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Abstract: Using the weak convergence approach to large deviations, we formulate and
prove the large deviation principle (LDP) forW-randomgraphs in the cut-norm topology.
This generalizes the LDP for Erdős–Rényi random graphs by Chatterjee and Varadhan.
Furthermore, we translate the LDP for random graphs to a class of interacting dynamical
systems on such graphs. To this end, we demonstrate that the solutions of the dynamical
models depend continuously on the underlying graphs with respect to the cut-norm and
apply the contraction principle.

1. Introduction

The problem of the macroscopic description of motion of interacting particles has a
long history [11,15]. When the number of particles is large, the analysis of individual
trajectories becomes intractable and one is led to study statistical distribution of particles
in the phase space. This is done using the Vlasov equation or other kinetic equations
describing the state of the system in the continuum limit as the size of the system goes to
infinity [3,10,25]. Modern applications ranging from neuronal networks to power grids
feature models with spatially structured interactions. The derivation of the continuum
limit for such models has to deal with the fact that in contrast to the classical setting used
in [3,10,25], the particles are no longer identical, and it has also to take into account
the limiting connectivity of the network assigned by the underlying graph sequences.
This problem was addressed in [22,23], where the ideas from the theory of graph limits
[19] were used to formulate and to justify the continuum limit for interacting dynamical
systems on certain convergent graph sequences. In particular, in [22] and in the followup
paper [24], solutions of coupled dynamical systems on a sequence of W-random graphs
were approximated by those of a deterministic nonlocal diffusion equation on a unit
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interval, representing a continuum of nodes in the spirit of the theory of graph limits.
This result can be interpretted as a Law of Large Numbers for the solutions of the initial
value problems (IVPs) of interacting dynamical systems on W-random graphs. In the
present paper, we study the accuracy of the continuum limit for coupled dynamical
systems on W-random graphs at the level of large deviations, i.e., we are interested
in exponentially small probabilities of O(1) deviations of the solutions of the discrete
system from their typical behavior. This is the main goal of the work.

Motivated by applications, we consider the followingmodel of n interacting particles

u̇ni = f (uni , ξ
n
i , t) +

1
n

n∑

j=1

Xn
i j D(uni , u

n
j ), (1.1)

uni (0) = gni , i ∈ [n] := {1, 2, . . . , n}, (1.2)

where uni : R+ → X stands for the state of particle i , f describes its intrinsic dynamics,
and D models the pairwise interactions between the particles. The network connectivity
is defined by the graph "n with the adjacency matrix {Xn

i j }. The phase space X can be
either R, or R/Z, or Rd depending on the model at hand. Parameters ξni ∈ Rp and
initial conditions gni , i ∈ [n], are random in general. Many network models in science
and technology fit into the framework (1.1), (1.2). Examples include neuronal networks,
power grid models, and various coupled oscillator systems to name a few. We present
the Kuramoto model of coupled phase oscillators [17], as an illustrative example.

Example 1.1. In the Kuramoto model, X = R/Z, f (u, ξ, t) = ξ , and D(u, v) =
sin (2π(v − u)). {ξni } are independent and identically distributed (iid) random variables.
This model was studied using Erdős–Rényi, small-world, and power law random graphs
(see [24] and references therein).

In this paper, we use W-random graphs to define network connectivity in (1.1). This
is a flexible framework for modeling random graphs [21], which fits seamlessly into
the analysis of the continuum limit of interacting dynamical systems like (1.1) [24].
Specifically, given W ∈ S = {U ∈ L∞([0, 1]2) : 0 ≤ U ≤ 1}, which prescribes
the asymptotic behavior of {"n}, we define {Xn

i j , (i, j) ∈ [n]2} as independent random
variables such that

P
(
Xn
i j = 1

)
= Wn

i j and P
(
Xn
i j = 0

)
= 1 − Wn

i j , (1.3)

where

Wn
i j = n2

∫

Qn
i j

W (x, y)dxdy, Qn
i j = Qn

i × Qn
j , Qn

i =
[
i − 1
n

,
i
n

)
i, j ∈ [n].

(1.4)
For large n the direct analysis of (1.1), (1.2) is not feasible and one is led to seek

other ways. A common alternative to studying individual trajectories of (1.1), (1.2) is
to consider a continuum limit as the size of the system tends to infinity. In this case,
under the suitable assumptions on f, D, and W the discrete model (1.1), (1.2) can be
approximated by the following continuum limit (cf. [24]):

∂t u(t, x) = f (u(t, x), t) +
∫

W (x, y)D (u(t, x), u(t, y)) dy, (1.5)

u(0, x) = g(x). (1.6)
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Here and below, if the domain of integration is not specified, it is implicitly assumed
to be [0, 1]. Also, we have dropped the dependence on ξ and let X = R to simplify
the presentation. At the end of the paper, we comment on how to extend the analysis to
cover models depending on random parameters. Until then we will study the following
discrete model:

u̇ni = f (uni , t) + n−1
n∑

j=1

Xn
i j D(uni , u

n
j ), (1.7)

uni (0) = gni , i ∈ [n], (1.8)

where uni : R+ → R and the rest is the same as in (1.1), (1.2).
Let C

(
[0, T ], L2([0, 1])

)
stand for the space of continuous vector-valued functions

[0, T ] ' t (→ u(t, ·) ∈ L2([0, 1]) equipped with the norm (cf. [18])

‖u‖C([0,T ],L2([0,1])) = sup
t∈[0,T ]

‖u(t, ·)‖L2([0,1]).

