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1. Introduction

Many upper bounds on determinants have been given in the literature, in particular to
matrices with all entries 0 or 1. Assuming the matrix A € {0,1}"*" has at most 2n non-

1/2

zero entries, then the classical Hadamard’s inequality [4] det(A4) < [T\, (Z;;l ai]) ,

together with arithmetic and geometric mean inequality, imply det(A4) < 2%/2. This
L(n-1)

bound was improved to det(A) < 2 (2 - %) ’ by Ryser [5], who extended it as

follows:

n+1

1(n-1)
~ 1))\ 2
M) when A € {0,1}"*"™ has kn ones, for 1 <k < 5

n—1

mﬂA)gk(k—

While both classical bounds above are best-possible in their general formulation, they
are not best possible for sparse matrices. Ryser’s inequality holds with equality only
when we have at least n/n non-zero entries (see [3] or [5] for a more detailed discussion
on when equality holds for Ryser’s inequality). Aiming to obtain better bounds for sparse
combinatorial matrices, Bruhn and Rautenbach [3] proved the following.

Theorem 1 (Bruhn, Rautenbach). If A € {0,1}"*™ has at most 2n non-zero entries, then
|det(A)| < 2n/6.3n/6,

They also conjectured that the determinant of A is at most 2/3 in this case (see Con-
jecture 4 in [3]). Advancing towards this conjecture, Shitov [7] generalized its formulation
and used induction to give a short and elegant proof of the following result.

Theorem 2 (Shitov). If A € {0,1}™*™ has at most n+k non-zero entries, then |det(A)| <

3k/4,
The conjectured maximum value comes from matrices of the form A = diag(C,...,C),
1 10
where C' = <0 1 1> , which has determinant of 2/3 with n = k. The main contribu-
1 0 1

tion of the present paper is a proof of the optimal result.

Theorem 3. Every matriz A € {0,1}"*" containing at most n + k non-zero entries has
determinant at most o, where o = 21/3.

In particular, this bound is best possible only when k is a multiple of 3, and k < n.
We emphasize that Theorem 3 resolves the above conjecture of Bruhn and Rautenbach.

Corollary 4. If A € {0,1}™*™ has at most 2n non-zero entries, then |det(A)| < 2"/3.

We can consider the same question for more 1’s. Bruhn and Rautenbach [3] noted that
the point-line incidence matrix of the Fano plane has determinant 24. It gives a lower
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bound of 24™/7 ~ 1.5746™ for the maximum determinant of matrices with at most 3n
ones, the authors of [3] conjecture this to be the best possible. Scheinerman [6] showed
det(A) < ¢(k)™ for some constant c¢(k) depending only on the integer k for all matrices
A with at most kn ones. For k = 3, Scheinerman bound is det(A) < 24"/6 ~ 1.6984".
Theorem 3 improves this bound.

Corollary 5. If A € {0,1}"*™ has at most 3n non-zero entries, then |det(A)| < 22"/ ~
1.5874"™.

Our proof of Theorem 3 extends some of the ideas of Shitov [7]. With a careful
analysis, we push down the bound to the optimal value of 25/3. We identify a matrix A
with the graph whose bi-adjacency matrix is A. In other words, when G is a balanced
bipartite graph, the determinant of G, denoted by det(G), is the absolute value of the
determinant of the bi-adjacency matrix of G. We then aim to prove det(G) < 2F/3
for all balanced bipartite graphs G with 2n vertices and at most n + k edges. The
proof will be by induction on n + k: given a graph G, we will assume the inequality
det(G') < a?(G)=v(G")/2 for all proper balanced bipartite subgraphs G’ of G, where
v(G") and e(G’) denote the number of vertices and edges of G’, respectively. A bipartite
graph is balanced if both parts have the same number of vertices.

For the sake of completeness of the induction argument, we highlight that the result
holds for every n > 0 when k& = 0. For bigger values of n and k, we break the proof into
several cases.

Since in most cases we only make use of linearity and cofactor expansion along lines,
we get as a byproduct an upper bound for permanents instead of only determinants.
In what follows, perm(G) stands for the permanent of the bi-adjacency matrix of G or,
equivalently, the number of perfect matchings in G.

We highlight that the first part of the next result might be of independent interest.
Namely, that perm(G) < 2¥/3 for all Cy-free bipartite graphs G with 2n vertices and n+k
edges, we state it in Theorem 6. We have additional stronger statements for connected
graphs with a minimum degree of at most 2 that makes the proof of the induction
step simpler. This stronger statement tells us that the inequality holds with an extra
multiplicative factor whenever we avoid components inducing Ky or Cg. To get an even
stronger result and make our proof work, we rule out one further graph, namely the
graph J (Fig. 1).

Fig. 1. The graph J.
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From now on, we use J only to refer to that graph. For the sake of brevity, we write
a=21/3,

Theorem 6.

(a) Let G be a Cy-free balanced bipartite graph with 2n vertices, n + k edges. Then
perm(G) < a*.

(b) Let H be a connected Cy-free balanced bipartite graph with 2n vertices, n + k edges,
O0(H) <2, and A(H) < 3. Assume further that H is not isomorphic to Kz, Cg, or
J. Then perm(H) < ¢y - o, where ¢c; = a2+ a7 < (3a=*)~! is a constant.

(¢) Let H be a connected Cy-free balanced bipartite graph with 2n vertices, n + k edges,
and 6(H) < 2. Assume further that H is not isomorphic to Ko, Cg, or J. Then
perm(H) < ¢y - ¥, where co = a3 + a4 < (o™t + a5~ is a constant.

Remark. We note that the values ¢y = a2+ a7 ~0.828 and ¢5 = a3 + a~* ~ 0.897
that our proof gives in the above statement are not tight. Furthermore, parts (b) and
(c) of Theorem 6 with ¢; = (3a=%)7! &~ 0.840 and ¢ = (™! + a=5)~! ~ 0.902 would
be sufficient to conclude part (a).

For sparse graphs, Theorem 6 improves on the classic Bregman’s inequality [2] for
permanents. For a Cy-free d-regular graph Theorem 6 gives an upper bound of 2(¢=1)7/3,
which is smaller than the bound (d!)"/ 4 from Bregman’s inequality when d < 5.

We prove Theorem 6 in the Sections 2-4. In Section 2, we introduce notation and
give a high-level overview for the proof of Theorem 6, explaining the organization of the
proof. In Section 3, we show the induction step in order to prove items (b) and (c) of
Theorem 6. In Section 4, we deal with the induction step for part (a) of Theorem 6.
The proof of Theorem 3 is analogous, with the small difference that we have to take into
consideration when the graph G has Cy as a subgraph, where we use linearity or the fact
the determinant is preserved after subtracting a line from another line instead of using
cofactor expansion. As the majority of the proofs are similar, we only present a sketch
proof for Theorem 3 in Section 5 with handling the additional cases where the proof of
Theorem 6 has to be supplemented.

2. Proof of Theorem 6: overview

Throughout the proof we identify a matrix A with the graph whose bi-adjacency
matrix is A. Therefore, we label the lines of a matrix by the vertex set of a graph. Let
G be a balanced bipartite graph. The cofactor expansion along a vertex u adjacent to
v1, ...,V for permanents implies

perm(G) = Zperm(G —{u,v;}),

=1
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where G — {u,v;} is the graph obtained after deleting the vertices u and v; from G.
We introduce an auxiliary function

F(G) = a=(DF22(@) . perm(G),

where e(G) and v(G) are the number of the edges and vertices of G, respectively. In this
notation, the cofactor expansion implies

t

F(G) =" a2~ d0=dwd . £(G — {u,v;}). (1)

=1

We can think of f(G) as the normalized number of perfect matchings of G. Hence, we
want to prove that f(G) <1 for all Cy-free balanced bipartite graphs G, and f(H) < ¢;
for connected graphs H with minimum degree at most 2 and maximum degree at most
3 that are not isomorphic to Ko, Cg or J, and f(H) < ¢y for connected graphs H with
minimum degree at most 2 that are not isomorphic to Ko, Cg or J.

