross-correlation of the GOFS with483
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respect to the AVISO were 0.0375 and 0.6 respectively. The AMSEAS correlated negatively with484

the AVISO and had the highest standard deviation (0.096) and RMSD (0.11), indicating a weaker485

performance for simulating SSHA in the Anegada passage. The performance of the PSY4 and GOFS486

models in the Anegada passage were similar. An analysis of the model performance along a zonal487

transect in the Anegada passage (plot not shown) showed that the AMSEAS SSHA correlated with the488

AVISO with a coefficient of 0.3, whereas the PSY4 and GOFS showed cross-correlation coefficients489

of 0.65 and 0.45 respectively. We infer from this analysis that changing the orientation of the transect490

in the Anegada passage alters the values of the statistical quantities, but does not affect the relative491

performance of the model outputs.492

The SSHA contours in the plan view plots developed from the AVISO dataset shows prominent493

mesoscale features (figure 6). These notable mesoscale features in the AVISO data include the O494

(100 km) cyclonic eddy on 16th March at the southern edge of the contour plot within latitudes 13.50
495

- 150 N; the O(100 km) anti-cyclonic eddy near the southern edge within latitudes 13.50 - 150 N on496

13th June and the O(100 km) cyclonic eddy near the southern edge within latitudes 13.50 – 150 N497

on 17th October (figure 6). The clear display of these features in the three model outputs indicates498

the likelihood that the GOFS, PSY4 and AMSEAS resolve most mesoscale features observed in the499

open-ocean regions of the Caribbean sea observed in the AVISO dataset. Apart from these mesoscale500

features, the SSHA from the AMSEAS output also shows O(10 km) small-scale meanders which501

are absent in the GOFS, PSY4 and AVISO. These small-scale features are a consequence of finer502

grid resolution and weaker eddy viscosity that permits instabilities at scales finer than the mesoscale503

spatial range [Ramachandran et al., 2013].504

Apart from the O(100 km) mesoscale eddies and O(10 km) small-scale undulations in the AM-505

SEAS SSHA, we also observe radially propagating ripples that appear to originate from the south-east506

vertex of the domain. These ripples are internal baroclinic tides propagating radially outward from507

the Aves Escarpment (latitude 130N longitude 620W), which is a mid-ocean ridge in the Caribbean508

Sea to the west of the lower Antilles islands (figure 1). During the periodic flow of tidal currents over509

the steep topography of the Aves ridge, vertical oscillation of the isopycnal surfaces of the stratified510

ocean leads to the formation of baroclinic tides [Jithin et al., 2020]. Ripples formed by baroclinic511

tides at the Aves ridge have been observed on the sea surface in images captured by the MODIS Terra512

and Aqua satellites during sun-glint conditions [Alfonso-Sosa, 2013]. Due to the implementation of513

the OTIS tidal package in the AMSEAS model framework, such baroclinic tidal ripples propagating514

from the Aves ridge are also simulated by the AMSEAS model in the Caribbean Sea [Zaron, 2019].515

Since the GOFS and PSY4 do not implement tidal forcing, we do not observe such baroclinic tidal516

ripples in their outputs.517

A Hovmöller diagram of the AVISO SSHA along the transect shows a consistently positive merid-518

ional gradient in the SSHA from May to December 2016 for the GOFS and PSY4 outputs. This same519

positive trend, however, does not appear in the Hovmöller diagram of the AMSEAS output (figure520

7). The model outputs also show small-scale temporal fluctuations in the SSHA that correspond to521

a stronger variance compared to the AVISO at frequencies higher than 1/10 day−1, as shown in the522

temporal power spectral density (PSD) plot (figure 8). The PSY4 SSHA variance is weaker in mag-523

nitude than the GOFS and AMSEAS at frequencies higher than 1/10 day−1, which is due to the524

combined influence of stronger eddy viscosity and the coarser resolution of the PSY4 model for the525