To compare solutions of the discrete and continuous models, we represent the former as
an element of C

(
[0, T ], L2([0, 1])

)
:

un(t, x) :=
n∑

i=1

uni (t)1Qn
i
(x), (1.9)

where 1A stands for the indicator function of A. Then for themodel (1.7) with a sequence
of W-random graphs (1.3), (1.4) with deterministic initial conditions it was shown in
[24] that

lim
n→∞ ‖un − u‖C([0,T ],L2([0,1])) = 0 a.s..

This statement can be interpreted as the Law of Large Numbers (LLN) for (1.7). Note
that the continuum limit (1.5) is deterministic, while the discrete models (1.7) are posed
on random graphs. Therefore, the solution of (1.5), (1.6) presents the typical behavior
of the solutions of the discrete system (1.7), (1.8) on random graphs for large n. We are
interested in the deviations of un from this typical behavior. Below we formulate and
prove an LDP for solutions of the discrete model (1.7), (1.8). Before we address this
problem, we first establish an LDP for a sequence of W-random graphs {"n}. To this
end, we represent them as elements of S through

Hn =
n∑

i, j=1

Xn
i j1Qn

i j
, (1.10)

where {Xn
i j } is the adjacency matrix of "n . Then using the weak convergence method

[4], one can show (see Theorem 4.1) that {Hn}, or to be more precise a sequence of
equivalence classes for which each Hn provides a representative element, satisfies an
LDP. This LDP for W-random graphs generalizes the LDP for Erdős–Rényi graphs
in [8] and gives logarithmic asymptotics. The LDP is established using the same cut
norm topology on S as in [8], which turns out to be suitable for our later application to
dynamical models.
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Remark 1.2. By construction, {"n} is a sequence of random directed graphs. The defi-
nition of "n can be easily modified if graphs "n are assumed to be undirected instead.
To this end, the entries Xn

i j , 1 ≤ i ≤ j ≤ n, are defined as above and the rest are
defined by symmetry: Xn

i j = Xn
ji , 1 ≤ j < i < n. Also, the scaling sequence and the

rate function used in Theorem 4.1 need to be modified accordingly.

To translate the LDP for W-random graphs to the space of solutions of (1.5), we use
the contraction principle [4]. To this end,we need to show that the solutions of the IVP for
(1.5) depend continuously onW ∈ S in the appropriate topology. It would be natural and
easier to establish an LDP for {"n} in the weak topology. However, the weak topology
is not enough to construct the continuous mapping from S to C

(
[0, T ], L2([0, 1])

)
, the

space of solutions of (1.5), (1.6). Conversely, the strong topology,whichwould guarantee
the continuous dependence, is too discriminate. Random graph sequences, like Erdős–
Rényi graphs, do not converge in the L2-norm. This suggests that like in combinatorial
problems involving random graphs (cf. [6]), the right topology for the model at hand is
that generated by the cut-norm. On the one hand, it metrizes graph convergence [19],
i.e., the random graph sequence used in (1.7) converges in the cut-norm. On the other
hand, the cut-norm is strong enough to provide continuous dependence of solutions of
(1.5), (1.6) on W . It is these considerations that motivate the use of the cut topology in
the problem of large deviations for random graphs.

This work fits into two partially independent lines of research. On the one hand,
there has been an interest in developing the theory of large deviations for large random
graphs. This research is motivated by questions in combinatorics. Recently, building on
the results of the theory of graph limits Chatterjee and Varadhan proved an LDP for
Erdős–Rényi random graphs in cut-norm topology [8]. Our Theorem 4.1 generalizes the
LDPofChatterjee andVaradhan toW-randomgraphs, a large class of randomgraphs.We
use the weak convergence techniques for large deviations [4], which afford a short proof
of the LDP. On the other hand, there has been a search for rigorous methods for studying
large networks of interacting dynamical systems. This research is motivated by problems
in statistical physics, and it has been reinvigorated by widespread presence of networks
in modern science. The continuum limit is one of the main tools for analyzing dynamics
of large networks. The main result of this paper provides fine estimates of the accuracy
of the continuum limit approximation developed in [24] for a large class of models onW-
random graphs. Previous studies of large deviations for interacting dynamical systems
on random graphs like (1.7) considered models forced by white noise. For such models
in [9,26] it was shown that if a spatially averaged model satisfies an LDP with respect to
white noise forcing then so will the original model on the random graph. This does not
address large deviations due to random connectivity. The rate function derived in this
paper gives an explicit relation between the random connectivity of the network and the
variability of the network dynamics, which is often sought in applications.

After this paper was submitted for publication, there was progress on large deviations
for block and step graphon random graph models [2,12]. Using our terminology, these
papers present LDPs for W-random graph sequences, for which the graphon W is a
step function. The rate functions and the scaling sequences derived in these papers
are consistent with our results for bounded graphons. The proofs of the LDPs in [2,
12] are built upon the method of Chatterjee and Varadhan [6,8]. We rely on the weak
converegence techniques [4].

The outline of the paper is as follows. In the next sectionwe formulate the assumptions
on the model and impose random initial conditions. In Sect. 3, we review certain facts
from the theory of graph limits [19], which will be used in the main part of the paper.



The Large Deviation Principle for Interacting Dynamical Systems

In Sect. 4, we formulate the LDPs for the combinatorial and dynamical problems. In
Sect. 5, we prove the LDP for W-random graphs. In Sect. 6, we establish the contraction
principle relating the LDPs for the combinatorial and dynamical models. In Sect. 7, the
LDP is used to characterize the most likely realizations of the W-random graph model
conditioned on large deviations from the expected value of the number of edges. In this
case, we provide an explicit solution of the constrained optimization problem, which
yields asymptotic edge distribution for the model at hand. Certain extensions of the main
result are discussed in Sect. 8, and the lower semicontinuity of the rate function is proved
in a concluding appendix.

