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Abstract—By enabling autonomous vehicles (AVs) to share
data while driving, 5G vehicular communications allow AVs to
collaborate on solving common autonomous driving tasks. AVs
often rely on machine learning models to perform such tasks; as
such, collaboration requires leveraging vehicular communications
to improve the performance of machine learning algorithms.
This paper provides a comprehensive literature survey of the
intersection between machine learning for autonomous driving
and vehicular communications. Throughout the paper, we explain
how vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X)
communications are used to improve machine learning in AVs,
answering five major questions regarding such systems. These
questions include: 1) How can AVs effectively transmit data
wirelessly on the road? 2) How do AVs manage the shared data?
3) How do AVs use shared data to improve their perception of
the environment? 4) How do AVs use shared data to drive more
safely and efficiently? and 5) How can AVs protect the privacy of
shared data and prevent cyberattacks? We also summarize data
sources that may support research in this area and discuss the
future research potential surrounding these five questions.

Index Terms—Vehicular communications, machine learning

I. INTRODUCTION

S autonomous vehicles (AVs) enter the commercial mar-

ket and advance towards full autonomy, more AVs will
be present on the world’s roadways [1]. Today, AVs rely on
sensors including cameras and LiDAR to monitor the road
in order to drive safely and efficiently [2]. However, if other
AVs are also present on the road, the vehicles can send
data between each other in a process called vehicle-to-vehicle
(V2V) communication.

V2V communication allows AVs to share information in
real-time, resulting in safer and more efficient driving [3]. For
example, a pedestrian in a roadway might be occluded from
view for one AV, but with V2V communication, another AV
could communicate the pedestrian’s location (Fig. 1), allowing
them to be seen by all nearby vehicles. AVs can also commu-
nicate with other computers such as roadside units, which is
referred to as vehicle-to-infrastructure (V2I) communication.
The term vehicle-to-everything (V2X) encompasses both V2V
and V2I paradigms.

As AVs become more ubiquitous, V2V and V2I commu-
nications can provide improvements to common autonomous
driving tasks. They will also serve to connect AVs to the
Internet of Things as a whole, allowing for an interconnected
world (Fig. 2). 5G communication technologies are largely
considered the future of V2V communications due to their
high throughput, high bandwidth, and low latency, which are
required for many aspects of autonomous driving [3].

Machine learning (ML) algorithms, especially deep neural
networks, are currently the backbone of many cutting-edge

1) Pedestrian is occluded = = =
from view of Vehicle A

2) Vehicle B perceives
pedestrian that is
occluded from Vehicle A

4) Vehicle A can now
perceive pedestrian
due to transmitted data

3) Vehicle B transmits location
of pedestrian to Vehicle A
using V2V communication

Fig. 1. Depiction of occlusion. The pedestrian is occluded from the top left
vehicle by the building, but the lower right vehicle can detect the pedestrian
and communicate this information to the top left car.

autonomous driving systems. In autonomous vehicles, deep
neural networks are used for a variety of tasks, including
object detection and semantic segmentation, vehicle control
and collision avoidance, and optimal route planning [4].
However, these algorithms require informative data sources
to perform accurately - data that can be provided by vehicular
communications.
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Fig. 2. Diagram of the IoT sectors and the relationship between V2V and
V2X.

This paper provides a comprehensive literature survey of the
overlap between ML for autonomous driving and V2V/V2X



communications, with a focus on 5G. When nearby vehicles
share data with each other, the performance of ML for driv-
ing tasks can be improved. However, V2V communications
require the implementation of infrastructure to handle data
transmission, as well as the adoption of specialized algorithms
that can incorporate data from nearby vehicles as well as on-
board sensors. Thus, our survey seeks to present an overview
of current research supporting collaborative ML using V2V
communications.

In this survey, we present the latest research in these areas,
focusing mostly on papers from 2016 to 2021 and relying
on older sources for contextualization. This research covers
all aspects of improving ML using vehicular communications,
from the communications technology to the algorithms for
specific driving tasks. In this survey, we seek to answer the
following questions to inform the integration of ML and V2V
communications:

1) How can AVs effectively transmit data wirelessly on the
road?

2) How do AVs manage the shared data?

3) How do AVs use shared data to improve their perception
of the environment?

4) How do AVs use shared data to drive more safely and
efficiently?

5) How can AVs protect the privacy of shared data and
prevent cyberattacks?

By answering these questions, we provide a complete view
of an autonomous driving system that incorporates collabora-
tive ML algorithms.

A. Related Work

Several previous papers have surveyed the use of ML for
V2V communication. Ye et al. survey ML techniques for com-
mon communication tasks, including traffic flow prediction,
local data storage, network congestion control, load balancing,
and resource allocation [5]. Similarly, Liang, Ye, and Li also
present these topics in an ML framework in [6]. Tong et al.
survey a broad list of potential Al applications for autonomous
driving with communications, including cooperative parking,
safety, demand-and-supply recommender systems, navigation,
content delivery, and platooning.

Other authors survey more specific topics, including ML
for V2I optimization [7], multi-agent reinforcement learning
methods for vehicular communications [8], ML methods for
cognitive radio vehicular networks [9], and ML for security in
Internet-of-Vehicles [10]. In addition, Tang ef al. discuss the
potential for ML in 6G V2V communication [11].

B. Our Contribution to Literature

While existing survey papers explain how ML enables V2V
communication, the purpose of communication is to allow
collaboration between different vehicles on the road. There-
fore, in this survey, we seek to combine existing literature on
V2V communications and ML for autonomous driving into
a coherent narrative that highlights current AV capability for
collaboration in ML. Rather than surveying communications

techniques or applications, we focus on the process of col-
laborative data sharing to improve the performance of ML
algorithms in autonomous driving.

Thus, we outline the contributions of this paper in relation
to previous survey papers as follows:

o Assuming a knowledge of basic machine learning tech-
niques, this paper discusses more advanced deep learning
algorithms than previous surveys, such as collaborative
perception or multi-agent learning, and explores how
these approaches can be used in the context of sharing
data in V2V communications.

e We expand on certain topics not widely explored in
general V2V communication surveys, including collab-
orative edge computing and security, and explore their
connections to ML and V2V communications in general.

o Unlike previous survey papers, future challenges sur-
rounding V2V communications and ML are a focus of
this survey, which will guide future research directions.

o Most importantly, this paper unites advances across dif-
ferent fields to provide a broad understanding of how
communication between vehicles can be used to col-
laboratively solve problems in autonomous driving and
communication itself. Fig. 3 demonstrates the intercon-
nected nature of these three research areas - this survey
explores the connections between topics presented by
other surveys to elucidate how challenges in one area
can affect another in the context of autonomous driving.
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Fig. 3. Diagram demonstrating the interaction of techniques between ML,
V2V communications, and autonomous driving.

First, Section II, Machine Learning Overview provides
a basic background understanding of ML algorithms used in
autonomous driving and V2V communications. This presents
common ML problems which may be aided by the exchange of
data in V2V communication. Section III, How Vehicles Share
Data provides a general overview of the V2V communication
technologies needed for AVs to exchange data. Section IV,
How Vehicles Manage Data presents how vehicles jointly
manage edge computing resources necessary for autonomous
driving. The two major categories of AV collaboration prob-



lems, Perception and Driving, are presented in Section V
and Section VI, How Vehicles Collaborate. Section VII,
Preventing Bad Actors briefly presents research in preventing
other collaborating agents from violating privacy or sabotaging
vehicle operations. In Section VIII, Training V2V-enabled
ML Algorithms in Practice, we present common datasets
used to develop the algorithms discussed in the paper. Finally,
we raise questions and future challenges in Section IX,
Discussion and Conclusions. A framework graph for these
sections is presented in Fig. 4.
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Fig. 4. Framework graph for the topics presented in this survey.

II. MACHINE LEARNING OVERVIEW

In order to drive as well as a human, AVs use ML to inform
decisions. For example, ML algorithms can detect objects
such as pedestrians, determine when to perform maneuvers
such as turning or changing lanes, and even optimize wireless
communications between vehicles. By communicating data
with each other, AVs can improve ML performance. In this
section, we present a general background of the ML algorithms
used to solve autonomous driving problems as well as V2V
communication problems.

In the past, research in ML for autonomous driving and
V2V communications focused on classical techniques such
as decision trees, gradient boosting, and Bayesian inference.
Nowadays, however, AVs mostly rely on deep neural networks
(DNNS) to control the vehicle [4]. Using many layers of artifi-
cial neurons, DNNs require much more data and computational
power to train but can recognize more complex structures and
represent a larger set of functions that cannot be captured by
classical algorithms [12].

Deep learning is especially useful for processing high-
dimensional data captured by the sensors of an autonomous
vehicle [4]. Common deep learning algorithms include con-
volutional neural networks (CNN), which are prevalent in the
field of image processing; long-short term memory networks
(LSTM), which allow the use of sequences such as time series
data [13]; and deep Q-learning, which is used in reinforcement
learning tasks for optimizing behavior [14]. Self-driving cars
currently rely on these deep neural networks to control four

main aspects of driving: perception, high-level path planning,
behavior arbitration, and learning-based motion control [4].

For perception, all AVs use deep learning to process image
data collected by vehicle-mounted cameras [2]. AVs employ
deep learning for image processing to map images into a
scene of objects [4, 15]. Processing images requires ML for
denoising and super-resolution, image segmentation, motion
estimation, tracking, and pedestrian movement analysis. After
processing road images, the AV can identify road markings and
traffic signs, perceive road obstacles and weather conditions,
and predict trajectories and plan responses accordingly [15].

Some AVs also use deep learning to process point cloud
data. A point cloud is a dataset of 3D points that represent
physical objects, typically gathered using a LiDAR sensor.
AVs rely on deep neural networks for object detection and
semantic segmentation, which constructs an environment from
3D point cloud data [4]. Since raw, unstructured point clouds
have high dimensionality, AVs must structure point-cloud data
so it may be used by deep-learning algorithms such as CNNs.
Fernandes et al. describe five primary ways in which AVs
may structure point clouds, depending on the task at hand.
These include point-based, voxel-based, frustum-based, pillar-
based, and projection-based. From this, both low- and high-
dimensional features are extracted, which are then used in 3D
object detection [16].