US Caribbean region [Ramachandran et al., 2013]. The variance in the SSHA from the AMSEAS also526

shows prominent tidal maxima at the diurnal (S1 and K1) and semi-diurnal (M2 and S2) frequencies.527

The GOFS and PSY4 do not show similar tidal maxima due to the lack of tidal forcing implemented528

in their simulations.529
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6.1.1 Analysis using Okubo-Weiss parameter530

The mesoscale eddy variability from the model outputs is compared with that from the AVISO data531

using the Okubo-Weiss parameters derived from the SSHA (figure 9). Since the AMSEAS SSHA532

are contaminated with internal tidal oscillations (figure 6), we remove the tidal oscillations and the533

small-scale processes by using a 2-dimensional spatial lowpass filter with a cutoff wavenumber of534

1/30 km−1. The GOFS and PSY4 SSHA does not require filtering since they do not implement a tidal535

model.536

Notable mesoscale features in the AVISO contour plots (figure 9) are a cyclonic eddy within537

latitudes 13.50 – 150 N surrounded by a strain field on 16th March, an anti-cyclonic eddy near the538

southern edge within latitudes 13.50 – 150 N surrounded by a strain field on 13th June, and a cyclonic539

eddy near the southern edge within latitudes 140 – 150 N on 17th October and a cyclonic eddy near540

the northwest vertex on 14th December. These mesoscale structures also appear in the PSY4 and541

GOFS model outputs of the Okubo-Weiss parameter. The lowpassed AMSEAS outputs also show the542

large anti-cyclonic eddy at 13th June and the cyclonic eddy at 16th March. However, the mesoscale543

features appearing during 17th October and 14th December in the lowpassed AMSEAS SSHA, do not544

match with the AVISO data in terms of their locations. The contrast in the variability of the mesoscale545

eddies in the AMSEAS and the AVISO outputs, could be attributed to the fact that small-scale features546

permitted by the AMSEAS model’s fine resolution deteriorates the simulated mesoscale variability547

[Sandery and Sakov, 2017].548

6.2 Surface Current Velocities549

We conduct two separate comparisons for the model performance in terms of simulating the surface550

currents in the open ocean and the nearshore regions of the US Caribbean ocean.551

6.2.1 Open Ocean Current Velocity552

Model performance is evaluated regarding the surface current velocity in the OSCAR data using Tay-553

lor diagrams to compare the correlation coefficients, RMSD and standard deviation of the model554

outputs with respect to the OSCAR data in the open-ocean regions of the Caribbean sea for 2016.555

Taylor diagrams for the open-ocean outputs (figure 10) shows that the highest cross-correlation (0.74556

for both zonal and meridional velocities), and the lowestRMSD ( 0.1 for zonal and meridional veloc-557

ities respectively) with the OSCAR velocity data were found for the PSY4 (figure 10). The standard558

deviation between the PSY4 model outputs and the OSCAR data is the lowest among the three model559

frameworks ( 0.2 for the zonal and meridional velocities). The AMSEAS output correlates well with560

the OSCAR data for the zonal velocity with a coefficient of 0.65 but shows a very weak correlation for561

the meridional velocity with a coefficient of 0.03 (figure 10b). The cross-correlation coefficient be-562

tween the GOFS and OSCAR data is 0.7 and 0.6 for the zonal and meridional velocities respectively,563

which lie between the PSY4 and AMSEAS coefficients in terms of their magnitude.564

The zonal velocity in the open-ocean regions of the Caribbean sea mostly represents the westward565

flow of the Caribbean current forced by the inflow of the Atlantic water through the passages between566

the Antilles islands. The meridional velocity in the Caribbean Sea observed in the model outputs and567

