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Abstract

Fluctuations of net-baryon, net-charge and net-strangeness numbers are studied within the framework 
of ideal hadron resonance gas (IHRG), including attractive and repulsive van der Waals interactions. The 
binding energy and thermodynamic parameters are calculated for different extended versions of the HRG 
(E-HRG) model. The susceptibility ratios of conserved numbers are estimated in full phase-space using 
various HRG models that show a strong dependence on collision energies. The effect of kinematic cuts 
(transverse momentum (pT ) and pseudo-rapidity (η)) on those ratios of conserved numbers are also dis-
cussed. It is observed that, the normalized susceptibility ratios as a function of collision energies strongly 
depend on lower pT cut-off and �η window. The E-HRG models are very sensitive to kinematic accep-
tance even for net-proton fluctuations. The susceptibility ratios calculated from different HRG models with 
proper kinematic acceptances are compared with the experimental measurements, which will help to better 
understand the phase transition and existence of critical point in the QCD phase diagram.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

One of the major goals of the high-energy heavy-ion collisions is to study the structure of 
quantum chromodynamics (QCD) phase diagram at finite temperature (T ) and baryon chemical 
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potential (μB ) [1]. It is a well-known fact that the first-order liquid-gas phase transition takes 
place in a system consists of atoms and/or molecules, interacting nucleons, and also expected 
between hadrons and quark-gluon plasma (QGP) at large μB . Lattice QCD calculations suggest 
a smooth cross over from hadronic to QGP phase in the temperature range of 150–190 MeV at 
μB � 0 [2,3]. Several other models predict a first-order phase transition at large μB and small 
T [4,5]. Hence, there should be a point at which the first-order phase transition ends in the T −μB

plane named as the critical end point (CEP) [6–8]. At lower temperature T ∼ 100–150 MeV, the 
lattice QCD calculations exhibit similar feature to observables calculated using non-interacting 
(ideal) hadron resonance gas (IHRG) model. The disagreement between lattice QCD and IHRG 
at higher temperature T > 160 MeV attributes to quickly melting of hadrons [9–11].

In recent years, lots of effort have been made on both theoretical and experimental fronts to 
study the QCD critical point using fluctuations of conserved quantities. It has been suggested that 
the energy dependence of conserved numbers like net-baryon, net-charge, and net-strangeness 
fluctuations should show a non-monotonic behavior, as a possible signature of CEP [12–14]. 
Experimentally, the location of the CEP can be explored by varying the center-of-mass energy 
(
√

s
NN

) of the colliding ions [12,13] and studying various thermodynamic parameters. The beam 
energy scan program performed at Relativistic Heavy-Ion Collider (RHIC) is motivated to inves-
tigate the location of CEP using the fluctuations of net-proton [15–17], net-charge [18,19] and 
net-kaon [20] multiplicities at various collision energy. Several other experiments such as the 
HADES experiment at GSI, NA61-SHINE experiment at CERN-SPS energies are being carried 
out to investigate the medium formed at large baryon chemical potential. In future Compressed 
Baryonic Matter (CBM) experiment at FAIR, GSI and the Nuclotron-based Ion Collider fAcil-
ity (NICA) at JINR, Dubna are planned to study the nuclear matter at large baryon chemical 
potential.

The hadron resonance gas (HRG) model has been very successful to explain the particle 
multiplicities measured from the experimental data in high-energy heavy-ion collisions typical 
Alternating Gradient Synchrotron (AGS) at BNL to those of the Large Hadron Collider (LHC) 
energies [21–23]. It is argued that the attractive interactions between hadrons are taken into 
account by the presence of all known resonance states in the thermal system. Several E-HRG 
model including the attractive and repulsive interactions between hadrons have been widely 
discussed [24–31]. It is a well known fact that both the long-range attraction as well as the 
short-range repulsion are important to describe the strongly interacting matter [31,32].

The excluded volume hadron resonance gas (EVHRG) model is one of them in which the 
effect of repulsive interaction between the hadrons at short distances are introduced [27,28]. 
The difference between EVHRG and IHRG is governed by the radius parameter used for the 
hadrons. The electromagnetic charge radii of hadrons have been reported by various groups [33–
37]. Earlier radii values of 0.62 and 0.8 fm for meson and baryon, respectively are considered 
to explain the particle yields at AGS and SPS energies [25]. Further, a more realistic approach 
has been considered to incorporate the repulsive behavior of the nucleus-nucleus potential using 
a hard-core radius (∼ 0.3 fm) for both mesons and baryons as obtained from nucleon-nucleon 
scattering [38]. Several recent studies have also used different radii of 0.2–0.3 fm for meson and 
baryon to calculate the net-proton fluctuations [10,28,29].

Taking the flavor dependent hard-core radius in the EVHRG model, a better agreement with 
the experimental yield at LHC energy is observed [39]. In this model, an inverse mass-volume 
relation is employed for strange particles to explain the particle yields for nucleus-nucleus colli-
sions at LHC energy [39]. The description of particle yield improves at lower collision energies 
up to LHC energy by considering a bag-like parameterization for the eigenvolume [40,41]. 
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Further, the EVHRG equation of state has also been used for the hydrodynamical models of 
nucleus-nucleus collision [42,43]. The lattice QCD calculations also indicate a presence of cor-
rections for the finite size of hadrons [26].