We will prove these statements with a simultaneous induction. In Section 3, we present
the proofs of (b) and (c) for the graph H, assuming the results of (a), (b), and (c¢) hold
for all proper balanced subgraphs of H. For the proof of (b), since H is connected, we do
not have isolated vertices. If H # K5 has vertex with degree 1, we expand the permanent
along this vertex and conclude that f(H) < a~! < ¢;. We thus assume §(H) = 2 and
A(H) < 3. If H has a path with three consecutive vertices of degree 2, then we either
proceed as in Claim 8 to obtain f(H) < a~3+a ™% < ¢; or H has to be a cycle, in which
case we are done since H # Cy,Cs and f(Cyy,) < ¢q for n > 4.

If H has a vertex x of degree 2 adjacent to vertices y; and y, of degree 3, then we
proceed as in Claim 9 to obtain

P = (o)) + 3 — {2,12}). @)

N~

f(H) <

Assuming H — {z,y;} is connected and not isomorphic to Ka, Cg, or J, the bound
f(H) < ¢; follows from f(H — {x,y;}) < ¢1 for i = 1,2. Otherwise, we will see, in
Claim 11, that H — {z,y;} cannot be isomorphic to any of Ks, Cg, J; and, in Claim 12,
that if H — {x,y;} is not connected, then f(H) < ¢;.

If there is no path with three consecutive vertices of degree 2 in H and H has no
vertex of degree 2 connected to two vertices of degree 3, then any vertex x of degree 2
in H is as in Fig. 3. We then proceed as in Claim 10 to obtain

f(H) < O‘72f(H - {l',yl}) + a75f(H - {xvxlaylva})' (3)

We will see, in Claims 13 through 16, that H — {x,y1} and H — {x, 21, y1, y2} cannot
be isomorphic to Ko, Cg, or J; and that if H — {x,y1} or H — {z,z1,y1,y=2} are not
connected, then f(H) < ¢;. Otherwise, we use the induction hypothesis to conclude
f(H) <¢ from f(H—-A{x,1n}) < and f(H—{z,21,91,92}) < 1.
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Definition 7. We call z € V(H) a Type I vertex if z is of degree 2 and its neighbors are
of degree 3 (Fig. 2). We call z € V(H) a Type II vertex if x is as in Fig. 3, i.e., x is
adjacent to y; of degree 2 and yo of degree 3, while y; is also adjacent to a vertex x;
of degree 3. Therefore, when we say “ Type I deletion” or “ Type I expansion” we mean
expanding the permanent along a Type I vertex as in (2) above, and similarly for “Type
IT deletion” or “ Type II expansion” as in (3). Further, whenever we fix a Type I vertex z,
the variables y; and y, stand for the neighbors of z. For a Type II vertex z, the variables
y1 and yso stand for the neighbors of x, and x; # « is the only other neighbor of y;.

y1(3)
(2)x

y2(3)

Fig. 2. Type I vertex.

(2)z y1(2)

(3)z1 y2(3)

Fig. 3. Type II vertex.

We can think of Definition 7 as a way to classify degree 2 vertices in H. Each vertex
of degree 2 (that is not contained in a path with three consecutive vertices of degree
2) in H is either Type I or Type II. Depending on whether there is a Type I vertex in
H or all vertices of degree 2 are Type II vertices we will use the expansion (2) or (3),
respectively. For the proof of (c), we proceed similarly to the one for (b), we deal with
the proof of (c) in Section 3.3.

We prove (a) in Section 4. First, in Section 4.1, we use (b) and (¢) to reduce the proof
of (a) to fewer cases. Next, we deal with the cases when G is disconnected, or A(G) > 6,
or §(G) > 4 in Subsections 4.2, 4.3, and 4.4, by using (a) for some proper subgraphs of
G.

After that, we can assume G is connected, 6(G) = 3 and A(G) < 5. We thus use (a)
and (b) for proper subgraphs of G to deal with the case A(G) = 3 in Section 4.5, and
use (a) and (c) for proper subgraphs of G to deal with the cases A(G) = 4 and A(G) =5
in Sections 4.6 and 4.7, respectively. In all cases, we use cofactor expansion or linearity
to bound the permanent by a sum of permanents of subgraphs with minimum degree 2
in a way that the induction hypothesis implies f(G) < 1.
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For example, when G is 3-regular, the cofactor expansion along a vertex u adjacent
to vy, v2 and vz is equivalent to

3
7(G) =at- (Z £(G = fu. w})) .

Our goal is to use the induction hypothesis of part (b) for H = G — {u,v;} to get
f(H) < ¢1, therefore concluding

J(@)=a™" (Z 1(G - {u,vi})) <at. (Z %) _

i=1

However, we can use part (b) only when H is connected and H # Ko, Cg, J. We will see,
in Claim 20, that G — {u, v;} cannot be isomorphic to Ka, Cg or J. Finally, in Claim 21,
that f(G) <1 when G — {u,v;} is not connected follows from (a) for proper subgraphs
of G.

3. Proofs of Theorem 6 (b) and (c)

The proofs are by induction on n 4+ k. When n < 1 or k = 0, there is no connected
bipartite graph H # Ks. For n = 2, the only connected Cy-free graph is a path with
n + k = 3 edges, which has permanent 1 < cja < caa. Then the induction hypothesis
for both (b) and (c) is true when n + k < 3.

Further, as H is connected, it has no isolated vertices. If H # K5 has a vertex v of
degree 1, then the neighbor w of v has degree at least 2. Expanding on the line of vertex
v, we get perm(H) = perm(H — {v,w}) and f(H) < a~! <e¢;. If H is a cycle, we have
perm(Cy,) = 2 and then f(Cs,) = 2a™" < a~ ! since H # Cy, Cg and n > 4. From now
we can assume that the minimum degree of H is 2 and the maximum degree is at least
3.

If H is not a cycle and has a path with three consecutive vertices of degree 2, then it
is sufficient to use part (a) of the induction hypothesis to obtain

fH)<a?+a7®<0.815<0.828 < ¢y,
using the following Claim.

Claim 8. Let u and vi be adjacent vertices with degree 2. Further, assume that u is
adjacent to vy, vy s adjacent to uy, and vy is not adjacent to uy. If d(uy) = 2 and
d(va) > 3, then perm(H) < o*=3 4 aF=5 < ¢; - aF.

Proof. Assume u; is adjacent to a vertex vs, and vs is adjacent to a vertex us (# wu,uq).
Then the bi-adjacency matrix of H is
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w {1 1 0 0 .. 0 (2)u v1(2)
up | 1 0 1 0 0
A= u2 0 x 1 as4 asn
: : (2)”1 ’UQ(Z 3)
0 Ap2 Ap3 An4 ... dnp

By expanding by the line of u and then u; and vy, respectively we have

perm(H) < perm(H — {u,v1}) + perm(H — {u,v2})

< perm(H — {u,v1,u1,vs}) + perm(H — {u,va,v1,u1}).

