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Abstract— Vehicle to Vehicle (V2V) communication allows 
vehicles to wirelessly exchange information on the surrounding 
environment and enables cooperative perception. It helps prevent 
accidents, increase the safety of the passengers, and improve the 
traffic flow efficiency. However, these benefits can only come when 
the vehicles can communicate with each other in a fast and reliable 
manner. Therefore, we investigated two areas to improve the 
communication quality of V2V: First, using beamforming to 
increase the bandwidth of V2V communication by establishing 
accurate and stable collaborative beam connection between 
vehicles on the road; second, ensuring scalable transmission to 
decrease the amount of data to be transmitted, thus reduce the 
bandwidth requirements needed for collaborative perception of 
autonomous driving vehicles. Beamforming in V2V 
communication can be achieved by utilizing image-based and 
LIDAR’s 3D data-based vehicle detection and tracking. For 
vehicle detection and tracking simulation, we tested the Single 
Shot Multibox Detector deep learning-based object detection 
method that can achieve a mean Average Precision of 0.837 and 
the Kalman filter for tracking. For scalable transmission, we 
simulate the effect of varying pixel resolutions as well as different 
image compression techniques on the file size of data. Results show 
that without compression, the file size for only transmitting the 
bounding boxes containing detected object is up to 10 times less 
than the original file size. Similar results are also observed when 
the file is compressed by lossless and lossy compression to varying 
degrees. Based on these findings using existing databases, the 
impact of these compression methods and methods of effectively 
combining feature maps on the performance of object detection 
and tracking models will be further tested in the real-world 
autonomous driving system.  

Keywords—V2V, Deep Learning, LIDAR, Beamforming (key 
words) 

I. INTRODUCTION

A. Autonomous Driving Systems
An autonomous driving system is a driving system that is

capable of driving safely without human input by using a 
variety of sensors to perceive the environment. Human drivers 
normally cannot drive cars at a speed of 200-250 mph in their 
daily lives for the sake of safety. The speed limits are set to 
guarantee that human drivers have enough reaction time to stop 
their cars or change lanes if needed. As such, the driving speed 

is constrained by the reaction time of a normal human driver 
[1]. The autonomous driving system solves this restriction by 
using multiprocessor implementation of intelligent real-time 
control systems in the car to replace human drivers.  

The greatest benefits of autonomous driving systems are 
increased traveling speed and more free time with little 
attention needed from the passengers. Additionally, 
autonomous driving also helps decrease traffic and reduce 
emissions.  

However, the safety issue is still a major concern for the 
mass adoption of autonomous driving vehicles. One solution to 
this problem is the collaborative communication of vehicle to 
vehicle. Each vehicle can communicate with each other to 
provide the information of their surroundings, e.g., vehicles on 
the road that might be hidden from line-of-sight, obstacles on 
the road, or in cases where unexpected events happen. To 
accomplish this goal, there needs to be a stable uninterrupted 
highspeed connection between the vehicles. 

B. Vehicle-to-Vehicle communication
Vehicle-to-Vehicle (V2V) communications are designed to

transmit information without a centralized networking 
architecture. The objective of V2V communication is to 
provide communication between vehicles when there is a risk 
of an accident and to enable vehicles to take preventive action 
to avoid collisions. Therefore, to guarantee the safety of 
passengers inside autonomous vehicles, autonomous driving 
requires a higher data rate in communication between vehicles. 
The information communicated between vehicles can belong to 
many different streams of information gathered from multiple 
sensors on the car such as cameras, radar transceivers, as well 
as LIDAR. Thus, the communication data rate needs to be in 
the Gb/s range instead of the current Mb/s range. However, in 
real-world applications, such high bandwidths can be difficult 
to achieve. Therefore, we look into improving the bandwidth 
available in V2V communication as well as reducing the 
information to be transmitted.  

First, to improve the connection power, we examine the use 
of beamforming in V2V communication. Traditionally, radio 
communication is often equipped with omnidirectional 
antennas, which have decreased signal quality at the receiving 
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vehicles due to signal power loss during transmission. To solve 
this issue, we can use beamforming and beam steering 
technology for higher channel gains. Both beamforming and 
beam-steering use directional antennas to avoid the signal 
power loss in undesired directions, which can improve the 
network capacity as well as the stability and quality of the V2V 
communication links.  