OSCAR data is representative of the meridional deviation of the westward Caribbean current due to568

mesoscale and submesoscale turbulence. In the Hovmöller diagram in figure 11, the Caribbean current569

is observed as a continuous westward flow in the model outputs, with a short-lived eastward flow that570

arises by the transit of the mesoscale eddies through the domain between the days 150 to 250. The571

contrast between the correlation of the AMSEAS zonal and meridional velocities, when compared572

with the OSCAR data, suggests that the AMSEAS model under-performs in the representation of the573

meridional currents in the Caribbean Sea.574
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The PSD of the AMSEAS current velocities (figure 5b) show a typical slope of κ−3 which is575

flatter than the GOFS, PSY4 and OSCAR data. The GOFS and PSY4 outputs show a typical slope of576

κ−4, whereas the OSCAR velocities show a slope steeper than κ−4. In the presence of submesoscale577

turbulence, we typically observe a slope of κ−2 in the momentum and tracer variances provided the578

spatial resolution of the measurement is sufficiently high to capture submesoscale turbulence over a579

spatial scale of 500 m to O(10 km) [Callies and Ferrari, 2013, Brannigan et al., 2015]. The κ−3 slope580

of the AMSEAS current velocities indicate that the AMSEAS only partially resolves the submesoscale581

turbulence in terms of the current velocities. The 10 km resolution in the GOFS and PSY4 models582

make it impossible for them to resolve submesoscale turbulence, which explains the steeper slopes in583

the velocity variance PSD from these models.584

6.2.2 Nearshore Current Velocity585

Analysis of the Taylor diagrams for the nearshore surface current velocities at the Ponce, San Juan, St.586

John and Vieques CariCOOS buoys shows that all the model outputs correlate very weakly with the587

buoy data; cross-correlation coefficients range from -0.2 to 0.45 (figure 12). The AMSEAS current588

outputs demonstrate larger values of RMSD and larger standard deviation compared to the GOFS589

and PSY4 outputs which show nearly similar values of the RMSD and standard deviation. A weak590

correlation coefficient between the modeled current outputs and the OSCAR current data indicates591

that none of the model outputs exhibit a realistic performance near the coastlines, which is expected592

given the incapability of the model resolutions to realistically represent the coastal bathymetry.593

A temporal power spectral density (PSD) of the eddy kinetic energy (EKE), which displays the594

variance of the current velocities at the 4 buoy locations, indicates that within a range of ω = 10−2 −595

100 day−1 (ω is the inverse of the time period), the EKE decays by a factor of approximately ω−1 for596

both the buoy data as well as the model outputs (figure 13), which is similar to the decay shown by597

HF-radar derived observations of the current velocities on the US west coast [Kim et al., 2011]. At598

frequencies larger than the inertial frequency, the PSY4 and GOFS outputs demonstrate a steeper rate599

of decay due to the inability of these models to represent the variance corresponding to small-scale600

variability spawned by gravity-wave dynamics and 3D turbulence [Ferrari and Wunsch, 2009]. In601

contrast, the AMSEAS shows a slope of ω−1 at frequencies larger than the inertial frequency because602

the finer resolution of the AMSEAS model framework permits small-scale variability in the velocity603

fields that are absent in the other two model outputs.604

6.3 Temperature Variability605

6.3.1 Seasonal SST Variability in the open ocean606

The open-ocean SST variability in the US Caribbean is compared with respect to the G1SST data607

from 2016. The cross-correlation coefficients ranging from 0.89 to 0.91 between each of the model608

SST outputs and the G1SST data indicates that the seasonal SST variability in the models is strongly609

correlated with that of the observed data in the Caribbean Sea (figure 14). The RMSD of all the610

model SST outputs are 0.4 with respect to the G1SST, and the standard deviation is nearly 0.8.611

The strong correlation of the simulated SST indicates that all the models perform reasonably well612

in simulating the seasonal variability of the SST in the Caribbean Sea.613

6.3.2 Spectral SST variability614

The PSD of SST obtained from the G1SST data varies with a slope of κ−2 (figure 5c) near the spatial615

scale of 100 km, but becomes steeper with a slope of κ−3 near the 10 km spatial scale. A tracer616

spectral slope of κ−2 indicates that submesoscale turbulence is the prime contributor to the surface617

variance of the tracer [Brannigan et al., 2015, Castro et al., 2017]. Due to the fine resolution of618
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3 km in the AMSEAS model, the AMSEAS SST output showed a typical spectral slope of κ−2
619