If d(vs) > 3, then we conclude by part (a) of the induction hypothesis that perm(H) <
af =4 4 ok~ < oF73 + o#~?. Indeed, we delete four vertices and lose at least six edges
in both cases by deleting {u, vy, u1,v3} or {u,ve,v1,us}. Assume, then, that d(vs) = 2.
We expand H — {u,va,v1,u1 } along the line of vs. If d(ug) > 3, or d(ug) = 2 and us is
not adjacent to v, then

perm(H) < perm(H — {u, vy, u1,vs3}) + perm(H — {u,ve,v1,u1 })
< perm<H - {uavla Ul,'l)g}) + perm<H - ‘{’U/,’UQ, V1, U1, V3, ’LLQ})

< oF 4 ks,

Finally, if d(us) = 2 and us is adjacent to vq, then we expand H — {u,v1,u1,v3} along
the line of uy to get

perm(H) < perm(H — {u,v1,u1,v3}) + perm(H — {u,vo,v1,u1})
< perm(H — {u,v1,u1,vs,u2,v2}) + perm(H — {u,vo, vy, u1,v3,us})

< k4 + o=t o

We thus assume that H has no path with three consecutive vertices of degree 2. This
implies that every vertex of degree 2 has a neighbor of degree at least 3. Let y; and y2 be
the neighbors of a degree 2 vertex . We analyze all possible degree combinations of y;
and y,. Since we use extensively the same proof method in what follows, we explain in
detail how to obtain the bounds in Claims 9 and 10. We will expand the permanent along
the vertices x of degree 2 that are either Type I or Type II vertices and use the induction
hypothesis of parts (b) and (c). Hence, we check the hypothesis of being connected and
not isomorphic to Ks, Cg, or J in Sections 3.1 and 3.2. This will be sufficient to conclude
part (b). To conclude part (c¢), we note that = could be neither of Type I nor Type II,
i.e. a neighbor of x can have a degree larger than 3, and we handle these remaining cases
in Section 3.3. We first assume H has a Type I vertex x.
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Claim 9. Let x be a vertex with degree 2 and neighbors y1 and yo. If d(y1) = 3 and
d(y2) = 3, then

JUH) < 70— () + 37 CH — {2},

N | =

Further, if both H — {x,y1} and H — {z,y2} are connected, not isomorphic to Ko, Cg,
or J, then we have f(H) < ¢o. Moreover, in addition to the previous conditions, if
A(H) <3, then f(H) < ;.

Proof. In this case, the bi-adjacency matrix of H is

Y1 Y2
y1(3
T 1 1 0 0 ®)
az1 G2 Q23 QA2n, 2)x
. . @)
y2(3)
an1 Ap2 A3 v Qpp

The first inequality follows from the cofactor expansion along the line of x. If H —
{z,y;} is connected, and not isomorphic to Ka, Cg, or J, then, as H — {z,y;} has
minimum degree at most 2, we can use part (¢) of the induction hypothesis to obtain
that f(H — {z,y;}) < c2. We then conclude by (1) that

f(H) = a2—d(x)—d(y1)f(H —{z, 1)) + a2—d(:c)—d(yz)f(H —{z, 12}

< Oé2fd(x)fcl(yl) ey + a27d(m)fd(y2) .y = Co.

Similarly, if A(H) < 3, then f(H) < ¢; by the induction hypothesis of part (b). O

It remains to check cases with at least one of y; or y, having degree 2. Without loss
of generality, let d(y;) = 2, then we can assume d(y2) # 2 because we already dealt with
the cases when H is a path and when H has a path with three vertices of degree 2.
Besides z, let y; be adjacent to x1. We can assume ys is not adjacent to x1, otherwise
x is contained in a Cy. As there is no path of three vertices each of degree 2, we have

Claim 10. Let = and y1 be adjacent vertices with degree 2. Further, assume that x is
adjacent to ya, y1 s adjacent to x1, and yo is not adjacent to x1. If d(x1) = d(y2) = 3,
then

JH) < o™ f(H —{z,y1}) + o f(H — {2, 21,51, 52})-

Further, if both H—{x,y1} and H—{x,x1,y1,y2} are connected, not isomorphic to K,
Cs, or J, and have minimum degree at most 2, then we have f(H) < cy. Moreover, in
addition to the previous conditions, if A(H) <3, then f(H) < c;.
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Proof. In this case

Y1 Y2 .
z (1 1 0 ... 0 (2)z y1(2)
| 1 0 ao3 ... a2
A= 0 az3 ass ... asn
(3)21 y2(3)
0 apz apg ... Qun

By expanding through the row of z, f(H) = o2~ 4@~ f(H — {z,91}) +
o2~ 4@)=dy2) f(H —{x,yp}). Now assume H —{x,y; } is connected, not isomorphic to K,
Cs, or J. By part (c) of the induction hypothesis, f(H — {x,y1}) < ¢a. For H — {x, 42},
we can further expand along the column of y; to obtain

f(H - {xva}) = Oél_d(xl)f(H - {xvaayhxl}) S al_d(wl) + C2,

when H —{x,21,y1,y2} is connected, not isomorphic to Ky, Cg, or J, and have minimum
degree at most 2. We conclude

fH)<a™? e+ Q=M@ =dw2) o) < 072 oy + a0 ey < 0.945 - co.
Similarly, if A(H) < 3, then f(H) < ¢; by the induction hypothesis of part (b). O
3.1. Ezpanding the permanent along a Type I vertex

We will see in Claim 11 that H — {z,y;} cannot be isomorphic to K, Cg or J, and
in Claim 12 we use part (a) of the induction hypothesis to obtain that if H — {z,y;} is
disconnected then f(H) < ¢;. Recall that H has the following properties: H is bipartite,
Cy-free, and has maximum degree at least 3.

Claim 11. If = is a Type I vertex, then H — {x,y1} is not isomorphic to Kz, Cg or J.

Proof. If H —{z,y1} = K5, then H has 4 vertices, which contradicts that H is bipartite
and has a vertex of degree at least 3. If H — {z,y1} = Cg, since d(y1) = 3, then y;
is adjacent to two vertices of the Cg. Since any two vertices in a Cg have distance at
most 3, H contains a C3, Cy or Cs. It contradicts either the graph being Cy-free or
bipartite. Similarly, since any two vertices of J have distance at most 3, we cannot have
H—-{z,;n}=J. O

Claim 12. Ifz is a Type I vertex and H—{x,y1} is disconnected, then f(H) < a™! < ¢;.

Proof. By breaking into cases of when the edges that are going to be deleted are con-
tained in the matching (when computing the permanent) or not, leads us to the following
two cases.
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Fig. 4. Case 1 of Claim 12.

Case 1: There is a component containing ys and not containing any of the neighbors
of y1 (Fig. 4).

If v(Hy) is even, then zy, cannot be in any perfect matching. Then H and H — zys
have the same number of perfect matchings, which means perm(H) = perm(H — xy2).
Using the inductive hypothesis, we have that perm(H — zyy) < a¢(H—wv2)—gv(H—zy2) —
ale(H)=1)=3v(H) Therefore, perm(H) < a®H)=2v(H)~1 and f(H) < a~L.

If v(Hy) is odd, then zy, must be in every perfect matching, then xy; cannot be in
any of them. Then perm(H) = perm(H — zy;). Using the inductive hypothesis, we have
that perm(H — xy;) < aeH—zy)=gv(H-zy1) — o(e(H)=1)=3v(H) Therefore, perm(H) <
afH)=3v(H)~1 and f(H) < o~ L.

Fig. 5. Case 2 of Claim 12.

Case 2: The component containing ys also contains z1, one of the neighbors of y;
(Fig. 5).

Since v(H1) + v(Hz) is even, they can only both be either even or odd.