Once a driving scene has been constructed, the AV typically
leverages reinforcement learning algorithms such as deep Q
learning for driving decisions. Deep multi-agent reinforcement
is the latest ML paradigm; this technique allows agents such
as AVs to solve an ML problem by communicating with each
other [17]. Multiple agents collaborating to solve an optimiza-
tion problem is also known as decentralized optimization [18].
In addition, recent research explores deep learning for V2V
communications tasks, as will be discussed in Section III. The
rest of the survey will discuss how V2V communication can
be used to improve the performance of the aforementioned
ML algorithms.

III. HOw VEHICLES SHARE DATA: 5G V2V
COMMUNICATION

In order to share information, AVs must perform wireless
data transmission. Here, we provide an overview of 5G
V2V communication, which provides the low latency and
high throughput necessary for communications between fast-
moving vehicles [3]. 5G operates on higher bandwidth chan-
nels than previous generations of wireless communications
and can support many more devices, enabling the formation
of wireless ad-hoc V2V and V2X networks on the road.
Furthermore, 5G supports network slicing, which allows the
creation of virtual elements that can be chained together and
deployed without physical installation. This supports differ-
ent types of data sharing among AVs. For instance, critical
V2V communications related to safety could operate on one
network slice specifically created to support ultra-low latency
and higher reliability standards, while less critical functions
could operate on a different slice. 5G is the future of V2V
networks, and in this section, we will discuss the system



TABLE I
ML ALGORITHMS USED TO ENABLE V2V COMMUNICATIONS

Application Algorithm Functionality Source
MDP with Policy Iteration Minimize cost and overhead, maximize Quality of Service [19]
MDP with Bellman Equation Minimize radio communication delay [20]
Resource Historical-Based Reinforcement Learning Optimize load balancing [21]
Provisioning K-means++ Provisioning V2V radio channels [22]
MDP with Deep Q-Learning Optimize channel selection and power levels [23]
DMARL with LSTM Predict mobility and resource use of other vehicles [24]
Adaboost
Deep Neural Network mmWave beam attribute selection and prediction [25]
Deep Q-learning
Linear Regression
Support Vector Machine .
mmWave Beam Random Forest mmWave beam power prediction [26]
Forming Gradient Boosting
Deep Neural Network Beamforming vector prediction [27]
Support Vector Machine [28]
Deep Reinforcement Learning Beam selection [29]
Improved Fast Machine Learning [30]
Genetic Algorithm [31]
Deep Neural Network Estimate beam quality [32]
Deep Q-learning Data caching resource optimization [33]
Kernel Ridge Regression Predict cache allocation proportion [34]
Data Cachin Deep Deterministic Policy Gradient Optimal cache allocation [35, 36]
& Deep Neural Network Optimize infotainment data caching [37]
. . Optimize download speed [38]
Deep Reinforcement Learning Optimize caching with blockchain (39, 40]
Fuzzy Q-learning . L
Handoft Hidden Markov Model Optimize communications handoff [41]
LSTM Predicting signal strength [42]
Neural Network Download rate prediction for handoff [43]

requirements and challenges to overcome in implementing
these V2V communications. ML algorithms that support V2V
communications are summarized in Table L.

A. Summary of 5G V2V Communication Technology

5G technology is defined in 3rd Generation Partnership
Project (3GPP) which constitutes the key services such as
Ultra Reliable Low Latency Communication (URLCC) and
enhanced Mobile Broadband (eMBB). Several research works
highlight the diversified service requirements and sufficient
spectrum resources of these 5G application scenarios for
V2V applications. The 3GPP characterizes the basic URLLC
reliability essentials for a single data frame of 32 as 99.9%,
and an E2E latency of <1 ms [44] [45]. Based on resource
sharing and mobility, the 5G use cases for vehicular com-
munication can be classified as direct link V2V, Vehicle to
Network (V2N), and V2N2V [46]. On the basis of range,
power requirements, and application, we have used a top-down
approach to survey the applications of 5G network in-vehicle
communication.

Dedicated short-range communications (DSRC), sup-
ported by IEEE 802.11 Wireless Access in Vehicular Envi-
ronments standards, used to be considered the de facto stan-
dard for vehicular communication [47] and is referenced by
many academic sources in the field of V2V communications.

However, DSRC has barely been deployed in the more than
20 years since adoption; because this spectrum has largely
been unused, in 2020 the FCC announced a reallocation of
the 5.9 GHz bandwidth [48]. As a result, researchers and
automakers in the U.S. may be forced to switch to C-V2X, a
communication standard similar to DSRC that instead relies
on cellular or long-term evolution (LTE) and requires less
bandwidth.

mmWave is a 5G communication technique that uses
millimeter-length waves between 30 and 300 GHz for a variety
of applications, including autonomous vehicle communica-
tions. mmWave can transmit large amounts of data quickly
and is, therefore, an efficient communication method between
AVs. Radio interfaces using mmWave have a wide bandwidth
and allow for the use of beamforming [49, 50]. mmWave
does possess several weaknesses - specifically, the waves
have low communication power and are highly susceptible
to interference. This may cause coverage holes due to the
high mobility of AVs, which may inadvertently move out of
communication range, and due to large vehicles like buses or
trucks which may block the waves from traveling in the V2V
network. Thus, beamforming and tracking techniques may be
developed to solve these issues.

Architecture. The communication architecture for V2V can
be designed similar to existing device-to-device (D2D) com-



munication. The work of [51] has highlighted the advantages
of D2D communication. Although D2D relieves the require-
ment of base station resources, improving the latency in short-
range vehicular networks, this requires overhead to handle
mode selection, peer selection, and environmental effects such
as communication in non-line-of-sight (NLOS) situations.

At lower hardware levels, 5G is currently the best candi-
date for Multi Input Multi Output (MIMO) communication
supported for Orthogonal Frequency Division Multiplexing
(OFDM) architecture. One of the key technological features to
support this is the ability of beamforming and beam steering
supported by phased array antennas. In the 5G FR2 spectrum,
which supports mmWave in the range of 28 GHz and 57
GHz, the antennas can generate pencil beams that support
high throughput and minimum interference. However, in the
V2V scenario, there are many challenges such as mobility,
ultra-dense networks, and NLOS situations which make beam-
forming challenging. ML for beam steering and design of
codebooks for beam alignments is an active area of research
[52, 50].

In V2N, the higher levels in 5G architecture are capable
to manage big data and computing power owing to their wide
bandwidths. The recent breakthroughs in cloud-based ML have
transformed all domains of autonomous driving, including
vehicular communications. However, classical ML exerts se-
vere demands in terms of energy, memory, and computing
resources, limiting their adoption for resource-constrained
edge devices. The work in [53] provides the relation between
ML for communication and communication for ML for low-
level 5G architecture. It discusses the limitations of hardware
in terms of power consumption’s and resources, thus using ML
techniques for network edge computations. This can helpful
for the infotainment services used in the vehicles, in supporting
services for Connected Autonomous Vehicles (CAVs) such as
traffic pattern recognition and long duration route planning.

Challenges communicating between vehicles. Implemen-
tations of V2V communication technologies in a vehicular
network must overcome certain problems associated with
transmitting data between vehicles. Mobility is one major
issue. Because AVs are constantly moving, the structure of the
vehicular network constantly changes, resulting in a dynamic
vehicle ad-hoc network, or VANET, structure [54]. AVs must
also calculate decisions quickly, in real-time; hence, the com-
munication channel must have low latency so that transmitted
data is still relevant by the time it reaches its target [3].
Furthermore, any errors in the AV system could lead to fatal
consequences; as a result, incredibly high standards of safety
must be met [55] and V2V communications must maintain
greater standards of reliability. To overcome these channels,
certain communication management techniques are outlined
below.

B. Resource Provisioning and Allocation

Resource provisioning and allocation is the process by
which wireless network resources such as time slots, frequency
bands, and transmit power levels are made available for use in
a network. Allocation refers to the process of making resources

available to a specific user of the network, while provisioning
involves users selecting how the resources will be used. In
a V2V network, there may be many vehicles on the road,
which may cause network congestion - this, combined with
their constantly moving nature, may result in impairments such
as shadowing, increased path loss, jamming, and interference
[47].

Challenges in resource provisioning that may occur in a
road scenario are depicted in Fig. 5. As shown, commu-
nications can be impaired by, for example, large distances,
large vehicles such as buses or trucks blocking links, or high
numbers of vehicles causing network traffic. AVs require high
Quality of Service; as such, resources must be allocated au-
tomatically among users to minimize these impairments given
a set of network conditions. In 5G networks with direct links
between vehicles (known as sidelinks), Keshavamurthy et al.
have defined a functional architecture to support V2V sidelink
radio resource management that meets reliability requirements
and reduces packet delay [56].

Large vehicles can
block sidelink signals
that rely on mmWave

Varying vehicle
speeds can result in
unstable connection

Many vehicles in
physical traffic also
may lead to network
traffic

Fig. 5. Graphical illustration of potential V2V issues that can be addressed
through resource provisioning, handoff, and mmWave beamforming.

ML algorithms can be used to support dynamic resource
provisioning and allocation, which reacts to changes in ser-
vice demand. Salahuddin and Guizani demonstrate how us-
ing reinforcement learning in a Markov Decision Process
(MDP) can optimize resource allocation [19] in three ways:
minimizing cost, maximizing Quality of Service for latency,
and minimizing provisioning overhead. This optimization can
be solved using techniques like policy iteration, Q-learning,
or linear programming. Zheng et al. also optimize radio
resource scheduling as a Markov decision process, which
is solved using a Bellman Equation [20], and Ye, Li, and
Juang developed a decentralized method in [23] that decides
the optimal sub-bound and power level based on its own
information, without a central controller. Li, Wang, and Jiang
use online reinforcement learning for load balancing when
vehicles are communicating with some fixed base station,
which handles the problem that traffic in a particular area may
vary at different points in time [21]. Chen et al. have developed



the Adaptive Clustering and Scheduling for Dynamic Region-
based Resource Allocation (ACSR) scheme, which provisions
radio channels to be used in V2V networks depending on the
geographic location of the AVs using K-means++ [22].