The long-range attractive interaction in the HRG model is introduced by considering van 
der Waals (VDW) type nucleon-nucleon interaction. Recently, such interaction with the HRG 
(VDWHRG) model has been studied taking both attractive and repulsive interactions [10,44,
45]. The VDWHRG model shows a first-order liquid-gas phase transition in nuclear matter at 
small temperature and large μB , which is absent in IHRG or EVHRG models. In Ref. [44], 
the VDW parameters a (attractive) and b (repulsive) are fixed to reproduce the properties of 
nuclear matter in its ground state, i.e. number density n = n0 = 0.16 fm−3 and binding energy 
per nucleon E/A = −16 MeV. With these conditions, the resulting VDW parameters are obtained 
as; a � 329 MeV fm3 and b = 3.42 fm3. Note that particle volume parameter b is connected to 
the hard-core radius as r = [3b/(16π)]1/3 � 0.59 fm. These values of a and b are used in the 
VDWHRG model which predicts a liquid-gas first-order phase transition in the nuclear matter 
with a critical point at Tc � 19.7 MeV and μB � 908 MeV [45]. Further, it is shown that using 
the normal nuclear matter VDW parameters a and b, the VDWHRG model and lattice QCD 
results on fluctuations and correlations of conserved charges resemble in the crossover region at 
zero chemical potential [10]. Another recent study in Ref. [33] reported the VDW parameters as 
a = 1250 MeV fm3 and b = 5.747 fm3, observed a phase transition in the VDWHRG model at 
large chemical potential with a critical point at T = 62.1 MeV and μB = 708 MeV in the T −μB

phase diagram.
In the present study, we discuss different extended versions of the HRG (E-HRG) model 

as listed in Table 1, and calculate the observables in terms of susceptibility ratios for the 
conserved number fluctuations. These models use different values of hard-core radii of the 
hadrons which are as follows: ideal HRG without interaction (IHRG) [46,47], with fixed val-
ues of hard-core radii of mesons and baryons (EVHRG) [29,31], with flavor dependent radii of 
hadrons (FLEVHRG) [39], with different values of VDW parameters (VDWHRG1 [10] and 
VDWHRG2 [33]). These models have been used to explain the thermal properties [29–31], 
fluctuation observables [10], and criticality [33] of the QCD matter. The excluded volume mod-
els EVHRG and FLEVHRG better describe the particle yields as compared to IHRG. Further, 
models based on VDW interactions VDWHRG1 and VDWHRG2 predict a critical point in the 
T − μB phase diagram. In the present study, we investigate which of the above models best de-
scribe the experimental data on higher moments of conserved numbers. In the present model, we 
have not considered global conservation into account. As discussed in Ref. [48], baryon number 
conservation results in a substantial effect on the higher order fluctuations. However, the effect 
of global conservation of charges depends on the fraction of charges measured in the detector 
acceptance, which is found to be small within the experimental acceptance discussed in this 
paper.

The paper is organized as follows: In the following section, various extensions to the ideal 
HRG such as EVHRG and VDWHRG models are discussed. In Sec. 3 the results on ther-
modynamic parameters and susceptibility ratios obtained from different models are presented. 
The effect of pseudo-rapidity acceptance, lower transverse momentum selection threshold and 
comparison with the experimental results are also described in Sec. 3. Finally, in Sec. 4, we 
summarize our findings and discuss the implications of this work.
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Table 1
List of van der Waals parameters used for the different extended versions of HRG model calculations.

Case Name a (MeV fm3) b (fm3) r (fm)

I IHRG [46,47] 0 0 0

II EVHRG [29,31] 0 0.134 (meson), 0.452 (baryon) 0.2 (meson), 0.3 (baryon)

III FLEVHRG [39] 0 αm (non-strange) [3αm/(16π)]1/3 (non-strange)

γ /m (strange) [3γ /(16πm)]1/3 (strange)

α = 2.1 fm3/GeV, γ = 1.38 fm3 . GeV

IV VDWHRG1 [10] 329 3.42 0.588

V VDWHRG2 [33] 1250 5.747 0.7

2. Model description

Several studies are performed using HRG model and its extended versions [46,47,49–53]. 
Out of different extensions of the IHRG models, here we discuss two of them. The first one is 
the excluded volume HRG model (EVHRG) in which the effects of hadron repulsion at short 
distances are accounted and the other one with van der Waals (VDWHRG) type in which both 
attractive and repulsive interactions are considered. In the following subsections, we will briefly 
discuss each version of the model.

2.1. Ideal hadron resonance gas (IHRG) model

In an ideal HRG model, the partition function includes all relevant degrees of freedom of the 
confined, strongly interacting matter and consists of point-like hadrons and resonances [46]. The 
heavy-ion experiments cover a limited phase space, one can access only a part of the fireball 
produced in the collision which resembles the grand canonical ensemble (GCE) [47,54]. Assum-
ing a thermal system produced in the heavy-ion collisions, the thermodynamic pressure P in the 
GCE can be written as a sum of the partial pressures of all the particle species i:

P/T 4 = 1

T 4

∑
i

P id
i (T ,V ,μi) = 1

V T 3

∑
i

lnZid
i (1)

where i corresponds to either baryons (B) or mesons (M), V is the volume of the system and T
is the temperature. The grand canonical partition function (Zi) of ith particle can be written as

lnZid
i (T ,V,μi) = ±Vgi

2π2

∫
p2dp ln

{
1± exp[(μi − E)/T ]}, (2)

where gi is the degeneracy factor and μi is the chemical potential. The total chemical potential 
of the individual particle is μi = BiμB + QiμQ + SiμS , where Bi , Qi and Si are the baryon, 
electric-charge and strangeness number of the ith particle, with corresponding chemical poten-
tials μB , μQ and μS , respectively. The +ve and −ve signs correspond to baryons and mesons, 
respectively. In this calculation, all the mesons and baryons of mass upto 2.5 GeV as listed in 
the particle data book are considered. The volume element (d3p) of a particle of mass m can be 
written as d3p = pT mT coshη dpT dη dφ and energy E = mT coshη, where mT is the trans-

verse mass =
√

m2 + p2
T with pT , η and φ represent the transverse momentum, pseudo-rapidity, 

and azimuthal angle, respectively. Thermodynamic variables for the quantum ideal gas such as 
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the pressure (P id ), the energy density (εid ), the particle number density (nid ), and the entropy 
density sid are given by;