2. The Model

In this section, we formulate our assumptions on the dynamicalmodel (1.7), (1.8), except
for assumptions on {Xn

i j }, which were given in (1.3), (1.4). Functions f and D describe
the intrinsic dynamics of individual particles and interactions between two particles at
the adjacent nodes of "n respectively. We assume that f : R2 → R is bounded, and
uniformly Lipschitz continuous in u in that

| f (u, t) − f (v, t)| ≤ L f |u − v| u, v ∈ R, t ∈ R, (2.1)

and continuous in t for each fixed u. D is a bounded and Lipschitz continuous function:

|D(u, v) − D(u′, v′)| ≤ LD
(
|u − u′| + |v − v′|

)
. (2.2)

By rescaling time in (1.7) if necessary, one can always achieve that f and D are bounded
by 1. Thus, we assume

| f (u, t)| ≤ 1 and |D(u, v)| ≤ 1. (2.3)

Finally, for the contraction principle in Sect. 6 we will need in addition to assume that
D ∈ Hs

loc(R2), s > 1, where Hs
loc stands for the Sobolev space of functions on R2 that

are square integrable together with their generalized derivatives up to order s on any
compact subset of R2.

We now turn to the initial condition. Let B = L2([0, 1]) with the usual norm and
associated topology. Assume that {Gn} is a sequence of B-valued random variables that
are independent of {Xn

i j } and that satisfy an LDP with function K and scaling sequence
n2. To define an initial condition for the discrete system, we let

gni = n
∫

Qn
i

Gn(y)dy for x ∈ Qn
i .

Suppose that Ḡn is defined by Ḡn(x) = gni for x ∈ Qn
i .

Then it is not automatic that {Gn} and {Ḡn} have the same large deviation asymptotics,
and so we impose the following.

Assumption 2.1. {Ḡn} satisfies the LDP in B with the rate function K and scaling
sequence n2.

Remark 2.2. As an alternative condition we could have simply assumed a large deviation
property of {Ḡn}. However, it seems easier to pose conditions on {Gn} under which an
LDP holds than to pose conditions on {gni , i ∈ [n]}.
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Example 2.3. If Gn = g for some fixed deterministic g ∈ B then Assumption 2.1 holds
with K defined by K (h) = 0 if h = g and K (h) = ∞ otherwise. Indeed, in this case
we have

0 ≤
∥∥g − Ḡn∥∥2

L2([0,1]) =
n∑

i=1

∫

Qn
i

[

g(x) − n
∫

Qn
i

g(y)dy

]2

dx

=
∫

[0,1]
g(x)2dx − 1

n

n∑

i=1

[

n
∫

Qn
i

g(y)dy

]2

.

Letting fn(x) = n
∫
Qn
i
g(y)dy for x ∈ Qn

i we find fn(x) → g(x) a.e. with respect to
Lebesgue measure, and thus by Fatou’s lemma

lim inf
n→∞

1
n

n∑

i=1

[

n
∫

Qn
i

g(y)dy

]2

≥
∫

[0,1]
g(x)2dx .

Hence
∥∥g − Ḡn

∥∥
L2([0,1]) → 0.

Example 2.4. Suppose that there is M < ∞ such that Gn is Lipschitz continuous with
constant M almost surely (a.s.). Then

∥∥Gn − Ḡn∥∥2
L2([0,1]) =

n∑

i=1

∫

Qn
i

[

Gn(x) − n
∫

Qn
i

Gn(y)dy

]2

dx

≤
n∑

i=1

∫

Qn
i

[
M

1
n

]2
dx

= M2 1
n2

→ 0.

Since the convergence is uniform inω {Ḡn} satisfies the sameLDP as {Gn}, and therefore
Assumption 2.1 holds. Note that the Lipschitz condition is stronger than needed. For
instance, it can be relaxed to requiring that Gn belongs to a generalized Lipschitz space
[16, Lemma 5.2].

Example 2.5. Suppose there is a probability distribution µ on R with bounded support
(i.e.,M < ∞ such thatµ([−M,M]c) = 0) and that {hni } are iidµ for n ∈ N and i ∈ [n2].
Define Fn(x) = hni for x ∈ [i/n2, (i+1)/n2), and identify Fn with its periodic extension
to R. Let ρ ≥ 0 be a smooth convolution kernel with compact support and define

Gn(x) =
∫

R
ρ(x − y)Fn(y)dy.

Then Assumption 2.1 holds. Indeed, in this case one can show that {Fn} satisfies the
LDP on B with the weak topology on B and with the rate function

J (') =
∫

[0,1]
L('(x))dx,
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where L(b) = supa∈R[ab − log
∫
eaµ(da)].1 If

∫
R h fndx →

∫
R h f dx for all h ∈ B

then, in particular,
∫
R ρ(x − y) fn(y)dy →

∫
R ρ(x − y) f (y)dy for each x ∈ R. If in

addition | fn(y)| ≤ M for all n ∈ N and y ∈ [0, 1] then {
∫
R ρ(x − y) fn(y)dy} are

uniformly equicontinuous, and thus the convergence is uniform in x . Therefore

f (→
∫

R
ρ(x − y) f (y)dy

is a continuous mapping from B ∩ { f : | f (y)| ≤ M for y ∈ [0, 1]} into itself, but
with the weak topology on the domain and the strong topology on the range. By the
contraction principle {Gn} satifies the LDP on B with rate function

K (h) = inf
{
J (') : h(x) =

∫

R
ρ(x − y)'(y)dy

}
.

