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1. Introduction

Many upper bounds on determinants have been given in the literature, in particular to 

matrices with all entries 0 or 1. Assuming the matrix A ∈ {0, 1}n×n has at most 2n non-

zero entries, then the classical Hadamard’s inequality [4] det(A) ≤ ∏n
i=1

(

∑n
j=1 a2

i,j

)1/2

, 

together with arithmetic and geometric mean inequality, imply det(A) ≤ 2n/2. This 

bound was improved to det(A) ≤ 2 
(

2 − 2
n−1

)
1

2
(n−1)

by Ryser [5], who extended it as 

follows:

det(A) ≤ k

(

k − k(k − 1)

n − 1

)
1

2
(n−1)

when A ∈ {0, 1}n×n has kn ones, for 1 ≤ k ≤ n + 1

2
.

While both classical bounds above are best-possible in their general formulation, they 

are not best possible for sparse matrices. Ryser’s inequality holds with equality only 

when we have at least n
√

n non-zero entries (see [3] or [5] for a more detailed discussion 

on when equality holds for Ryser’s inequality). Aiming to obtain better bounds for sparse 

combinatorial matrices, Bruhn and Rautenbach [3] proved the following.

Theorem 1 (Bruhn, Rautenbach). If A ∈ {0, 1}n×n has at most 2n non-zero entries, then 

|det(A)| ≤ 2n/6 · 3n/6.

They also conjectured that the determinant of A is at most 2n/3 in this case (see Con-

jecture 4 in [3]). Advancing towards this conjecture, Shitov [7] generalized its formulation 

and used induction to give a short and elegant proof of the following result.

Theorem 2 (Shitov). If A ∈ {0, 1}n×n has at most n +k non-zero entries, then |det(A)| ≤
3k/4.

The conjectured maximum value comes from matrices of the form A = diag(C, . . . , C), 

where C =

(

1 1 0
0 1 1
1 0 1

)

, which has determinant of 2n/3 with n = k. The main contribu-

tion of the present paper is a proof of the optimal result.

Theorem 3. Every matrix A ∈ {0, 1}n×n containing at most n + k non-zero entries has 

determinant at most αk, where α = 21/3.

In particular, this bound is best possible only when k is a multiple of 3, and k ≤ n. 

We emphasize that Theorem 3 resolves the above conjecture of Bruhn and Rautenbach.

Corollary 4. If A ∈ {0, 1}n×n has at most 2n non-zero entries, then |det(A)| ≤ 2n/3.

We can consider the same question for more 1’s. Bruhn and Rautenbach [3] noted that 

the point-line incidence matrix of the Fano plane has determinant 24. It gives a lower 
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bound of 24n/7 ≈ 1.5746n for the maximum determinant of matrices with at most 3n

ones, the authors of [3] conjecture this to be the best possible. Scheinerman [6] showed 

det(A) ≤ c(k)n for some constant c(k) depending only on the integer k for all matrices 

A with at most kn ones. For k = 3, Scheinerman bound is det(A) ≤ 24n/6 ≈ 1.6984n. 

Theorem 3 improves this bound.

Corollary 5. If A ∈ {0, 1}n×n has at most 3n non-zero entries, then |det(A)| ≤ 22n/3 ≈
1.5874n.

Our proof of Theorem 3 extends some of the ideas of Shitov [7]. With a careful 

analysis, we push down the bound to the optimal value of 2k/3. We identify a matrix A

with the graph whose bi-adjacency matrix is A. In other words, when G is a balanced 

bipartite graph, the determinant of G, denoted by det(G), is the absolute value of the 

determinant of the bi-adjacency matrix of G. We then aim to prove det(G) ≤ 2k/3

for all balanced bipartite graphs G with 2n vertices and at most n + k edges. The 

proof will be by induction on n + k: given a graph G, we will assume the inequality 

det(G′) ≤ αe(G′)−v(G′)/2 for all proper balanced bipartite subgraphs G′ of G, where 

v(G′) and e(G′) denote the number of vertices and edges of G′, respectively. A bipartite 

graph is balanced if both parts have the same number of vertices.

For the sake of completeness of the induction argument, we highlight that the result 

holds for every n > 0 when k = 0. For bigger values of n and k, we break the proof into 

several cases.

Since in most cases we only make use of linearity and cofactor expansion along lines, 

we get as a byproduct an upper bound for permanents instead of only determinants. 

In what follows, perm(G) stands for the permanent of the bi-adjacency matrix of G or, 

equivalently, the number of perfect matchings in G.

We highlight that the first part of the next result might be of independent interest. 

Namely, that perm(G) ≤ 2k/3 for all C4-free bipartite graphs G with 2n vertices and n +k

edges, we state it in Theorem 6. We have additional stronger statements for connected 

graphs with a minimum degree of at most 2 that makes the proof of the induction 

step simpler. This stronger statement tells us that the inequality holds with an extra 

multiplicative factor whenever we avoid components inducing K2 or C6. To get an even 

stronger result and make our proof work, we rule out one further graph, namely the 

graph J (Fig. 1).

Fig. 1. The graph J.
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From now on, we use J only to refer to that graph. For the sake of brevity, we write 

α = 21/3.

Theorem 6.

(a) Let G be a C4-free balanced bipartite graph with 2n vertices, n + k edges. Then 

perm(G) ≤ αk.

(b) Let H be a connected C4-free balanced bipartite graph with 2n vertices, n + k edges, 

δ(H) ≤ 2, and ∆(H) ≤ 3. Assume further that H is not isomorphic to K2, C6, or 

J . Then perm(H) ≤ c1 · αk, where c1 = α−2 + α−7 ≤ (3α−4)−1 is a constant.

(c) Let H be a connected C4-free balanced bipartite graph with 2n vertices, n + k edges, 

and δ(H) ≤ 2. Assume further that H is not isomorphic to K2, C6, or J . Then 

perm(H) ≤ c2 · αk, where c2 = α−3 + α−4 ≤ (α−1 + α−5)−1 is a constant.

Remark. We note that the values c1 = α−2 + α−7 ≈ 0.828 and c2 = α−3 + α−4 ≈ 0.897

that our proof gives in the above statement are not tight. Furthermore, parts (b) and 

(c) of Theorem 6 with c1 = (3α−4)−1 ≈ 0.840 and c2 = (α−1 + α−5)−1 ≈ 0.902 would 

be sufficient to conclude part (a).

For sparse graphs, Theorem 6 improves on the classic Bregman’s inequality [2] for 

permanents. For a C4-free d-regular graph Theorem 6 gives an upper bound of 2(d−1)n/3, 

which is smaller than the bound (d!)n/d from Bregman’s inequality when d ≤ 5.

We prove Theorem 6 in the Sections 2–4. In Section 2, we introduce notation and 

give a high-level overview for the proof of Theorem 6, explaining the organization of the 

proof. In Section 3, we show the induction step in order to prove items (b) and (c) of 

Theorem 6. In Section 4, we deal with the induction step for part (a) of Theorem 6. 

The proof of Theorem 3 is analogous, with the small difference that we have to take into 

consideration when the graph G has C4 as a subgraph, where we use linearity or the fact 

the determinant is preserved after subtracting a line from another line instead of using 

cofactor expansion. As the majority of the proofs are similar, we only present a sketch 

proof for Theorem 3 in Section 5 with handling the additional cases where the proof of 

Theorem 6 has to be supplemented.

2. Proof of Theorem 6: overview

Throughout the proof we identify a matrix A with the graph whose bi-adjacency 

matrix is A. Therefore, we label the lines of a matrix by the vertex set of a graph. Let 

G be a balanced bipartite graph. The cofactor expansion along a vertex u adjacent to 

v1, . . . , vt for permanents implies

perm(G) =

t
∑

i=1

perm(G − {u, vi}),
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where G − {u, vi} is the graph obtained after deleting the vertices u and vi from G.

We introduce an auxiliary function

f(G) := α−e(G)+ 1

2
v(G) · perm(G),

where e(G) and v(G) are the number of the edges and vertices of G, respectively. In this 

notation, the cofactor expansion implies

f(G) =

t
∑

i=1

α2−d(u)−d(vi) · f(G − {u, vi}). (1)

We can think of f(G) as the normalized number of perfect matchings of G. Hence, we 

want to prove that f(G) ≤ 1 for all C4-free balanced bipartite graphs G, and f(H) ≤ c1

for connected graphs H with minimum degree at most 2 and maximum degree at most 

3 that are not isomorphic to K2, C6 or J , and f(H) ≤ c2 for connected graphs H with 

minimum degree at most 2 that are not isomorphic to K2, C6 or J .