(figure 5c) which indicates that submesoscale turbulence strongly dominates the surface variance of620

the AMSEAS temperature outputs. The GOFS and PSY4 SST outputs show a typical spectral slope of621

κ−3 which is an indicative of the SST variance being dominated by quasi-geostrophic 2D turbulence622

associated with mesoscale eddies [Callies and Ferrari, 2013].623

6.3.3 Nearshore SST Variability624

The temperature measurements from the CariCOOS buoys along the northern coastline of PR shows625

a pattern of annual wintertime cooling from January to March, followed by summertime warming626

between March and October due to the seasonal variability in the shortwave radiation. A comparison627

of the temperature time series in 2016 shows that the seasonal variability in the SST seen in the buoy628

data is clearly replicated by all the model outputs (figure 15).629

Figures 15e–h show the PDF of the model error at the 4 different CariCOOS buoy locations630

(Ponce, San Juan, St John and Vieques). The x-axis denotes the maximum value of each bin corre-631

sponding to the range of error with a bin size of 0.1 units. At the St John, Vieques and Ponce buoys,632

the PSY4 shows the highest percentage of points (54%, 52%, 34%) lying within the bin correspond-633

ing to the lowest level of error which is 0.1. At an intermediate error range of 0.5 to 0.9, the PSY4634

shows the lowest percentage of points. At the San Juan buoy, the AMSEAS shows better results with635

the highest percentage of points (30%) within the 0.1 error bin, and the lowest percentage of points at636

between the 0.7–0.9 error bins.637

The temperature time series plots from the HOBO loggers at the coral reef sites show similar638

summer warming and winter cooling patterns (figure 16a,c,e) as the temperature data recorded at the639

CariCOOS buoys (figure 15). This similarity between the CariCOOS buoy and HOBO logger datasets640

is because the shallow depths of the coral reef sites at Jacks Bay, Savanna and St James (14 m, 9 m641

and 15 m) are within the upper ocean boundary layer where there is a strong response to the seasonal642

variability of the atmospheric heat fluxes. The simulated temperature from the model outputs at the643

corresponding coral reef locations also show a similar seasonal variability (figure 16a,c,e). The PDF644

plot of the model errors shows that at Jacks Bay and St James, the AMSEAS forms a higher fraction645

of points (0.24 an 0.26 respectively) corresponding to the lowest error bin, whereas at Savana the646

GOFS forms a higher fraction of points (0.21) at the same bin (figure 16b,d,f).647

7 Discussion648

This work explores the strengths and weaknesses of the currently operational ocean model frame-649

works specific to the US Caribbean coastal ocean: the GOFS at 1/120 resolution, the PSY4 at 1/120
650

resolution and the AMSEAS at 1/360 resolution. The GOFS and AMSEAS use the NCODA, and651

the PSY4 uses the SEEK filter for assimilating observed data to the outputs. We conduct a series of652

comparative analysis of the simulated ocean properties from these model frameworks with the corre-653

sponding observational data for the Caribbean Sea, which includes the SSHA from AVISO satellite654

altimetry, surface current velocities from the OSCAR, and interpolated surface temperature estimates655

by the G1SST from various satellite measurements. While these observational datasets are also avail-656

able for the coastal ocean surrounding Puerto Rico and the Virgin Islands, the coarse resolution of657

the data around the islands makes them less reliable for representing the nearshore ocean properties.658