The scaling used in Example 2.5 is needed so that the large deviation scaling sequence
of the initial conditions matches that of the random graph. If another scaling is used that
produces a different large deviation scaling sequence, e.g. n2α , then when α > 1 the rate
function for the initial conditions does not appear in the rate function for {un}, and from
the perspective of large deviations the initial conditions are deterministic. If however
α < 1 then the scaling sequence for {un} is necessarily n2α , and the LDP for {un} will
not reflect the randomness of {Xn

i j }.

3. The Space of Graphons

The key ingredient in the dynamical network models formulated in the previous section
is a sequence of random adjacency matrices {Xn

i j }. The corresponding kernels Hn and
their (averaged) limits W are called graphons in the language of the graph theory [19].
Before we can formulate the LDPs for dynamical models, we first need to understand
large deviations for randomgraphons {Hn}. To this end, in this section, we review certain
facts about graphons.

Recall the collection of random variables {Xn
i j , i, j ∈ [n]} (cf. (1.3), (1.4)). Given

such random variables, we define Hn : [0, 1]2 → [0, 1] by

Hn =
n∑

i, j=1

Xn
i j1Qn

i j
. (3.1)

We view {Hn} as taking values in S, the space of measurable functions from [0, 1]2 to
[0, 1]. S is equipped with the ∞ → 1 distance

d∞→1( f, g) = sup
−1≤a,b≤1

∣∣∣∣

∫

[0,1]2
a(t)b(s)[ f (t, s) − g(t, s)]dtds

∣∣∣∣ , (3.2)

1 Several proofs are available, including one that extends Sanov’s theorem. However, the most direct
argument is to note that Mogulskii’s theorem asserts that if Yn(x) =

∫ x
0 Fn(t)dt , then {Yn} satisfies an LDP

in C([0, 1]) with the rate function I (φ) equal to
∫ 1
0 L(φ̇(t))dt if φ is absolutely continuous with φ(0) = 0

and ∞ otherwise. Using Fn(x) = Ẏ n(x) a.s. in x , we can find the result stated for the sequence {Fn} using
integration by parts.
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where a, b : [0, 1] → [−1, 1] are measurable functions. The∞ → 1 distance is derived
from the L∞ → L1 operator norm

‖W‖∞→1 = sup
−1≤a,b≤1

∫

[0,1]2
a(x)b(y)W (x, y)dxdy, (3.3)

which in turn is equivalent to the cut norm

‖W‖! := sup
S,T

∣∣∣∣

∫

S×T
W (x, y)dxdy

∣∣∣∣ = sup
0≤a,b≤1

∣∣∣∣

∫

[0,1]2
a(x)b(y)W (x, y)dxdy

∣∣∣∣ ,

(3.4)
where the first supremum is taken over all measurable subsets of [0, 1]. In particular, we
have (cf. [19, Lemma 8.11])

‖W‖! ≤ ‖W‖∞→1 ≤ 4‖W‖!. (3.5)

Sn ⊂ S stands for the set of piecewise constant functions with respect to the partition
{Qn

i j }. Specifically, Hn ∈ Sn is constant on each Qn
i j . The ∞ → 1 distance on Sn is

equivalent to

dn∞→1( f, g) = sup
an , bn

1
n2

n∑

i, j=1

ani b
n
j [ f (i/n, j/n) − g(i/n, j/n)], (3.6)

where an = (an1 , a
n
2 , . . . , a

n
n ), b

n = (bn1 , b
n
2 , . . . , b

n
n), and each ani , b

n
i ∈ [−1, 1], i ∈

[n].
Let P be the set of all measure preserving bijections of [0, 1]. For every σ ∈ P and

f ∈ S define
fσ (t, s) = f (σ (t), σ (s)). (3.7)

This defines an equivalence relation on S. Two elements f and g of S are equivalent,
f ∼ g, if g = fσ for some σ ∈ P . By identifying all elements in the same equivalence
class, we obtain the quotient space Ŝ = S/∼. The distance on Ŝ is defined as follows:

δ∞→1( f, g) = inf
σ

d∞→1( fσ , g) = inf
σ

d∞→1( f, gσ )

By the Weak Regularity Lemma, (Ŝ, δ∞→1) is a compact metric space [20].

4. The LDPs

For V̂ ∈ Ŝ let
I (V̂ ) = inf

V∈V̂
ϒ(V,W ), (4.1)

where ϒ is defined by

ϒ(V,W ) =
∫

[0,1]2
R ({V (y), 1 − V (y)}‖{W (y), 1 − W (y)}) dy

=
∫

[0,1]2

{
V (y) log

(
V (y)
W (y)

)
+ (1 − V (y)) log

(
1 − V (y)
1 − W (y)

)}
dy,

(4.2)
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and R(θ‖µ) is the relative entropy of probability measures θ and µ, i.e.,

R (θ ‖µ) =
∫ (

log
dθ

dµ

)
dθ (4.3)

if θ / µ and R (θ ‖µ) = ∞ otherwise.