To form a correct and stable beam connection in V2V 
communication, we need to obtain the accurate locations of the 
vehicles on road. One possible solution to obtain the locations 
of vehicles is to use the Global Positioning System (GPS).  
However, the localization accuracy of the GPS signals can be 
affected by the surrounding environment, such as buildings, 
weather, forests, and many other sources of interference. 
Therefore, in this paper, we aim to integrate the use of deep 
learning-based object detection and tracking techniques for the 
localization and tracking of vehicles  to establish stable wireless 
V2V communication.  

Furthermore, as the number of vehicles within a radius of 
50 meters can reach 20 or 30 during rush hour, and the amount 
of data to be transmitted can become impossible to manage. 
Thus, we focus on scalable transmission, where the data is 
compressed in a lossy compression manner such that the 
reliability and safety of the system can remain the same.  

C. Scenarios of collaborative communication between
multiple vehicles
The main objective of this research is to understand the

communication challenges to achieving cooperative perception 
among autonomous vehicles, and thus increased the safety of 
autonomous driving. One of the major challenges of 
autonomous driving is the problem of blind spots and occlusion, 
which restricted by the line of sight and field of view of 
autonomous vehicles. Therefore, with a cooperative perception 
among autonomous vehicles, each vehicle can have a more 
complete perception of the environment that is normally 
prevented when an occlusion occurs. However, to achieve this 
goal, we need to establish a stable connection between the 
vehicles to allow a channel for the exchange of information. For 
this reason, we propose the use of object detection and tracking 
from a multisensory system to assist in the beamforming 
process. The object detection and tracking system use the 
information from the camera, LIDAR, and radar sensors as the 
base to identify and locate other vehicles on the road. This 
location information can then be used to form mmWave 
connection beams and steer these beams towards the 
predicted/tracked location of these vehicles. 

Particularly, we examine the effectiveness of the 
beamforming and beam-steering V2V system communication in 
the following two scenarios using vehicle detection and tracking 
techniques. In a single vehicle to vehicle scenario, the 2 vehicles 
can travel in the opposite direction as shown in Fig. 1. On the 
other hand, the two vehicles can also travel in the same direction 
and one of the vehicles is traveling at a faster speed. Both 
vehicles have cameras that can record the environment around 
the car, radar transceivers such as the Universal Software Radio 
Peripheral (USRP) on top of the roof for communication, and 
LIDAR sensors for precise and fast depth information. The 

information collected from these sensors helps with 
collaborative communication and autonomous driving of the 
vehicles by integrating deep learning-based object detection and 
tracking to help with beamforming and steering. For camera 
information, we use image-based object detection and tracking 
to locate and predict the directions of where other objects are 
from the current vehicle position. Additionally, using LIDAR 
sensors, we can gather the depth information, which can be used 
to further detect and track vehicles precisely during traffic 
conditions. These tracking results give us a prediction of vehicle 
position in real-time traffic conditions and let us move the beam 
connection preemptively to maintain a stable communication 
condition. 

Thus, the process of collaborative communication includes 
detecting vehicles and their locations on the streets via a 
multitude of data such as image-based object detection or 
LIDAR’s 3D object detection, tracking these vehicles during 
traffic conditions, and finally collaborative perception and 
communication between vehicles using these locations. 
Additionally, due to the high bandwidth required for this 
collaborative communication system, we propose scalable 
transmission, which compresses and reduces the amount of data 
during communication while guarantees the reliability and 
safety of the autonomous driving system. 

II. VEHICLE DETECTION

Vehicle detection aims to identify the location and size of the 
vehicle. It is the starting point before the tracking tasks can be 
applied. 

Fig. 1. Scenario 1 

Fig. 2. Scenario 2 

A. Image-based vehicle detection
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Symbol Description 
𝒙𝒑𝒓𝒆𝒅

𝑷𝒑𝒓𝒆𝒅

𝑷 
𝑭 
𝑸 
𝑩 
𝒖 
y 
𝑯 

Predicted state 
Predicted State covariance 

State covariance 
State transition matrix 

Process covariance 
Control function 

Control input 
Residual 

Measurement function 
𝒛 
𝒙′ 
𝑲 
I 
𝑭 
𝒘 
𝒉 
𝒃 
𝒁𝒏, 𝒁𝒏 

Measurement from the object detector 
Update state 
Kalman gain 

Identity matrix 
File size 

Image width 
Image height 

Image bit depth 
DCT input and output 

TABLE I 
Object detection has been one of the key abilities in most 

computer and robot vision systems. Especially during recent 
years, there has been rapid and successful development and 
breakthrough in the field of computer vision, which is largely 
Neural Networks (CNNs). 