Therefore, we compared the simulated nearshore temperature and current velocities with in-situ time659

series data of the temperature and velocities measured at the moored buoys operated by CariCOOS,660

and time series of temperature measurements using HOBO loggers. All the observed satellite and661

in-situ data and model outputs used in our analysis are from the year 2016.662

In the open ocean regions of the Caribbean Sea, lowest RMSD and highest cross-correlation of663

the PSY4 outputs with respect to the observed data suggests that the PSY4 produces the most realistic664
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representation of the mesoscale variability in the SSHA. The GOFS model also produces realistic665

outputs, but with a slightly weaker correlation coefficient and a slightly larger variance than the PSY4666

outputs due to the implementation of a weaker eddy viscosity. The temporal variability of the PSY4667

SSHA along the transects in the Anegada passage, are also the most realistic compared to the other668

model outputs. The AMSEAS model produces realistic open-ocean outputs of the SSHA and the669

zonal current velocities, but fails to produce a realistic SSHA output in the Anegada passage.670

In terms of the open-ocean surface current velocities, the PSY4 and GOFS produce the most real-671

istic outputs when compared to the OSCAR data, with the PSY4 showing slightly higher correlation672

coefficients than the GOFS. The zonal currents in the OSCAR data are majorly dominated by the673

westward flowing Caribbean current, which is realistically simulated by all the models. However,674

the AMSEAS model fails to realistically simulate the meridional currents which are formed by the675

meridional deviation of the Caribbean current due to submesoscale and quasi-geostrophic mesoscale676

turbulence.677

The under-performance of the AMSEAS model in the open-ocean regions of the Caribbean sea,678

despite it’s fine resolution, is attributed to the following reasons:679

• The AMSEAS model only partially resolves submesoscale turbulence, and is therefore inade-680

quate to represent the full spectrum of submesoscale turbulence which spans over a range of681

spatial scales from 500 m to O(10 km).682

• The NCODA data assimilation system, used by the AMSEAS, is tuned to constrain the model683

outputs towards the observed data on the order of spatial scales equivalent to or larger than the684

mesoscales [Carrier et al., 2019], and is therefore not effective on the submesoscale character-685

istics of the flow.686

• There are no realistic submesoscale variability in the gridded observed data assimilated by the687

NCODA due to coarse resolution.688

• Submesoscale turbulence permitted by the AMSEAS model’s fine resolution deteriorates the689

model output’s mesoscale variability due to inverse energy cascade associated with the subme-690

soscales [Sandery and Sakov, 2017].691

Since the GOFS, AMSEAS and PSY4 models assimilate observed data, the inferences drawn from692

the comparative analysis are also an indicative of the performance of the data assimilation algorithms693

used by the model frameworks. We infer from our analysis that for a numerical grid capable of694

resolving only the mesoscales and larger scales, both the NCODA and the SEEK filter produce similar695

outputs. The difference of the variance of outputs between the 2 models with the same resolution,696

depends on the strength of the eddy viscosity used by the models. Since the NCODA is tuned to697

constrain the model outputs only at the order of the mesoscales, it is ineffective on the submesoscale698

turbulence generated by the AMSEAS model at a finer resolution of 3 km. Due to inverse energy699

cascade, the submesoscale turbulence tends to alter the mesoscale variability in the AMSEAS outputs,700

thus adversely affecting the performance of the AMSEAS model at O(100 km) mesoscales. However,701

the strongly dominating Caribbean current in the simulated zonal velocity of the AMSEAS model702

does not appear to be affected by the interference of the submesoscale turbulence. Therefore, the703