Theorem 4.1. Let {Hn} be defined by (3.1). Then {Ĥn}n∈N satisfies the LDPwith scaling
sequence n2 and rate function (4.1): I has compact level sets on Ŝ,

lim inf
n→∞

1
n2

log P{Ĥn ∈ O} ≥ − inf
V̂∈O

I (V̂ )

for open O ⊂ Ŝ, and

lim sup
n→∞

1
n2

log P{Ĥn ∈ F} ≤ − inf
V̂∈F

I (V̂ )

for closed F ⊂ Ŝ.

We now turn to the dynamical model (1.7), (1.8). Below, it will be convenient to
rewrite (1.7), (1.8) as

∂t un(t, x) = f
(
un(t, x), t

)
+

∫
Hn(x, y)D

(
un(t, x), un(t, y)

)
dy, (4.4)

un(0, x) = gn(x), (4.5)

where as before

Hn(x, y) :=
n∑

i, j=1

Xn
i j1Qn

i j
(x, y), un(t, x) :=

n∑

i=1

uni (t)1Qn
i
(x), and

gn(x) :=
n∑

i=1

gni 1Qn
i
(x). (4.6)

Recall thatB and S stand for the space of initial conditions and the space of graphons
respectively.We use the L2 -distance onB and the∞ → 1 distance onS. LetX := S×B
endowedwith the product topology. OnB,S, andX we define the equivalence relations:

g ∼ g′ if g′ = gσ ,

W ∼ W ′ if W ′ = Wσ ,

and
(W, g) ∼ (W ′, g′) if W ′ = Wσ & g′ = gσ for some σ ∈ P.

Define the quotient spaces B̂ = B/∼ and X̂ := X /∼. The distance on X̂ is given by

dX̂

(
(̂U, g), (̂V, h)

)
= inf

σ

{
‖Uσ − V ‖∞→1 + ‖gσ − h‖L2([0,1])

}
, (4.7)

where (U, g) ∈ (̂U, g) and (V, h) ∈ (̂V, h) are arbitrary representatives.
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Likewise, let Y := C([0, T ], B) and Ŷ := C([0, T ], B̂). Ŷ is a quotient space under
the following relation:

Y ' u ∼ u′ if u′(t, x) = u(t, σ (x)), (t, x) ∈ [0, T ] × [0, 1]
for some σ ∈ P . The distance on Ŷ is given by

dŶ
(
û, v̂

)
= inf

σ
‖uσ − v‖C(0,T ;L2([0,1])), (4.8)

where u ∈ û and v ∈ v̂ are arbitrary representatives.
Given (W, g) ∈ X let u ∈ Y stand for the corresponding solution of the

IVP (1.5), (1.6). By uniqueness of solution of the IVP (1.5), (1.6)

F : X ' (W, g) (→ u ∈ Y

is well-defined. Furthermore, it maps all members of a given equivalence class of X to
the same equivalence class of Y:

F(Wσ , gσ ) = uσ ∀σ ∈ P.

Thus, F may be viewed as a map between X̂ and Ŷ .

Lemma 4.2. F : X̂ → Ŷ is a continuous mapping.

Lemma 4.2 will be proved in Sect. 6. With Theorem 4.1 and Lemma 4.2 in place,
we use the Contraction Principle to derive the LDP for solutions of the discrete model
(4.4), (4.5). In addition, Lemma 4.2 justifies (1.5), (1.6) as a continuum limit for discrete
models (1.7), (1.8) on any convergent sequence of dense graphs.

We remind the reader that initial conditions are assumed to be independent of the
random graph.

Theorem 4.3. ForW ∈ S let {(Hn, gn)} be a sequence of randomgraphons and random
initial data (cf. (4.6)), and let Assumption 2.1 hold. Denote by {un} the corresponding
solutions of (4.4), (4.5). Then {ûn} satisfies an LDP on X̂ with scaling sequence n2 and
the rate function

J (û) = inf{I (Ŵ ) + K (ĝ) : (̂W, g) = F−1(û)}.

5. The Proof of Theorem 4.1

5.1. The weak convergence approach. The proof of Theorem 4.1 is based on the weak
convergence method of [4]. We use a “test function” characterization of large deviations
(see [4, Theorem 1.8]). The proof that I has compact level sets appears in the appendix.
To complete the proof of the LDP for {Ĥn}, it is sufficient to show that for each bounded
and continuous (with respect to δ∞→1) G : Ŝ → R ,

− 1
n2

log Ee−n2G(Ĥn) → inf
V̂∈Ŝ

[I (V̂ ) + G(V̂ )] as n → ∞.

At the heart of the weak convergence approach lies the following representation for
the Laplace integrals:

− 1
n2

log Ee−n2G(F̂n) = inf E
[
1
n2

R
(
θn

∥∥µn )
+ G( ˆ̄Fn)

]
, (5.1)
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where µn is the product measure corresponding to {Xn
i j } on {0, 1}n2 and the infimum

in (5.1) is taken over all probability measures θn on {0, 1}n2 (cf. [4, Proposition 2.2]).

Here ˆ̄Fn is analogous to F̂n , in that

F̄n(y) = X̄n
i j for y ∈ Qn

i j ,

where {X̄n
i j } has joint distribution θn , and ˆ̄Fn is the corresponding equivalence class.

By (5.1), the proof of Theorem 4.1 is reduced to showing the convergence of varia-
tional problems: for each bounded and continuous G

inf
θn

E
[
1
n2

R
(
θn

∥∥µn )
+ G( ˆ̄Fn)

]
→ inf

V̂∈Ŝ
[I (V̂ ) + G(V̂ )] as n → ∞. (5.2)

5.2. A law of large numbers type result. Let ak, k = 1, . . . , n2 be some enumeration
of the points in {1, . . . , n}2, and let k(i, j) be defined by ak(i, j) = (i, j). Let θ̄nk be
(a version of) the conditional distribution on variable X̄n

ak , given X̄n
as , s < k. Thus for

m = 0, 1,
θ̄nk ({m})(ω) = P

{
X̄n
ak = m

∣∣∣X̄n
a1 , . . . , X̄

n
ak−1

}
(ω).