P id =
∑

i

P id
i

=
∑

i

±giT

2π2

∞∫
0

p2dpln
{
1± exp[(μi − E)/T ]} (3)

nid =
∑

i

gi

2π2

∞∫
0

p2dp

exp[(Ei − μi)/T ] ± 1
(4)

εid =
∑

i

gi

2π2

∞∫
0

p2dp

exp[(Ei − μi)/T ] ± 1
Ei (5)

sid =
∑

i

± gi

2π2

∞∫
0

p2dp
[
ln

(
1± exp

( − (Ei − μi)

T

))

± (Ei − μi)

T {exp[(Ei − μi)/T ] ± 1}
]

(6)

In the IHRG model, all the particles are in equilibrium at the time of chemical freeze-out. In 
order to compare the thermodynamic quantities and the susceptibility ratios calculated from the 
IHRG model with the experimental observables, it is essential to have the beam energy depen-
dence of freeze-out parameters (μB and Tf ). The parameterized form of freeze-out parameters 
Tf and μB as a function of 

√
s
NN

are used as given in Ref. [22]. The energy dependence of μB is 
given as, μB (

√
s
NN

) = 1.308/(1 + 0.273
√

s
NN

) and the μB dependence of freeze-out temperature 
is given as Tf (μB) = 0.166 − 0.139μ2

B − 0.053μ4
B . Further, the energy dependence of μQ and 

μS are parameterized as given in Ref. [46]. The freeze-out parameters are found to be same in 
case of IHRG and EVHRG within small uncertainties as mentioned in Ref. [29]. We have used 
the above freeze-out parameterization for Tf and μB ) in the EVHRG and VDWHRG models, 
although the μB will be replaced with reduced chemical potential as discussed in the following 
section.

2.2. HRG model with repulsive interaction (EVHRG)

In this section, the role of repulsive interactions within hadrons which lead to the excluded 
volume HRG model (EVHRG) is described. The repulsive interactions are required, particularly 
at very high T and/or at large μB , to see the qualitative features of strong interactions where 
the ideal gas assumption becomes inadequate. In contrast to HRG, the geometrical size of the 
hadrons are incorporated explicitly in the EVHRG model. In this model the system volume V
is replaced by available volume Vav , which approximates the short-range repulsive interaction 
between hadrons [26–29,31]

V → Vav = V −
∑

biNi (7)

i

5
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where Ni is the particle number and bi = 163 πr3i is the excluded volume of the ith particle with 
hard-core radius ri . In grand canonical ensemble, with the reduced volume correction leads to 
the transcendental equation for the pressure, can be written as [27]

P ev(T ,μ) =
∑

i

P id
i (T , μ̃i), (8)

where the reduced chemical potential for the ith particle is

μ̃i = μi − biP (T ,μi) (9)

The other thermodynamic quantities are expressed as

ni = ni(T ,μi) = ∂P

∂μi

= nid
i (T , μ̃i)

1+ ∑
i bnid

i (T , μ̃i)
, (10)

ε =
∑

i ε
id
i (T , μ̃i)

1+ ∑
i bin

id
i (T , μ̃i)

, (11)

s =
∑

i s
id
i (T , μ̃i)

1+ ∑
i bin

id
i (T , μ̃i)

(12)

The values of above thermodynamic quantities on the left hand side are lower as compared 
to the same obtained from IHRG due to the suppression factor [1 + ∑

i bin
id
i (T , μ̃i)] in the 

denominator and also due to the reduced chemical potential μi → μ̃i . In case of constant volume 
bi for all the considered particle species, the overall suppression of each hadron density ni due to 
the excluded volume effects as compared to their ideal gas values nid

i is essentially the same. A 
small difference arises due to the quantum-statistical effects. Therefore, the particle number ratios 
are almost unchanged, and rescaling the total volume V , one may then obtain the average yield 
〈N〉 values equal to those in the IHRG. If the bis are chosen to be different for different particles, 
the suppression will be stronger for particles having larger hard-core radius [29,40]. The chemical 
freeze-out parameters T and μB estimated in EVHRG by fitting to data on hadron multiplicities 
are identical to those obtained within the IHRG model [29]. This leads to a misconception that 
the inclusion of the eigenvolume interactions into the HRG has a negligible effect on the thermal 
fits. However, the reduced chemical potential μ̃i is different in EVHRG as compared to the IHRG 
model.

The above EVHRG model discussion has been carried out considering fixed radii for mesons 
and baryons. However, the recent study by taking flavor dependent eigenvolume in the EVHRG 
model, the mean hadron multiplicities measured in central Pb+Pb collisions at LHC energy are 
better explained [39]. In such a case, the bag model with linear mass-volume relation for non-
strange particles are used as bi = αmi , i.e. hard-core radius ri = [3αmi/(16π)]1/3 fm and for 
strange particles bi = γ /mi , i.e ri = [3γ /(16πmi)]1/3 fm. Where parameters α = 2.1 fm3/GeV 
and γ = 1.38 fm3 GeV are fixed by specifying the proton radius and 
 radius, respectively [39].