AMSEAS under-performs in terms of the SSHA and the meridional velocities, but produces a realistic704

simulation of the Caribbean current associated with the zonal velocities.705

The nearshore surface current velocities from all the model outputs correlate very weakly with706

the in-situ measured velocities from the buoys, which is expected given the coarse resolution of the707

models. The seasonal variability of the surface temperature and benthic temperature, however, is well708

represented by all the model outputs in the open ocean and the nearshore regions, as is evident from709

the strong correlation of the modeled SST with the observed G1SST data. The realistic representation710

of the seasonal SST variability in both the nearshore and open ocean regions occurs largely as a711

response of the surface boundary layer to the seasonal variability in the atmospheric heat flux due to712

shortwave radiation [Price et al., 1986]. Since the impact of the shortwave radiation on the surface713
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boundary layer is well simulated by the GOFS, AMSEAS and PSY4 models using different vertical714

mixing parameterizations, they are all capable of representing the seasonal SST variability at both the715

nearshore and the open-ocean regions.716

Various oceanic applications require realistic estimates of the ocean properties. A comparative717

analysis of the model performance is necessary to determine which model output is the most suitable718

for a specific application that requires oceanographic data. Based on our study, the PSY4 outputs719

are the more suitable for those applications that require realistic estimates of the open-ocean surface720

current velocities and the SSHA, whereas any of the PSY4, GOFS and AMSEAS outputs can be used721

for applications that require data on the seasonal temperature variability. For example, to determine722

the optimum route for ship navigation in the US Caribbean ocean, the user can refer to the PSY4723

outputs for the most realistic estimates of the surface currents and SSHA; to study the impact of724

seasonal warming on coral bleaching, marine ecologists can refer to any of the GOFS, AMSEAS725

and PSY4 model outputs for realistic estimates of the benthic temperature; the fisheries industry in726

the US Caribbean regions can refer to the PSY4 outputs to know the location and trajectories of the727

mesoscale eddies and determine the potential areas with high chlorophyll concentration.728

Applications related to marine ecology mostly require nearshore data of the ocean properties; sim-729

ulating the larval and sediment transport requires nearshore current velocity data; studying the impact730

of the seasonal temperature changes on coral reef resilience requires data of the nearshore benthic731

temperature variability at the coral reef sites. It is clear from our analysis that while the nearshore732

temperature variability outputs from all the models are reliable, the nearshore current velocity data733

from any of the models are not realistic enough to be useful. Therefore, the necessity to develop a fine734

resolution modeling system for the Puerto Rico and the US Virgin Islands coastal ocean circulation735

motivates further research. A fine resolution model that uses the PSY4 open ocean outputs as bound-736

ary conditions, the nearshore buoy measurements for assimilation, and surface forcing from a state of737

the art atmospheric model, can be useful for the marine ecological applications in the US Caribbean738

ocean.739
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Table 1: Forecast system model parameters
GOFS AMSEAS PSY4

Model Hybrid Coordi-
nate Ocean Model
(HYCOM)

Navy Coastal Ocean
Model (NCOM)

Nucleus for European
Modelling of the
Ocean (NEMO)

Horizontal grid Orthogonal curvilin-
ear (1/120)

Orthogonal curvilin-
ear (1/360)

Tripolar ORCA
(1/120)

Vertical grid 32 levels, (isopycnal
in open ocean, terrain
following in coastal
ocean, z-level in
mixed-layer)

40 levels, terrain-
following σ coordi-
nates near surface and
z-level coordinates
below

50 levels, decreasing
resolution from 1 m
at the surface to 450
m at bottom, 22 levels
within upper 100 m.

Advection multi-dimensional
positive advection
transport [Smo-
larkiewicz and
Grabowski, 1990]

quasi-third order
upwind advection
for momentum and
scalars [Holland
et al., 1998]

energy/enstrophy
conserving scheme
(momentum)
[Arakawa and Lamb,
1981], TVD 2nd
order scheme (tracer)
[Lévy et al., 2001]

Mixing 2nd order Flux Cor-
rected Transport
(FCT) [Zalesak,
1979] (horizontal
eddy viscosity 50
m2s−1), KPP for
vertical mixing

Mellor-Yamada 2.5
vertical mixing,
Smagorinsky scheme
[Smagorinsky, 1963]
for horizontal viscosi-
ties

Laplacian isopycnal
(tracer) (80 m2s−1),
biharmonic (momen-
tum) (−1 × 1011

m4s−1), turbulence
closure 1.5 [Blanke
and Delecluse, 1993]