We can decompose θn and µn into products of these conditional distributions, and then
by the chain rule (see for example [4, Proposition 3.1]),

E
[
1
n2

R
(
θn

∥∥µn )
+ G( ˆ̄Hn)

]
= E



 1
n2

n2∑

k=1

R
(
θ̄nk

∥∥µn
k
)
+ G( ˆ̄Hn)



 , (5.3)

where µn
k (A) = P(Xn

ak ∈ A). Note that θ̄nk is random and measurable with respect
to Fn

k−1, where Fn
k = σ (X̄n

as , s ≤ k), while µn
k is deterministic. For an analogous

calculation but with more details see [4, Sect. 3.1].
We would like to relate the weak limits of { ˆ̄Hn} to a function that measures the “new”

link probabilities under θn , as well as the cost to produce these new probabilities. The
original probabilities are µn

k ({1}), and the new ones are θ̄nk ({1}). Let

M̄n(y) = θ̄nk ({1}) if y ∈ Qn
i j .

Note that {M̄n} are random variables with values in S, and and that since Ŝ is compact

{ ˆ̄Mn} and { ˆ̄Hn} are automatically tight.
Letting

Wn(x, y) = µn
k ({1}) if (x, y) ∈ Qn

i j ,

we can write
1
n2

n2∑

k=1

R
(
θ̄nk

∥∥µn
k
)
= ϒ(M̄n,Wn), (5.4)

where ϒ(·, ·) is defined in (4.2). Note that while Wn is deterministic, M̄n need not be.
We will also want to note that trivially

ϒ(H,W ) ≥ inf
σ

ϒ(Hσ ,W )
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for any H,W ∈ S.
We next state a LLN type result for the sequence of “controlled” random graphs

{H̄n}.
Lemma 5.1. For any δ > 0

P
(
dn∞→1(H̄

n, M̄n) ≥ δ
)

→ 0,

and therefore for any δ > 0

P
(
δ∞→1(

ˆ̄Hn, ˆ̄Mn) ≥ δ
)

→ 0.

To prove Lemma 5.1, we use a new version of the Bernstein bound that allows
dependence between the random variables.

Lemma 5.2. Let {Zi , i = 1, . . . , N } be random variables with the following properties.

1. |Zi | ≤ c < ∞ a.s.,
2. There is a filtration {Fi } such that each Z j for 1 ≤ j < i is Fi -measurable. Let

mi = E[Zi |Fi ]. Then for δ > 0

P

(
1
N

N∑

i=1

(Zi − mi ) ≥ δ

)

≤ e−Nh(δ/c),

where h(u) = (1 + u) log(1 + u) − u > 0 for u > 0.

Proof. Since |Zi | ≤ c, the conditional distribution of |Zi − mi | givenFi is also bounded
uniformly by c. By straightforward calculations using Taylor’s theorem,

E
[
eα(Zi−mi )|Fi

]
≤ ee

αc−1−αc a.s.

(the same calculation is used in the proof of the Bernstein bound). For any α > 0

P

(
1
N

N∑

i=1

(Zi − mi ) ≥ δ

)

= P
(
eα

∑N
i=1(Zi−mi ) ≥ eNαδ

)

≤ e−NαδEeα
∑N

i=1(Zi−mi ).

We then bound Eeα
∑N

i=1(Zi−mi ) by recurring backwards from i = N :

Eeα
∑N

i=1(Zi−mi ) = E
[
E

[
eα

∑N
i=1(Zi−mi )

∣∣∣FN

]]

= E
[
E

[
eα(ZN−mN )

∣∣∣FN

]
eα

∑N−1
i=1 (Zi−mi )

]

≤ Eeα
∑N−1

i=1 (Zi−mi )ee
αc−1−αc

≤ eN (eαc−1−αc).

Thus

P

(
1
N

N∑

i=1

(Zi − mi ) ≥ δ

)

≤ e−NαδeN (eαc−1−αc).
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Now optimize on α > 0. Calculus gives δ − ceαc + c = 0, so

eαc = c + δ

c
or α = 1

c
log

(
c + δ

c

)
> 0.

This choice gives the value

δα − eαc + 1 + αc = δ

c
log

(
c + δ

c

)
−

(
c + δ

c

)
+ 1 + log

(
c + δ

c

)

= −δ

c
+

(
1 +

δ

c

)
log

(
1 +

δ

c

)

= h
(

δ

c

)
.

12
Proof of Lemma 5.1. We apply the previous lemma with Zi replaced by ani b

n
j X̄

n
i j , mi

replaced by ani b
n
j θ̄

n
k(i, j)({1}), N replaced by n2, and c = 1 to get

P



 1
n2

n∑

i, j

ani b
n
j [X̄n

i j − θ̄nk(i, j)({1})] ≥ δ



 ≤ e−n2h(δ).

Since h(δ) > 0 for δ > 0, we can proceed exactly as in a LLN argument for uncontrolled
random graphs that appears in [13, Lemma 4.1]. Using (3.6) and that there are 2n choices
for an and bn , the union bound gives

P
(
dn∞→1(H̄

n, M̄n) ≥ δ
)

≤ 2n+1e−n2h(δ) = 2en log 2e−n2h(δ) → 0.