Other recent work focuses on using deep reinforcement
learning. Ye, Li, and Juang developed a decentralized method
in [23] that decides the optimal sub-bound and power level
based on its own information, without a central controller.
Each state transition is modeled as a Markov decision process,
and deep Q-learning is used to process the input of the
power level and spectrum subband of the V2V link in the
network and, from there, determine the optimal policy to
maximize reward. Similarly, Glindogan uses deep multi-agent
reinforcement learning to optimize transmission resources for
a group of vehicles without requiring a base station [24]. Each
vehicle (agent) predicts what resources the other vehicles will
select to use, and adjusts their choice accordingly. An LSTM
is used to predict mobility patterns of vehicles at each iteration
of the algorithm, after which double deep Q-learning is used to
evaluate the resource allocation policy and select which action
to take. with experiences stored for future training [24].

Future potential. Because not every area will necessarily
be outfitted with a base station to service AVs, deep multi-
agent reinforcement learning appears to hold the most potential
for the future of this research area. However, given the
novelty of this ML method, more research is required to use
and understand it effectively. Once the theoretical foundation
of deep multi-agent reinforcement learning is more firmly
established, and these models are more robust, they can be
deployed in AVs to great effect.

C. Handoff

As mentioned, managing a vehicular network with many
constantly moving vehicles is a challenge. One of the prin-
cipal methods of mobility management involves handoff, or
handover - the process of transferring an active communication
session across a network. Because AVs are constantly moving
in and out of range of each other, handoff may occur frequently
in order to maintain communications. However, initiating
handoff may be challenging - vehicles must decide when to
hand off, select appropriate access points, and handle high
overhead, among other issues [57]. Handoff may be imper-
ative, meaning that it is required due to loss of connection,
or alternate, where handoff is not required but does serve to
improve communication. Imperative handoff may be reactive,
thereby responding to changes in the network environment
when they occur by handing off, or proactive, thereby using
knowledge or mathematical modeling to predict when handoff
must occur in the future. Alternate handoff may be horizontal,
meaning that the type of technology stays the same, or it
may be vertical, wherein a vehicle switches to a different
communication technology [58].

Handoff can be optimized using ML techniques. An older
technique for handoff is discussed by Xu et al. in [41], which
uses fuzzy Q-learning to optimize communication throughput
and adapt to various vehicle speeds and environments. Alam
et al. review more recent methods, including reinforcement
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learning algorithms, k-means clustering, and game-theoretic
algorithms [59]. Aljeri and Boukerche use an LSTM neural
network to predict signal strength, with a stochastic Hidden
Markov Model (Markov Decision Process) used to determine
whether handoff should occur once a certain signal strength
trigger is detected [42]. Similarly, Tan, Chen, and Sun use a
neural network trained on attributes such as transmission rate,
delay, bit error rate, vehicle speed, and packet loss to predict
download rate for a potential network [43]. If the predicted
download rate for another potential network is higher, then the
communication is handed off. Using ML promotes accurate
prediction of network use coupled with vehicle movement.

D. Beam Tracking

To improve mmWave communications, beamforming can
be used to focus wireless transmissions and link vehicles
more easily using directional antennas with lower transmit
power [26]. In beamforming, radio waves are concentrated in
a certain direction, rather than being transmitted in all direc-
tions - this increases transmission rates and thereby increases
communication speed. It also allows for larger amounts of
data to be communicated [60], which is important because
sensors in AVs record vast data streams in real-time. Thus,
large quantities of data must be transmitted in V2V com-
munication. However, beamforming requires beam tracking -
predicting the movement of the vehicle to which data will be
transmitted so that the beam can be aimed properly - which
can be challenging in an environment with constantly moving
vehicles. To solve this problem, researchers have applied a
variety of ML solutions.

ML algorithms. Klautau et al. generated an mmWave
channel dataset and, in conjunction with the SUMO traffic
simulator, which they used to test the performance of a
variety of ML methods such as AdaBoost, Random Forest,
Deep Neural Networks, and Deep Q-learning for predicting
beam selection, estimating angles of departure and arrival of
the beam to enable necessary beam tracking, and predicting
channel evolution over time [25]. Wang, Narasimha, and
Health propose an ML framework that uses vehicle locations
and channel quality indicators as features to predict beam
power and allow for situational awareness [26]. Similarly,
Alkhateeb et al. propose a deep learning model for predicting
beamforming vectors directly from signals received [27].

More recent research includes papers published in 2020
and 2021. Yang et al. use a support vector machine for select-
ing analog beams based on the average sum rate of potential
transmission [28]. Chen et al. use deep reinforcement learning
to overcome the problem of dynamic blockage, which is when
other vehicles or pedestrians interfere with mmWave beams.
Their solution optimizes beam training and data transmission
by selecting the best non-line of sight path based on temporal
data [29]. Gui et al. proposed an Improved Fast ML algorithm,
which is a reinforcement learning algorithm that selects the
optimal beam for mmWave communication [30]. Rasheed
and Hu use a genetic algorithm to optimize beam selection
and switch between 5G communication technologies when
necessary [31]. Finally, Echigo et al. use deep neural networks



to estimate beam quality for selection based on partial beam
measurements and past beam sweeping [32]. These are just a
sample of the many ML methods that have been developed
for optimal mmWave beamforming.

Future potential. ML can be a valuable tool for en-
abling mmWave in V2V communications. For example, beam
tracking requires predicting vehicle movements to ensure the
transmitter and receiver are aligned - a problem that may
be solved using an ML algorithm. In addition, beamforming
and scheduling of mmWave communications may incur high
overhead [61], and therefore ML algorithms may be employed
to minimize overhead as well.

E. Data Caching

AVs rely on large amounts of data to operate effectively;
thus, V2V data transmission can put great strain on network
capacity and transmission may be very slow. As such, it is
often desirable to cache data that must be frequently accessed.
This involves storing data in a place that allows AVs easy and
frequent access. Several different techniques and technologies
have been developed for data caching. These include peer-to-
peer cooperative caching, in which data is shared among vehi-
cles currently on the road [62]; caching using roadside units or
base stations, using Markov-chain models to decide whether
cached data should be updated [63]; in-vehicle caching (IV-
Cache), which relies on dynamic distributed storage relay
to ensure the integrity of cached data and prevent data loss
[64]; named data networking, which includes information on
freshness or timespan of cached contents [65]; and blockchain
[66].

Several frameworks for integrating caching into a V2V
communication system have been developed. A framework
proposed by He, Zhao, and Yin [33] allows for the AV
system to jointly consider networking, caching, and computing
resources and optimize resource allocation accordingly. This
framework uses deep Q-learning to simplify the inputs (system
parameters) and choose the best actions regarding how to
cache data, use computing resources, and respond to requests
from other AVs. Similarly, Wang, Yang, and Hu propose a
framework for offloading traffic in ultra-dense networks. Their
method proposes evaluating link quality using supervised
learning and then using reinforcement learning to optimize
the network traffic [67]. Varanasi and Chilukuri propose Flexi-
Cache, a system that uses different caching methods depending
on the type of data being cached; kernel ridge regression with
self-learning predicts the proportion of the cache be allocated
to each data type [34].

Advanced deep learning methods are also employed for
caching. Deep deterministic policy gradient for reinforcement
learning has been explored by Zhang et al. and Qiao et al. for
optimal content processing and caching [68, 36]. Dai et al.
combine custom deep reinforcement learning algorithms with
blockchain to ensure that transmission of cached data is both
fast and keeps identities of vehicles private [39, 40]. Finally,
Ndikuamana et al. test deep learning methods for caching
infotainment data in roadside units to improve communication
latency [37], and similarly, Chen [38] design a custom adaptive

reinforcement learning algorithm for optimizing download
rates from roadside units. These data caching methods allow
nearby vehicles to request data when necessary, ensuring com-
munications transmit data fast enough for effective decision-
making.

In the future, data caching can be employed to promote
fast retrieval of commonly-used data in different scenarios. For
example, data could be cached in roadside units constructed in
areas of high network traffic, such as urban freeways. Or, data
caching can be employed in vehicular data storage devices, to
optimize resource use in V2V networks that must ensure strict
Quality of Service requirements, including low latency. This
will allow data to be transmitted more efficiently, improving
the ML algorithms used to drive the AV. In the next section, we
discuss how this data is managed in the driving environment.

IV. How VEHICLES MANAGE DATA: EDGE COMPUTING

V2V communication allows vehicles to exchange informa-
tion on the fly and improve the performance of algorithms for
driving decisions. However, processing such large quantities
of data requires extensive computing resources and quickly
accessible data storage. How can vehicles overcome this
challenge? In this section, we explore how edge computing
and V2V communications can be combined to increase the
effectiveness of ML algorithms in AVs. The ML algorithms
used for edge computing are summarized in Table II.

A. Edge Versus the Cloud

Cloud challenges. Tasks required to build and develop
autonomous driving systems often require cloud computing
resources. For example, building training data sets for ML
models requires wireless transmitting large quantities of data
collected by the vehicle to a centralized repository [82]. This
results in high communication overhead and latency, especially
given that vehicles are usually on the road and do not have
access to stable wireless internet connections.

Edge computing is the process of performing computing
operations in the physical location where the data and in-
formation are needed. The advantage of edge computing is
that data transfer is faster than traditional cloud computing.
Computation performed within the vehicular network itself
results in improved latency and bandwidth consumption [83].

In this way, edge computing helps combine V2V communi-
cations with ML to build better AV systems. Depending on the
context, in V2X communications, edge computing can refer
to computing on the vehicle itself, or on roadside computing
units that communicate with passing vehicles [84]. Detailed
descriptions of the architecture required for vehicular edge
computing can be found in [84, 83].