The goal of object detection is to identify the location and 
scale of all object instances, such as vehicles, that are present in 
an image. Thus, a vehicle detector job is to detect all vehicle 
instances regardless of their scale, location, pose, view with 
respect to the camera.  

In most object detection systems, the sliding window 
scheme is used. In a sliding window scheme, an exhaustive 
search is applied to detect the objects appearing in the image at 
different scales and locations [2]. A classifier will determine 
whether a given image patch corresponds to the object or not. 
In this scheme, because the classifier works for a given scale 
and patch size, the classier is usually used to classify all 
possible patches of a given size, for each of the downscaled 
version of the input image. One alternative to the sliding 
window scheme is the use of bag-of-words [3], which can be 
used for verifying the presence of the object and then iteratively 
refine the image region that contains the object. Another 
alternative is to sample image patches and iteratively search for 
the region of an image where the object is likely to stay [4]. 
Additionally, the detector can find key-points and match them 
to perform the detection [5]. The latter three schemes reduce the 
computation complexity of the classification by seeking to 
avoid an exhaustive search of all image patches. However, they 
cannot always guarantee that all object’s instances will be 
detected, which is not desirable for the safety of the 
autonomous driving system. 

Current state-of-the-art object detection methods rely on 
Deep Convolutional Neural Networks (DCNNs). Within 
DCNN, there exist two popular frameworks for detection [6]. 
The first is the single stage detection framework that uses a 
single network to produce object detection locations and class 

predictions simultaneously. The second is the region proposal 
detection framework that uses two stages, one to propose the 
general regions of interest and one to categorize them by a 
separate classifier network. Typically, the region proposal 
methods have higher performance on the detection benchmarks 
at the cost of high computational complexity and hard to 
implement or fine-tune. On the contrary, the single stage 
detection methods are generally faster with low memory cost 
while still achieving competitive performance [6]. Due to this 
reason, single stage detection methods are very suitable for real-
time autonomous driving systems. Some of the popular single 
stage detection models are YOLO (You Only Look Once) [7] 
and Single Shot Detector (SSD) [8]. Of the two, the SSD method 
performs faster and has competitive results on public 
benchmarks. 

B. Vehicle detection from LIDAR
Compared to image-based object detection, LiDAR’s point

cloud can be used to locate the objects and their trajectories 
even better due to the precise depth information. Similar to 
object detection in an image-based application, we focus on 
object recognition and classification, especially of other 
vehicles, using LIDAR’s point cloud data. The popular method 
in LIDAR object detection is first separating the non-ground 
objects from the ground, and then classifying the vehicles 
against other non-ground objects using supervised learning 
techniques [9]. For example, Hernandez and Marcotegui [10] 
apply the λ-flat zones labeling to the 2D rasterized point cloud 
image to generate a ground mask, which makes the scan holes 
detected as non-ground objects. After this, they used SVM to 
classify cars, lampposts, and pedestrians. In the case of 
occlusions from the point cloud data, Xiao et al. [11] proposed 
a complete reconstruction and localization of vehicles by 
modeling the vehicles then reconstructing them in case of 
occlusions. In this approach, the point cloud data is first 
classified into the ground and non-ground objects similar to the 
previous method. After reconstruction, SVM and Random 
Forest are used to classify the objects into vehicles and non-
vehicles. This classification is based on geometric features such 
as size and shape as well as the parameters of the models that 
fit an object. However, in the current model-based approaches, 
the training models are generated manually for limited types of 
objects and not generic.  

C. Dataset for autonomous driving system testing:
The KITTI dataset [12, 13] is one of the most popular

benchmark datasets for autonomous driving perception tasks, 
including image-based monocular and stereo depth estimation, 
optical flow, semantic, and instance segmentation, as well as 
2D and 3D object detection. The data is collected from a car 
equipped with an Inertial Navigation System (GPS/IMU), a 
laser scanner, 2 grayscale cameras, 2 forward-facing cameras, 
and a LIDAR sensor. The location of the collected data is in 
Karlsruhe, Germany. In this dataset, each training example is a 
labeled 3D scene that is captured by the LIDAR sensor and the 
two front-facing cameras. In total, there are 7481 training 
examples and 7581 testing examples in this dataset. Each 
training example contains a 100 milliseconds snapshot of the 
3D world around the car. The LIDAR sensor used in this dataset 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



is the Velodyne HDL-64E LIDAR sensor. This LIDAR has 64 
channels (64 laser beams) and an azimuth resolution of 0.08 
degree, which means that the generated point cloud photos are 
images with 64 rows and 4500 columns. In KITTI, the point 
cloud data is an unordered set of LIDAR point where each point 
is a 4-tuple (x, y, z, p) where x, y, z are the cartesian coordinates 
and p is the intensity. 