2.3. HRG model with attractive and repulsive interaction (VDWHRG)

The interactions between nucleon-nucleon are not included in the IHRG model, hence this 
model is not able to explain the properties of nuclear matter at large baryon densities and lower 
temperatures. However, by considering the interactions among nucleons, it has been predicted 
that the VDW model shows the first-order liquid-gas phase transition which ends at the critical 
6
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point [10]. A similar feature is also expected for the QCD phase diagram. With this model, the 
basic features of nuclear matter have been successfully described by the VDW equation with 
Fermi statistics. In the canonical ensemble the pressure P(T , n) of the VDW equation can be 
written as

P(T ,n) = NT

V − bN
− a

N2

V 2 = nT

1− bn
− an2 (13)

where N is the number of particles and n = N/V is the number density. The parameters a and 
b describe the attractive and repulsive interactions, respectively and both are positive. The first 
term of Eq. (13) represents the excluded volume correction part as described in Sec. 2.2. For a
= 0, Eq. (13) reduces to EVHRG model, where only repulsive part is included. For both a and b
are equal to zero in the VDWHRG model, Eq. (13) leads to the ideal HRG model. This method 
has been successfully applied to the GCE framework [27,44,45]. The pressure and the particle 
number density n(T , μ) of the van der Waals equation in the GCE is written as [45,49]

P(T ,μ) = P id(T , μ̃) − an2(T ,μ) (14)

where n(T , μ) is the particle number density of the van der Waals gas, which is given by

n(T ,μ) = nid(T , μ̃)

1+ bnid(T , μ̃)
(15)

with P id and nid are the ideal gas pressure and particle number density, respectively. The reduced 
baryon chemical potential (μ̃) is given by

μ̃ = μ − bP (T ,μ) − abn2(T ,μ) + 2an(T ,μ) (16)

The energy density in this model is calculated as

ε = εid(T , μ̃)

1+ bnid(T , μ̃)
− an2(T ,μ) (17)

and the entropy density can be written as

s(T ,μ) = sid(T , μ̃)

1+ bnid(T , μ̃)
(18)

We assume that, for a hadronic system, the VDW interactions exist between all pair of baryons 
and between all pairs of antibaryons. The interaction between baryons-antibaryons, mesons-
mesons and mesons-(anti)baryons are neglected. The pressure of VDWHRG model can be 
written as

P(T ,μ) = PM(T ,μ) + PB(T ,μ) + PB̄(T ,μ) (19)

where pressure for mesons is given by

PM(T ,μ) =
∑
j∈M

P id
j (T ,μj ), (20)

and the pressure for baryons and antibaryons are

PB(T ,μ) =
∑
j∈B

P id
j (T , μ̃B

j ) − an2B, (21)

and
7
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PB̄(T ,μ) =
∑
j∈B̄

P id
j (T , μ̃B̄

j ) − an2
B̄
, (22)

where M , B , and B̄ represent mesons, baryons, and antibaryons, respectively. The modified 
chemical potential for (anti)baryons is given by

μ̃
B(B̄)
j = μj − bPB(B̄) − abn2

B(B̄)
+ 2anB(B̄), (23)

where nB and nB̄ refer to baryon and antibaryon number densities, respectively. Equation (16)
has to be solved numerically to estimate the shifted chemical potential, μ̃. The pressure as well 
as other thermodynamic quantities can be estimated after evaluating μ̃. The total (anti)baryon 
number densities can be estimated by differentiating the pB(B̄) with respect to the baryochemical 
potential as:

nB(B̄) =
∑

j∈B(B̄) n
id
j (T , μ̃

B(B̄)
j )

1+ b
∑

j∈B(B̄) n
id
j (T , μ̃

B(B̄)
j )

. (24)

Further, the specific heat at constant volume (CV ) and the speed of sound squared (C2
s ) which is 

related to inverse of CV are calculated as:

CV =
(

∂ε

∂T

)
V

; C2
s = ∂P

∂ε
= ∂P/∂T

∂ε/∂T
= s

CV

. (25)

The fluctuations of the conserved numbers are obtained from the derivative of the thermodynamic 
pressure with respect to the corresponding chemical potentials μB , μQ or μS . The k-th order 
generalized susceptibilities (χ ) are written as;

χX
k = dk[P(T ,μ)/T 4]

d(μ
X
/T )k

, (26)

where X represents either Bi , Qi , or Si of the ith particle depending on whether the susceptibility 
χX represents net-baryon, net-electric charge or net-strangeness.

Experimentally measured particle number fluctuations are characterized by the central mo-
ments viz., 〈(δN)2〉, 〈(δN)3〉, and 〈(δN)4〉, where 〈. . .〉 denotes the average over total number of 
events, N is the measured particle multiplicity, and δN = N −〈N〉. Further, the central moments 
are related to the cumulants (Cn, n = 1, 2, 3, 4) as follows: mean M = C1 = 〈N〉; variance σ 2 = C2

= 〈(δN)2〉; skewness S = C3/C
3/2
2 = 〈(δN)3〉/σ 3, and kurtosis κ = C4/C2

2 = 〈(δN)4〉/σ 3− 3. The 
ratios of the cumulants are defined as the following combinations of the central moments, σ 2/M

= C2/C1, Sσ = C3/C2, and κσ 2 = C4/C2. These ratios are well known volume-independent 
measures of particle number fluctuations. These ratios of moments/cumulants can be related to 
the susceptibilities of nth order (χn) obtained from lattice QCD or the HRG model calculations 
as σ 2/M ∼ χ21(= χ2/χ1), Sσ ∼ χ32(= χ3/χ2), and κσ 2 ∼ χ42(= χ4/χ2).

3. Results and discussions

Fig. 1 shows the binding energy per nucleon EB/A as a function of nucleon number density at 
T = 0 calculated using different versions of HRG models. The IHRG being the non-interacting 
model, hence shows no binding and the EB/A values increase with nB . The EVHRG and 
FLEVHRG models are having only the excluded volume term (i.e. repulsive interactions), hence 
8
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Fig. 1. The binding energy per nucleon (EB/A) as a function of nucleon number density (nB ) calculated using different 
extended versions of HRG models at T = 0.