We will prove these statements with a simultaneous induction. In Section 3, we present 

the proofs of (b) and (c) for the graph H, assuming the results of (a), (b), and (c) hold 

for all proper balanced subgraphs of H. For the proof of (b), since H is connected, we do 

not have isolated vertices. If H �= K2 has vertex with degree 1, we expand the permanent 

along this vertex and conclude that f(H) ≤ α−1 < c1. We thus assume δ(H) = 2 and 

∆(H) ≤ 3. If H has a path with three consecutive vertices of degree 2, then we either 

proceed as in Claim 8 to obtain f(H) ≤ α−3 +α−5 < c1 or H has to be a cycle, in which 

case we are done since H �= C4, C6 and f(C2n) < c1 for n ≥ 4.

If H has a vertex x of degree 2 adjacent to vertices y1 and y2 of degree 3, then we 

proceed as in Claim 9 to obtain

f(H) ≤ 1

2
f(H − {x, y1}) +

1

2
f(H − {x, y2}). (2)

Assuming H − {x, yi} is connected and not isomorphic to K2, C6, or J , the bound 

f(H) ≤ c1 follows from f(H − {x, yi}) ≤ c1 for i = 1, 2. Otherwise, we will see, in 

Claim 11, that H − {x, yi} cannot be isomorphic to any of K2, C6, J ; and, in Claim 12, 

that if H − {x, yi} is not connected, then f(H) ≤ c1.

If there is no path with three consecutive vertices of degree 2 in H and H has no 

vertex of degree 2 connected to two vertices of degree 3, then any vertex x of degree 2 

in H is as in Fig. 3. We then proceed as in Claim 10 to obtain

f(H) ≤ α−2f(H − {x, y1}) + α−5f(H − {x, x1, y1, y2}). (3)

We will see, in Claims 13 through 16, that H − {x, y1} and H − {x, x1, y1, y2} cannot 

be isomorphic to K2, C6, or J ; and that if H − {x, y1} or H − {x, x1, y1, y2} are not 

connected, then f(H) ≤ c1. Otherwise, we use the induction hypothesis to conclude 

f(H) ≤ c1 from f(H − {x, y1}) ≤ c1 and f(H − {x, x1, y1, y2}) ≤ c1.
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Definition 7. We call x ∈ V (H) a Type I vertex if x is of degree 2 and its neighbors are 

of degree 3 (Fig. 2). We call x ∈ V (H) a Type II vertex if x is as in Fig. 3, i.e., x is 

adjacent to y1 of degree 2 and y2 of degree 3, while y1 is also adjacent to a vertex x1

of degree 3. Therefore, when we say “Type I deletion” or “Type I expansion” we mean 

expanding the permanent along a Type I vertex as in (2) above, and similarly for “Type 

II deletion” or “Type II expansion” as in (3). Further, whenever we fix a Type I vertex x, 

the variables y1 and y2 stand for the neighbors of x. For a Type II vertex x, the variables 

y1 and y2 stand for the neighbors of x, and x1 �= x is the only other neighbor of y1.

(2)x

y1(3)

y2(3)

Fig. 2. Type I vertex.

(2)x y1(2)

y2(3)(3)x1

Fig. 3. Type II vertex.

We can think of Definition 7 as a way to classify degree 2 vertices in H. Each vertex 

of degree 2 (that is not contained in a path with three consecutive vertices of degree 

2) in H is either Type I or Type II. Depending on whether there is a Type I vertex in 

H or all vertices of degree 2 are Type II vertices we will use the expansion (2) or (3), 

respectively. For the proof of (c), we proceed similarly to the one for (b), we deal with 

the proof of (c) in Section 3.3.

We prove (a) in Section 4. First, in Section 4.1, we use (b) and (c) to reduce the proof 

of (a) to fewer cases. Next, we deal with the cases when G is disconnected, or ∆(G) ≥ 6, 

or δ(G) ≥ 4 in Subsections 4.2, 4.3, and 4.4, by using (a) for some proper subgraphs of 

G.

After that, we can assume G is connected, δ(G) = 3 and ∆(G) ≤ 5. We thus use (a) 

and (b) for proper subgraphs of G to deal with the case ∆(G) = 3 in Section 4.5, and 

use (a) and (c) for proper subgraphs of G to deal with the cases ∆(G) = 4 and ∆(G) = 5

in Sections 4.6 and 4.7, respectively. In all cases, we use cofactor expansion or linearity 

to bound the permanent by a sum of permanents of subgraphs with minimum degree 2 

in a way that the induction hypothesis implies f(G) ≤ 1.
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For example, when G is 3-regular, the cofactor expansion along a vertex u adjacent 

to v1, v2 and v3 is equivalent to

f(G) = α−4 ·
(

3
∑

i=1

f(G − {u, vi})

)

.

Our goal is to use the induction hypothesis of part (b) for H = G − {u, vi} to get 

f(H) ≤ c1, therefore concluding

f(G) = α−4 ·
(

3
∑

i=1

f(G − {u, vi})

)

≤ α−4 ·
(

3
∑

i=1

α4

3

)

= 1.

However, we can use part (b) only when H is connected and H �= K2, C6, J . We will see, 

in Claim 20, that G − {u, vi} cannot be isomorphic to K2, C6 or J . Finally, in Claim 21, 

that f(G) ≤ 1 when G − {u, vi} is not connected follows from (a) for proper subgraphs 

of G.

3. Proofs of Theorem 6 (b) and (c)

The proofs are by induction on n + k. When n ≤ 1 or k = 0, there is no connected 

bipartite graph H �= K2. For n = 2, the only connected C4-free graph is a path with 

n + k = 3 edges, which has permanent 1 ≤ c1α < c2α. Then the induction hypothesis 

for both (b) and (c) is true when n + k ≤ 3.

Further, as H is connected, it has no isolated vertices. If H �= K2 has a vertex v of 

degree 1, then the neighbor w of v has degree at least 2. Expanding on the line of vertex 

v, we get perm(H) = perm(H − {v, w}) and f(H) ≤ α−1 ≤ c1. If H is a cycle, we have 

perm(C2n) = 2 and then f(C2n) = 2α−n ≤ α−1 since H �= C4, C6 and n ≥ 4. From now 

we can assume that the minimum degree of H is 2 and the maximum degree is at least 

3.

If H is not a cycle and has a path with three consecutive vertices of degree 2, then it 

is sufficient to use part (a) of the induction hypothesis to obtain

f(H) ≤ α−3 + α−5 < 0.815 < 0.828 < c1,

using the following Claim.

Claim 8. Let u and v1 be adjacent vertices with degree 2. Further, assume that u is 

adjacent to v2, v1 is adjacent to u1, and v2 is not adjacent to u1. If d(u1) = 2 and 

d(v2) ≥ 3, then perm(H) ≤ αk−3 + αk−5 ≤ c1 · αk.

Proof. Assume u1 is adjacent to a vertex v3, and v3 is adjacent to a vertex u2 (�= u, u1). 

Then the bi-adjacency matrix of H is
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(2)u v1(2)

v2(≥ 3)(2)u1

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

v1 v2 v3 . . .

u 1 1 0 0 . . . 0

u1 1 0 1 0 . . . 0

u2 0 x 1 a34 . . . a3n
...

...
...

...
...

. . .
...

0 an2 an3 an4 . . . ann

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

By expanding by the line of u and then u1 and v1, respectively we have

perm(H) ≤ perm(H − {u, v1}) + perm(H − {u, v2})

≤ perm(H − {u, v1, u1, v3}) + perm(H − {u, v2, v1, u1}).

If d(v3) ≥ 3, then we conclude by part (a) of the induction hypothesis that perm(H) ≤
αk−4 + αk−4 < αk−3 + αk−5. Indeed, we delete four vertices and lose at least six edges 

in both cases by deleting {u, v1, u1, v3} or {u, v2, v1, u1}. Assume, then, that d(v3) = 2. 

We expand H − {u, v2, v1, u1} along the line of v3. If d(u2) ≥ 3, or d(u2) = 2 and u2 is 

not adjacent to v2, then

perm(H) ≤ perm(H − {u, v1, u1, v3}) + perm(H − {u, v2, v1, u1})

≤ perm(H − {u, v1, u1, v3}) + perm(H − {u, v2, v1, u1, v3, u2})

≤ αk−3 + αk−5.