For object detection training and testing, we use the Pascal 
Visual Object Classes Challenge 2007 (VOC07) [14], 2012 
(VOC12) [15], and the Common Object in Context (COCO) 
[16] dataset. The PASCAL VOC project aims to provide 
standardized image data sets for object class recognition, a 
common set of tools for accessing the datasets, and enable 
evaluation and comparison of different methods. Similarly, 
COCO is also a large-scale object detection, segmentation, and 
captioning dataset. This dataset has over 1.5 million object 
instances and 330,000 images with all objects appearing in their 
natural contexts. Both of these datasets are widely popular in 
the field of object detection. 

 

 

Fig. 3. AnnieWAY car used to collect the KITTI dataset[12] 

III. COLLABORATIVE COMMUNICATION 
V2V communication imposes a high bandwidth 

requirement due to the plethora of information collected from 
the multisensory system attached to each vehicle. This 
bandwidth requirement is further enlarged by the current trend 
towards Vehicles-to-everything (V2X), which allows vehicles 
to communicate with other moving parts of the traffic system 
around them. Thus, the use of beamforming should be a 
promising solution to this problem.  

Beamforming is a technique that focuses the wireless radio 
signal toward a specific direction, rather than having them 
spread in all directions from the broadcast antenna, thus can 
result in a faster and more reliable connection compared to the 
scenario without beamforming. The beam is formed by 
combining multiple antennas transmitting the same signal and 

reinforcing the waves in a specific direction. To achieve this, 
there needs to be multiple antennas at proximity, all 
broadcasting the same signal at a slightly different time on the 
transmitter’s end. The beam width depends on the number of 
antennas, where the more antennas, the narrower the beam. The 
advantages of beam connections are that they are faster, more 
reliable, and provide more secure connections [17].  

In an autonomous driving system, the obvious obstacles for 
beamforming are the rapid changes of beam directions due to 
relative positional change between the vehicles. To resolve this, 
the use of collaborative perception and multisensory fusion 
between vehicles is necessary to achieve vehicle tracking [18]. 
When the car can be tracked accurately, we can use this 
information for the radio beam formation as well.  

The principle of vehicle tracking is based on the prediction 
of the current vehicle position based on the previous position. 
Due to the complex and high-speed scenarios of autonomous 
driving, estimating location alone is insufficient and may lead 
to low connection power. Therefore, the driving systems also 
need to estimate the direction and velocity of the vehicles such 
that a dynamic motion model can be applied to track the 
vehicles and predict their future location/trajectory. The most 
suitable data option for this task is the 3D LIDAR sensors, 
which capture the precise depth information in the 360-degree 
area around the vehicle. However, concerning the uncertainties 
of sensor functions in a complex system, a better solution is to 
employ a sensor fusion strategy that has the potential to reach a 
higher accuracy and better reliability. 

Typical tracking systems work by associating data from the 
same class together (bounding box) then applying filtering 
methods [6]. For data association, in image-based object 
detection, these are usually done by DCNNs that produce 
bounding box and objects’ classification. In the LIDAR’s 3D 
points cloud case, the nearest neighbors methods can be used 
for establishing an association between data points. 
Additionally, point density or Hausdorff distance can also be 
used for data association in points cloud [19, 20].  

For filtering, the Kalman filtering method is a popular 
method of tracking objects/vehicles. With Kalman filter, the 
vehicle tracker can predict the car’s future location, correct the 
prediction based on new measurements, reduce the noise 
introduced by inaccurate detection, and facilitate the process of 
association of multiple vehicles with their tracks. This Kalman 
filter is also the filter method used in our simulation. 

There are two steps in using the Kalman filter for vehicle 
tracking: prediction and update. The prediction step uses 
previous states to predict the current state. The update step uses 
the current measurement, which is the bounding box location in 
this case, to correct the state. In the prediction phase, the 
Kalman filter calculates the predicted state using eq. (1) and the 
predicted state covariance using eq. (2). 