EB is larger in these two models as compared to the IHRG model. The other two models (VD-
WHRG1 and VDWHRG2) with van der Waals interactions show the negative values of EB/A

due to the inclusion of attractive interactions. As mentioned in Ref. [10], the values of VDW 
parameters a = 329 MeV fm3 and b = 3.42 fm3 in the VDWHRG1 model are extracted from 
the fit to the ground-state of the nuclear matter. Hence, this model reproduces the minimum 
EB/A � −16 MeV and nB � 0.16 fm−3 values. The other VDW based model VDWHRG2 [33]
shows large negative EB/A value because the VDW parameters a and b are extracted by min-
imizing χ2 between VDW model and Lattice QCD data for thermodynamic parameters. The 
VDWHRG2 model gives large values of a = 1250 MeV fm3 and b = 5.747 fm3 as mentioned in 
Table 1.

Fig. 2 shows the temperature dependence of thermodynamic parameters like P/T 4, ε/T 4, 
s/T 3, CV /T 3, C2

s = ∂P/∂ε, and (ε − 3p)/T 4 at zero chemical potential (μB = μQ = μS = 
0) considering different cases of HRG such as IHRG, EVHRG, and VDWHRG models. The 
different HRG model results are compared with the lattice QCD results of the Hot-QCD Col-
laboration [3] and the Wuppertal-Budapest (WB) Collaboration [7] as shown in the same figure. 
The variation of P/T 4 with temperature is very small in all the considered models, indicating 
independent of the repulsive or attractive interaction between the hadrons. There is almost no 
effect of interaction till T = 150 MeV in thermodynamic parameters. The reason for this is that 
the effective degree of freedom of hadrons does not increase much up to this temperature and 
therefore correction due to excluded volume is small. Above T = 150 MeV, we find a substantial 
change in thermodynamic quantities. For higher temperatures the deviation is mostly dominated 
by baryons and also thermodynamic quantities are less sensitive to the mesonic radii [29]. Fur-
ther, in the case of EVHRG, the suppression is more as compared to IHRG while considering the 
flavor dependent hard-core radius compared to fixed radii for mesons (rm = 0.2 fm) and baryons 
(rb = 0.3 fm). It may be noted that baryon-baryon interaction has no effect at lower tempera-
tures. At μB = 0, the matter is dominated by mesons and their contribution is dominated over 
baryons. The behavior of the observables from the lattice QCD calculations at zero chemical po-
tential is shown to be strongly correlated to the nuclear matter properties. The HRG model with 
higher binding energy can better describe the Lattice QCD data as compared to the other E-HRG 
models.

Figs. 3 show the energy dependence of susceptibility ratios (χ21 = χ2/χ1, χ32 = χ3/χ2, 
and χ42 = χ4/χ2) for net-baryon (panels (a), (b), (c)), net-charge (panels (d), (e), (f)), and net-
9
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Fig. 2. The thermodynamic quantities P/T 4, ε/T 4, s/T 3, CV /T 3, C2
s , and (ε−3p)/T 4 as a function of temperature at 

μ = 0 calculated using different HRG models. The open circle and triangle symbols are for HotQCD [3] and Wuppertal-
Budapest (WB) [2] lattice data respectively. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

strangeness (panels (g), (h)) by considering different cases of HRG model as listed in Table 1. 
The study has been carried out considering the full phase-space in transverse momentum (pT ) 
and pseudorapidity (η). At lower energy, χB

21 for net-baryon is close to unity and its value in-
creases rapidly with increase of 

√
sNN . There is a small effect of interaction in the EVHRG and 

VDWHRG models. However, the results from these models are systematically lower compared 
to the IHRG model for all the studied energies. At low energy, the net-baryon χB

32 is close to unity 
and its value decreases with increase of 

√
sNN . The estimated values of χB

32 in both EVHRG and 
VDWHRG are lower than that of the IHRG model. Larger deviation from IHRG observed at 
lower collision energies, and all models give similar χB

32 at higher 
√

s
NN

. For χB
42 values from 

IHRG are close to Poisson expectation (which is at 1) for all energies. The values at lower en-
ergies are slightly lower than unity due to the correction of quantum statistics. In the EVHRG 
model, the χB

42 values reduce to ∼ 10% for lower energy (
√

s
NN

< 20 GeV) and approach to unity 
with the increase of energy while considering particle hard-core radii of 0.2 fm and 0.3 fm for 
mesons and baryons, respectively. The values are further reduced for lower energy with consid-
eration of flavor dependent particle radii. With the inclusion of attractive interaction between the 
hadrons, χB

42 strongly depends on 
√

s
NN

, indicating the suppression of particle number fluctua-
tion in the VDW gas. The number density of proton increases with decrease in the beam energy 
which may be one of the reason for the increasing suppression in the EVHRG and VDWHRG 
models at lower collision energies [28].

The energy dependence of χQ
21, χ

Q
32, and χQ

42 ratios for net-charge are shown in Fig. 3 (panels 

(d), (e), (f)). The χQ
21 values increase rapidly with increasing 

√
s
NN

. The χQ
32 values decrease 

with the increasing 
√

s
NN

for all the cases of HRG. Similar to the χB
32 for the net-baryon case, 

the χQ
32 values in EVHRG and VDWHRG are lower as compared to results from the IHRG 

model. The deviation from the IHRG is larger at lower energies. The χQ
42 for net-charge increases 

with energies and saturates at higher energies for all the cases of the HRG model. However, 
10
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Fig. 3. The collision energy dependence of susceptibility ratios (χ21, χ32, and χ42) for net-baryon (panels (a), (b), and 
(c)), net-charge (panels (d), (e), and (f)) and net-strangeness (panels (g) and (h)) calculated using different HRG models 
in full phase-space.

by including the repulsive and attractive interactions in the EVHRG and VDWHRG models, a 
larger deviation is observed from the IHRG. For all the cases, the decrease in χQ

42 values at lower 
energies attribute to the effect of quantum statistics which is important for low mass hadrons 
such as pions and kaons.