If v(H;) and v(Hsy) are both even, then y;z2 cannot be in any perfect matching. Thus
perm(H) < q¢(H)=zv(H)~1,

If v(H;) and v(Hz) are both odd, then xy; cannot be in any perfect matching. Thus
perm(H) < af(H)=zv(H)~1,

In conclusion, in all cases f(H) < a~!<e¢;. O
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3.2. Ezpanding the permanent along a Type II vertex

Now we assume H has no Type I vertex. Let x be a Type II vertex. We will see in
Claims 13 and 14 that H — {z,y1} and H — {x,21,y1,y2} cannot be isomorphic to K,
Cg or J; and in Claims 15 and 16 we use part (a) of the induction hypothesis to obtain
that if H —{xz,y1} or H — {x,x1,y1,y2} are disconnected then f(H) < ¢;. Otherwise, if
H —{z,y1} and H — {x,x1,y1,y2} are connected and non-isomorphic to Ks, Cg, or J;
then by Claim 10 we conclude

f(H) < a_Qf(H - {‘rvyl}) +O[_5f(H - {xvxlayhyQ}) < c1,

when A(H) < 3. Notice H — {z,y;} has minimum degree at most 2, but we need that
A(H) < 3 to guarantee H — {x,z1,y1,y2} has minimum degree at most 2. In general,
H—{z,x1,y1, y2} has minimum degree at most 2 unless we have the structure of Claim 17,
in which case we will see that f(H) < ca.

Claim 13. If x is a Type II vertez, then H — {x,x1,y1,y2} s not isomorphic to Ky, Cg
or J.

Proof. If H — {x,21,y1,y2} = K>, since z; have two neighbors in H — {z,z1,y1,y2}, we
have a copy of C5 in H, a contradiction. As in the proof of Claim 11, if H—{xz,z1,y1,y2} =
Cs, then x; is adjacent to two vertices of the C, creating a copy Cs, Cy or C5 in H. Notice
that for the graph J, any two vertices are at distance at most 3. Similarly, assuming
H —{x,21,y1,y2} = J, we conclude H has a copy of C3, Cy or C5, a contradiction. 0O

Claim 14. If H # J, H has no Type I vertez, and x is a Type 11 vertez, then H —{x,y1}
s not isomorphic to Ky, Cg or J.

Proof. If H — {x,y1} = Ko, then H has 4 vertices, contradicting z1,y> have degree 3.
If H—{z,y1} = Cg, then x; and ys are vertices of this cycle and either we have a copy
Cs, Cy or Cs in H, or H is isomorphic to J.

Notice that we obtain a similar contradiction when H — {z,y;} = J, unless x; and y
are vertices with distance 3 in J. Without loss of generality, we can assume the graph
H as Fig. 6.

Then z is a Type I vertex, a contradiction. 0O

Claim 15. If x is a Type Il vertex and H—{x,y1} is disconnected, then f(H) < a™! < ¢;.

Proof. When H — {z,y;} is disconnected, there is only one possible case. Namely, when
y2 and x; belong to different components Hy and Ho, respectively, of H—{x,y; } (Fig.7).

Still, since v(Hy) + v(Hz) is even, they can only both be either even or odd. If v(H;)
and v(Hs) are both even, then xys and y; 21 cannot be in any perfect matching. If v(Hy)
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z z1

Fig. 6. The graph H in Claim 14.

and v(Hz) are both odd, then xy; cannot be an edge in any perfect matching. Thus
perm(H) < afH)=2v(H)=1 and in both cases we get f(H) <a~'. O

T Y1

Fig. 7. The graph H in Claim 15.

Claim 16. If H has no Type I vertez, x is a Type II vertex, and H — {x,z1,y1,y2}
disconnected, then f(H) < ca. Moreover, f(H) < ¢; when A(H) < 3.

Proof. Now we assume H — {x, x1,y1,y2} is disconnected and break the proof into cases
depending on whether the edges that were going to be deleted are contained in the
matching or not. We have the following three cases.

Case 1: There is a component of H — {x,z1,y1,y2} containing only one of the four
neighbors of o and z; (Fig. 8). Without loss of generality, we assume x5 is the only such
neighbor in the component H;.

If v(H;) is odd, zoys must be in every perfect matchings, then xys cannot be. Thus,
perm(H) < af(H)=zv(H)~1

If v(Hy) is even, then zoys cannot be in any perfect matching, and perm(H) <
af(H)=3v(H)=1 T hoth cases we get f(H) < a~ ',

Case 2: There are two components in H — {z,21,y1,¥y2}, each containing the two
neighbors of ys or z1 (Fig. 9). In this case, H — {x,y1 } is disconnected and then f(H) <
a~! by Claim 15.
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Fig. 8. Case 1 of Claim 16.

Fig. 9. Case 2 of Claim 16.

Case 3: There are two components in H — {x, z1,y1,y2}, each containing one of the
neighbors of both y5 and x;. Without loss of generality, we have the adjacencies shown
in Fig. 10.

If v(Hy) and v(Hs) are both odd, then one of ys29, 21y3 must be in a perfect matching,
which means zy; has to be in the perfect matching and then zy,; and y;z; cannot be in
any perfect matching. Thus, perm(H) < ae(H)=3v(H)=2,

If v(H;) and v(Hs) are both even, we proceed by breaking into cases depending on
whether the edges that were going to be deleted are contained in the matching or not.

When zy; is an edge in the perfect matching, then zys, y1x1 are not. Then either ysxo,
x1ys3 are edges in a perfect matching, or ysx3, x1y4 are edges in a perfect matching. In the

e(H)—3v(H)—4=(d(z2)=1)=(d(ys)=1)+a gch perfect matchings;

first case, there are at most «
where a = 1 when x5 is adjacent to y3, and a = 0, otherwise. In the second case, there
are at most ()= 3v(H)—4=(d(@s)=1)=(d(ya)=1)+b gych perfect matchings; where b = 1

when z3 is adjacent to y4, and b = 0, otherwise.
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Fig. 10. Case 3 of Claim 16.

When a perfect matching does not contain xy;, then the edges xys and y;x; must be
in the perfect matching, which implies yox2, yox3, £1y3, T1y4 cannot be in the perfect

e(H)—3v(H)-5

matching. There are at most « such perfect matchings.

Summing up the number of perfect matchings, we get

perm(H) < (a~ @+ +d(ws)—a) | o=(+d(@s)+d(un)=b) | o=5) . qe(H)~so(H)
If a = b = 0, we obtain
f(H) <a™5+ 2070 < ¢y.
If d(x2) = 3 and a = 0, or when d(z3) > 4, we obtain
fH)<2a " +a " =¢.

If d(z2) = 3 and a = 1, then d(y3) > 3, as if d(y3) = 2, then y3 is a Type I vertex. We
get

fH)<2a P +a " =c.

By symmetry of x5, y3, 3, and y4, the only two cases remaining are shown in Fig. 11,
when d(z2) = d(z3) = d(ys) = d(ys) = 2.

In the first case, H is isomorphic to J, a contradiction. In the second case, because
xo is not a Type I vertex, hence it has to be adjacent to a vertex z; of degree # 3. If
d(z1) > 4, then expanding along the vertex xo yields f(H) < a=3+a~* = ¢,. Otherwise,
by symmetry, both z2 and y3 have to be adjacent to vertices with degree 2, say z; and
z9, which are not adjacent to each other (since, otherwise, there will be a path of vertices
with degree 2 of length 3). If the other neighbor of z; or 29 is a vertex of degree 2, then
by Claim 8, we already have the desired bound on f(H). Thus, both z; and z2 have to
be adjacent to vertices with degrees at least 3, say wy and wq (Fig. 12).
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T Y1 T 1

Y2 x1 Y2 x1

T2 Ys 3 Ya T2 Ys T3 Ya

Fig.11. Case 3:a=b=1and a=0,b=1.

Fig. 12. Case 3: a =0, b = 1.
If d(wy) > 4, then

f(H) <a2f(H —{x2,21}) + @ O f(H — {x2,w1,21,52}) <a 2 +a % <.

If d(wy) = 3, then x5 is a Type II vertex, with neighbors z; and y9, while z; is also
adjacent to wy. Proceeding as in Claim 10, we get

fH) < a2 f(H = {z2,21}) + @ ° f(H — {x, w1, 21, 42 }).