   𝑥𝑝𝑟𝑒𝑑 = 𝐹�̅� + 𝐵𝑢  (1) 
  𝑃𝑝𝑟𝑒𝑑 = 𝐹𝑃𝐹𝑇 + 𝑄  (2) 

Where �̅� is the state mean, P is the state covariance, F is the 
state transition matrix, Q is the process covariance, B is the 
control function (matrix), and u is the control input. In this 
context, the state is the bounding box coordinates. The control 
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inputs can be used when there are known properties that can 
better estimate the system’s state. However, in the case where 
there are no known control inputs, we can assume the control 
inputs u = 0. 
In the update phase, the residual y is calculated using eq. (3): 

𝑦 = 𝑧 − 𝐻𝑥𝑝𝑟𝑒𝑑                         (3)
Where z is the measurement from the object detector, and H is 
the measurement function (matrix). The updated state x’ is 
calculated using eq. (4): 

𝑥′ = 𝑥𝑝𝑟𝑒𝑑 + 𝐾𝑦                         (4)
Where the updated state x’ is the summation of the predicted 
state and the Kalman gain (K) from the residual; and K is 
calculated as follow: 

𝐾 = 𝑃𝑝𝑟𝑒𝑑𝐻𝑇(𝐻𝑃𝑝𝑟𝑒𝑑𝐻𝑇 + 𝑅)−1          (5)
where R is denoted as the measurement noise covariance, 𝑃𝑝𝑟𝑒𝑑

and H are the predicted state covariance and the measurement 
function respectively.  
Finally, the state covariance is also updated using eq. (6): 

𝑃 = (𝐼 − 𝐾𝐻)𝑃𝑝𝑟𝑒𝑑           (6)
However, for a nonlinear model, it is better to use particle 

filter-based vehicle tracking, which is a generalization of the 
traditional Kalman filtering methods. The particle filter uses a 
set of discrete particles to approximate the distribution of the 
object, meaning that each particle tests the likelihood that the 
object is at the position where the particle is. At each 
generation, the good particles are multiplied and the bad 
particles are removed. In this way, the particle filter can better 
model non-linear object motion better than the Kalman filter. 

Once a good tracking system can perform well in the 
autonomous driving system, the information of the system can 
also be used in the formation of wireless radio beam 
connections between vehicles.  

IV. SCALABLE TRANSMISSION

The effectiveness of autonomous vehicles depends largely 
on their sensors. These sensors allow the vehicles to see and 
sense everything on the road and collect information needed for 
safe drives. On top of this, the information collected from the 
sensors, such as road conditions, upcoming intersections, traffic 
jam, and obstacles on the road, need to be shared between 
vehicles on the roads. As such, this information can be 
processed and analyzed to map out the vehicles’ path from the 
starting point to the destination, as well as the appropriate 
steering, turning, accelerating, and braking instructions to the 
controls of the car. However, it is not always possible to 
communicate this information in a fast and precise manner 
between vehicles, especially in an autonomous system with 
multiple vehicles collaborating together. The solution we 
propose for this problem is scalable transmission, which 
integrates lossy compression of a multitude of data between 
vehicles, which significantly reduces the amount of data 
exchanged among vehicles while maintaining the important 
information crucial to the safety of the passengers and the 
traffic flow efficiency.  

In autonomous driving system, the two criteria that the 
vehicles must allow collaboration are: (a) the autonomous 
vehicles have a wide variety of sensors that provide a 

comprehensive recognition of the surrounding environment; (b) 
the vehicles also have a stable connection to communicate this 
information for better collaboration with other vehicles on the 
road.  

The first criterion is usually satisfied in real-world 
applications.  A typical autonomous vehicle has multiple radar 
sensors, LIDAR unit, and camera units around the body to 
guarantee a complete capture of the surrounding environment. 
These sensors are usually sufficient enough for the perception 
of the environment. Furthermore, they also enable precise 
cooperative perception of autonomous vehicles. Such 
cooperative perception is extremely helpful to extend the line 
of sight and field of view of autonomous vehicles, which 
otherwise suffers from blind spots and occlusions. The first step 
toward this cooperation is transmitting the information from all 
of these sensors from vehicles A to vehicles B, C, D which are 
driving on the same road. This transmission, however, requires 
very high bandwidth. In real-life applications, such bandwidth 
may not be available all the time due to the unstable connection 
between vehicles which is caused by environmental conditions, 
which can cause a lack of bandwidth.   