B. Using the Edge to Support V2V Communications

Improving communication latency. One advantage of edge
computing is in minimizing latency. For example, tasks can
be offloaded to edge resources using C-V2X communications
[85], which is detailed by Bute et al. but originates from
previous research in task offloading. To employ ML for



TABLE II
APPLICATIONS OF ML IN EDGE COMPUTING

Category Algorithm Functionality Source

CNN Edge computing for model training [69]

Deep Q-learning Optimize networking, caching and resource allocation [70]

Classical Deep Learning Deep Deterministic Policy Gradient Optimal cache allocation in edge computing [35]
to Support Edge Computing Asynchronous Advantage Actor-Critic Optimize video storage and sharing [71, 72]

Deep Neural N etwork V2V network communications routing [73]

Q-learning

Two-timescale Deep Reinforcement Learning Allocation of edge resources [74]

Variational Autoencoder Proactive content caching on the edge [75]

CNN mmWave beam selection [76]

Federated Learning to Q-learning Jamming defense [77]

Train Distributed Models Deep Q-Learning Collaborative perception [78]

PointNet Collaborative perception [79]

Privacy preservation [80]

Neural Network Misbehavior detection [81]

optimizing latency, Guleng et al. also propose a two-stage
architecture for efficient communication routing in vehicular
networks. In the first stage, a deep neural network predicts
vehicle velocity and traffic density, and edge resources select
how messages pass through the network. Then, the system
evolves over time as Q-learning fine-tunes the parameters
based on model performance [73]. Edge computing can de-
crease communication latency, but leveraging such resources
requires optimizing resource use.

Managing resources. Similarly, ML models can be em-
ployed to optimize data storage and compute resources on the
edge. Luo et al. discuss how, using deep Q-learning, vehicles
with idle computing resources can support data processing
for other vehicles, proposing a collaborative data scheduling
scheme [70]. For the efficient caching of data in edge com-
puting services, Zhang et al. propose a “deep critic cache
network™ for caching optimization [35]. This method is based
on the concept of deep deterministic policy gradient - it uses
a deep neural network to estimate policy and value functions
for faster reinforcement learning. Furthermore, for resource
allocation in V2V applications of blockchain, Jiang et al.
employ an asynchronous advantage actor-critic (A3C) deep
reinforcement learning algorithm [71, 72] to optimize storage
and sharing of video data. This method may be employed
to allow AVs to share massive quantities of video data for
perception, as will be discussed in Section V.

Training ML on the edge. ML algorithms can even be
trained on the vehicles themselves to avoid communication
delay altogether. Hochstetler et al. demonstrate that a special-
ized device such as Intel Neural Compute Stick can support
large CNNs for real-time video processing and object recog-
nition, which is required by AVs [69]. On-vehicle computing
resources are essential to the functionality of an AV and its
V2V communications, and advances in these resources can
enable ML functionality.

Other recent research in vehicular edge computing focuses
on using off-vehicle edge computing servers to avoid prob-
lems with cloud delay when training ML algorithms. Zhu
et al. explain edge learning, which is the use of servers
near the vehicle to process data in real-time. Edge learning

allows an ML model in a given vehicle to be aware of the
context surrounding the vehicle. Claiming current communica-
tion paradigms to be insufficient in supporting edge learning,
the authors of [82] propose learning-driven communication
which uses federated learning to train ML algorithms within
a vehicular network.

C. Federated Learning: Transmit Models, Not Data

Despite these recent advances in vehicular edge computing,
training most ML models still requires vast quantities of data,
far too much for vehicles to transmit via V2V communications
in real-time. How, then, can vehicles collaboratively train ML
models using edge computing resources?

Federated learning (FL) is the distributed training of an
ML model where training data is contained across many
edge computing nodes [86]. In FL, instead of aggregating
large quantities of data in one place, model weights are
distributed across nodes and updated with the local data.
Then, the model weights are communicated between nodes and
aggregated using a technique such as federated averaging. For
more information on the details of FL functionality in driving
applications, please refer to Zhu et al. [82] and Du et al. [87].
In this section, we explore how vehicular communications and
FL can benefit existing autonomous driving algorithms.

Addressing operational problems. Ever-changing road
conditions represent a challenge for training ML algorithms
on AVs; algorithms need to be constantly trained on vast
quantities of data in many different contexts, or else perfor-
mance will degrade. In addition, data necessary for the training
and operation of ML algorithms is very large and private
in nature. By distributing model training across a vehicular
network, FL can overcome these challenges [88]. Data is kept
private, and model updates exchanged between vehicles can
provide constant updates to neural networks used for driving
decisions. Model training times are also reduced due to the
distributed nature of the algorithm across many vehicles on
the edge. Furthermore, by only transmitting model weights,
communication overhead is reduced as well [89].

Current applications. FL supports efficient data sharing
between vehicles. FL has been used to optimize resource



allocation tasks in data transmission between vehicles and
infrastructure [74]. For example, peer-to-peer FL has been
applied to proactive content caching using a collaborative
filtering-based variational autoencoder [75]. FL has also been
applied to optimize mmWave beam selection [76]. In addition,
FL has been utilized for collaborative perception [79, 78] as
well as privacy preservation [90, 80] and cybersecurity in
vehicles [77, 81], as is discussed further in Sections V and
VIIL

Implementing FL. in AVs. Because ML is used to solve
many disparate AV and V2V communication tasks, leveraging
FL in a practical AV application will probably require a
generalized framework. Zhang, Bosch, and Olsson develop
an end-to-end on-device architecture for federated learning in
vehicular environments, demonstrating that FL can achieve the
same accuracy levels as traditional approaches with improve-
ments in training and communication time [89]. In addition,
Posner et al. propose a Federated Vehicular Network archi-
tecture for efficient FL, but this method is limited to venues
with many stationary vehicles, such as large parking lots,
and existing communications infrastructure [91]. Blockchain-
based federated learning is proposed by Pokhrel and Choi;
this technique promotes decentralized training with no adverse
impacts from the failure of any individual vehicle to transfer
data [92]. Of course, in considering these frameworks, further
empirical investigation is required to determine the best format
for on-vehicle FL.

FL challenges. While FL is a highly efficient solution for
training ML on the vehicular edge, some drawbacks still per-
sist. FL in the vehicular environment is challenging due to the
communication issues discussed earlier: high vehicle mobility,
strict Quality of Service, and necessity of efficient resource
allocation, among others [87]. Moreover, FL in vehicular
networks can also be challenging if datasets at individual nodes
are highly imbalanced, or if certain vehicles fail to train the
model after weight transmission. To overcome these problems,
Wang, Liu, and Xia propose a method for selecting optimal
vehicles and resource allocation based on a vehicle’s individual
data using a genetic algorithm [93]. Similarly, Deveaux et
al. develop an approach to optimize selection of vehicles
with high channel link quality and balanced datasets [94]. FL
frameworks using V2V communication must incorporate such
vehicle selection algorithms to ensure efficient performance.

D. Challenges in Edge Computing

Deploying edge resources to support V2V communications
for ML requires overcoming several challenges. Here, we dis-
cuss current research addressing challenges in edge resource
deployment.

Network densification. On a crowded roadway, many ve-
hicles must communicate wirelessly using a limited spectrum.
This forms a dense network wherein many wireless infrastruc-
tures are deployed in a small area. 5G communications over-
come this problem. A 5G-enabled software-defined vehicular
networking paradigm is proposed by Huang et al., which relies
on vehicular edge computing to provide enough computing
power to support necessary services for AVs in a dense area

[95]. In this way, mobile edge computing can support network
densification.

Where to deploy roadside units. In the future, urban
areas may construct computing units on busy roads, to which
vehicles can offload computing. These are known as roadside
units (RSUs). How can we select the optimal location to place
these units? In support of optimal placement of mobile edge
computing resources, Moubayed et al. formulate a Greedy
V2X Service Placement Algorithm [96]. This algorithm solves
the binary integer linear programming problem to determine
how best to place edge computing units to support V2V
communications.

Power consumption. Mobile edge computing is power-
intensive, which can be problematic considering most electric
AVs and RSUs currently have limited battery capacity. Dong
et al. develop an energy-efficient approach for scheduling
tasks using deep reinforcement learning [97]. The optimization
algorithm minimizes both power consumption and latency in
task scheduling for Non-Orthogonal Multiple Access (NOMA)
communications with RSUs.

E. The Future of Vehicular Edge Computing

Edge computing and ML go hand-in-hand for enabling
vehicular communications. Edge computing resources can pro-
vide the computational power necessary to use large-scale ML
models in AVs, but ML can also help enable the functionality
of edge computing.

In the future, edge computing resources may be applied
to support ML solutions across all challenges in autonomous
driving - both related to communications and vehicle control.
Edge computing resources can allow the deployment of more
computationally-intensive ML methods for cybersecurity, re-
source provisioning, and other problems in enabling V2V com-
munications. Federated learning will enable vehicles to train
ML models on the edge, without requiring data transmission
between cloud servers. To accomplish this, edge computing
methods and a robust federated learning framework must be
integrated and tested within a fully functional autonomous
driving system.

V. How VEHICLES COLLABORATE: PERCEPTION

Before executing driving maneuvers, an AV must first
convert data collected via sensors into a scene representing
the surrounding world. This perception process is known as
driving scene understanding. By communicating wirelessly,
AVs can improve perception - for example, by warning other
vehicles of upcoming road hazards. This requires data shared
via V2V communication to be incorporated into the AV’s
internal representation of their driving environment using ML.

ML algorithms that rely on data from multiple collaborating
vehicles for driving scene understanding are summarized in
Table III. These mostly revolve around incorporating shared
data from other vehicles with pre-trained image recognition
algorithms such as YOLO [98] and other CNNs. In the
following sections, we describe how such algorithms are used
for autonomous driving and how they may incorporate data
transmitted wirelessly from other vehicles for driving tasks
such as object recognition.



TABLE III
ML ALGORITHMS FOR DRIVING SCENE UNDERSTANDING WITH V2V COMMUNICATIONS

Category Algorithm Function Source
Mobilenets SSD Collaborative object detection [99]
YOLO, DenseNet Collaborative object detection and classification [100]
CNN Occluded object detection [101]
Cooperative CNN Optimizing data selection for transmission [102]
Perception YOLO Object detection via traffic camera for data fusion [103]
Deep Reinforcement Learning Optimizing data selection for transmission [102]
Domain Adaptive YOLO Object detection with blockchain [104]
Deep Q-Learning Optimizing latency in data sharing [78]
PointNet Road user classification [79]
Support Vector Machine Fusing LiDAR and camera data [105]
Data Fusion Deep neural network Object detection framework [106]
Deep neural network Review of potential applications [107]

A. Driving Scene Understanding Overview

Within the decision-making architecture of a self-driving
car, the first step is called perception. This refers to using
ML coupled with data from sensors such as cameras, LiDAR,
radar, or a fusion of such sensor-based data sources to observe
and extract features of the environment around the vehicles [4].
These features might include other vehicles, road markings,
signs, or obstacles. Detecting these features is referred to as
driving scene understanding, or “driving scene uptake,” and is
typically performed using various deep learning architectures,
including pre-trained CNN models. For example, in [108], ML
is used to detect pedestrians and predict their trajectory - where
they are going and how they are moving. Once these features
are observed, they are then mapped into a driving environment,
and the AV can make decisions based on this environment that
has been observed [15].