Fig. 3 (panels (g), (h)) shows the energy dependence of χS
32 and χS

42 ratios for net-strangeness. 
It is to be noted that, χS

21 diverges due to the imposed strangeness neutrality condition in the HRG 
model [46]. The value of χS

32 increases with energy up to 
√

sNN � 10 GeV and decreases there-
after. At lower energies, the results from FLEVHRG and VDWHRG2 are higher as compared 
to IHRG. At higher 

√
s
NN

, results from all the models are consistent. The χS
42 value slowly in-

creases with 
√

s
NN

and saturates at higher energies. Hence, interactions between the particle have 
a small effect on the fluctuations of net-strangeness.

3.1. Acceptance effect on different models

Most of the experimental measurements are available for a limited fraction of the total phase-
space due to finite detector acceptance. In an experiment we can detect only certain types of 
particle species due to inability of detectors to measure all them [47,55,56]. To compare the 
experimental measurements with model calculations, as well as the results from different exper-
iments to each other, it is essential for the models to calculate the desired fluctuations within 
the same detector acceptance window. Here, we discuss the influence of different kinematic 
acceptance on cumulants of net conserved (baryon number, electric charge and strangeness) fluc-
11
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Fig. 4. The lower transverse momentum cut-off (pmin
T

) dependence of normalized susceptibility ratios (χ21, χ32, and 
χ42) for net-baryon (panels (a), (b), and (c)), net-charge (panels (d), (e), and (f)) and net-strangeness (panels (g) and (h)) 
calculated for √s

NN
= 200 GeV using various E-HRG models. The maximum pT has been set as 5.0 GeV/c and in full 

pseudo-rapidity.

tuations in different HRG models as mentioned in Sec. 2. The acceptance effects are studied by 
introducing the pT and η cuts into the momentum integrals in Eqs. (3)–(6). We consider the 
effect of transverse momentum and pseudo-rapidity cuts on conserved number fluctuations in a 
static medium.

3.1.1. Effect of pT -acceptance
Fig. 4 show the lower pT cut-off dependence of susceptibility ratios normalized to the corre-

sponding values with respect to full pT acceptance for net-baryon (panels (a), (b), (c)), net-charge 
(panels (d), (e), (f)) and net-strangeness (panels (g), (h)) at 

√
s
NN

= 200 GeV. In Fig. 4, the lower 
pT cut-off has very minimal effect on the net-baryon fluctuations in both IHRG and EVHRG 
models. Similar observation were made for IHRG case in the previous study [47,55,56]. How-
ever, susceptibility ratios in the FLEVHRG and VDWHRG models have substantial dependence 
on the pmin

T cut-off. A maximum dependence occurs for the VDWHRG2 case where the van der 
Waals parameters are larger. The normalized susceptibility ratios of net-baryons increase with 
the lower side of the pT cut-off. Fig. 4 (panels (d), (e), (f)) shows the normalized susceptibility 
ratios for net-charge fluctuations. The net-charge fluctuations are dominated by the contributions 
from pions, which are strongly influenced by the effects of quantum statistics. Therefore, the sus-
ceptibility ratios are strongly affected by the pmin

T cut-off. Unlike the net-baryon case, there is no 
model dependence for the pmin

T cut-off on normalized χQ
21 and χQ

42 ratios. For a given pmin
T cut-off, 

the χQ
32 values are different in various HRG models. Fig. 4 (panels (g), (h)) shows the normalized 

susceptibility ratios for net-strangeness fluctuations. The net-strangeness fluctuations are also 
strongly dependent on pmin

T cut-off due to contributions from multi-strange states and quantum 
statistics effects of kaons. The χS ratios are dependent on the choice of the HRG models. There 
32

12
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Fig. 5. The lower transverse momentum cut-off (pmin
T

) dependence of normalized susceptibility ratios (χ21, χ32, and 
χ42) for net-baryon (panels (a), (b), and (c)), net-charge (panels (d), (e), and (f)) and net-strangeness (panels (g) and (h)) 
calculated for √s

NN
= 19.6 GeV using various E-HRG models. The maximum pT has been set as 5.0 GeV/c and in full 

pseudo-rapidity.

is no model dependence on the normalized χS
42 ratios for different p

min
T cut-off. Similar study has 

been performed at lower collision energy 
√

s
NN

= 19.6 GeV. Fig. 5 shows the normalized sus-
ceptibility ratios for net-baryon, net-charge and net-strangeness at 

√
s
NN

= 19.6 GeV. A stronger 
dependence of normalized susceptibility ratios observed for net-baryon fluctuations in different 
versions of HRG model. Similar pT cut-off dependence observed for net-charge and net-strange 
fluctuations as in 

√
s
NN

= 200 GeV.

3.1.2. Effect of η-acceptance
Fig. 6 show the normalized susceptibility ratios as a function of the pseudo-rapidity cut (|�η|

= 2.5) for net-baryon (panels (a), (b), (c)), net-charge (panels (d), (e), (f)), and net-strangeness 
(panels (g), (h)) using different HRG models at 

√
s
NN

= 200 GeV. In Fig. 6 (panels (a), (b), (c)), 
the maximum ηmax cut-off has no effect on the net-baryon fluctuations for the IHRG case. The 
susceptibility ratios show a strong dependence at the smaller |�η| window in both FLEVHRG 
and VDWHRG models. However, there is no dependence between models and �η cuts at higher 
|�η| > 1.0. Fig. 6 (panels (d), (e), (f)) show the normalized susceptibility ratios for net-charge 
fluctuations with different �η acceptance window. There is a strong dependence of �η cut in 
all the cases of HRG model for |�η| < 1.0. The normalized χQ

21 and χQ
42 show similar �η

dependence in all the HRG models. The χQ
32 values are different in various cases of HRG model. 