To resolve this problem, we propose the use of scalable 
transmission.  Scalable transmission’s main goal is to minimize 
the information during transmission while still maintaining the 
necessary information for the safety of the passengers in 
autonomous vehicles. Such examples can be seen in online 
video streaming, when the bandwidth is not good enough, the 
quality of the video automatically reduces to low resolution. 
The same principle can be applied toward vehicle to vehicle 
communication in the collaborative autonomous driving 
system. When an environmental change happens such as rainy 
days or the change of line-of-sight connection to non-line-of-
sight connection, the communication can become unstable and 
unable to transmit the high-resolution version of the sensor 
data. In this case, instead of transmitting a lossless version of 
the data in a noisy channel, we can transmit a lossy compressed 
version of the data that is relevant to the other vehicles to reduce 
the bandwidth requirements while still maintaining the 
appropriate information for them to operate safely. For 
example, in the case of LIDAR or radar, we can transmit only 
the key feature, such as the object information. While in the 
camera sensors case, we can transmit only part of the video that 
is relevant. Particularly, we would transfer only the box that 
contains the detected object, which is the vehicles being 
tracked, to the other collaborative vehicles in the network. 
Additionally, while transmitting part of the information is not 
possible, the vehicle can also transmit fewer frames instead. 
Thus, in good condition, all frames from the sensors can be 
transmitted between vehicles. However, in a suboptimal 
condition, the vehicles can choose to transmit fewer frames or 
parts of the image relevant to the other vehicles to significantly 
reduce the amount of data exchanged among vehicles.  

The benefits of data compression are obvious, as it enables 
agile and precise cooperative perception on connected and 
autonomous vehicles. Due to a smaller bandwidth requirement, 
scalable transmission allows data sharing on a massive scale 
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among autonomous vehicles that can help with a safer driving 
as well as the overall traffic flow efficiency of the network. 

V. SIMULATION

A. Simulation of car detection from a mounted camera on
vehicles:
In this simulation, we apply a vehicle detection algorithm

on a short video recorded from a front-facing camera attached 
to the car. The first step of the simulation is to input a captured 
image into the vehicle detection algorithm. The algorithm will 
output the image with the bounding boxes on the detected 
vehicles. The tool we used is the TensorFlow Object Detection 
API, an open-source framework built on top of TensorFlow to 
construct, train, and deploy object detection models. The model 
for object detection is the Single Shot Multibox Detection 
(SSD) framework that comes from the collection of pre-trained 
object detection models in the API. The training data comes 
from the COCO dataset. The SSD method detects objects in 
images using a single deep neural network. In particular, it 
discretizes the output space of bounding boxes into a set of 
default boxes over different aspect ratios and scales per feature 
map location. Then, at prediction time, the network scores the 
fitness of each object category in each default box and gives 
adjustments to the box to better match the object shape. 
Additionally, the network also combines prediction from 
multiple feature maps and different resolutions to account for 
the various sizes of detected objects.  

The performance of the TensorFlow implementation of the 
SSD models is listed in table 1 below [21].  

TABLE I. SSD MODEL PERFORMANCE 

Model Training Data Test Data mAP 

SSD-300 VOC07+12 trainval VOC07 test 0.778 

SSD-300 VOC07+12+COCO trainval VOC07 test 0.817 

SSD-512 VOC07+12+COCO trainval VOC07 test 0.837 

The SSD-300 is a VGG-based SSD network with 300 inputs 
whereas SSD-512 takes 512 inputs. The architecture of the 
SSD-300 is described in Fig. 5, where the input is the captured 
image of the road, and the output is the bounding boxes of the 
detected vehicles. The training data comes from the Pascal 
Visual Object Classes Challenge 2007 (VOC07), 2012 
(VOC12), and the COCO dataset. The testing dataset comes 
from the VOC07 testing data. Some examples of the outputs 
produced by this model are presented in Fig. 4. The mean 
Average Precision (mAP) measures the accuracy of the 
prediction of the bounding box. The mAP is calculated as the 
mean of the Area Under Curve (AUC) of the precision-recall 
curve overall categories. In the case of this dataset, there is no 
distinction between AP and mAP. The mAP metric is widely 
used to assess the performance of object detection model. As 
listed in the table above, the SSD method can achieve a mAP 
score of up to 0.837. There are other models that can perform 
even better than the SSD model, such as the DetectorRS model 
[22] or the SpineNet-190 [23]. However, the SSD provides a

better tradeoff between accuracy and the detection speed, which 
is crucial in the autonomous driving application.  