12

5.3. Completion of the proof of Theorem 4.1. By the discussion in Sect. 5.1, it remains
to show

lim
n→∞ inf

θn
E

[
1
n2

R
(
θn

∥∥µn )
+ G( ˆ̄Hn)

]
= inf

V̂∈Ŝ
[I (V̂ ) + G(V̂ )]. (5.5)

Wefirst establish a lower bound. Let {θn}be any sequence forwhich θn is a probability

measure on {0, 1}n2 . Construct {H̄n}, {M̄n}, { ˆ̄Hn}, { ˆ̄Mn} and {Wn} as in Sects. 3 and
5.2, and note that d∞→1(Wn,W ) → 0. Since (Ŝ, δ∞→1) is compact, { ˆ̄Hn} and { ˆ̄Mn}
are automatically tight. Consider any subsequence alongwhich { ˆ̄Hn} and { ˆ̄Mn} converge
in distribution, and label the limits ˆ̄H and ˆ̄M . By Lemma 5.1, ˆ̄H = ˆ̄M . We use Fatou’s
lemma, the Eqs. (5.3) and (5.4), and the lower semicontinuity of relative entropy (see
the proof of the lower semicontinuity of I in the appendix) along this subsequence to
obtain

lim inf
n→∞ E

[
1
n2

R
(
θn

∥∥µn )
+ G( ˆ̄Hn)

]

= lim inf
n→∞ E

[
ϒ(M̄n,Wn) + G( ˆ̄Hn)

]
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≥ lim inf
n→∞ E

[

inf
V∈ ˆ̄Mn

ϒ(V,Wn) + G( ˆ̄Hn)

]

≥ E

[

inf
V∈ ˆ̄M

ϒ(V,W ) + G( ˆ̄M)

]

≥ inf
V̂∈Ŝ

[I (V̂ ) + G(V̂ )].

Since {θn} is arbitrary, an argument by contradiction then gives

lim inf
n→∞ inf

θn
E

[
1
n2

R
(
θn

∥∥µn )
+ G( ˆ̄Hn)

]
≥ inf

V̂∈Ŝ
[I (V̂ ) + G(V̂ )].

Next we consider the reverse bound. Let δ > 0 and choose V ∗ ∈ S such that

[ϒ(V ∗,W ) + G(V̂ ∗)] ≤ inf
V̂∈Ŝ

[I (V̂ ) + G(V̂ )] + δ.

Letting θ∗,n correspond to V ∗ in exactly the same way that µn corresponds W , we

can apply Lemma 5.1 (or the ordinary LLN) to establish that δ∞→1(
ˆ̄Hn, V̂ ∗) → 0 in

distribution. We also have by Jensen’s inequality that

1
n2

R
(
θ∗,n ∥∥µn )

= 1
n2

n2∑

k=1

∫

Qak

R
({
M̄n(y), 1 − M̄n(y)

} ∥∥{
Wn(y), 1 − Wn(y)

})
dy

≤
∫

[0,1]2
R

({
V ∗(y), 1 − V ∗(y)

} ‖{W (y), 1 − W (y)}
)
dy

= ϒ(V ∗,W )

(the reverse bound also holds as n → ∞ by lower semicontinuity). Since we have made
a particular choice of θn , it follows from the dominated convergence theorem that

lim sup
n→∞

inf
θn

E
[
1
n2

R
(
θn

∥∥µn )
+ G( ˆ̄Hn)

]

≤ lim sup
n→∞

E
[
1
n2

R
(
θ∗,n ∥∥µn )

+ G( ˆ̄Hn)

]

= [ϒ(V ∗,W ) + G(V ∗)]
≤ inf

V̂∈Ŝ
[I (V̂ ) + G(V̂ )] + δ.

Letting δ → 0 establishes the upper bound, and completes the proof.

6. Applying the Contraction Principle

In this section, we use Theorem 4.1 and the contraction principle to prove the LDP for
dynamical model (1.7), (1.8). To this end, we need to establish continuous dependence
of the solutions of the corresponding IVPs on a kernel W with respect to the cut norm
and on initial data with respect to the topology of L2([0, 1]).
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6.1. Proof of Lemma 4.2. Let U and V be two measurable functions on [0, 1]2 with
values in [0, 1] and consider the following IVPs

∂t u(t, x) = f (u(t, x), t) +
∫

U (x, y)D (u(t, x), u(t, y)) dy, (6.1)

u(0, x) = g(x), (6.2)

and

∂tv(t, x) = f (v(t, x), t) +
∫

V (x, y)D (v(t, x), v(t, y)) dy, (6.3)

v(0, x) = h(x), (6.4)

where g, h ∈ L∞([0, 1]) and x ∈ [0, 1].
Lemma 6.1. For a given T > 0, we have

‖u − v‖C(0,T,L2([0,1])) ≤ C
(
‖U − V ‖∞→1 + ‖g − h‖L2([0,1])

)
, (6.5)

where C depends on T, but not on U, V or g, h.2

We will need the following finite-dimensional (Galerkin) approximation of (6.1),
(6.2) and (6.3), (6.4), respectively:

∂t un(t, x) = f
(
un(t, x), t

)
+

∫
Un(x, y)D

(
un(t, x), un(t, y)

)
dy, (6.6)

un(0, x) = gn(x), (6.7)

and

∂tv
n(t, x) = f

(
vn(t, x), t

)
+

∫
V n(x, y)D

(
vn(t, x), vn(t, y)

)
dy, (6.8)

vn(0, x) = hn(x), (6.9)

where as in (4.6) Un, V n and gn, hn stand for the L2-projections of U, V and g, h
onto finite-dimensional subspaces span{1Qn

i j
: (i, j) ∈ [n]2} and span{1Qn

i
: i ∈ [n]}

respectively:

wn(x) =
n∑

i=1

wn
i 1Qn

i
(x), wn

i = n
∫

Qn
i

w(x) dx, w ∈ {g, h},

Wn(x, y) =
n∑

i, j=1

Wn
i j1Qn

i j
(x, y), Wn

i j = n2
∫

Qn
i j

W (x, y)dx, W ∈ {U, V }.
(6.10)

For solutions of the finite-dimensional models, we will need the following lemma.