Surface forcing NAVGEM 15 km Navy
COAMPS model

ECMWF

Data assimilation NCODA with 3DVAR NCODA with 3DVAR SAM (reduced-order
Kalman filter) with
3DVAR

Data assmilated SSH anomaly
(AVISO), SST
(GHRSST), in-situ
observations from
ships, buoys, XBT,
CTD, Argo floats,

same as GOFS CMEMS (OSTIA
SST, sea-ice con-
centration and SSH),
WOA 2013 clima-
tology below 2000
m

Sampling time 3-hourly instanta-
neous

3-hourly instanta-
neous

1-hourly instanta-
neous
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Table 2: Gridded ocean datasets
AVISO OSCAR GHRSST

Ocean property Sea-surface height
anomaly (m) (SSHA)

Surface current veloc-
ities (m/s)

Sea-surface tempera-
ture (SST) (0C)

Horizontal Grid 1/40 of latitude 1/30 of latitude 1 km
source of data Altimetry mea-

surements from
altimeters aboard the
TOPEX/Poseidon,
Envisat, Jason-1 and
OSTM/Jason-2

Interpolation and
analysis of SSHA,
surface wind velocity
and SST data ob-
tained fromsatellite
and in-situ measure-
ments

AVHRR, AATSR,
SEVIRI, AMSRE,
TMI, MODIS, GOES,
MTSAT-1R

Temporal averaging daily averaged averaged over 5 days daily averaged
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Figure 1: Bathymetry of the northern Caribbean Sea from ETOPO 1 km. Landmasses are denoted by
green color. The black rectangle denotes the region where we do the comparative analysis between
model outputs. The blue rectangle denotes the domain containing Puerto Rico and the Virgin Islands,
and is enlarged to show the islands and Anegada passage in detail.

Figure 2: Map showing the regional grids for Alaskan Sea, US East Coast, and Gulf and Mexico and
Caribbean Sea covered by the NCOM model. This map is obtained from the NOAA NCOM server.
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Figure 3: ETOPO 1 km bathymetry of the Puerto Rico and Virgin Islands coastal ocean, with filled
circles showing the locations of the CariCOOS buoys (black) at Ponce, San Juan, Vieques, St John,
and the TCRMP coral reef sites (indigo) at Jacks Bay, Savanna and St James. The CariCOOS buoys
provide in-situ surface currents, and the HOBO loggers at the TCRMP sites provide benthic temper-
ature data.
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Figure 4: Taylor diagram of the SSHA from the AVISO and the PSY4, GOFS and AMSEAS model
outputs in 2016 for Caribbean Sea (plot a), and along a meridional transect in the Anegada passage
(plot b). The length along the radial axis denotes the standard deviation. The arc length along the
circumference denotes the cross-correlation coefficient of each model output with the AVISO dataset.
The model outputs and the AVISO dataset are represented by different markers on each plot. The
AVISO marker lies on the x axis, and the length of each model’s marker to the AVISO marker denotes
the RMSD.
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Figure 5: Spatial power spectral density (PSD) of the SSHA (plot a), surface current velocities (plot
b) and SST (plot c) of the model outputs compared to the AVISO SSHA, OSCAR current velocities
and G1SST temperature respectively. The dashed lines denote the slopes of κ−4, κ−3 and κ−2 on the
loglog plot (κ is the wavenumber).
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Figure 6: Contour plots showing the sea-surface height anomaly (SSHA) from the AVISO altimetry
data and the PSY4, GOFS and AMSEAS models in the Caribbean Sea at 4 randomly chosen dates in
2016. The columns from left to right show the SSHA from the AVISO, PSY4, GOFS and AMSEAS
respectively. The rows from top to bottom show the SSHA from the dates 16th March, 13th June,
17th October and 14th December respectively.