Based on this simulation, we confirm the possibility of 
using object detection and tracking in V2V beamforming. The 
first reason is that the autonomous driving system requires the 
application of object detection and tracking regardless of its 
potential utility in beamforming. Without these detections, the 
vehicle is unable to recognize and react to other vehicles on the 
road, disabling it to maintain safety for passengers. Thus, there 
is no computational overhead needed in finding the beam 
direction as these detections are already running constantly 
during a trip. The only calculation needed is to compute beam 
directions, which are fairly simple and can be performed with 
basic geometry. Secondly, from the literature survey and in 
simulation, object detection and tracking model proved to have 
good performance with a mAP score of up to 0.837 and a fast 
inference speed. Coupled with the rapid improvement of 
commercial GPU hardware and embedded systems that 
increase the computation power in autonomous vehicles, the 
accuracy and inference speed of these models will continue to 
improve in the near future. 

Fig. 4. Simulation of image-based Car detection and tracking 

Fig. 5. SSD VGG-based model diagram [8] 

B. Scalable transmission of camera information:
In the other direction, we propose scalable transmission that

aim to reduce the amount of data in V2V communication. To 
illustrate the effectiveness of scalable transmission, we 
simulate the transmission using the video from the KITTI 
Vision Benchmark Suite as aforementioned. In this benchmark 
dataset, the image resolution of the video is 1382 x 512 pixels 
while the frame rate is 10 frames per second. We can calculate 
the size of one image with this resolution using: 

𝐹 = 𝑤 × ℎ × 𝑏                                          (7) 
Where F is the file size in bits, w, h are the width and height of 
the image respectively, and b is the bit depth of the camera. 
Using this formula, the total number of bits of one image in the 
KITTI dataset is 11,321,344 bits or 1.35 Megabytes. Thus, the 
file size of a 1-hour long video recorded on the car is 3036.6 
Megabytes (3 Gigabytes). In Fig. 4, we examine the effect of 
the size of the vehicle’s bounding box towards the file size. 
From Fig. 3, we can safely assume that the typical size of the 
bounding box ranges from 100x100 to 300x300 whereas the 
size of the whole frame is 1382x512. Thus, we can see that 
compared to sending each frame in raw data, sending only the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



important information from the image, such as the vehicle’s 
position, requires 10 times less bandwidth.  

Additionally, we also analyze the effect of compression 
algorithms on the size of the camera data. The first compression 
technique is the JPEG method. JPEG is a lossy compression 
format that was created for digital images. It works by first 
converting the RGB-based image collected from digital camera 
to the YCbCr color space, then applying the Discrete Cosine 
Transform (DCT) that transforms the frequencies of the original 
values along each row and column in terms of a sum of cosine 
function oscillating at different frequencies. The DCT is 
expressed as: 

𝑍𝑘 =  ∑ 𝑍𝑛 cos [
𝜋

𝑁
(𝑛 +

1

2
) 𝑘]    𝑘 = 0, … , 𝑁 − 1𝑁−1

𝑛=0        (9) 
This transformation enables the higher frequencies to be 
minimized or zeroed out, which is important for the 
compression of the image. The compression of the data happens 
in the quantization step, where more higher frequencies 
coefficients are zeroed out. The strength of the compression, 
thus, depends on the strength of the quantization matrix. The 
more compression the more information will be lost in this 
process. Finally, the final matrix is encoded using the Huffman-
Coding, which reorder the data such that the lower spatial 
frequencies come before the higher spatial frequencies. 
Because the higher frequencies are very likely to be zeroed out 
after compression, the image can store them in “10x0” instead 
of “0 0 … 0” and reduce the amount of data significantly. The 
strength of this compression varies from 10:1 with little 
perceptible loss in image quality to 500:1 with very poor  

Fig. 6. The effect of transferring part of the image and compression 
techniques on the file size of an 1-hour long KITTI video 

quality. In this experiment, we tested the two ratios of 10:1 and 
50:1. 

Another very popular method of compression is the Graphic 
Interchange Format (GIF) method. Unlike JPEG, GIF is a 
lossless compression method that keeps the quality of the image 
when the image has less than 256 colors. However, if the image 
has more than 256 colors, GIF is also a lossy compression. The 
technique used in GIF compression is the Lempel-Ziv-Welch 
(LZW) lossless data compression technique [24]. Using the 
LZW compression algorithm, the GIF image is compressed in 

two ways. First, it replaces the commonly occurring patterns in 
the image, such as a large area of uniform color, and saves them 
in a dictionary. Secondly, it also reduces the number of colors 
in color-rich images by approximating the colors in the image 
using the nearest color to represent each pixel or “error 
diffusion” to adjust the nearby pixels to account for the error in 
each pixel. The typical compression ratio for GIF compression 
format is 4:1 to 10:1. In this experiment, we assume the 
compression rate to be in the lower end with the 4:1 ratio. 