Notice that H — {2, 21 } have a path of length 4 consisting of degree 2 vertices (namely
y17y273y4) and, proceeding as in Claim 8, we have f(H —{x2,21}) < a~3+a~°. Further,
note that, in H — {23, w1, 21,y2}, = has degree 1 and is adjacent to y; of degree 2. By
expanding along the vertex z, we get f(H — {xo, w1, 21,¥2}) < a~ L

We conclude

fH) <a?f(H —{x3,21}) + o ° f(H — {2, w1, 21,92})
<a? (aP+a+atal=a +a+a "< O
This completes the proof of part (b), since we dealt with all possible cases for a

connected Cy-free balanced bipartite graph H with A(H) < 3 when 6(H) =1 or §(H) =
2. Indeed, for the latter, either
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. H is a path;
. H has a path with three vertices of degree 2;
. H has a Type I vertex;

O R

. H has a Type II vertex.

The first case follows from a direct computation, namely f(Cs,) = 2a~"™. For the second
case, we conclude f(H) < ¢; by Claim 8. For the third case, f(H) < ¢; follows from
Claims 9, 11 and 12. Finally, for the last case, f(H) < ¢; follows from Claims 10, 13-16.

3.8. Proof of part (c)

When « is a Type II vertex, then H — {x,21,y1,y2} has minimum degree at most
2 unless we have the following structure of Claim 17, in which case we will prove that
f(H) < Co.

(2)z y1(2)
v1 (> 3)

(3)y2 z1(3) 2)u

va(> 4)
(= 4)v1 v2(> 4)

(2)u v1(2)

(= 3)ur v2(>4)

Fig. 13. Substructures in Claims 17, 18, and 19, respectively.

Claim 17. If © is a Type II vertex, and H — {x,x1,y1,y2} has minimum degree at least
3, then f(H) <a %+ a %+ a7 <c.

Proof. We use the notation in Fig. 13. If H —{z, 1, 1, y2} has minimum degree at least
3, then before the Type II deletion, we can expand on ys to get

perm(H) = perm(H — {y2,v1}) + perm(H — {y2,v2}) + perm(H — {y1,x}).

Notice that d(z) = 1 in H — {y1,v;}, and d(y1) = 1 in H — {z,y2}. Thus, further
expanding along = and vy,
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perm(H) = perm(H - {x7y17y27vl}> + perm(H - {m7y17y27 UQ})
+perm(H— {wil,ybyz})-

We conclude
FH)<a %+a % +a®<0.8150 < 0.8968 < cp. O

Now, Claims 18 and 19 will use part (a) of the induction hypothesis to deal with all
other possible cases when A(H) > 3. We have the following cases.

Claim 18. Let u be a vertex with degree 2, and neighbors of v1 and vy. If d(v1) > 3 and
d(vy) > 4, then

f(HY<a 3 +a ™ =cy.

Proof. Similarly to the proof of Claim 9, we have perm(H) = perm(H — {u,v1}) +
perm(H — {u,va}) < a3 + o*~*4 That means f(H) < a3 +a*=cy. O

Claim 19. Let v and vi be adjacent vertices with degree 2. Further, assume that u is
adjacent to vy, vy s adjacent to uy, and vy is not adjacent to uy. If d(uy) > 3 and
d(vy) > 4, then

f(H) < a2 +a7 % <.

Proof. Similarly to the proof of Claim 10, perm(H) = perm(H — {u,v1}) + perm(H —
{u,ur,v1,v2}) < ak~2+4+ak=6. That means f(H) < a 2+a7% < 0.88 <0.8968 < c3. O

This completes the proof of part (c), since we dealt with all possible cases for a
connected Cy-free balanced bipartite graph H when §(H) = 1 or §(H) = 2. Indeed, for
the latter, either

H is a path;

H has a path with three vertices of degree 2;

H has a Type I vertex;

H has a Type II vertex;

H has a vertex of degree 2 adjacent to vertices of degree at least 3 and 4, respectively;

AR S o e

H has a vertex of degree 2 adjacent to vertices of degree 2 and at least 3, respectively.

The first case follows from a direct computation, namely f(Cs,) = 2a~™. For the second
case, we conclude f(H) < ¢y by Claim 8. For the third case, f(H) < ¢y follows from
Claims 9, 11 and 12. For the fourth case, f(H) < ¢y follows from Claims 10, 13-17. For
the fifth case, f(H) < ¢z follows from Claim 18. For the last case, f(H) < co follows
from Claim 19.
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4. Proof of part (a)

As the proof is by induction on n + k, we begin with the base case when n = 1 or
k = 0. When n = 1, every 1 x 1 matrix with entries in {0,1} has at most 1 =1+ 0
non-zero entry and permanent at most 1 = a’. When k = 0, every n x n matrix with
at most n non-zero entries has permanent at most 1, since the determinant is non-zero
only when we have exactly one non-zero entry per row and column.

We first prove, in Sections 4.1-4.4, that the result follows unless G is connected,
with §(G) = 3 and A(G) < 5. We thus deal with the cases A(G) = 3, 4, or 5 in
Sections 4.5, 4.6, and 4.7, respectively.

4.1. G is connected and 6(G) < 2

If G is connected and §(G) < 2, by (c), we have that f(G) < ¢z < 1 when G #
Ks,Cq,J. As f(K2) = f(Cg) =1 and f(J) = 3a™5 < 1, we conclude f(G) < 1 for all
connected graphs with minimum degree at most 2.
4.2. G is disconnected

If A, the bi-adjacency matrix of G, has a block-diagonal form, say with square matrices
D, and D- as diagonal blocks, then the result follows by induction, applied to each of
the blocks, as perm(A) = perm(D;)perm(Ds) and the order of the two matrices Dy and
Dy add to the order of the matrix A.
4.3. A(G) > 6

If A contains a line with at least 6 non-zero entries, then we can split perm(A) as the

sum of two permanents with at least 3 ones missing in each. That is, reordering the rows
and columns of A if needed, we can assume that

A=|1 111 1 1 aw ... am],
then we have that perm(A4) = perm(B) + perm(C), where

B=1]1 11 0 0 0 a7 ... an and
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c=looo1 1 10 ...0

As both B and C are n x n matrices with at most n + k£ — 3 non-zero entries, the
induction hypothesis implies

perm(A) < "3 4 aF 73 = P
44 5(G)=d>4

Let u be a vertex with minimum degree in G, and adjacent to vy,...,vq. If d > 4,
then the induction hypothesis after expanding the permanent along the line of u gives

d
Z —d(u)—d(v;) < d~a2_2d <1,

where the last inequality follows from the fact d-a?~2? is decreasing in d for d > 4, since
a?>1.25> d%l. For d = 4, we have d - a?72% = 4076 = 1.

Remark. By the discussion above, the result follows unless G is connected, has minimum
degree 6(G) = 3 and maximum degree A(G) < 5. We assume this is the case and we
deal next with the cases A(G) = 3,4, 5.

4.5. Connected 3-reqular graphs

Assume now G is a 3-regular Cy-free balanced bipartite graph. Let u be a vertex and
v1, U2, v3 its neighbors. Then expanding on the line of u gives

§(6) =at (Z (G- {u,w) .

Note that G — {u, v1} has minimum degree 2, since vs has degree 2 in G — {u,v1}.
Similarly, G — {u,v2} and G — {u, vs} have minimum degree 2 as well. We will see in
Claim 20 that G — {u,v;} cannot be isomorphic to K, Cg or J. We are left to check
what happens when G — {u, v;} is disconnected in Claim 21. Otherwise, we can use the
induction hypothesis of part (b) for H = G — {u, v;} to conclude

f(G) = <Zf (G — {u,v;}) ) (Zq) =307 ¢ < 1.