One major aspect of driving scene understanding is feature
detection. To detect important objects in an image, feature
detection algorithms draw bounding boxes around objects in an
image to identify them. Once features are detected, semantic
segmentation marks the pixels of an image as representing
different objects such as drivable areas, pedestrians, traffic
participants, and so forth. The technique of localization seeks
to calculate the position and orientation of the AV on the
road and can be accomplished using common systems such as
GPS, or by using deep learning algorithms to process image
and LiDAR data [4]. Other important techniques include data
fusion - combining multiple sources of data to detect and map
objects - as well as depth estimation, where the vehicle tries to
use multiple images to estimate their distance [15]. All of these
techniques are necessary for driving decisions, and these are
enabled through ML. The more accurate these techniques are,
the more safely and efficiently the AV can drive. Therefore,
these techniques are prime for the incorporation of external
data via V2V communication.

Feature detection allows AVs to accurately perceive their
environment. This allows for the fast and safe completion of
various tasks such as obeying traffic rules, planning routes,
and avoiding collisions. Even though AVs are outfitted with
multiple cameras for varying view angles, it is still possible
for a vehicle’s view to be occluded if an important object

is hidden behind some other obstacle. This is why methods
for integrating data from other vehicles using V2V commu-
nications are necessary - to increase driving safety through
high-quality driving scene understanding. These include data
fusion methods and cooperative perception algorithms.

B. Data Fusion

Data fusion is the process of combining many sources of
data. This is essential in ML for V2V communications as AVs
rely on many sensors, including LiDAR, radar, cameras, GPS,
and wheel odometry. Multisensor data fusion techniques have
been in development for decades [109], but more recently, ML
for data fusion has been applied in V2V contexts [110, 111].
When focused on data collected from sensors, the process
is also known as sensor fusion. Data fusion allows complex
sensor data to be combined into a complete, global view of
the AV system and more specific and useful knowledge to be
extracted. The data fusion process is depicted in Fig. 6. In
addition to combining data from multiple sensors, data fusion
can also combine data from multiple nearby vehicles using
V2V communications.

ML for data fusion. Though traditional ML models have
been used, most data fusion methods rely on deep neural
networks. Previously, Rubaiyat et al. have discussed using
support vector machines in fusing LiDAR and camera data
for object detection [105]. However, more recently, Fayyad et
al. surveyed deep neural networks for data fusion in environ-
mental perception, localization, and mapping - they provide an
exceptional summary of the advantages of deep learning in this
area [107]. In the context of V2V communication, Marvasti et
al. have developed a framework wherein the features of deep
CNN models are shared between communicating vehicles to
improve object detection in AVs [106]. By sharing detected
feature maps between vehicles, features that are occluded from
one vehicle’s sensors may be detected and used in control
planning. Since V2V communications may transmit a large
quantity and variety of data, data fusion techniques will be
essential for ensuring that transmitted data from other vehicles
may be combined with the vehicle’s own sensor data to
improve driving.
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Fig. 6. Diagram depicting all aspects of the data fusion process in AVs,
including sensors employed by the vehicle. Note that machine learning is
used at each step of the data fusion process.

Data fusion challenges. Challenges in data fusion include
the complexity of the data collected, the large number of
questions that may be answered by the data, and the difficulty
in achieving simultaneous optimal exploitation of each set of
data [110]. For example, because AVs are outfitted with dozens
of sensors, complementary information from these sensors can
be combined in different ways to generate useful features, such
as location and velocity of surrounding vehicles and obstacles,
road conditions, and lanes [107, 111]. Communication issues
also must be considered. Lee et al. demonstrate that packet
loss and delay can cause significant negative impacts on data
fusion performance in V2V networks, and propose memory-
based methods for enhancing data fusion [112].

Engineering a data fusion system for real-time use is
challenging. AV sensors collect massive quantities of data
each second, meaning that ML models for data fusion must
be able to perform inference in real-time, which limits their
complexity. Vehicles are also not limited to one representation
of objects in the environment. As outlined by Fayyad et al.
different localization methods may be used to accomplish
various goals; any ML algorithm for data fusion must be
able to handle different types of localization. Thus, during
implementation, engineers must select the best representation
for their system [107].

C. Cooperative Perception Algorithms

In cooperative perception, vehicles use shared and fused
data to improve the perception algorithms that define the
vehicle’s understanding of the environment. By incorporating
additional data from other vehicles, the neural networks that
identify objects can achieve improved performance. Here, we
outline research seeking to improve cooperative perception
among vehicles in a V2V or V2X network.

Collaborative vision techniques allow multiple vehicles to
share image data from their cameras to effectively overcome

occlusion and extend their range of vision. Yee et al. propose
an algorithm enabling collaborative vision using pre-trained
models [99]. The study considers SSD Mobilenets and YOLO
for object detection. Instead of sharing raw data, objects are
processed and locations are transmitted to other vehicles to
reduce bandwidth requirements. Similarly, Rawashdeh and
Wang propose using communicated data to construct an ex-
tended view of vehicle surroundings, which is then integrated
into the object tracking system [100]. This method relies on
YOLO for constructing bounding boxes, and DenseNet for
object classification. When an object such as a specific make
and model of a car is recognized, the system can approximate
the dimensions of the object in order to calculate where it
would be located in the scene. Models can also be shared with
other vehicles, as discussed by Jiang et al., who use blockchain
for model sharing with DA-YOLO for object detection [104].

Selecting data to be transmitted. AVs collect vast quanti-
ties of data, and to optimize the use of channel bandwidth, it
may be necessary to share only a subset of data. Wang et al.
propose a system for efficient data fusion which compresses
feature maps using a CNN; since communications require
fewer resources as less data is transmitted, vehicles can share
data more quickly [101]. They also provide a multi-vehicle
dataset, V2VNet, for training ML models for V2V commu-
nications. Alternatively, if certain data has higher importance
than others, it may optimal to give priority to more important
transmissions by canceling or delaying others. Higuchi et
al. demonstrate how value-anticipating networking, wherein
senders evaluate the potential value of their wireless messages
compared to others [113], is able to improve cooperative object
tracking performance.

Other authors propose integrated ML systems for selecting
data to be transmitted. Krammer et al. propose a system called
Proventia that uses traffic cameras to construct an Intelligent
Infrastructure System, which communicates traffic data from
cameras and radar to nearby vehicles using a roadside unit
[103]. Edge devices detect objects using YOLOv4 and com-
municate these objects to passing vehicles, extending their
perception. Aoki, Higuchi, and Altintas propose the Coopera-
tive and Intelligent Vehicle Simulation (CIVS) Platform which
integrates the traffic model, vehicle model, communication
model, and object classification model to train CNNs for
deep reinforcement learning [102]. This combines the SUMO
traffic simulator, CARLA vehicle simulator, and YOLO object
classifier which provide inputs into a Deep Reinforcement
Learning Cooperative Perception simulator to optimize which
data is transmitted to nearby vehicles. CIVS allows cooperative
perception to rely on fewer communication resources.

Federated learning has also been applied for collaborative
computer vision, to allow vehicles to efficiently transmit vision
models for training. Barbieri et al. develop a method to
use Lidar data and federated optimization for point cloud
classification [79]. This method improves classification accu-
racy by allowing nearby vehicles to share model weights. Li
et al. explore methods for minimizing transmission latency
and propose a method for collaborative data sharing using
federated learning [78]. By using federated learning, many
models distributed across vehicles can be updated without



requiring massive data transfer.

Advantages of cooperative perception. How well does ML
for cooperative perception improve safety? In an empirical
study testing the performance of an environmental perception
message system with European V2X standards, Miucic et al.
find that a V2X communication system can improve response
times of multiple vehicle safety applications. These include
emergency electronic brake lights, intersection movement as-
sist, blind-spot warning, and left turn assist [114]. Using a
simulated V2V cooperative perception system, Yoon et al. also
find that communication can improve perception in highway
and roundabout scenarios - but only up to a certain point. If
too many vehicles participate in data sharing, network traffic
will increase without yielding improvements in accuracy on
perception tasks [115]. Hence, to effectively use cooperative
perception, researchers must develop new methods which
minimize communication overhead in cooperative perception.

D. Future Potential of Cooperative Perception

Cooperative perception can improve ML performance, but
transmitting large quantities of sensor data wirelessly causes
network traffic and is too slow to be reliable. Furthermore,
localizing and processing large quantities of data to provide as
inputs to ML models can also be slow. Though current research
has started to address these concerns, if the cooperative
perception paradigm is to be extended broadly to ML for tasks
such as detecting objects to avoid collisions, future research
ought to focus more intensely on this area.

Consider feature detection, a task at which even cutting edge
ML performance is less than desirable [116]. Since this task
is performed by CNNs, rather than wasting communication
resources sharing raw data, it is preferable to transmit feature
maps from the CNNs on each vehicle, since such data is
smaller and more relevant to the task at hand - this process is
discussed by Yang et al. Of course, combining feature maps
from numerous outside sources is difficult. The process raises
a host of challenges, including synchronizing feature maps
from multiple senders, efficiently compressing and streaming
feature maps, and selecting which feature maps would be
the most valuable to the recipient [116]. Developing new
ML techniques that overcome these challenges will allow
important data to be shared more efficiently in cooperative
perception.

AV systems that integrate ML for cooperative perception
into all aspects of their performance will experience increased
performance on driving tasks. Extending studies of value-
anticipating networking [113] to other ML problems such
as feature detection can provide further insights into how
AVs might transmit only data that is essential to these ML
algorithms. This will reduce communication resource use and
ease localization burdens. Furthermore, while ML systems like
the CIVS platform optimize data transmission, the next step
is to implement proposed ML methods for data fusion and
cooperative perception methods in a practical setting, train the
ML algorithms on larger datasets, and compare performances.