All the models show similar susceptibility ratios at higher �η, i.e. |�η| > 1.5. Fig. 6 (panels (g), 
(h)) shows the normalized susceptibility ratios for net-strangeness fluctuations. The susceptibility 
ratios are strongly depend on �η cut particularly at lower windows and remain constant at higher 
|�η| > 1.5. The normalized χS

42 are similar for different HRG models, however the χS
32 values are 

different for various HRG models. Further study has been carried out at lower collision energy, 
13
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Fig. 6. The normalized susceptibility ratios (χ21, χ32, and χ42) as a function of �η window for net-baryon (panels (a), 
(b), and (c)), net-charge (panels (d), (e), and (f)) and net-strangeness (panels (g) and (h)) calculated for √s

NN
= 200 GeV 

using various E-HRG models in full pT acceptance.

√
s
NN

= 19.6 GeV. Fig. 7 shows the normalized susceptibility ratios for net-baryon, net-charge 
and net-strangeness at 

√
s
NN

= 19.6 GeV as a function of �η. It is observed that at lower energy, 
normalized susceptibility ratios strongly depend on different HRG models for smaller �η as 
compared to 

√
s
NN

= 200 GeV. It is also found that similar �η dependence for net-charge and 
net-strangeness fluctuations at lower energy as observed at higher energy, 

√
s
NN

= 200 GeV.

3.2. Comparison with the experimental measurements

Experimentally measured moments (M , σ , S, and κ) of the net multiplicity distributions are 
related to the susceptibilities estimated from the model calculations (lattice QCD or HRG) as 
follows: σ 2/M ∼ χ2/χ1(= χ21), Sσ ∼ χ3/χ2(= χ32), κσ 2 ∼ χ4/χ2(= χ42). In the following, 
different versions of the HRG model calculations are compared with the experimental results 
from STAR and PHENIX experiments measured in the central (0–5%) Au+Au collisions.

Fig. 8 shows the energy dependence of σ 2/M , Sσ , and κσ 2 of net-proton multiplicity dis-
tributions measured by the STAR experiment at RHIC [16] and [17]. The experimental data are 
measured within midrapidity (|y| < 0.5) with different transverse momentum range 0.4 ≤ pT ≤
0.8 GeV/c (panels (a), (b), (c)) and 0.4 ≤ pT ≤ 2.0 GeV/c (panels (d), (e), (f)). Both the data 
sets show different absolute values of Sσ and κσ 2 because of the different pT acceptance. The 
statistical uncertainties are calculated using Delta theorem approach [57]. The experimental mea-
surements are compared with the different versions of HRG models calculated within the same 
acceptance as the experiment. The difference between σ 2/M in the IHRG and different exten-
sions of HRG model are negligible and all the models are consistent with the experimental data 
except at 

√
s
NN

= 200 GeV. For Sσ and κσ 2, the results from the interaction models (EVHRG, 
FLEVHRG, and VDWHRG) are lower than IHRG, indicating the suppression of particle number 
14
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Fig. 7. The normalized susceptibility ratios (χ21, χ32, and χ42) as a function of �η window for net-baryon (panels (a), 
(b), and (c)), net-charge (panels (d), (e), and (f)) and net-strangeness (panels (g) and (h)) calculated for √s

NN
= 19.6 GeV 

using various E-HRG models in full pT acceptance.

fluctuation. The suppression increases at lower energies for the higher-order cumulants having 
flavor dependent hard-core radius and attractive interactions. At lower energies, the net-proton 
number density increases largely contributing to the net-baryon number fluctuations, which is 
one of the reasons for the increasing suppression in the VDW gas at lower RHIC energies [28]. 
The κσ 2 values in the STAR data have a maximum deviation from the Poisson expectation at √

s
NN

= 19.6 GeV and less suppression at lower energies, while the suppression in the FLEVHRG 
and VDWHRG models keep on increasing with the decreasing beam energies. The Sσ and κσ 2

are strongly dependent on the types of interactions considered in the HRG calculations.
Fig. 9 shows the energy dependence of σ 2/M , Sσ , and κσ 2 of net-charge multiplicity distri-

butions within |η| < 0.5 and a pT range of 0.2 to 2.0 GeV/c measured by STAR experiment [18]
and within |η| < 0.35 and pT range of 0.3 and 2.0 GeV/c measured by PHENIX experiment [19]
at RHIC. The statistical errors are calculated using Delta theorem method [57]. Here, we would 
like to briefly discuss about the statistical error calculations in both the STAR and PHENIX ex-
periments. The statistical errors on Sσ and κσ 2 are correlated and are dependent on both variance 
(σ ) of the multiplicity distribution, detector efficiency and the number of events. As mentioned 
in [57], the statistical errors are more dependent on σ than the number of events. Hence, ex-
periments having wider multiplicity distribution will have larger errors on Sσ and κσ 2. Since 
STAR experiment has larger acceptance compared to PHENIX, it contributes to larger statistical 
error on the higher moments. Further, STAR net-charge distributions have larger σ compared to 
net-proton distributions, which contributes to the larger statistical error in the net-charge results 
than the net-proton results, although the number of analyzed events are similar.