Claim 20. G — {u,v1} is not isomorphic to Kz, Cg or J.
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Proof. Note that the graph G — {u, v} has minimum degree 2 hence G — {u, v;} cannot
be a K. Indeed, the deletion of two adjacent vertices u and vy decreases the degree of
four different vertices (neighbors of u and v;) by 1 and maintains the degree of all other
vertices. In particular, G — {u, v } cannot be Cg or J, since both graphs have six vertices
of degree 2. O

Claim 21. If G — {u, v} is disconnected, then f(G) < a~! < 1.

Proof. If G — {u,v1} is disconnected, then we have 3 cases, depending on how the
neighbors of w and vy are distributed in different components.

Fig. 14. Case 1 in Claim 21.

Case 1: There is a component containing only one of the four neighbors of u and v
(Fig. 14). Without loss of generality, we assume vs is the unique such neighbor in the
component Hi.

If v(Hy) is odd, uwve must be in every perfect matching of G, hence uwvs cannot be.
The number of perfect matchings of G does not change after deleting the edge uvs. By
the induction hypothesis, perm(G) < o1

If v(Hy) is even, then uvy cannot be in any perfect matching, and similarly we have
perm(G) < oF1L.

We conclude f(G) <a~ ! < 1.

Case 2: There are two components, each containing the two neighbors of u or v
(Fig. 15). Let H; be the component containing vy and vz, and Hy containing the neigh-
bors of v; (namely, u; and us).

Since v(H1) + v(Hz) is even, they can only both be either even or odd. If v(H;) and
v(Hy) are both even, then the edges uva, uvs, viu1 and viue cannot be in any perfect
matching of G, which implies perm(G) < of~%. If v(H;) and v(Hz) are both odd, then
uv; cannot be in any perfect matching, implying perm(G) < o*~1.

We conclude f(G) <a™! < 1.

Case 3: There are two components, each containing one of the neighbors of both u
and vy (Fig. 16). Without loss of generality, we have the following:
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u v1

A A

Fig. 15. Case 2 in Claim 21.

u v1

N

Fig. 16. Case 3 in Claim 21.

If v(H;) and v(Hs) are both odd, then uv; cannot be in any perfect matching, implying
perm(G) < oF1L.

If v(Hy) and v(H3) are both even, then we break the proof into cases according to
which edge incident to w is contained in a perfect matching.

When wv; is an edge in a perfect matching, then uvs, viuy, viu; and vius are not in
a perfect matching. We have at most o*~* such perfect matchings.

When uvs is an edge in a perfect matching, then v;u; must be in the perfect matching
and then uvy, uvs, vius and further edges incident to vo and wy cannot be in the perfect
matchings. There are at most a*~% such perfect matchings. Similarly, there are at most
a6 perfect matchings containing uwvs.

We conclude perm(G) < o*~* +2a*% and f(G) <a™* +2a76<0.8969 < 1. O

4.6. Connected graphs with 6(G) = 3 and A(G) =4

Let u be a vertex of degree 4 and vy, va, vs, vy its neighbors. If d(v;) = 4 for all
i € {1,2,3,4}, then expanding on the line of u gives f(G) < 4-a~% = 1. Thus, we can
assume that at least one of the neighbors of u is of degree 3. Without loss of generality,
assume d(vy) = 3. Let u; and ug be neighbors of v; as below.
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If d(u1) = d(uz2) = 4, then expansion along the line of v; would give f(G) < 3-a=5 < 1.
Thus, we assume d(u;) = 3 and use linearity of the permanent to get perm(G) =
perm(G — uvy) + perm(G — {u,v1}), and then

F(G)=a™" f(G—uv) + a7 f(G = {u,u1}).

We note that both G — {u,v1} and G — uv; have minimum degree 2, since u; has
degree 2 in G — {u, v} and vy has degree 2 in G — uv;. We will see in Claims 22 and 23
that G — uwv; and G — {u,v1} cannot be isomorphic to Ky, Cg or J. We are left to
check what happens when G — uw; is disconnected in Claim 24, and when G — {u,v1}
is disconnected in Claim 25. Otherwise, we can use the induction hypothesis of part (c)
for H=G —uv; and H = G — {u, v} to obtain

f(G)=a™ f(G—uv))+a f(G—{u,v1}) <ca- (o™t +a7) <0.9944 < 1.
Claim 22. G — uv;y is not isomorphic to Ko, Cg, or J.

Proof. Note that the graph G —uwv; has minimum degree 2, hence G —uv; cannot be Ko.
The deletion of the edge uwvy, only decreases the degree of u and v; by 1 and maintains
the degree of all other vertices. In particular, G — uvy cannot be Cg or J, since it would
have six vertices of degree 2. 0O

Claim 23. G — {u,v;} is not isomorphic to Ka, Cg, or J.

Proof. Note that the graphs G—{u, v1 } have minimum degree 2, hence G—{u, v;} cannot
be K5. Indeed, the deletion of two adjacent vertices u and v; decreases the degree of
five different vertices (neighbors of u and v1) by 1 and maintains the degree of all other
vertices. In particular, G — {u,v1} cannot be Cg or J, since it would have six vertices of
degree 2. O

Claim 24. If G — uv; is disconnected, then f(G) < a™! <1 (Fig. 17).

Proof. Assume G — uw; is disconnected. Let H; be the component containing v;. Then
u, v, V3, U4 are not in Hy.
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Fig. 17. The graph G in Claim 24.

If v(Hy) is odd, then uv; must be in every perfect matching, implying that wve, uvs,
uvy are not. Thus, perm(G) < a®@~2v(@)=3_1f y(H;) is even, then uv; is not in any
perfect matching, implying that perm(G) < ac(@=3v(@)=1 We conclude flG)<al<

1. O
Claim 25. If G — {u,v1} is disconnected, then f(G) < 1.

Proof. If G — {u, v} is disconnected, then we have 4 cases.

V2 U3 V4 ug

Fig. 18. Case 1 in Claim 25.

Case 1: There is a component containing only one of the five neighbors of v and v
(Fig. 18). We assume u; is the only such neighbor in the component H;. The other cases
can be dealt with similarly.

If v(H,) is odd, then viu; must be in every perfect matching of G, then uv; cannot
be. The number of perfect matchings of G is the same after deleting the edge uv;. By
the induction hypothesis, perm(G) < ac(@=3v(@)-1 f v(H7) is even, viu; cannot be
in any perfect matching, and similarly we have perm(G) < a¢(@=39(G)=1 We conclude
f(G) < =t Similarly, we have f(G) < a~! when vy, v3, v4, Or uy is the unique neighbor
in a component of G — {u, v1 }.

Case 2: There are two components, each containing the neighborhood of u or v
(Fig. 19). Let H; be the component containing vs, vs and vs, and Hs containing u; and
Ug.
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U1

A

Fig. 19. Case 2 in Claim 25.

If v(Hy) and v(Hz) are odd, then uv; cannot be in any perfect matching of G, then
f(G) < a~t. If v(H;) and v(Hsy) are even, then uvy, uvs, uvy, v1ur, and viuz cannot be
in any perfect matching, hence f(G) < a~5.

Case 3: There are two components, one contains two neighbors of u, the other one
contains two neighbors of v; and one neighbor of u (Fig. 20). Assume H; is a component
containing vs, and vs, and Hy containing vy, u; and us.

u v1

N

Fig. 20. Case 3 in Claim 25.

If v(H;) and v(H3) are odd, then wv; cannot be in any perfect matching, hence
f(G) < a1 If v(H;) and v(Hs) are even, then uve and uvs cannot be in any perfect
matching, hence f(G) < a2

Case 4: There are two components, one contains two neighbors of © and one neighbor
of v1, the other component contains one neighbors of « and one neighbor of vy (Fig. 21).
Assume H; is a component containing ve, vz, and u1; and Hs, containing vy and us.