Finally, if d(u2) = 2 and u2 is adjacent to v2, then we expand H −{u, v1, u1, v3} along 

the line of u2 to get

perm(H) ≤ perm(H − {u, v1, u1, v3}) + perm(H − {u, v2, v1, u1})

≤ perm(H − {u, v1, u1, v3, u2, v2}) + perm(H − {u, v2, v1, u1, v3, u2})

≤ αk−4 + αk−4. �

We thus assume that H has no path with three consecutive vertices of degree 2. This 

implies that every vertex of degree 2 has a neighbor of degree at least 3. Let y1 and y2 be 

the neighbors of a degree 2 vertex x. We analyze all possible degree combinations of y1

and y2. Since we use extensively the same proof method in what follows, we explain in 

detail how to obtain the bounds in Claims 9 and 10. We will expand the permanent along 

the vertices x of degree 2 that are either Type I or Type II vertices and use the induction 

hypothesis of parts (b) and (c). Hence, we check the hypothesis of being connected and 

not isomorphic to K2, C6, or J in Sections 3.1 and 3.2. This will be sufficient to conclude 

part (b). To conclude part (c), we note that x could be neither of Type I nor Type II, 

i.e. a neighbor of x can have a degree larger than 3, and we handle these remaining cases 

in Section 3.3. We first assume H has a Type I vertex x.
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Claim 9. Let x be a vertex with degree 2 and neighbors y1 and y2. If d(y1) = 3 and 

d(y2) = 3, then

f(H) ≤ 1

2
f(H − {x, y1}) +

1

2
f(H − {x, y2}).

Further, if both H − {x, y1} and H − {x, y2} are connected, not isomorphic to K2, C6, 

or J , then we have f(H) ≤ c2. Moreover, in addition to the previous conditions, if 

∆(H) ≤ 3, then f(H) ≤ c1.

Proof. In this case, the bi-adjacency matrix of H is

(2)x

y1(3)

y2(3)

A =

⎛

⎜

⎜

⎜

⎝

y1 y2 . . .

x 1 1 0 . . . 0

a21 a22 a23 . . . a2n
...

...
...

...
. . .

...

an1 an2 an3 . . . ann

⎞

⎟

⎟

⎟

⎠

The first inequality follows from the cofactor expansion along the line of x. If H −
{x, yi} is connected, and not isomorphic to K2, C6, or J , then, as H − {x, yi} has 

minimum degree at most 2, we can use part (c) of the induction hypothesis to obtain 

that f(H − {x, yi}) ≤ c2. We then conclude by (1) that

f(H) = α2−d(x)−d(y1)f(H − {x, y1}) + α2−d(x)−d(y2)f(H − {x, y2})

≤ α2−d(x)−d(y1) · c2 + α2−d(x)−d(y2) · c2 = c2.

Similarly, if ∆(H) ≤ 3, then f(H) ≤ c1 by the induction hypothesis of part (b). �

It remains to check cases with at least one of y1 or y2 having degree 2. Without loss 

of generality, let d(y1) = 2, then we can assume d(y2) �= 2 because we already dealt with 

the cases when H is a path and when H has a path with three vertices of degree 2. 

Besides x, let y1 be adjacent to x1. We can assume y2 is not adjacent to x1, otherwise 

x is contained in a C4. As there is no path of three vertices each of degree 2, we have 

d(x1) = d(y2) = 3.

Claim 10. Let x and y1 be adjacent vertices with degree 2. Further, assume that x is 

adjacent to y2, y1 is adjacent to x1, and y2 is not adjacent to x1. If d(x1) = d(y2) = 3, 

then

f(H) ≤ α−2f(H − {x, y1}) + α−5f(H − {x, x1, y1, y2}).

Further, if both H − {x, y1} and H − {x, x1, y1, y2} are connected, not isomorphic to K2, 

C6, or J , and have minimum degree at most 2, then we have f(H) < c2. Moreover, in 

addition to the previous conditions, if ∆(H) ≤ 3, then f(H) < c1.
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Proof. In this case

(2)x y1(2)

y2(3)(3)x1

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1 y2 . . .

x 1 1 0 . . . 0

x1 1 0 a23 . . . a2n

0 a23 a33 . . . a3n
...

...
...

...
. . .

...

0 an2 an3 . . . ann

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

By expanding through the row of x, f(H) = α2−d(x)−d(y1)f(H − {x, y1}) +

α2−d(x)−d(y2)f(H −{x, y2}). Now assume H −{x, y1} is connected, not isomorphic to K2, 

C6, or J . By part (c) of the induction hypothesis, f(H − {x, y1}) ≤ c2. For H − {x, y2}, 

we can further expand along the column of y1 to obtain

f(H − {x, y2}) = α1−d(x1)f(H − {x, y2, y1, x1}) ≤ α1−d(x1) · c2,

when H −{x, x1, y1, y2} is connected, not isomorphic to K2, C6, or J , and have minimum 

degree at most 2. We conclude

f(H) ≤ α−2 · c2 + α1−d(x1)−d(y2) · c2 ≤ α−2 · c2 + α−5 · c2 < 0.945 · c2.

Similarly, if ∆(H) ≤ 3, then f(H) < c1 by the induction hypothesis of part (b). �

3.1. Expanding the permanent along a Type I vertex

We will see in Claim 11 that H − {x, yi} cannot be isomorphic to K2, C6 or J , and 

in Claim 12 we use part (a) of the induction hypothesis to obtain that if H − {x, yi} is 

disconnected then f(H) ≤ c1. Recall that H has the following properties: H is bipartite, 

C4-free, and has maximum degree at least 3.

Claim 11. If x is a Type I vertex, then H − {x, y1} is not isomorphic to K2, C6 or J .

Proof. If H − {x, y1} = K2, then H has 4 vertices, which contradicts that H is bipartite 

and has a vertex of degree at least 3. If H − {x, y1} = C6, since d(y1) = 3, then y1

is adjacent to two vertices of the C6. Since any two vertices in a C6 have distance at 

most 3, H contains a C3, C4 or C5. It contradicts either the graph being C4-free or 

bipartite. Similarly, since any two vertices of J have distance at most 3, we cannot have 

H − {x, y1} = J . �

Claim 12. If x is a Type I vertex and H −{x, y1} is disconnected, then f(H) ≤ α−1 ≤ c1.

Proof. By breaking into cases of when the edges that are going to be deleted are con-

tained in the matching (when computing the permanent) or not, leads us to the following 

two cases.
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x y1

y2

H1

Fig. 4. Case 1 of Claim 12.

Case 1: There is a component containing y2 and not containing any of the neighbors 

of y1 (Fig. 4).

If v(H1) is even, then xy2 cannot be in any perfect matching. Then H and H − xy2

have the same number of perfect matchings, which means perm(H) = perm(H − xy2). 

Using the inductive hypothesis, we have that perm(H − xy2) ≤ αe(H−xy2)− 1

2
v(H−xy2) =

α(e(H)−1)− 1

2
v(H). Therefore, perm(H) ≤ αe(H)− 1

2
v(H)−1 and f(H) ≤ α−1.

If v(H1) is odd, then xy2 must be in every perfect matching, then xy1 cannot be in 

any of them. Then perm(H) = perm(H − xy1). Using the inductive hypothesis, we have 

that perm(H − xy1) ≤ αe(H−xy1)− 1

2
v(H−xy1) = α(e(H)−1)− 1

2
v(H). Therefore, perm(H) ≤

αe(H)− 1

2
v(H)−1 and f(H) ≤ α−1.

x y1

y2 x1 x2

H1 H2

Fig. 5. Case 2 of Claim 12.

Case 2: The component containing y2 also contains x1, one of the neighbors of y1

(Fig. 5).

Since v(H1) + v(H2) is even, they can only both be either even or odd.

If v(H1) and v(H2) are both even, then y1x2 cannot be in any perfect matching. Thus 

perm(H) ≤ αe(H)− 1

2
v(H)−1.

If v(H1) and v(H2) are both odd, then xy1 cannot be in any perfect matching. Thus 

perm(H) ≤ αe(H)− 1

2
v(H)−1.

In conclusion, in all cases f(H) ≤ α−1 ≤ c1. �
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3.2. Expanding the permanent along a Type II vertex

Now we assume H has no Type I vertex. Let x be a Type II vertex. We will see in 

Claims 13 and 14 that H − {x, y1} and H − {x, x1, y1, y2} cannot be isomorphic to K2, 

C6 or J ; and in Claims 15 and 16 we use part (a) of the induction hypothesis to obtain 

that if H − {x, y1} or H − {x, x1, y1, y2} are disconnected then f(H) ≤ c1. Otherwise, if 

H − {x, y1} and H − {x, x1, y1, y2} are connected and non-isomorphic to K2, C6, or J ; 

then by Claim 10 we conclude

f(H) ≤ α−2f(H − {x, y1}) + α−5f(H − {x, x1, y1, y2}) < c1,

when ∆(H) ≤ 3. Notice H − {x, y1} has minimum degree at most 2, but we need that 

∆(H) ≤ 3 to guarantee H − {x, x1, y1, y2} has minimum degree at most 2. In general, 

H−{x, x1, y1, y2} has minimum degree at most 2 unless we have the structure of Claim 17, 

in which case we will see that f(H) < c2.