Finally, although the current market share for cooperative
perception using vehicular communications will require time

to mature [114], further standardization of different commu-
nication protocols between vehicles is necessary to optimize
future ML performance in AVs. Cooperative perception will
improve the safety and efficiency of autonomous driving [117].

VI. How VEHICLES COLLABORATE: DRIVING

Driving maneuvers are complex: human drivers use ab-
stract symbols, such as flashing high beams or edging out
into traffic, to cooperatively solve problems on the road.
Autonomous driving algorithms for singular vehicles are well-
studied, and thus lie outside our scope. However, cutting-edge
ML techniques coupled with V2V communications technolo-
gies allow vehicles to cooperate on the road like humans to
avoid collisions, reduce traffic, and perform other functions.
In this section, we discuss how V2V communications and
reinforcement learning can be combined to allow vehicles to
collaborate on complex driving decisions. Algorithms from
this section are summarized in Table IV.

A. Safety and Collision Avoidance

Multiple AVs can work together to ensure driver safety.
Modern vehicles must comply with many safety standards in
order to drive safely [126]. Ideally, however, AVs should not
simply meet minimum standards, but also incorporate addi-
tional safety features to ensure they are trusted by consumers
and are commercially viable. Currently, AVs are generally
driven by deep learning-based control systems, which process
sensor data such as camera images as input into a neural net-
work, and output the optimal driving action, such as steering,
changing speed, or stopping [127]. These systems can be aided
by V2V communications.

System data sharing. By sharing data about potential
vehicular failures, AVs can warn other vehicles in advance of
problems that might result in a traffic accident. In addition to
cameras and LiDAR sensors for collision avoidance, modern
AVs include many common safety features including anti-
lock braking, traction control, and electronic stability, and
use sensors to collect system data and detect mechanical
failures. This data can be shared with nearby vehicles to
quickly provide information in case a problem occurs [128].
The Multi-Car Cooperative Collision Avoidance project has
developed a system to allow a network of vehicles to share
data for collision avoidance [129] where braking is insufficient
to avoid an accident. These advances improve driving safety
using V2V communication.

Environment data sharing. In addition to internal system
data, V2V communications also enable multiple vehicles to
transmit information about the driving environment. For exam-
ple, one vehicle may inform another of a dangerous situation
on the road that is not immediately detectable [130]. Or, one
vehicle may be able to correct data input that is adversarial to
another vehicle’s control system. These types of systems have
been proposed as early as 2010 by Mitropoulos er al. who
develop a wireless local danger warning system to transmit
warnings about dangerous areas to AVs [131].

External data can then be leveraged for safety prediction.
Determining road safety involves tasks such as analyzing



TABLE IV
ML ALGORITHMS USED TO LEVERAGE V2V COMMUNICATIONS IN COLLABORATIVE DRIVING

Category Algorithm Function Source
CNN Road safety prediction [118]

Safety and Kalman Filter Fusing vehicle perception data [119]
Collision Deep Neural Network Rear-end collision prediction using V2V data [120]
Avoidance Bayesian inference Predicting collisions [121]
K-medoid clustering Estimating collision probability [122]

Decision tree Collision detection and driver fatigue detection [123]

Collaborative Deep Q-learning Highway traffic optimization [124]
Traffic Evolutionary Algorithms  Coordinating driving behaviors on unmarked roads [125]

driving behavior, detecting vehicle surroundings, modeling the
road, and analyzing road images [118]. These tasks can be
enhanced via additional data from other vehicles. As one
example, Chen et al. demonstrate how deep neural networks
can predict rear-end collisions based on V2V communications
[120]. They also demonstrate the use of a Kalman filter to fuse
perception data from nearby vehicles for safer driving [119].

Similarly, Peng et al. propose a deep learning approach, the
DeepRSI framework, to improve safety. In this model, CNNs
on multiple vehicles process GPS trajectory and environment
data to predict traffic flow; outputs are communicated and
fused with data from other vehicles for improved accuracy
[118]. Furthermore, Yu and Petnga have developed a space-
based collision avoidance framework that relies on V2V com-
munications with spatial and temporal data, though the use of
ML for the system is still in development [132].

Detecting driver fatigue. Though fully autonomous vehi-
cles are the ultimate goal, current and upcoming autonomous
driving technology still require aware drivers to take the
wheel when necessary. Li uses a decision tree coupled with
V2V communications and other sensors such as Li-Fi to
detect driver fatigue in intelligent vehicles and alert drivers
of potential collisions or unsafe behavior [123].

Overcoming challenges. System and environment data
transmissions in a dynamic vehicular environment may not
always be reliable, which has prompted ML methods to ad-
dress communications issues. For example, the non-parametric
Bayesian inference method in [121] predicts crashes while
mitigating the effect of data loss from communications. In
addition, a technique by Haider et al. clusters vehicles into
groups using a modified k-medoid [122] for more efficient
estimation of collision probability.

Future potential. Current research demonstrates how V2V
communications can improve collision avoidance in AVs. In
the future, even advanced methods like deep Q-learning that
do not leverage data sharing in a vehicular network may be
improved by V2V communication [133, 134, 135]. The next
step in using V2V communications is to determine how to
incorporate these prediction algorithms into a fully functional
AV system and test them empirically.

B. Collaborative Traffic

Traffic congestion is a major issue in transportation, slowing
down travel and reducing fuel efficiency. By communicating

with each other, AVs can coordinate their driving such that
traffic jam frequency is reduced and any traffic that does occur
resolves more quickly [136, 137, 138]. This is referred to as
collaborative traffic.

Collaborative traffic research efforts can be divided into
two distinct foci: urban traffic and highway (or freeway)
traffic. These differ in that urban roadways feature controlled
traffic intersections, while highways do not have controlled
intersections but do require merging and exiting a moving flow
of traffic. As demonstrated by traffic simulations, by adopting
collaborative strategies and working together, AVs have the po-
tential to decrease traffic and increase road capacities in urban
environments [139] and on highways [140]. As described by
Autili et al., communications between vehicles can help AVs
choreograph their movements to improve traffic flow [138].

Optimal traffic control. Researchers have developed meth-
ods for AVs to resolve a variety of traffic issues quickly. For
deadlocked traffic, Wang et al. propose Altruistic Cooperative
Driving [137]. For faster highway merging, Xie et al. demon-
strate that V2V communication can improve traffic flow and
reduce accidents at highway on-ramps [141]. Other research
on resolving traffic represented a group of AVs as a multi-
agent system that uses inter-vehicular communication to move
vehicles synchronously [142].

Vehicle platooning is also supported by V2V commu-
nications. This behavior involves coordinating movements
among a group of several nearby vehicles [143, 144, 145].
The technique has been studied for decades, as it provides
several benefits such as higher road utilization, which reduces
traffic, as well as less wind resistance, which reduces fuel
consumption [143]. Recent studies focus on how AVs can
form and maintain safe and effective platoons automatically,
without requiring the driver [144]. V2V communications have
been found especially useful for controlling AV platoons [145].
Given the vast quantities of data collected by AVs, these
platoons may be improved through the implementation of V2V
communication and ML.

Unfortunately, advanced methods for traffic control have
been relatively ineffective. Chandramohan et al. discuss the
use of deep Q-learning for cooperative driving in AVs [124].
This study simulates AVs which cooperatively control each
other’s speeds using V2V communications; however, this
method results in an unacceptably high collision rate ( 30%).
Huang et al. use evolutionary algorithms to develop an



AV controller able to navigate on an AV-only road while
minimizing collisions [125]. The automatically-synthesized
optimal behavior could be communicated to vehicles entering
a certain area; unfortunately, however, results show this type
of optimization is also not particularly effective.

Future potential. Based on the limited research success
in this area, much more work will be necessary in order
to leverage ML and V2V communications for road traffic
reduction. Researchers have investigated how deep reinforce-
ment learning can be used to optimize speed and reduce
traffic, such as in [135, 134, 146], but methods successfully
using V2V communication are still scarce. Furthermore, V2V
communication has not been applied to other unique AV tasks
such as collaborative parking [147, 148].

While AVs can synchronize behavior to reach their des-
tination faster, few works examine potential solutions to
accomplish this goal. Synchronizing the behavior of many
independent agents to optimize some value - in this case, road
traffic - is a challenging task; thus, there is great potential in
this area of ML and V2V communication research.

C. Multi-Agent Learning

V2V communications allow AVs to coordinate their move-
ments for tasks such as traffic reduction, but such actions
require an optimization technique that supports collaboration
between multiple agents. In this section, we explore multi-
agent techniques that may resolve some of the AV collabora-
tion issues presented earlier.

Deep multi-agent reinforcement learning (DMARL) is a
major area of potential for collaborative driving. In DMARL,
each agent uses a deep reinforcement learning technique
such as deep Q-learning in order to optimize some function.
However, in addition to interacting with their environment,
agents can also communicate with each other [17]. Multiple
agents collaborating to solve an optimization problem is also
known as decentralized optimization [18]. DMARL for AVs is
depicted in Fig. 7; here, each vehicle acts as an agent, learning
rewards from the state of the driving environment after taking
certain actions.

DNN DNN DNN
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Fig. 7. Depiction of deep multi-agent reinforcement learning for AVs. Each
vehicle trains an individual DNN based on interactions with the driving
environment that change the environment state and yield some reward.

The problem of nonstationarity. An early model for multi-
agent learning is described by Tan et al. in [149], which
proposes independent Q-learning (IQL) wherein each agent
learns the optimal policy separately, treating other agents
as a part of the environment. However, this poses a major
issue in that, as agent behavior changes, the environment
becomes nonstationary and the algorithm cannot converge
to optimal behavior. Furthermore, Deep-Q learning is often
used to address extremely large state spaces - this technique
involves approximating the Q function by a deep neural
network to reduce the state space or the information required
to make the decision [14]. It requires replaying previously
stored memories, which further exacerbates the problem of
nonstationarity in multi-agent reinforcement learning.

Overcoming the nonstationarity problem is essential for
multi-agent methods. The model architecture proposed in [17]
for multi-agent reinforcement learning reduces this problem by
allowing agents to learn optimal communication protocols and
communicate information about their own states. Foerster also
discusses multiple approaches to this issue in a more recent pa-
per [150]. One approach considers memories as decaying ‘“off-
environment” data that eventually become obsolete. Another
approach allows an agent to learn a conditional policy based
on the policies adopted by other agents. Further advances will
no doubt address this issue as well.