If v(H;) and v(Hz) are odd, then uw; cannot be in any perfect matching, hence
J(G) <a .

If v(H;) and v(H2) are even, we break the proof into cases depending on which edge
incident to u is contained in the matching. The number of perfect matchings containing
uvy is at most a®(@=3v(G)=5 When uv9 or uwsz is in a matching, then viu; also must be

e(@)=3v(G)=T guch perfect matchings. When

G)—1v(G)—-7

in the matching and there are at most 2 - «
uvy is in a perfect matching, then vjus is also in and there are at most o
such perfect matchings. Summing up the bounds on the number of perfect matchings,
we get f(G) <a®+3-a77<09103<1. O
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u

Fig. 21. Case 4 in Claim 25.

4.7. Connected graphs with §(G) =3 and A(G) =5

Let u be a vertex of degree 5 and v1, va, vs, v4, vs its neighbors. If d(v;) > 4 for all
i € {1,2,3,4,5}, then expanding on the line of u gives f(G) < 5-a~" < 1. Thus, we
can assume that at least one of the neighbors is of degree 3, without loss of generality,
assume d(v1) = 3. Let uy and us be neighbors of v; as below.

w /1 1 1 1 1 0 0
u as
G=

If d(u1), d(ug) > 4, then the expansion along the line of v; would give f(G) < 275 +
a6 < 1. Thus, we assume d(u;) = 3 and using the linearity of permanent we get
perm(G) = perm(G — uvy) + perm(G — {u, v1}), hence

f(G)=a - f(G—uvy) +a b f(G—{u,v}).

We note that both G — {u,v1} and G — uv; have minimum degree 2. We will see in
Claims 26 and 27 that G —uvy; and G — {u,v1 } cannot be isomorphic to Ks, Cg or J. We
are left to check what happens when G —ww; is disconnected in Claim 28 and G — {u, v1 }
is disconnected in Claim 29. Otherwise, we can use the induction hypothesis of part (c)
for H =G —uv; and H = G — {u, v} to obtain

f(G)=a ' f(G—uvy)+a % f(G—{u,v1}) <co- (o™ +a7%) <0.9361 < 1.

Claim 26. G — uvy has minimum degree 2, and it is not isomorphic to Ko, Cg, or J.
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Proof. Note that the graph G —wuw; has minimum degree 2, hence G —uv; cannot be K.
The deletion of the edge uv;, only decreases the degree of u and v; by 1 and maintains
the degree of all other vertices. In particular, G — uvy cannot be Cg or J, since it would
have six vertices of degree 2. O

Claim 27. G — {u,v;} has minimum degree 2, and it is not isomorphic to Kz, Cg, or J.

Proof. Note that the graph G — {u, v1} has minimum degree 2, hence G — {u, v;} cannot
be K. Since Cg and J have six vertices of degree 2, if G—{u,v1} = Cg or G—{u,v1} = J,
then the neighbors of u and v; must be exactly the six vertices of degree 2, otherwise
the minimum degree of G is less than 3. Thus, at least two of vq, vs, v4, v5 are adjacent,
which contradicts to the graph being bipartite. O

Claim 28. If G — uv; is disconnected, then f(G) < a™! <1 (Fig. 22).

Proof. Assume that G — wwv; is disconnected, let H; be the component containing v;.
Then u, vs, v3, v4, and vs are not in H;.

V2 U3 Vg Us

Fig. 22. The graph G in Claim 28.

If v(H;) is odd, then uv; must be in every perfect matching, implying that uvy, uvs,
uvy, uvy are not part of any. Thus, perm(G) < ac(@=3v(G)~4 [f v(Hy) is even, then uvq
is not in any perfect matching, implying that perm(G) < a?(@=39(@)~1 We conclude

flG)<al<l1. O
Claim 29. If G — {u,v1} is disconnected, then f(G) < 1.

Proof. If G — {u,v;} is disconnected, then we have three cases.
Case 1: There is a component containing neighbors of only one of u or v; (Fig. 23).
Assume that Hj is such component, without loss of generality, v € Hj, hence by
assumption, H; contains no neighbor of vy. If v(Hy) is odd, then wv; cannot be in any
perfect matching of G, hence f(G) < a~!. If v(H;) is even, then uvy cannot be in any
perfect matching, hence f(G) < a™!.
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Fig. 23. Case 1 in Claim 29.

Fig. 24. Case 2 in Claim 29.

Case 2: There are two components, both contain two neighbors of u and one neighbor
of v; (Fig. 24). We assume vq, v3, and u; are in the component H; and vy, vs, and ug
are in Ho.

If v(Hy) and v(H2) are odd, then wv; cannot be in any perfect matching, hence
J(@) <at.

If v(H;) and v(H,) are even, we break into cases of which edge incident to u is

e(G)—3v(G)—6

contained in the matching. We have at most « perfect matchings containing

uv1. When uvy or uvs is in a perfect matching, then viu; also must be in that matching

G)=39(G)=8 gych perfect matchings. Similarly, when wv, or

e(G)— %U(G)—8

and there are at most 2 -
uvs is in a perfect matching, then vius also is and there are at most 2 - «
such perfect matchings. Summing up the bounds on the number of perfect matchings,
we get f(G) <a®+4.078<088<1.

Case 3: There are two components, one contains three neighbors of u and one neighbor
of v; (Fig. 25). We assume v9, v3, v4 and u; are in the component Hi, and vs and ug
are in H.

If v(H;) and v(H2) are odd, then uwv; cannot be in any perfect matching, hence

f(G)<a™ L
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U U1

IS

Fig. 25. Case 3 in Claim 29.

If v(Hy) and v(Hy) are even, we break into cases of which edge incident to w is

—3v(G)—6

contained in the matching. We have at most a*(©) perfect matchings containing

uv1. When uwvs, uvs, or uvy is in a perfect matching, then v;u; also must be in and there

e(G)—3v(G)-8

are at most 3-« such perfect matchings. When vy is in the matching, vy us

e(G)—3v(G)-8

also is and there are at most « such perfect matchings. Summing up the

bounds on the number of perfect matchings, we get f(G) < a 6+4.-a78 <0.88<1. O

5. Determinant of graphs containing a C}

M=

We notice the cofactor expansion perm(G) = > perm(G—{u,v;}) for the determinant

i=1

is the following

det(G) < Zdet(G —{u,v;}).
i=1

Using the analogous auxiliary function f'(GQ) = a~¢(@)+2(%) . det(G), instead of f(G) =
a—e(@)+30(G) -perm(G), we can mimic the proof of Theorem 6 to obtain Theorem 3. Note
that the number of perfect matchings is an upper bound for the determinant. The only
places where we used the Cy-free assumption in the proof above was in Claims 11, 13,
and 14.

We get rid of the case when G has a vertex of degree 2 contained in a Cj in Claim 30,
and then discuss how to deal with the cases of Claims 11, 13, and 14 assuming the
graph G can potentially have C4 as a subgraph in Claims 31-36, but we shall bound the
determinant rather than the permanent. We highlight that the assumption of Cy-free for
the bound on permanents is needed, since perm(Cy) = 2 > 2.

For the next cases, it will be useful to first consider when there is a vertex u of degree
2 contained in a Cj.

Claim 30. If G has a vertex u of degree 2 contained in a Cy, then f'(G) < a™? < cj.
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Proof. If {u, v, u1,v2} induces a Cy in G then

U1 V2
U 1 1 o ... 0
(751 1 1 az3 ... Q2p
A= a13 Q23 a3z ... G3p |,
apl Gp2 Gp3 ... Onp

and we can subtract the line of u from the line of u;, which does not change the deter-
minant of the matrix. We obtain, using the induction hypothesis,

det(G) = det(G — {ugvy,ugva}) < "2 < df o

Since we used that the graph is Cy-free in Claims 11, 13, 14, and 27, so we get rid of
those cases when there is a Cy, by explicitly computing the value of determinant in the
following claims.