Claim 13. If x is a Type II vertex, then H − {x, x1, y1, y2} is not isomorphic to K2, C6

or J .

Proof. If H − {x, x1, y1, y2} = K2, since x1 have two neighbors in H − {x, x1, y1, y2}, we 

have a copy of C3 in H, a contradiction. As in the proof of Claim 11, if H−{x, x1, y1, y2} =

C6, then x1 is adjacent to two vertices of the C6, creating a copy C3, C4 or C5 in H. Notice 

that for the graph J , any two vertices are at distance at most 3. Similarly, assuming 

H − {x, x1, y1, y2} = J , we conclude H has a copy of C3, C4 or C5, a contradiction. �

Claim 14. If H �= J , H has no Type I vertex, and x is a Type II vertex, then H −{x, y1}
is not isomorphic to K2, C6 or J .

Proof. If H − {x, y1} = K2, then H has 4 vertices, contradicting x1, y2 have degree 3. 

If H − {x, y1} = C6, then x1 and y2 are vertices of this cycle and either we have a copy 

C3, C4 or C5 in H, or H is isomorphic to J .

Notice that we obtain a similar contradiction when H − {x, y1} = J , unless x1 and y2

are vertices with distance 3 in J . Without loss of generality, we can assume the graph 

H as Fig. 6.

Then z is a Type I vertex, a contradiction. �

Claim 15. If x is a Type II vertex and H−{x, y1} is disconnected, then f(H) ≤ α−1 ≤ c1.

Proof. When H − {x, y1} is disconnected, there is only one possible case. Namely, when 

y2 and x1 belong to different components H1 and H2, respectively, of H −{x, y1} (Fig.7).

Still, since v(H1) + v(H2) is even, they can only both be either even or odd. If v(H1)

and v(H2) are both even, then xy2 and y1x1 cannot be in any perfect matching. If v(H1)
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x4x3

x

y1x2

y2 y3

x5

z x1

Fig. 6. The graph H in Claim 14.

and v(H2) are both odd, then xy1 cannot be an edge in any perfect matching. Thus 

perm(H) ≤ αe(H)− 1

2
v(H)−1 and in both cases we get f(H) ≤ α−1. �

x y1

y2 x1

H1 H2

Fig. 7. The graph H in Claim 15.

Claim 16. If H has no Type I vertex, x is a Type II vertex, and H − {x, x1, y1, y2} is 

disconnected, then f(H) ≤ c2. Moreover, f(H) ≤ c1 when ∆(H) ≤ 3.

Proof. Now we assume H − {x, x1, y1, y2} is disconnected and break the proof into cases 

depending on whether the edges that were going to be deleted are contained in the 

matching or not. We have the following three cases.

Case 1: There is a component of H − {x, x1, y1, y2} containing only one of the four 

neighbors of y2 and x1 (Fig. 8). Without loss of generality, we assume x2 is the only such 

neighbor in the component H1.

If v(H1) is odd, x2y2 must be in every perfect matchings, then xy2 cannot be. Thus, 

perm(H) ≤ αe(H)− 1

2
v(H)−1.

If v(H1) is even, then x2y2 cannot be in any perfect matching, and perm(H) ≤
αe(H)− 1

2
v(H)−1. In both cases we get f(H) ≤ α−1.

Case 2: There are two components in H − {x, x1, y1, y2}, each containing the two 

neighbors of y2 or x1 (Fig. 9). In this case, H − {x, y1} is disconnected and then f(H) ≤
α−1 by Claim 15.
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x y1

y2 x1

x2

H1

Fig. 8. Case 1 of Claim 16.

x y1

y2 x1

x2 x3 y3 y4

H1 H2

Fig. 9. Case 2 of Claim 16.

Case 3: There are two components in H − {x, x1, y1, y2}, each containing one of the 

neighbors of both y2 and x1. Without loss of generality, we have the adjacencies shown 

in Fig. 10.

If v(H1) and v(H2) are both odd, then one of y2x2, x1y3 must be in a perfect matching, 

which means xy1 has to be in the perfect matching and then xy2 and y1x1 cannot be in 

any perfect matching. Thus, perm(H) ≤ αe(H)− 1

2
v(H)−2.

If v(H1) and v(H2) are both even, we proceed by breaking into cases depending on 

whether the edges that were going to be deleted are contained in the matching or not.

When xy1 is an edge in the perfect matching, then xy2, y1x1 are not. Then either y2x2, 

x1y3 are edges in a perfect matching, or y2x3, x1y4 are edges in a perfect matching. In the 

first case, there are at most αe(H)− 1

2
v(H)−4−(d(x2)−1)−(d(y3)−1)+a such perfect matchings; 

where a = 1 when x2 is adjacent to y3, and a = 0, otherwise. In the second case, there 

are at most αe(H)− 1

2
v(H)−4−(d(x3)−1)−(d(y4)−1)+b such perfect matchings; where b = 1

when x3 is adjacent to y4, and b = 0, otherwise.
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x y1

y2 x1

x2 x3y3 y4

H1 H2

Fig. 10. Case 3 of Claim 16.

When a perfect matching does not contain xy1, then the edges xy2 and y1x1 must be 

in the perfect matching, which implies y2x2, y2x3, x1y3, x1y4 cannot be in the perfect 

matching. There are at most αe(H)− 1

2
v(H)−5 such perfect matchings.

Summing up the number of perfect matchings, we get

perm(H) ≤ (α−(2+d(x2)+d(y3)−a) + α−(2+d(x3)+d(y4)−b) + α−5) · αe(H)− 1

2
v(H).

If a = b = 0, we obtain

f(H) ≤ α−5 + 2α−6 ≤ c1.

If d(x2) = 3 and a = 0, or when d(x2) ≥ 4, we obtain

f(H) ≤ 2α−5 + α−7 = c1.

If d(x2) = 3 and a = 1, then d(y3) ≥ 3, as if d(y3) = 2, then y3 is a Type I vertex. We 

get

f(H) ≤ 2α−5 + α−7 = c1.

By symmetry of x2, y3, x3, and y4, the only two cases remaining are shown in Fig. 11, 

when d(x2) = d(x3) = d(y3) = d(y4) = 2.

In the first case, H is isomorphic to J , a contradiction. In the second case, because 

x2 is not a Type I vertex, hence it has to be adjacent to a vertex z1 of degree �= 3. If 

d(z1) ≥ 4, then expanding along the vertex x2 yields f(H) ≤ α−3 +α−4 = c2. Otherwise, 

by symmetry, both x2 and y3 have to be adjacent to vertices with degree 2, say z1 and 

z2, which are not adjacent to each other (since, otherwise, there will be a path of vertices 

with degree 2 of length 3). If the other neighbor of z1 or z2 is a vertex of degree 2, then 

by Claim 8, we already have the desired bound on f(H). Thus, both z1 and z2 have to 

be adjacent to vertices with degrees at least 3, say w1 and w2 (Fig. 12).
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x y1

y2 x1

x2 x3y3 y4

x y1

y2 x1

x2 x3y3 y4

Fig. 11. Case 3: a = b = 1 and a = 0, b = 1.

x y1

y2 x1

x2

x3

y3

y4

z1 z2

w1 w2

Fig. 12. Case 3: a = 0, b = 1.

If d(w1) ≥ 4, then

f(H) ≤ α−2f(H − {x2, z1}) + α−6f(H − {x2, w1, z1, y2}) ≤ α−2 + α−6 ≤ c2.

If d(w1) = 3, then x2 is a Type II vertex, with neighbors z1 and y2, while z1 is also 

adjacent to w1. Proceeding as in Claim 10, we get

f(H) ≤ α−2f(H − {x2, z1}) + α−5f(H − {x2, w1, z1, y2}).

Notice that H −{x2, z1} have a path of length 4 consisting of degree 2 vertices (namely 

y1xy2x3y4) and, proceeding as in Claim 8, we have f(H −{x2, z1}) ≤ α−3+α−5. Further, 

note that, in H − {x2, w1, z1, y2}, x has degree 1 and is adjacent to y1 of degree 2. By 

expanding along the vertex x, we get f(H − {x2, w1, z1, y2}) ≤ α−1.

We conclude

f(H) ≤ α−2f(H − {x2, z1}) + α−5f(H − {x2, w1, z1, y2})

≤ α−2 · (α−3 + α−5) + α−5 · α−1 = α−5 + α−6 + α−7 ≤ c1. �

This completes the proof of part (b), since we dealt with all possible cases for a 

connected C4-free balanced bipartite graph H with ∆(H) ≤ 3 when δ(H) = 1 or δ(H) =

2. Indeed, for the latter, either
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1. H is a path;

2. H has a path with three vertices of degree 2;

3. H has a Type I vertex;

4. H has a Type II vertex.

The first case follows from a direct computation, namely f(C2n) = 2α−n. For the second 

case, we conclude f(H) < c1 by Claim 8. For the third case, f(H) ≤ c1 follows from 

Claims 9, 11 and 12. Finally, for the last case, f(H) ≤ c1 follows from Claims 10, 13–16.