Multi-agent computational issues. Another issue with
distributed optimization algorithms such as DMARL is com-
munication time, which imposes overhead and delays the
algorithm, especially when one node in the network of agents
is especially slow. These problems are addressed in [18]
which proposes the QuanTimed-DSGD algorithm, imposing
a deadline on calculations from agents for optimization and
communicating quantized versions of internal models to im-
prove communication overhead. Along these lines, [151] in-
troduces Variance Based Control for DMARL, which reduces
communication overhead by creating a policy such that agents
only communicate when their confidence in the decision is
low, and only send messages when the information within is
informative. These advances in DMARL are promising and
may contemporize V2V applications.

D. Future Theoretical Improvements

As statistical and computational issues with DMARL are
remedied, DMARL can be applied to many of the previous
issues with collaborative driving. For example, in a DMARL
framework, AVs would be able to more effectively incorporate
data from other vehicles shared via V2V communication.
This would improve optimization algorithms within individual
vehicles, potentially overcoming the poor performance seen in
previous papers [124, 125]. Because the method intrinsically
models communication between multiple agents, DMARL
appears to be the most promising method for future research
in collaborative driving with V2V communication, though it
will require theoretical work to ensure convergence in difficult
problems.



TABLE V
ML ALGORITHMS USED TO ENSURE V2V COMMUNICATION SECURITY

Application Algorithm Functionality Source
Deep Neural Network Packet anomalics [152]
Anomaly Detection LSTM Network ’ [153]
CNN Network traffic anomalies [154]
. Privacy preservation [80]
Attack Prevention Federated Leaming, Neural Network Misbehavior detection [81]
Q-learning Jamming defense [77]

VII. PREVENTING BAD ACTORS: COMMUNICATION
SECURITY

In order to implement V2V communications, an AV sys-
tem must feature strong cybersecurity precautions. While our
discussion so far has espoused the benefits of V2V communi-
cation, one drawback of vehicular networks is the potential
for bad actors. Because AVs do not necessarily know the
identity of other vehicles with whom communications are
transmitted, it is possible for malicious users to engage in
cyberattacks to sabotage the performance of other vehicles in
the network, potentially harming road users. In this section,
we provide a brief discussion of potential cybersecurity issues
surrounding the use of V2V communications for ML algo-
rithms in autonomous driving as well as the most common
security techniques that address these issues. ML algorithms
for security are summarized in Table V.

A. Common Cybersecurity Threats

There exist four cybersecurity challenges especially perti-
nent in V2V applications. These include unpredictable attack
scenarios, which result from the many virtual entry points
to the vehicle using communication; high safety risk, which
occurs due to the dangerous nature of driving a vehicle and
potential for accidental injury or death; limited connectivity,
resulting from the inability of vehicles to frequently update
their operating systems; and limited computational perfor-
mance, which limits potential solutions to those with low
overhead. These attacks can target the control, communication,
or sensing systems in the vehicle [155].

According to Abu-Talib et al., the four major attack targets
include the following: integrity, where attackers spread false
information or tamper with messages; authenticity, where an
attacker creates a false identity; confidentiality, where the
attacker records the ID of vehicles; and availability, where
attackers jam the signal or deny service by overwhelming the
vehicle with many false messages [156]. These are depicted
in Fig. 8.

Classical solutions. To prevent cyberattacks, an AV must
first ensure its data transmissions are secure. This can be ac-
complished using cryptographic digital certificates to authenti-
cate messages, physically detecting vehicles before accepting
messages from them, and using trust models to evaluate the
truthfulness of a message before accepting it [156]. A secure
V2V communication model, the cooperative full-duplex non-
orthogonal multi-access (FD-NOMA) model, is proposed by

Confidentiality

Attackers record the
identification of a vehicle

Integrity

Attackers spread false
information or tamper with
messages

Four Major Cybersecurity
Threats in V2X
Communications

Attackers jam signal or
deny service by sending
an overwhelming number
of messages

Attackers send messages
under a false identity

Availability

Authenticity

Fig. 8. The four major types of cybersecurity threats in V2X networks.

Wei et al. in [157]. Concurrently, blockchain technology is
proposed for secure data sharing in V2V networks in [158]
and [159] in order to protect vehicle security and privacy when
sharing and storing messages.

Machine learning, however, has the potential to solve many
problems in vehicular cybersecurity. Current research most
commonly considers ML for anomaly detection. Deep neural
networks can perform robust detection by processing large data
streams. Deep learning models are also useful for classifying
types of malware, simulating attacks, defending against adver-
sarial visual attacks on sensors such as cameras, and providing
fallback solutions for safe driving in case an intrusion does
occur [155]. Such algorithms can also be optimized using
federated learning as in [81], which presents an algorithm
for detecting data falsification. Preventing the transmission of
fake data that may damage cooperative perception and driving
efforts is imperative for V2V communications to effectively
benefit autonomous driving.

Anomaly detection in vehicular communication. Using
deep learning for anomaly detection is not new, having been
addressed in the past by Kang and Kang [152] and Taylor,
Leblanc, and Japkowicz [153]. In [152], researchers trained
a deep neural network to detect malicious packets using the
Open Car Testbed and Network Experiments (OCTANE). This
model uses features extracted from the bitstream of the V2V



network and pre-trained parameters created using a Restricted
Boltzmann Machine to improve the convergence speed of
the deep neural network. Similarly, an LSTM neural network
is used in [153] to predict packet data values and detect
anomalies; the model is trained on 19 hours of driving data.
This model prevents attackers from exploiting the CAN bus,
which communicates to the vehicle control system wirelessly,
to take control of a moving vehicle, thus protecting the vehicle
from dangerous outside malfeasance. More recently, Nie, Li,
and Kong used a CNN for extracting spatiotemporal network
features to use for predicting network traffic [154]. V2V
networks have much shorter timescales of communication, and
this method addresses the issue by extracting more features
from the short-range traffic to account for the short lifespan
of communication. This helps detect malicious anomalies in
network traffic more precisely, helping prevent obviously in-
correct information from being transmitted in a given network.

Future potential. Despite these works, a vast amount of
work still remains in ensuring the security of V2V com-
munications. Several challenges are outlined in [155] - in
general, these include ML for detecting and preventing spoof-
ing and intrusion attacks, disruption and jamming attacks on
the communication system itself, and denial-of-service attacks
on communications with cloud-based databases. Furthermore,
one exceptional challenge is that, when AVs form a network
such as in a platoon, they must be able to recognize and
prevent attackers from sharing false data that causes them to
make adverse decisions. For instance, a bad actor could warn
other vehicles of a nonexistent obstacle, slowing traffic and
potentially causing accidents as a result. Similarly, adversarial
attacks are another concern; attackers can artificially construct
specific inputs that trigger ML algorithms to malfunction,
possibly causing danger to passengers. These must also be
detected and prevented by AV security systems.

B. Data Privacy

Even if attackers do not seek to harm other vehicles on the
road, they can still potentially collect and store massive quan-
tities of data transmitted using V2V communications. Privacy
is an important concern for many consumers as vehicular data
can reveal personal information, such as locations to which
one frequently travels. Maintaining data privacy is, therefore,
a major hurdle to overcome in the deployment of collaborative
ML using V2V communications. How can we maintain user
privacy in the context of V2V data sharing?

As mentioned previously, federated learning is one pow-
erful solution for data privacy [80]. By sharing model weights
instead of data, federated optimization algorithms ensure that
no private data is shared. This method can also be used in
conjunction with differential privacy, which is a method of
sharing group patterns while preserving information about
individuals [160]. This protects the privacy of even the model
parameters, preventing attackers from reverse-engineering data
based on model updates. Olowononi, Rawat, and Liu employ
federated learning with differential privacy using the Laplace
mechanism and layer-wise relevance propagation, which esti-
mates the impact of features on a DNN. They demonstrate that
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comparable accuracy can be obtained for image processing us-
ing federated learning, but higher levels of differential privacy
correspond to lower accuracy [80]. Cao et al. also employ
federated learning for data privacy, developing a method for
processing data traffic through efficient agent selection; this
ensures privacy and efficient communications on mobile edge
computing devices [90].

Additional future considerations. Despite current re-
search, data privacy is still a major challenge in V2V com-
munications. Some might argue that consumers should have
the option to opt in or out of sharing entirely, a consideration
of current debate over mobile devices such as smartphones.
Either way, as tracking and data collection continue to become
more prevalent in our lives, privacy is undoubtedly a major
concern in the minds of consumers. For widespread adoption
of vehicular communications to occur, personal privacy issues
must be addressed.

VIII. TRAINING V2V-ENABLED ML ALGORITHMS IN
PRACTICE

Now that we have presented the considerations for improv-
ing ML using V2V communications, how would a researcher
develop such a model in practice? In this section, we provide
sources of data and simulation tools for developing and
training V2V-communication enabled ML models.

Data Sources. In general, ML algorithms require training
on large quantities of data related to the problem domain
in order to be effective. This is especially true for vehicular
communication between AVs. High safety thresholds, coupled
with a highly dynamic environment for transceiver nodes,
mean that V2X applications must rely on vast datasets to
achieve required performance quality.

Broadly, an autonomous vehicle system equipped with V2X
communication can be classified into three blocks: Perception,
Maneuvering, and Communication [3, 4]. Here, based on these
three system blocks, we outline several important sources of
data that have been used to train ML algorithms for AVs and
that will be useful to any researchers seeking to improve these
algorithms. These are listed in Table VI.