Claim 31. If x is a Type I vertex and H — {x,y1} = Cs, then f'(H) < ¢;.

Proof. If z is a Type I vertex and H —{z,y;} = Cg, then ys is a vertex in the Cq, and
is adjacent to another two vertices in the Cg. Given that H is bipartite, = is contained
in a Cy. By Claim 30, f/(H) <a"2<¢. O

Claim 32. If = is a Type I vertex and H — {z,y1} = J, then f'(H) < ¢;.

Proof. If x is a Type I vertex and H — {z,y1} = J, then y, is a vertex of degree 2 in J,
and y; is adjacent to another two vertices in J. By Claim 30, we can assume that z is
not in a Cy. Using the notation on Fig. 26, observe that y; can only be adjacent to the
z;’s, otherwise H is not bipartite, and y; cannot be adjacent to z; or zo, otherwise z is
in a C4. Therefore y; is adjacent to z3 and z4.

The determinant of the corresponding bi-adjacency matrix is 5. Notice that k = 8,
hence

f'(H)=5a"% <0.7875 < 0.8283 < ¢;. O

Claim 33. If H has no Type I vertex, x is a Type II vertex and H — {z,y1,21,y2} = Cs,
then f'(H) < ¢1 (Fig. 27).

Proof. If x is a Type II vertex and H — {z,y1, 21,42} = Cs, then both x; and y, are
connected to two vertices in the Cg. First notice that x; and zo cannot have a common
neighbor, since this would create a Cy. Further, the neighbors of z; (and of y2) must
have distance 2 to avoid C3 or Cf.
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Y1

w2 Z4

Fig. 26. The graph H in Claim 32.

Assume x; is adjacent to w; and w3 as below. If y5 is not adjacent to wsy, which
is shown in the first graph below, then ws is a Type I vertex, a contradiction. If ys is
adjacent to ws, we will have the second graph below, up to isomorphism.

Y1 x 1 T
Z2 Z2 zZ2 z2

Fig. 27. Cases of Claim 33.

The determinant of the corresponding bi-adjacency matrix is 4. Notice that k = 8,
hence

f/(H)=4a"%<0.63<0.8283 <¢;. O

Claim 34. If H has no Type I vertez, x is a Type II vertex and H — {x,y1,21,y2} = J,
then f'(H) < ¢;.

Proof. If z is a Type II vertex and H — {z,y1,21,y2} = J, then both x; and ys are
connected to two vertices in J. Similarly to the proof of the last claim, x; and y, cannot
have a common neighbor and the neighbors of x; or y, must have distance 2.

We have two cases as in Fig. 28. In the first case, assume the neighbors of yy are
vertices of degree 2 in J. Since H is bipartite, we can assume that the neighbors of ys
are xo and x3. Therefore y3 and y, must be neighbors of x;, otherwise, they would be
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Type I vertices. The determinant of the corresponding bi-adjacency matrix is 5. Notice
that k = 10, hence

f/(H) =501 < 0.4961 < 0.8283 < ¢;.

In the second case, assume ys has a neighbor with degree 3 in J, say x3. Then the
other neighbor of ys must be one of z3, x4, or x5. Without loss of generality, let us
assume it is x3. Thus y3 must be a neighbor of x;, otherwise, it would be a Type I
vertex. Consequently, the only choice for the other neighbor of x; is yg, otherwise, x4 or
x5 would be a Type I vertex. The determinant of the corresponding bi-adjacency matrix

is 6. Notice that k = 10, hence

fI(H) =6a71° <0.5953 < 0.8283 < ¢;. O

T Y1 T Y1

AN

T4 Ys Ys Ts5

2 Ye

Fig. 28. Cases of Claim 34.

Claim 35. If H # J, H has no Type I vertez, x is a Type II vertex and H —{x,y1} = Cs,
then f'(H) < ¢ (Fig. 29).

Proof. If z is a Type II vertex and H — {x,y1} = Cg, then both x; and y, are vertices
of the Cs. We have 3 cases, up to isomorphism, shown below.

In the first graph, d(x1,92) = 1, and z is in a Cy, as before we have f'(H) < a™2 < ¢;.
In the second graph, x is in a C5, a contradiction. For the third graph, H = J, a
contradiction. 0O

Claim 36. If H has no Type I vertex, x is a Type II vertex, and H — {x,y1} = J, then
fI(H) S Cy.

Proof. If x is a Type II vertex and H — {z,y1} = J, then both z; and y» are vertices of
degree 2 in J. As H is bipartite, we have two cases, up to isomorphism, shown below.
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T Y1 T Y1 T 1
>

Fig. 29. Cases in Claim 35.

Y2 Z1 Y2 z

Fig. 30. Cases in Claim 36.

Either z is in a Cy, see the graph on the left side on Fig. 30, or there is a Type I
vertex, namely z, see the graph on the right side on Fig. 30. We conclude both cases

were handled before, hence f'(H) <¢;. O

This concludes the proof of Theorem 3 since for a not necessarily Cy-free graph H we
can use Claims 31 and 32 to obtain the statement similar to Claim 11 for determinants;
Claims 33 and 34 to obtain Claim 13 for determinants; and Claims 35 and 36 to obtain
Claim 14 for determinants. The only new case we have to deal while removing the Cjy-

freeness assumption is when a vertex of degree 2 is contained in a Cy, and this case is

dealt with in Claim 30. In fact, we conclude more than Theorem 3, namely that

(a) det(G) < oF for any balanced bipartite graph G with 2n vertices and n + k edges.

(b) When H is a connected balanced bipartite graph with 2n vertices, n + k edges,
§(H) <2, A(H) < 3,and H is not isomorphic to Ko, C, or J. Then det(H) < ¢1-aF.
(¢) When H is a connected balanced bipartite graph with 2n vertices, n + k edges,

§(H) <2, and H is not isomorphic to Ks, Cg, or J. Then det(H) < ¢y - .
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6. Final remarks and open problems

We conclude that even that the initial aspiration was to prove Corollary 4, which is
tight for every m multiple of 3, our generalized result of Theorem 3 is best possible only
when k < n. In particular, Corollary 5 is not expected to be optimal. As mentioned
before, Bruhn and Rautenbach [3] noted that the incidence matrix of the Fano plane has
determinant 24. The graph formed by vertex disjoint copies of them gives a lower bound
of 24™/7 for the maximum determinant of matrices with at most 3n ones.

Conjecture 1 (Bruhn, Rautenbach). If A € {0,1}"*"™ has at most 3n non-zero entries,
then det(A) < 247/7,

Similar questions for permanents can also be examined. Somewhat surprisingly, the
permanent of the incidence matrix of the Fano plane is equal to its determinant. We
conjecture that this is the maximum permanent among Cy-free bipartite graphs as well.
Note that a variant of our method might solve this conjecture, however, we have not
attempted to do so.

Conjecture 2. If A € {0,1}"*" is Cy-free and has at most 3n non-zero entries, then
perm(A) < 24™/7,

Intuitively, to maximize the number of perfect matchings, all vertices should be in
the largest possible number of short cycles. Therefore, the optimal regular graphs should
be bipartite graphs with small girth and the least number of vertices. The existence of
k-regular bipartite graphs with girth 6 is known for all & > 2 (see [1] for an example
based on finite projective planes). Let Ay, ¢ denote the smallest k-regular bipartite graph
with girth 6, and let 2v; be the number of vertices in such graph. We conclude with the
following more general conjecture.

Conjecture 3. If A € {0,1}"*" is Cy-free and has at most kn non-zero entries, then
perm(A) < perm(Ay ¢)™/ V.
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