3.3. Proof of part (c)

When x is a Type II vertex, then H − {x, x1, y1, y2} has minimum degree at most 

2 unless we have the following structure of Claim 17, in which case we will prove that 

f(H) < c2.

(2)x y1(2)

(3)y2 x1(3)

(≥ 4)v1 v2(≥ 4)

(2)u

v1(≥ 3)

v2(≥ 4)

(2)u v1(2)

v2(≥ 4)(≥ 3)u1

Fig. 13. Substructures in Claims 17, 18, and 19, respectively.

Claim 17. If x is a Type II vertex, and H − {x, x1, y1, y2} has minimum degree at least 

3, then f(H) ≤ α−6 + α−6 + α−5 < c2.

Proof. We use the notation in Fig. 13. If H −{x, x1, y1, y2} has minimum degree at least 

3, then before the Type II deletion, we can expand on y2 to get

perm(H) = perm(H − {y2, v1}) + perm(H − {y2, v2}) + perm(H − {y1, x}).

Notice that d(x) = 1 in H − {y1, vi}, and d(y1) = 1 in H − {x, y2}. Thus, further 

expanding along x and y1,
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perm(H) = perm(H − {x, y1, y2, v1}) + perm(H − {x, y1, y2, v2})

+ perm(H − {x, x1, y1, y2}).

We conclude

f(H) ≤ α−6 + α−6 + α−5 < 0.8150 < 0.8968 < c2. �

Now, Claims 18 and 19 will use part (a) of the induction hypothesis to deal with all 

other possible cases when ∆(H) > 3. We have the following cases.

Claim 18. Let u be a vertex with degree 2, and neighbors of v1 and v2. If d(v1) ≥ 3 and 

d(v2) ≥ 4, then

f(H) ≤ α−3 + α−4 = c2.

Proof. Similarly to the proof of Claim 9, we have perm(H) = perm(H − {u, v1}) +

perm(H − {u, v2}) ≤ αk−3 + αk−4. That means f(H) ≤ α−3 + α−4 = c2. �

Claim 19. Let u and v1 be adjacent vertices with degree 2. Further, assume that u is 

adjacent to v2, v1 is adjacent to u1, and v2 is not adjacent to u1. If d(u1) ≥ 3 and 

d(v2) ≥ 4, then

f(H) ≤ α−2 + α−6 < c2.

Proof. Similarly to the proof of Claim 10, perm(H) = perm(H − {u, v1}) + perm(H −
{u, u1, v1, v2}) ≤ αk−2 +αk−6. That means f(H) ≤ α−2 +α−6 < 0.88 < 0.8968 < c2. �

This completes the proof of part (c), since we dealt with all possible cases for a 

connected C4-free balanced bipartite graph H when δ(H) = 1 or δ(H) = 2. Indeed, for 

the latter, either

1. H is a path;

2. H has a path with three vertices of degree 2;

3. H has a Type I vertex;

4. H has a Type II vertex;

5. H has a vertex of degree 2 adjacent to vertices of degree at least 3 and 4, respectively;

6. H has a vertex of degree 2 adjacent to vertices of degree 2 and at least 3, respectively.

The first case follows from a direct computation, namely f(C2n) = 2α−n. For the second 

case, we conclude f(H) < c2 by Claim 8. For the third case, f(H) ≤ c2 follows from 

Claims 9, 11 and 12. For the fourth case, f(H) ≤ c2 follows from Claims 10, 13–17. For 

the fifth case, f(H) ≤ c2 follows from Claim 18. For the last case, f(H) < c2 follows 

from Claim 19.
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4. Proof of part (a)

As the proof is by induction on n + k, we begin with the base case when n = 1 or 

k = 0. When n = 1, every 1 × 1 matrix with entries in {0, 1} has at most 1 = 1 + 0

non-zero entry and permanent at most 1 = α0. When k = 0, every n × n matrix with 

at most n non-zero entries has permanent at most 1, since the determinant is non-zero 

only when we have exactly one non-zero entry per row and column.

We first prove, in Sections 4.1–4.4, that the result follows unless G is connected, 

with δ(G) = 3 and ∆(G) ≤ 5. We thus deal with the cases ∆(G) = 3, 4, or 5 in 

Sections 4.5, 4.6, and 4.7, respectively.

4.1. G is connected and δ(G) ≤ 2

If G is connected and δ(G) ≤ 2, by (c), we have that f(G) ≤ c2 < 1 when G �=
K2, C6, J . As f(K2) = f(C6) = 1 and f(J) = 3α−5 < 1, we conclude f(G) ≤ 1 for all 

connected graphs with minimum degree at most 2.

4.2. G is disconnected

If A, the bi-adjacency matrix of G, has a block-diagonal form, say with square matrices 

D1 and D2 as diagonal blocks, then the result follows by induction, applied to each of 

the blocks, as perm(A) = perm(D1)perm(D2) and the order of the two matrices D1 and 

D2 add to the order of the matrix A.

4.3. ∆(G) ≥ 6

If A contains a line with at least 6 non-zero entries, then we can split perm(A) as the 

sum of two permanents with at least 3 ones missing in each. That is, reordering the rows 

and columns of A if needed, we can assume that

A =

⎛

⎜

⎜

⎜

⎝

. . .

. . .
1 1 1 1 1 1 ai7 . . . ain

. . .

. . .

⎞

⎟

⎟

⎟

⎠

,

then we have that perm(A) = perm(B) + perm(C), where

B =

⎛

⎜

⎜

⎜

⎝

. . .

. . .
1 1 1 0 0 0 ai7 . . . ain

. . .

. . .

⎞

⎟

⎟

⎟

⎠

and
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C =

⎛

⎜

⎜

⎜

⎝

. . .

. . .
0 0 0 1 1 1 0 . . . 0

. . .

. . .

⎞

⎟

⎟

⎟

⎠

.

As both B and C are n × n matrices with at most n + k − 3 non-zero entries, the 

induction hypothesis implies

perm(A) ≤ αk−3 + αk−3 = αk.

4.4. δ(G) = d ≥ 4

Let u be a vertex with minimum degree in G, and adjacent to v1, . . . , vd. If d ≥ 4, 

then the induction hypothesis after expanding the permanent along the line of u gives

f(G) ≤
d

∑

i=1

α2−d(u)−d(vi) ≤ d · α2−2d ≤ 1,

where the last inequality follows from the fact d ·α2−2d is decreasing in d for d ≥ 4, since 

α2 > 1.25 ≥ d+1
d . For d = 4, we have d · α2−2d = 4α−6 = 1.

Remark. By the discussion above, the result follows unless G is connected, has minimum 

degree δ(G) = 3 and maximum degree ∆(G) ≤ 5. We assume this is the case and we 

deal next with the cases ∆(G) = 3, 4, 5.

4.5. Connected 3-regular graphs

Assume now G is a 3-regular C4-free balanced bipartite graph. Let u be a vertex and 

v1, v2, v3 its neighbors. Then expanding on the line of u gives

f(G) = α−4 ·
(

3
∑

i=1

f(G − {u, vi})

)

.

Note that G − {u, v1} has minimum degree 2, since v3 has degree 2 in G − {u, v1}. 

Similarly, G − {u, v2} and G − {u, v3} have minimum degree 2 as well. We will see in 

Claim 20 that G − {u, vi} cannot be isomorphic to K2, C6 or J . We are left to check 

what happens when G − {u, vi} is disconnected in Claim 21. Otherwise, we can use the 

induction hypothesis of part (b) for H = G − {u, vi} to conclude

f(G) = α−4 ·
(

3
∑

i=1

f(G − {u, vi})

)

≤ α−4 ·
(

3
∑

i=1

c1

)

= 3α−4 · c1 < 1.

Claim 20. G − {u, v1} is not isomorphic to K2, C6 or J .
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Proof. Note that the graph G − {u, v1} has minimum degree 2 hence G − {u, v1} cannot 

be a K2. Indeed, the deletion of two adjacent vertices u and v1 decreases the degree of 

four different vertices (neighbors of u and v1) by 1 and maintains the degree of all other 

vertices. In particular, G −{u, v1} cannot be C6 or J , since both graphs have six vertices 

of degree 2. �

Claim 21. If G − {u, v1} is disconnected, then f(G) ≤ α−1 < 1.