The third compression technique that we analyzed is the 
Portable Network Graphics (PNG) compression. PNG is a 
lossless compression method that looks for patterns in the 
image such that it can compress these patterns into a dictionary, 
similar to GIF. The first of the two steps in the PNG 
compression process is the delta encoding filtering process, 
where a pixel is represented by its relation to the neighboring 
pixels. The encoded value is the difference between x and the 
predicted value based on the neighboring pixels. Therefore, 
when the value of the pixels has a low difference, the image is 
transformed into having lots of duplicate, low values, and 
making it much more compressible. In this second stage, the 
LZ77 compression algorithm compresses the encoded data. 
Similar to the LZW algorithm, the LZ77 algorithm is also a 
dictionary coder. It replaces the repeated occurrences of data 
with references to the existing earlier copy in the input. The 
match occurrences are encoded by a pair of length-distance 
numbers, which describe the length of the match and the 
distance to its previous appearance. The effectiveness of PNG 
compression is usually 10-30% better than GIF. 

Based on Fig. 6, we see that even in the case of image 
compression, sending only part of the image instead of the 
whole frame can still reduce the bandwidth requirement by up 
to 5 times. In real-world scenarios, this method can save a 
tremendous amount of data transmission. For example, using 
camera data, instead of sending the whole picture frame with 
likely unhelpful background, we can send only the bounding 
boxes that contain the detected vehicles, shrinking the size of 
the data needed in communication by up to 10 folds.  

C. Scalable transmission of LIDAR information:
A point cloud dataset can contain hundreds of millions or

even more points with geometric, colorimetric, and radiometric 
attributes [6]. Thus, it can require a great amount of bandwidth 
to allow for a cooperative driving system. Currently, we are 
mostly using traditional compression system to compress the 
LIDAR’s data. For example, using lossless compression tool 
such as GZIP [25], the power of compression can achieve up to 
10:1 ratio. The level of compression can also be adjusted based 
on the tradeoff of application requirements and the computing 
time. Similarly, other compression methods such as BZIP2 
[26], LZMA [27], and LZ4 [28] can all be applied and adjusted 
with different compression levels and computing time. 
Nevertheless, more investigation is needed for the tradeoff of 
the effect of lossy compression and the computing time-
compression level in object detection and tracking using 
LIDAR sensor information. 

To reduce this, instead of transmitting the raw point cloud 
data, we propose that vehicles utilize object recognition and 
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classification and group the discrete points in the points cloud 
into objects. Thus, the process of transferring data can be 
framed to a small subset of the data, which significantly reduces 
the required bandwidth. The size of the data can be further 
reduced by modeling these objects, such that the transmission 
can be completed on the simplified model rather than the bulky 
point cloud files. In this case, the transmitted data only contain 
the important information (e.g. road obstacles, other vehicles) 
and remove all noises and unwanted objects.  

VI. CONCLUSION

In this paper, using existing databases our goal is to provide 
a stable and reliable method for V2V autonomous system 
communication. Thus, we investigated two areas: increasing 
the bandwidth available during communication and decreasing 
the amount of data in transmission.  

To increase bandwidth, we propose the use of object 
detection and tracking in beamforming. Particularly, we utilize 
the application of object detection and tracking using camera 
and LIDAR data to establish accurate and stable collaborative 
beam connection between vehicles on the road. The results 
show that the current object detection and tracking technology 
provide competitive performance with the mean Average 
Precision of 0.837 and fast inference speed. Additionally, this 
process requires minimal overhead due to the nature of object 
detection and tracking in the autonomous driving system.  

To decrease the amount of data during transmission, we 
propose scalable transmission to decrease the amount of data to 
be transmitted, thus reduce the bandwidth required for the 
collaborative perception of autonomous driving vehicles. Our 
simulations showed that transferring only (moving) part of the 
images can reduce the data size by 10 times with no 
compression, or 2 to 5 times with image compression 
techniques. Similarly, with LIDAR points cloud data, it is 
possible to transfer only the points associated with the detected 
vehicles to decrease data transmission. 

Along this line of research, in future work we aim to 
develop a novel method of effectively combining feature maps 
from multiple sensor information, test its performance on object 
detection and tracking models in the real-world autonomous 
driving system. 
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