The experimental net-charge fluctuation results are compared with the different HRG model 
calculations by considering the corresponding kinematic acceptance cuts. In case of STAR net-
charge fluctuation results (panels (a), (b), (c)), σ 2/M values from all the considered HRG models 
15
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Fig. 8. The collision energy dependence of σ 2/M(∼ χ21), Sσ(∼ χ32), and κσ 2(∼ χ42) for net-baryon calculated using 
various E-HRG models within the experimental acceptance. The model calculations are compared with the experimental 
net-proton cumulant ratios for the most central (0%–5%) Au+Au collisions measured by the STAR experiment with 
different momentum acceptance [16,17].

are systematically lower than the experimental data at all energies. However, there is a small 
dependence between the choice of HRG models. The Sσ values have larger suppression at 
lower 

√
s
NN

. The Sσ and κσ 2 values from the experimental data are explained by all cases of 
HRG models because of large uncertainties in the measured STAR experimental data. In case of 
PHENIX net-charge fluctuation results (panels (d), (e), (f)), σ 2/M values from the experimental 
data closely follow the model calculations. On the other hand, the calculated values of Sσ consid-
ering IHRG and EVHRG models fail to explain the experimental data. The discrepancy between 
the experimental data and the model calculations reduces with the inclusion of flavor dependent 
hard-core radius and attractive interactions in the HRG model. The κσ 2 values are reasonably 
explained by different HRG model calculations except for the case of VDWHRG2, which shows 
a decreasing trend at lower energies. At higher energies, all the models show similar results.

In most of the experiments all the baryons are not detected, hence the net-baryon number fluc-
tuations are not measured directly in the experiment. The net-baryon fluctuations are accessible 
via measuring the net-proton distributions. The net-charge fluctuations are accessible by measur-
ing the stable charged particles such as pions, kaons, and protons along with their antiparticles. 
Similarly, the measurement of net-kaon fluctuations acts as a proxy for net-strangeness fluctua-
tions, because higher mass strange particles are not directly measured. The difference between 
net-strangeness and net-kaon, as well as between net-baryon and net-proton, using IHRG model 
has been discussed in [47]. Fig. 10 shows the energy dependence of Sσ , and κσ 2 of net-kaon 
multiplicity distributions for central (0%–5%) Au+Aucollisions within |η| < 0.5 and pT range 
16
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Fig. 9. The collision energy dependence of σ 2/M(∼ χ21), Sσ(∼ χ32), and κσ 2(∼ χ42) for net-electric charge calcu-
lated using various E-HRG models within the experimental acceptance. The model calculations are compared with the 
experimental net-charge cumulant ratios for the most central (0%–5%) Au+Aucollisions measured by the STAR (panels 
(a), (b), and (c)) [18] and PHENIX (panels (d), (e), and (f)) [19] experiments.

Fig. 10. The collision energy dependence of Sσ(∼ χ32) and κσ 2(∼ χ42) for net-strangeness calculated using various E-
HRG models within the experimental acceptance. The model calculations are compared with the experimental net-kaon 
cumulant ratios for the most central (0%–5%) Au+Aucollisions measured by the STAR experiment [20].

within 0.2 to 1.6 GeV/c measured by STAR experiment [20]. The experimental measurements 
are compared with the HRG model calculations without and with including interactions. The 
17
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experimental data on χS
32 are well explained by all the considered model calculations except at √

s
NN

= 7.7 GeV. There is a small difference while considering various choices of interactions. 
The HRG model calculations for κσ 2 are above the experimental measurements. Unlike the 
net-baryon case, a small difference in χS

42 values are observed while considering different HRG 
models.

4. Summary

We have studied the fluctuations of conserved numbers using different interactions in the 
HRG model to understand the strongly interacting matter at high temperature and baryon den-
sity. This study will help to understand the phase diagram of quantum chromodynamics (QCD) 
at non-zero temperature and baryon chemical potential. For this, we have studied the effect of 
different interactions in the HRG model by estimating various thermodynamic parameters such 
as P/T 4, ε/T 4, s/T 3, CV /T 3, C2

s and (ε − 3p)/T 4 at μ = 0. It is found that P/T 4 has a small 
dependence on the interactions that included in the HRG model. Other thermodynamic quantities 
viz., ε/T 4, s/T 3, C2

s and CV /T 3 are independent of the choice of the interactions at lower T , 
however, they start deviating from the ideal HRG values for T > 150 MeV. The susceptibility 
ratios (χ21, χ32, and χ42) of net-baryon, net-electric charge and net-strangeness are estimated as 
a function of 

√
sNN considering different HRG models at full phase-space and also within the 

experimental acceptance. The χ32 and χ42 ratios of net-baryon as a function of 
√

s
NN

show large 
variations between different E-HRG models. Further, the impact of pmin

T cut-off as well as �η

windows on the normalized susceptibilities ratios are studied. It is found that pmin
T cut-off has 

a negligible effect on net-baryon fluctuations calculated using the IHRG model. On the other 
hand, the results from EVHRG and VDWHRG models show a strong dependence on pmin

T cut-
off. There is a strong dependence on pmin

T cut-off observed in the normalized χ32 and χ42 ratios 
for net-charge and net-strangeness with the inclusion of different interactions in the HRG model. 
The normalized susceptibility ratios show a strong dependence on �η at its lower values while 
employing EVHRG and VDWHRG models. The χ32 ratios for net-charge and net-strangeness 
show a strong dependence on �η window and also with different interactions included in the 
HRG model. Hence, it is important to consider the proper kinematic acceptance while com-
paring the experimental measurement with the model calculations. As shown in this work, the 
extended versions of the HRG model are very sensitive to kinematic acceptance even, particu-
larly for net-proton results. Further, the EVHRG and VDWHRG calculations are compared with 
the experimental measurements for fluctuations of net-proton, net-charge, and net-kaon multi-
plicity distributions. There is a strong model dependence on the net-baryon results for Sσ and 
κσ 2 values, particularly at lower collision energies. The repulsive and attractive interactions lead 
to larger suppression for higher-order cumulants at larger VDW parameters and lower beam en-
ergies. The net-charge fluctuations show larger models dependence at lower energies for both 
STAR and PHENIX acceptance. However, all the different models show similar results at higher 
energies. This study will be helpful to understand the fluctuation measurements in the experi-
mental data with different interactions in the HRG model.
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