Proof. If G − {u, v1} is disconnected, then we have 3 cases, depending on how the 

neighbors of u and v1 are distributed in different components.

u v1

v2

H1

Fig. 14. Case 1 in Claim 21.

Case 1: There is a component containing only one of the four neighbors of u and v1

(Fig. 14). Without loss of generality, we assume v2 is the unique such neighbor in the 

component H1.

If v(H1) is odd, uv2 must be in every perfect matching of G, hence uv3 cannot be. 

The number of perfect matchings of G does not change after deleting the edge uv3. By 

the induction hypothesis, perm(G) ≤ αk−1.

If v(H1) is even, then uv2 cannot be in any perfect matching, and similarly we have 

perm(G) ≤ αk−1.

We conclude f(G) ≤ α−1 < 1.

Case 2: There are two components, each containing the two neighbors of u or v1

(Fig. 15). Let H1 be the component containing v2 and v3, and H2 containing the neigh-

bors of v1 (namely, u1 and u2).

Since v(H1) + v(H2) is even, they can only both be either even or odd. If v(H1) and 

v(H2) are both even, then the edges uv2, uv3, v1u1 and v1u2 cannot be in any perfect 

matching of G, which implies perm(G) ≤ αk−4. If v(H1) and v(H2) are both odd, then 

uv1 cannot be in any perfect matching, implying perm(G) ≤ αk−1.

We conclude f(G) ≤ α−1 < 1.

Case 3: There are two components, each containing one of the neighbors of both u

and v1 (Fig. 16). Without loss of generality, we have the following:
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u v1

v2 v3 u1 u2

H1 H2

Fig. 15. Case 2 in Claim 21.

u v1

v2 v3u1 u2

H1 H2

Fig. 16. Case 3 in Claim 21.

If v(H1) and v(H2) are both odd, then uv1 cannot be in any perfect matching, implying 

perm(G) ≤ αk−1.

If v(H1) and v(H2) are both even, then we break the proof into cases according to 

which edge incident to u is contained in a perfect matching.

When uv1 is an edge in a perfect matching, then uv2, v1u1, v1u1 and v1u2 are not in 

a perfect matching. We have at most αk−4 such perfect matchings.

When uv2 is an edge in a perfect matching, then v1u1 must be in the perfect matching 

and then uv1, uv3, v1u2 and further edges incident to v2 and u1 cannot be in the perfect 

matchings. There are at most αk−6 such perfect matchings. Similarly, there are at most 

αk−6 perfect matchings containing uv3.

We conclude perm(G) ≤ αk−4 + 2αk−6 and f(G) ≤ α−4 + 2α−6 < 0.8969 < 1. �

4.6. Connected graphs with δ(G) = 3 and ∆(G) = 4

Let u be a vertex of degree 4 and v1, v2, v3, v4 its neighbors. If d(vi) = 4 for all 

i ∈ {1, 2, 3, 4}, then expanding on the line of u gives f(G) ≤ 4 · α−6 = 1. Thus, we can 

assume that at least one of the neighbors of u is of degree 3. Without loss of generality, 

assume d(v1) = 3. Let u1 and u2 be neighbors of v1 as below.
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(4)u

(3)v1

v2(≥ 3)

v3(≥ 3)

v4(≥ 3)

u1

u2

G =

⎛

⎜

⎜

⎜

⎝

v1 v2 v3 v4 . . .

u 1 1 1 1 0 . . . 0

u1 1 a22 . . .

u2 1 a32 . . .
...

...
...

...
...

. . .
...

⎞

⎟

⎟

⎟

⎠

If d(u1) = d(u2) = 4, then expansion along the line of v1 would give f(G) ≤ 3 ·α−5 < 1. 

Thus, we assume d(u1) = 3 and use linearity of the permanent to get perm(G) =

perm(G − uv1) + perm(G − {u, v1}), and then

f(G) = α−1 · f(G − uv1) + α−5 · f(G − {u, v1}).

We note that both G − {u, v1} and G − uv1 have minimum degree 2, since u1 has 

degree 2 in G − {u, v1} and v1 has degree 2 in G − uv1. We will see in Claims 22 and 23

that G − uv1 and G − {u, v1} cannot be isomorphic to K2, C6 or J . We are left to 

check what happens when G − uv1 is disconnected in Claim 24, and when G − {u, v1}
is disconnected in Claim 25. Otherwise, we can use the induction hypothesis of part (c) 

for H = G − uv1 and H = G − {u, v1} to obtain

f(G) = α−1 · f(G − uv1) + α−5 · f(G − {u, v1}) ≤ c2 · (α−1 + α−5) < 0.9944 < 1.

Claim 22. G − uv1 is not isomorphic to K2, C6, or J .

Proof. Note that the graph G −uv1 has minimum degree 2, hence G −uv1 cannot be K2. 

The deletion of the edge uv1 only decreases the degree of u and v1 by 1 and maintains 

the degree of all other vertices. In particular, G − uv1 cannot be C6 or J , since it would 

have six vertices of degree 2. �

Claim 23. G − {u, vi} is not isomorphic to K2, C6, or J .

Proof. Note that the graphs G −{u, v1} have minimum degree 2, hence G −{u, v1} cannot 

be K2. Indeed, the deletion of two adjacent vertices u and v1 decreases the degree of 

five different vertices (neighbors of u and v1) by 1 and maintains the degree of all other 

vertices. In particular, G − {u, v1} cannot be C6 or J , since it would have six vertices of 

degree 2. �

Claim 24. If G − uv1 is disconnected, then f(G) ≤ α−1 < 1 (Fig. 17).

Proof. Assume G − uv1 is disconnected. Let H1 be the component containing v1. Then 

u, v2, v3, v4 are not in H1.
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u

v1 v2 v3 v4

H1

Fig. 17. The graph G in Claim 24.

If v(H1) is odd, then uv1 must be in every perfect matching, implying that uv2, uv3, 

uv4 are not. Thus, perm(G) ≤ αe(G)− 1

2
v(G)−3. If v(H1) is even, then uv1 is not in any 

perfect matching, implying that perm(G) ≤ αe(G)− 1

2
v(G)−1. We conclude f(G) ≤ α−1 <

1. �

Claim 25. If G − {u, v1} is disconnected, then f(G) < 1.

Proof. If G − {u, v1} is disconnected, then we have 4 cases.

u v1

v2 v3 v4 u1 u2

H1

Fig. 18. Case 1 in Claim 25.

Case 1: There is a component containing only one of the five neighbors of u and v1

(Fig. 18). We assume u1 is the only such neighbor in the component H1. The other cases 

can be dealt with similarly.

If v(H1) is odd, then v1u1 must be in every perfect matching of G, then uv1 cannot 

be. The number of perfect matchings of G is the same after deleting the edge uv1. By 

the induction hypothesis, perm(G) ≤ αe(G)− 1

2
v(G)−1. If v(H1) is even, v1u1 cannot be 

in any perfect matching, and similarly we have perm(G) ≤ αe(G)− 1

2
v(G)−1. We conclude 

f(G) ≤ α−1. Similarly, we have f(G) ≤ α−1 when v2, v3, v4, or u2 is the unique neighbor 

in a component of G − {u, v1}.

Case 2: There are two components, each containing the neighborhood of u or v1

(Fig. 19). Let H1 be the component containing v2, v3 and v4, and H2 containing u1 and 

u2.
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u v1

v2 v3 v4 u1 u2

H1 H2

Fig. 19. Case 2 in Claim 25.

If v(H1) and v(H2) are odd, then uv1 cannot be in any perfect matching of G, then 

f(G) ≤ α−1. If v(H1) and v(H2) are even, then uv2, uv3, uv4, v1u1, and v1u2 cannot be 

in any perfect matching, hence f(G) ≤ α−5.

Case 3: There are two components, one contains two neighbors of u, the other one 

contains two neighbors of v1 and one neighbor of u (Fig. 20). Assume H1 is a component 

containing v2, and v3, and H2 containing v4, u1 and u2.

u v1

v2 v3 u1v4 u2

H1 H2

Fig. 20. Case 3 in Claim 25.

If v(H1) and v(H2) are odd, then uv1 cannot be in any perfect matching, hence 

f(G) ≤ α−1. If v(H1) and v(H2) are even, then uv2 and uv3 cannot be in any perfect 

matching, hence f(G) ≤ α−2.

Case 4: There are two components, one contains two neighbors of u and one neighbor 

of v1, the other component contains one neighbors of u and one neighbor of v1 (Fig. 21).

Assume H1 is a component containing v2, v3, and u1; and H2, containing v4 and u2.

If v(H1) and v(H2) are odd, then uv1 cannot be in any perfect matching, hence 

f(G) ≤ α−1.