Figure 7: Hovmöller diagram showing the temporal variability of the SSHA from the (a) AVISO, (b)
PSY4, (c) GOFS and (d) AMSEAS in 2016 along a meridional transect in the Anegada passage on
the east of St John island at longitude 64.20 W. The meridional transect is denoted in figure 1 by the
indigo line.
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Figure 8: Average power spectral density (PSD) of the time series of the SSHA along a meridional
transect in the Anegada passage at latitude 180 N. The averaging is done over the range of longitudes
from 160 to 200 N. The tidal frequencies for diurnal (S1, K1) and semi-diurnal (M2, S2) tides are
marked in cyan. The variable fi denotes the inertial frequency corresponding to 40 hours.

Figure 9: Plan view plots showing the relative vorticity (ζ s−1) in red and blue color and the Okubo-
Weiss parameter in black and magenta contour lines. The dashed black lines show the regions where
W < −0.2σ where σ is the standard deviation of W corresponding to the same sign of the relative
vorticity ζ . The solid magenta lines show the regions where W > 0.2σW . From top to bottom,
the rows show the contours on 16th March, 13th June, 17th October and 14th December 2016 re-
spectively. The lowpassed AMSEAS contours are shown with a different color scale to highlight the
oceanographic features prominently.
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Figure 10: Taylor diagrams of the simulated surface currents from the PSY4, GOFS and AMSEAS
with respect to the OSCAR dataset in 2016. Plot a is calculated from the zonal surface currents
and plot b from the meridional surface currents. Current velocity from each model output and the
OSCAR data are represented by different markers. The radial axis denotes the standard deviation
and the azimuthal axis the cross-correlation coefficient. The length of each marker from the OSCAR
marker denotes the RMSD.

Figure 11: Hovmöller diagrams showing the zonal and meridional velocities from the model outputs
and the OSCAR data over a span of 1 year in 2016, averaged over the longitudes. The left and right
panels show the zonal and meridional velocities respectively.
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Figure 12: Taylor diagram for the nearshore velocity time series from the in-situ buoy measurements
and the PSY4, GOFS and AMSEAS outputs. The left column shows Taylor diagrams for the zonal
current velocities, and the right column the meridional current velocities. The rows from top to bottom
show the plots for Ponce, San Juan, St John and Vieques respectively.
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Figure 13: Temporal power spectral density (PSD) of the variance of the surface current velocity
measured at the CariCOOS buoys at Ponce, San Juan, St John and Vieques along with model outputs
at the same locations for a 1-year long data in 2016. The tidal frequencies for SN (spring-neap), LF
(lunar fortnightly), S1, K1, M2 and S2 are marked in cyan. The dashed black lines indicate the slope
of the PSD plots.
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Figure 14: Taylor diagram showing the cross-correlation, standard deviation and RMSD of the SST
from PSY4, GOFS and AMSEAS model outputs with respect to the G1SST data in 2016. The geo-
graphic range chosen for this analysis is denoted by the black rectangle in figure 3.
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Figure 15: Seasonal variability of the sea surface temperature 0C measured at the CariCOOS buoys
at Ponce, San Juan, St John and Vieques, with model outputs at the same locations. The left column
shows the time-series of the temperature, low-passed with a cutoff filter of 1 day. The right column
shows the corresponding probability density functions (PDF) computed from the model errors. The
x-axis in the PDF plot denotes the maximum error value of each bin, with a bin size of 0.1 units.
The y-axis denotes the fraction of the number of points lying in a bin, divided by the total number of
points in the time series. Refer to section 5.3 for details on the PDF calculation.
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Figure 16: Seasonal variability of the benthic temperature (left panel) measured by HOBO loggers at
the coral reef sites at Jacks Bay (13 m depth), Savana (16 m depth) and St James (27 m depth) in 2016,
and the model outputs at the same locations. The right panel shows the PDF of the corresponding
model errors. Refer to section 5.3 for details on the PDF calculation.
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