Sensor data. Firstly, current AV research often focuses on
processing sensor inputs from the AV (e.g. GPS, LiDAR,
camera). These sensors provide the positions of obstacles
and neighboring vehicles relative to the ego vehicle, or the
vehicle which contains the sensors. GPS provides a location
in non-Euclidean format, while LiDAR and cameras provide
relative locations. The KITTI Vision Benchmark Suite is one
of the earliest datasets for such a purpose. It consists of
images, 3D GPS data, and point clouds - collections of 3D
points representing the physical world [161]. Point clouds
are gathered using LiDAR, which detects the location and
distance of physical objects using lasers. In the past, KITTI
has commonly been used for testing ML algorithms for vision
tasks performed by AVs such as object detection. Other
datasets featuring image and point cloud data for self-driving
vehicle research include the Cityscapes Dataset [162], the
Baidu ApolloScape dataset [163], and the Honda Research
Institute Driving Dataset [164]. More recently, Waymo has



TABLE VI
DATASETS FOR EVALUATING ML ALGORITHMS AND V2X COMMUNICATION IN AV'S

Application Data Source Purpose Year  Source
KITTI Vision Benchmark Suite 2013 [161]

Autonomous Cityscapes Dataset 2016 [162]
Driving Baidu ApolloScape Dataset Camera and LiDAR data 2018 [163]
Honda Research Institute Driving Dataset 2018 [164]

Waymo Open Dataset 2020 [165]

SUMO 2018 [166]

CARLO 2017 [167]

Traffic MATSim Traffic simulator 2016 [168]
OpenDS 2014 [169]

PTV Vissim 2011 [170]

Q-Traffic Traffic data and auxiliary information 2018 [171]

Veins 2011 [172]

V2V Communication iTETRIS 2013 [173]
Simulation Software Eclipse MOSAIC V2V communication and traffic simulator 2011 [174]
NetSim 2008 [175]

MATLAB Vanet Toolbox 2019 [176]

Lumos5G Urban mmWve 5G service measurements 2020 [177]

5G Communication CRAWDAD General wireless communications data 2021 [178]
Datasets ETSI ITS-G5 DSRC Dedicated short-range communications 2019 [179]
DSRC Vehicle Communications Dedicated short-range communications with cyberattacks 2016 [180]

Warrigal Dataset Wireless ad-hoc data between industrial vehicles 2014 [181]

ScanNet Annotated 3D indoor scene point clouds 2017 [182]

Other ModelNet Large scale 3D image dataset 2015 [183]
Starcraft II Learning Environment Interface to Starcraft for multi-agent learning 2017 [184]

published an open-access dataset of LiDAR and camera data
that is “15x more diverse than the largest camera + LiDAR
dataset available” and will allow researchers to develop ef-
fective solutions to self-driving problems [165]. Using these
datasets, researchers can develop solutions to computer vision
problems in AVs and allow them to make driving decisions
using ML.

Traffic simulators. Researchers may wish to examine how
well V2V communication in AVs can help reduce road traffic.
Traffic datasets and simulators also allow for an investigation
of deep reinforcement learning specifically for collaborative
traffic. For traffic models, the traffic simulator SUMO is fre-
quently used for modeling how different autonomous driving
techniques can reduce congestion [166]. CARLA is another
commonly-used traffic simulation software as well [167].
Other traffic simulation software tools include MATSim [168],
OpenDS [169], and PTV Vissim [170]. Similarly, Q-Traffic
represents a large dataset from Baidu for building and testing
traffic models [171].

Communication simulators. Simulations are also impor-
tant tools for testing V2V communications because deploying
such technologies in real-world field tests may be expensive
and time-consuming [185]. There are three major software
tools for V2V communications that have been in use over the
past decade: Veins, which is based on SUMO and OMNeT++
(a network simulator) [172]; iTETRIS, which also uses SUMO
and allows a wide variety of traffic, communications, and
facilities specifications [173]; and Eclipse MOSAIC, which
is an open-source version of previous software, VSimRTI,
that combines multiple traffic and communication simulators
including SUMO, PHABMACS, ns-3, OMNeT++, and SNS

[174]. Other, more recent simulation software that has been
developed for evaluating V2V communication in autonomous
driving include NetSim [175] and the MATLAB VANET
Toolbox [176].

Communication data. Raw datasets are also available for
training ML algorithms for supporting 5G V2V communica-
tion. For 5G mmWave communications, Lumos5G provides
a set of mmWave 5G service measurements in a large U.S.
city [177]. Similarly, CRAWDAD is an established academic
project seeking to compile datasets of wireless communi-
cations, including 5G [178]. Datasets specific to vehicular
communication are available as well. DSRC data is provided
in [179]. This dataset represents communications between on-
board units and roadside units collected from driving a vehicle
on the FLOURISH test track in the UK. A slightly older
dataset for DSRC is provided in [180]. This includes DSRC
communications between onboard units and roadside units
and is accessible through the UCI ML Repository. It features
information on cyberattack anomalies in the communication,
making it useful for training ML algorithms for security
purposes and anomaly detection. Furthermore, the Warrigal
Dataset is presented in [181]; it contains wireless ad hoc data
between trucks and four-wheel-drive vehicles in an industrial
setting and has been used for intelligent transportation studies,
making it potentially useful for V2V application testing.

Large-scale ML training data. Finally, different yet related
datasets can be used for testing ML algorithms related to AV
tasks as well. AVs often must analyze and make decisions
based on point clouds. For point cloud processing tasks,
ScanNet is an annotated set of 3D point clouds that represent
indoor scenes [182]. In a similar vein, ModelNet provides a



large-scale 3D image dataset for training deep learning models
for image processing tasks [183]. For tasks involving collab-
oration between vehicles using V2V communications, multi-
agent learning algorithms are often employed. The Starcraft II
Learning Environment provides an open-source interface to the
game of Starcraft [184] - this environment is frequently used
for testing the performance of deep multi-agent reinforcement
learning models. All of these datasets can be useful in build-
ing models to address various tasks in autonomous driving
systems.

IX. DISCUSSION AND CONCLUSIONS

As we have seen, V2V communications have the potential to
improve ML for autonomous driving tasks, but there is still a
great deal of research necessary to achieve this goal in practice.
While real-world implementations of V2V communications
have improved autonomous driving performance, as in Jung
et al. or Miuicic et al. [186, 114], most current research
consists of simulation studies. As government standards for
V2V communications improve, manufacturers will be more
equipped to deploy V2V communications and rely on them for
safety purposes [114]. Until then, researchers must continue
to expand the theoretical foundations of collaborative ML
algorithms.

Although current research explores possible solutions for
a multitude of autonomous driving and communication prob-
lems, there are still many areas of potential yet to be addressed.
For example, ML has not yet been employed for cooperative
parking tasks [148]. In addition, security in autonomous driv-
ing systems is a crucial topic, one that requires much more
research to confront the many types of cyber-attacks specific
to vehicular communication [155]. The areas discussed in this
paper have great potential for expansion, which we expound
upon as follows.

Theoretical foundations of distributed ML. As evidenced
by challenges in [124, 125], collaborative driving is an incredi-
bly complex problem, especially for cases such as coordinating
a set of vehicles to drive in a manner that maximizes safety
while minimizing traffic. Addressing the complexity of V2V
challenges may require advances in the underlying learning
algorithms themselves. For example, deep multi-agent rein-
forcement learning appears to hold promise for enabling and
leveraging V2V communications for a variety of more difficult
tasks, such as collaborative driving. However, such methods
still require methodological improvements to guarantee con-
vergence for complex real-time optimization problems.

Similarly, federated learning can reduce latency and ensure
data privacy, but this method has traditionally relied on the
assumption of independent and identically distributed random
variables. This assumption may not hold true, as every vehicle
can drive on different routes depending on the daily behavior
of its user. Therefore, research into the theoretical foundations
of federated learning is necessary to prove such algorithms will
converge.

Preventing adversarial attacks. Similarly, data fusion is
an essential technique for allowing V2V communication to
improve performance in ML. However, data fusion is currently

susceptible to adversarial attacks and data poisoning. In current
frameworks, it would be too easy for bad actors to supply
faulty data to AVs and influence poor decisions. Combining
data sources from different vehicles is an essential first step for
using V2V communications for collaborative ML. Therefore,
more secure data fusion algorithms would be highly beneficial,
allowing vehicular ML algorithms to incorporate a wider
variety of data sources.

Collaborative security. Along the same lines, security in
AVs is underdeveloped. While ML algorithms have been
proposed to detect anomalies in individual security tasks,
other issues besides anomaly detection also must be addressed.
For example, federated learning can help ensure data privacy
across virtually any task that requires ML. Edge computing can
also support security efforts as well. Furthermore, if multiple
AVs could also incorporate collaboration on security tasks
like they can on perception and driving tasks, it would be
much easier for a vehicular network to prevent interference
by malicious actors.

Incorporating V2V communications into fully au-
tonomous systems. Finally, much research focuses on using
ML for specific autonomous driving or V2V tasks but ide-
ally, for implementations such as in [186], a complete V2V-
enabled autonomous driving system would be necessary to
develop. Systems, architectures, and design guidelines have
been proposed [82, 100, 119] but more research is necessary
to examine how well such systems perform and how they can
be improved. It is also important to incorporate an overarching
cybersecurity framework to address potential weaknesses in
vehicular communication systems, ensuring safe tests can be
conducted. Safe driving and communications are necessary for
systems to be implemented and tested in practice.

Open Questions. The information in this survey paper and
the identified areas of potential pose potential questions to be
explored by future research. These include the following:

o What is the best way to ensure that the data transmitted
in 5G V2V communications is truly useful? How can we
ensure that messages arrive fast enough to inform an AV’s
decision-making and that the correct information can be
incorporated into the autonomous control system?

o What are valid assumptions regarding AV sensor data in
a dynamic vehicular network environment? How can we
prove that optimization algorithms such as DMARL or
FL will converge for problems in autonomous driving?

« Is it possible to coordinate the driving movements of a
large number of AVs to minimize traffic while preventing
collisions or safety risks? What sort of computational
resources or techniques will be necessary to accomplish
this feat?

o How can ML models detect and avoid adversarial attacks
and data poisoning when fusing data from other vehicles?

o How can vehicles work together to solve security prob-
lems using 5G V2V communications while ensuring that
such communications themselves are secure?

¢ How can V2V communication systems be integrated into
the autonomous vehicle as a whole? How can we run
practical tests in the real world to ensure that these
systems work?



Answering these questions will be necessary to advance
research in ML methods for V2V and V2X communications.
Allowing AVs to communicate useful data from onboard sen-
sors should ensure safe and efficient driving. In turn, meeting
safety and efficiency standards will result in more widespread
adoption and utilization of autonomous driving systems and
vehicular communications in the transportation industry.
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