If v(H1) and v(H2) are even, we break the proof into cases depending on which edge 

incident to u is contained in the matching. The number of perfect matchings containing 

uv1 is at most αe(G)− 1

2
v(G)−5. When uv2 or uv3 is in a matching, then v1u1 also must be 

in the matching and there are at most 2 · αe(G)− 1

2
v(G)−7 such perfect matchings. When 

uv4 is in a perfect matching, then v1u2 is also in and there are at most αe(G)− 1

2
v(G)−7

such perfect matchings. Summing up the bounds on the number of perfect matchings, 

we get f(G) ≤ α−5 + 3 · α−7 < 0.9103 < 1. �
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u v1

v2 v3 u1 v4 u2

H1 H2

Fig. 21. Case 4 in Claim 25.

4.7. Connected graphs with δ(G) = 3 and ∆(G) = 5

Let u be a vertex of degree 5 and v1, v2, v3, v4, v5 its neighbors. If d(vi) ≥ 4 for all 

i ∈ {1, 2, 3, 4, 5}, then expanding on the line of u gives f(G) ≤ 5 · α−7 < 1. Thus, we 

can assume that at least one of the neighbors is of degree 3, without loss of generality, 

assume d(v1) = 3. Let u1 and u2 be neighbors of v1 as below.

(5)u

(3)v1

v2(≥ 3)

v3(≥ 3)

v4(≥ 3)

v5(≥ 3)

u1

u2

G =

⎛

⎜

⎜

⎜

⎝

v1 v2 v3 v4 v5 . . .

u 1 1 1 1 1 0 . . . 0

u1 1 a22 . . .

u2 1 a32 . . .
...

...
...

⎞

⎟

⎟

⎟

⎠

If d(u1), d(u2) ≥ 4, then the expansion along the line of v1 would give f(G) ≤ 2α−5 +

α−6 < 1. Thus, we assume d(u1) = 3 and using the linearity of permanent we get 

perm(G) = perm(G − uv1) + perm(G − {u, v1}), hence

f(G) = α−1 · f(G − uv1) + α−6 · f(G − {u, v1}).

We note that both G − {u, v1} and G − uv1 have minimum degree 2. We will see in 

Claims 26 and 27 that G −uv1 and G −{u, v1} cannot be isomorphic to K2, C6 or J . We 

are left to check what happens when G −uv1 is disconnected in Claim 28 and G −{u, v1}
is disconnected in Claim 29. Otherwise, we can use the induction hypothesis of part (c) 

for H = G − uv1 and H = G − {u, v1} to obtain

f(G) = α−1 · f(G − uv1) + α−6 · f(G − {u, v1}) ≤ c2 · (α−1 + α−6) < 0.9361 < 1.

Claim 26. G − uv1 has minimum degree 2, and it is not isomorphic to K2, C6, or J .
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Proof. Note that the graph G −uv1 has minimum degree 2, hence G −uv1 cannot be K2. 

The deletion of the edge uv1 only decreases the degree of u and v1 by 1 and maintains 

the degree of all other vertices. In particular, G − uv1 cannot be C6 or J , since it would 

have six vertices of degree 2. �

Claim 27. G − {u, vi} has minimum degree 2, and it is not isomorphic to K2, C6, or J .

Proof. Note that the graph G −{u, v1} has minimum degree 2, hence G −{u, v1} cannot 

be K2. Since C6 and J have six vertices of degree 2, if G −{u, v1} = C6 or G −{u, v1} = J , 

then the neighbors of u and v1 must be exactly the six vertices of degree 2, otherwise 

the minimum degree of G is less than 3. Thus, at least two of v2, v3, v4, v5 are adjacent, 

which contradicts to the graph being bipartite. �

Claim 28. If G − uv1 is disconnected, then f(G) ≤ α−1 < 1 (Fig. 22).

Proof. Assume that G − uv1 is disconnected, let H1 be the component containing v1. 

Then u, v2, v3, v4, and v5 are not in H1.

u

v1 v2 v3 v4 v5

H1

Fig. 22. The graph G in Claim 28.

If v(H1) is odd, then uv1 must be in every perfect matching, implying that uv2, uv3, 

uv4, uv5 are not part of any. Thus, perm(G) ≤ αe(G)− 1

2
v(G)−4. If v(H1) is even, then uv1

is not in any perfect matching, implying that perm(G) ≤ αe(G)− 1

2
v(G)−1. We conclude 

f(G) ≤ α−1 < 1. �

Claim 29. If G − {u, v1} is disconnected, then f(G) < 1.

Proof. If G − {u, v1} is disconnected, then we have three cases.

Case 1: There is a component containing neighbors of only one of u or v1 (Fig. 23).

Assume that H1 is such component, without loss of generality, v2 ∈ H1, hence by 

assumption, H1 contains no neighbor of v1. If v(H1) is odd, then uv1 cannot be in any 

perfect matching of G, hence f(G) ≤ α−1. If v(H1) is even, then uv2 cannot be in any 

perfect matching, hence f(G) ≤ α−1.
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u v1

v2 v3 v4 v5 u1 u2

H1

Fig. 23. Case 1 in Claim 29.

u v1

v2 v3 u1 v4 v5 u2

H1 H2

Fig. 24. Case 2 in Claim 29.

Case 2: There are two components, both contain two neighbors of u and one neighbor 

of v1 (Fig. 24). We assume v2, v3, and u1 are in the component H1 and v4, v5, and u2

are in H2.

If v(H1) and v(H2) are odd, then uv1 cannot be in any perfect matching, hence 

f(G) ≤ α−1.

If v(H1) and v(H2) are even, we break into cases of which edge incident to u is 

contained in the matching. We have at most αe(G)− 1

2
v(G)−6 perfect matchings containing 

uv1. When uv2 or uv3 is in a perfect matching, then v1u1 also must be in that matching 

and there are at most 2 · αe(G)− 1

2
v(G)−8 such perfect matchings. Similarly, when uv4 or 

uv5 is in a perfect matching, then v1u2 also is and there are at most 2 · αe(G)− 1

2
v(G)−8

such perfect matchings. Summing up the bounds on the number of perfect matchings, 

we get f(G) ≤ α−6 + 4 · α−8 < 0.88 < 1.

Case 3: There are two components, one contains three neighbors of u and one neighbor 

of v1 (Fig. 25). We assume v2, v3, v4 and u1 are in the component H1, and v5 and u2

are in H2.

If v(H1) and v(H2) are odd, then uv1 cannot be in any perfect matching, hence 

f(G) ≤ α−1.
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u v1

v2 v3 v4 u2v5u1

H1 H2

Fig. 25. Case 3 in Claim 29.

If v(H1) and v(H2) are even, we break into cases of which edge incident to u is 

contained in the matching. We have at most αe(G)− 1

2
v(G)−6 perfect matchings containing 

uv1. When uv2, uv3, or uv4 is in a perfect matching, then v1u1 also must be in and there 

are at most 3 ·αe(G)− 1

2
v(G)−8 such perfect matchings. When uv5 is in the matching, v1u2

also is and there are at most αe(G)− 1

2
v(G)−8 such perfect matchings. Summing up the 

bounds on the number of perfect matchings, we get f(G) ≤ α−6 +4 ·α−8 < 0.88 < 1. �

5. Determinant of graphs containing a C4

We notice the cofactor expansion perm(G) =
t

∑

i=1

perm(G −{u, vi}) for the determinant 

is the following

det(G) ≤
t

∑

i=1

det(G − {u, vi}).

Using the analogous auxiliary function f ′(G) = α−e(G)+ 1

2
v(G) ·det(G), instead of f(G) =

α−e(G)+ 1

2
v(G) ·perm(G), we can mimic the proof of Theorem 6 to obtain Theorem 3. Note 

that the number of perfect matchings is an upper bound for the determinant. The only 

places where we used the C4-free assumption in the proof above was in Claims 11, 13, 

and 14.

We get rid of the case when G has a vertex of degree 2 contained in a C4 in Claim 30, 

and then discuss how to deal with the cases of Claims 11, 13, and 14 assuming the 

graph G can potentially have C4 as a subgraph in Claims 31–36, but we shall bound the 

determinant rather than the permanent. We highlight that the assumption of C4-free for 

the bound on permanents is needed, since perm(C4) = 2 > α2.

For the next cases, it will be useful to first consider when there is a vertex u of degree 

2 contained in a C4.

Claim 30. If G has a vertex u of degree 2 contained in a C4, then f ′(G) ≤ α−2 < c1.
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Proof. If {u, v1, u1, v2} induces a C4 in G then

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

v1 v2 . . .

u 1 1 0 . . . 0

u1 1 1 a23 . . . a2n

a13 a23 a33 . . . a3n

...
...

...
...

. . .
...

an1 an2 an3 . . . ann

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and we can subtract the line of u from the line of u1, which does not change the deter-

minant of the matrix. We obtain, using the induction hypothesis,

det(G) = det(G − {u1v1, u1v2}) ≤ αk−2 < c1 · αk. �

Since we used that the graph is C4-free in Claims 11, 13, 14, and 27, so we get rid of 

those cases when there is a C4, by explicitly computing the value of determinant in the 

following claims.

Claim 31. If x is a Type I vertex and H − {x, y1} = C6, then f ′(H) ≤ c1.

Proof. If x is a Type I vertex and H −{x, y1} = C6, then y2 is a vertex in the C6, and y1

is adjacent to another two vertices in the C6. Given that H is bipartite, x is contained 

in a C4. By Claim 30, f ′(H) ≤ α−2 < c1. �

Claim 32. If x is a Type I vertex and H − {x, y1} = J , then f ′(H) ≤ c1.

Proof. If x is a Type I vertex and H − {x, y1} = J , then y2 is a vertex of degree 2 in J , 

and y1 is adjacent to another two vertices in J . By Claim 30, we can assume that x is 

not in a C4. Using the notation on Fig. 26, observe that y1 can only be adjacent to the 

zi’s, otherwise H is not bipartite, and y1 cannot be adjacent to z1 or z2, otherwise x is 

in a C4. Therefore y1 is adjacent to z3 and z4.

The determinant of the corresponding bi-adjacency matrix is 5. Notice that k = 8, 

hence

f ′(H) = 5α−8 < 0.7875 < 0.8283 < c1. �

Claim 33. If H has no Type I vertex, x is a Type II vertex and H − {x, y1, x1, y2} = C6, 

then f ′(H) ≤ c1 (Fig. 27).

Proof. If x is a Type II vertex and H − {x, y1, x1, y2} = C6, then both x1 and y2 are 

connected to two vertices in the C6. First notice that x1 and x2 cannot have a common 

neighbor, since this would create a C5. Further, the neighbors of x1 (and of y2) must 

have distance 2 to avoid C3 or C5.
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y1

x

z3
w1

z1

y2 z2

w3

w2
z4

Fig. 26. The graph H in Claim 32.

Assume x1 is adjacent to w1 and w3 as below. If y2 is not adjacent to w2, which 

is shown in the first graph below, then w2 is a Type I vertex, a contradiction. If y2 is 

adjacent to w2, we will have the second graph below, up to isomorphism.

w3

w2 w1

z1

z2 z2

y2

x

x1

y1

w3

w2 w1

z1

z2 z2

y2

x

x1

y1

Fig. 27. Cases of Claim 33.

The determinant of the corresponding bi-adjacency matrix is 4. Notice that k = 8, 

hence

f ′(H) = 4α−8 < 0.63 < 0.8283 < c1. �

Claim 34. If H has no Type I vertex, x is a Type II vertex and H − {x, y1, x1, y2} = J , 

then f ′(H) ≤ c1.

Proof. If x is a Type II vertex and H − {x, y1, x1, y2} = J , then both x1 and y2 are 

connected to two vertices in J . Similarly to the proof of the last claim, x1 and y2 cannot 

have a common neighbor and the neighbors of x1 or y2 must have distance 2.

We have two cases as in Fig. 28. In the first case, assume the neighbors of y2 are 

vertices of degree 2 in J . Since H is bipartite, we can assume that the neighbors of y2

are x2 and x3. Therefore y3 and y4 must be neighbors of x1, otherwise, they would be 



I. Araujo et al. / Linear Algebra and its Applications 645 (2022) 194–228 225

Type I vertices. The determinant of the corresponding bi-adjacency matrix is 5. Notice 

that k = 10, hence

f ′(H) = 5α−10 < 0.4961 < 0.8283 < c1.

In the second case, assume y2 has a neighbor with degree 3 in J , say x2. Then the 

other neighbor of y2 must be one of x3, x4, or x5. Without loss of generality, let us 

assume it is x3. Thus y3 must be a neighbor of x1, otherwise, it would be a Type I 

vertex. Consequently, the only choice for the other neighbor of x1 is y6, otherwise, x4 or 

x5 would be a Type I vertex. The determinant of the corresponding bi-adjacency matrix 

is 6. Notice that k = 10, hence

f ′(H) = 6α−10 < 0.5953 < 0.8283 < c1. �

y4x3

y6

x2 y3

x5

x4 y5

y2

x
x1

y1

x4y4

x2

y3 x3

y6

y5 x5

y2

x
x1

y1

Fig. 28. Cases of Claim 34.

Claim 35. If H �= J , H has no Type I vertex, x is a Type II vertex and H −{x, y1} = C6, 

then f ′(H) ≤ c1 (Fig. 29).

Proof. If x is a Type II vertex and H − {x, y1} = C6, then both x1 and y2 are vertices 

of the C6. We have 3 cases, up to isomorphism, shown below.

In the first graph, d(x1, y2) = 1, and x is in a C4, as before we have f ′(H) ≤ α−2 < c1. 

In the second graph, x is in a C5, a contradiction. For the third graph, H = J , a 

contradiction. �

Claim 36. If H has no Type I vertex, x is a Type II vertex, and H − {x, y1} = J , then 

f ′(H) ≤ c1.

Proof. If x is a Type II vertex and H − {x, y1} = J , then both x1 and y2 are vertices of 

degree 2 in J . As H is bipartite, we have two cases, up to isomorphism, shown below.
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y2 x1

x y1

y2

x1

x y1

y2 x1

x y1

Fig. 29. Cases in Claim 35.

y2 x1

x y1

x1

y2 z

x y1

Fig. 30. Cases in Claim 36.

Either x is in a C4, see the graph on the left side on Fig. 30, or there is a Type I 

vertex, namely z, see the graph on the right side on Fig. 30. We conclude both cases 

were handled before, hence f ′(H) ≤ c1. �

This concludes the proof of Theorem 3 since for a not necessarily C4-free graph H we 

can use Claims 31 and 32 to obtain the statement similar to Claim 11 for determinants; 

Claims 33 and 34 to obtain Claim 13 for determinants; and Claims 35 and 36 to obtain 

Claim 14 for determinants. The only new case we have to deal while removing the C4-

freeness assumption is when a vertex of degree 2 is contained in a C4, and this case is 

dealt with in Claim 30. In fact, we conclude more than Theorem 3, namely that

(a) det(G) ≤ αk for any balanced bipartite graph G with 2n vertices and n + k edges.

(b) When H is a connected balanced bipartite graph with 2n vertices, n + k edges, 

δ(H) ≤ 2, ∆(H) ≤ 3, and H is not isomorphic to K2, C6, or J . Then det(H) ≤ c1 ·αk.

(c) When H is a connected balanced bipartite graph with 2n vertices, n + k edges, 

δ(H) ≤ 2, and H is not isomorphic to K2, C6, or J . Then det(H) ≤ c2 · αk.
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6. Final remarks and open problems

We conclude that even that the initial aspiration was to prove Corollary 4, which is 

tight for every n multiple of 3, our generalized result of Theorem 3 is best possible only 

when k ≤ n. In particular, Corollary 5 is not expected to be optimal. As mentioned 

before, Bruhn and Rautenbach [3] noted that the incidence matrix of the Fano plane has 

determinant 24. The graph formed by vertex disjoint copies of them gives a lower bound 

of 24n/7 for the maximum determinant of matrices with at most 3n ones.

Conjecture 1 (Bruhn, Rautenbach). If A ∈ {0, 1}n×n has at most 3n non-zero entries, 

then det(A) ≤ 24n/7.

Similar questions for permanents can also be examined. Somewhat surprisingly, the 

permanent of the incidence matrix of the Fano plane is equal to its determinant. We 

conjecture that this is the maximum permanent among C4-free bipartite graphs as well. 

Note that a variant of our method might solve this conjecture, however, we have not 

attempted to do so.

Conjecture 2. If A ∈ {0, 1}n×n is C4-free and has at most 3n non-zero entries, then 

perm(A) ≤ 24n/7.

Intuitively, to maximize the number of perfect matchings, all vertices should be in 

the largest possible number of short cycles. Therefore, the optimal regular graphs should 

be bipartite graphs with small girth and the least number of vertices. The existence of 

k-regular bipartite graphs with girth 6 is known for all k ≥ 2 (see [1] for an example 

based on finite projective planes). Let Ak,6 denote the smallest k-regular bipartite graph 

with girth 6, and let 2vk be the number of vertices in such graph. We conclude with the 

following more general conjecture.

Conjecture 3. If A ∈ {0, 1}n×n is C4-free and has at most kn non-zero entries, then

perm(A) ≤ perm(Ak,6)n/vk .
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