Lemma 6.2.

‖un − vn‖C(0,T ;L2([0,1])) ≤ C
(
‖Un − V n‖∞→1 + ‖gn − hn‖L2([0,1])

)
, (6.11)

where C is independent of n.

2 Here and below, C stands for a generic constant.
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The proof of Lemma 6.2 will be presented after the proof of Lemma 6.1.

Proof of Lemma 6.1. 1. First, we show that

‖u − un‖C([0,T ],L2([0,1])) ≤ C
(
‖U −Un‖L2([0,1]2) + ‖g − gn‖L2([0,1])

)
. (6.12)

To this end, let ξ := u−un, subtract (6.6) from (6.1), multiply the resulting equation
by ξ and integrate over [0, 1] with respect to x :

1
2
d
dt

∫
ξ(t, x)2dx

=
∫ [

f (u(t, x), t) − f (un(t, x))
]
ξ(t, x)dx +

∫

[0,1]2
U (x, y) {D(u(t, x), u(t, y))

− D(un(t, x), un(t, y))
}
ξ(t, x)dxdy +

∫

[0,1]2
(
U (x, y) −Un(x, y)

)
D(un(t, x), un(t, y))ξ(t, x)dxdy.

(6.13)

Using (2.1), (2.2), (2.3), and |U | ≤ 1, from (6.13), we obtain

1
2
d
dt

∫
ξ(t, x)2dx

≤
(
L f + 2LD

) ∫
ξ(t, x)2dx +

∫

[0,1]2

∣∣U (x, y) −Un(x, y)
∣∣ |ξ(t, x)|dxdy.

By Young’s inequality, we further have

d
dt

∫
ξ(t, x)2dx ≤ 2

(
L f + 2LD + 1/2

) ∫
ξ(t, x)2dx +

∫

[0,1]2

∣∣U (x, y) −Un(x, y)
∣∣2 dxdy. (6.14)

We obtain (6.12) from (6.14) via Gronwall’s inequality. Similarly, we have

‖v − vn‖C([0,T ],L2([0,1])) ≤ C
(
‖V − V n‖L2([0,1]2) + ‖h − hn‖L2([0,1])

)
. (6.15)

2. Using contractivity of the L2-projection operator with respect to the cut norm
(cf. [19]), ‖Un‖! ≤ ‖U‖!, ‖V n‖! ≤ ‖V ‖!, and (3.5), we have

‖Un − V n‖∞→1 ≤ 4‖U − V ‖∞→1. (6.16)

This and Lemma 6.2 imply

‖un − vn‖C([0,T ],L2([0,1])) ≤ C
(
‖U − V ‖∞→1 + ‖gn − hn‖L2([0,1])

)
. (6.17)

3. From (6.12), (6.15), and (6.17), by the triangle inequality, we have

‖u − v‖C([0,T ],L2([0,1])) ≤ C
(
‖U − V ‖∞→1 + ‖U −Un‖L2([0,1]) + ‖V − V n‖L2([0,1])

+‖g − gn‖L2([0,1]) + ‖h − hn‖L2([0,1]) + ‖gn − hn‖L2([0,1])
)
.

We obtain (6.5) after sending n → ∞. 12
It remains to prove Lemma 6.2. We follow the lines of the proof of Proposition 2 in

[26].
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Proof of Lemma 6.2. 1. Using the bounds on U, V, f, D,

|U | ≤ 1, |V | ≤ 1, | f | ≤ 1, |D| ≤ 1,

and the initial data

max{‖un(0, ·)‖L∞([0,1]), ‖vn(0, ·)‖L∞([0,1])} ≤ max{‖g‖L∞([0,1]), ‖h‖L∞([0,1])},

it follows from (6.6)–(6.9) that

max
(t,x)∈[0,T ]×[0,1]

|wn(t, x)| ≤ M, wn ∈ {un, vn} (6.18)

for some M ∈ (0,∞) independent of n.
2. Since D is a Lipschitz continuous bounded function and D ∈ Hs

loc(R2), s > 1, there
is a Lipschitz continuous bounded function DM ∈ Hs(R2), s > 1, which coincides
with D on the ball of radius

√
2M centered at the origin, B(0,

√
2M). Indeed, as DM

one can take DM (x) = ξM (x)D(x), where ξM is an infinitely differentiable bump
function equal to 1 on B(0,

√
2M) and equal to 0 outside of B(0, 2

√
2M).

In view of (6.18), replacing D with DM is not going to affect the solutions of the
IVPs (6.6), (6.7) and (6.8), (6.9) on [0, T ]. Thus, without loss of generality for the
remainder of the proof we assume that D ∈ Hs(R2), s > 1. In this case, letting φ be
the Fourier transform of D, we have φ ∈ L1(R2) and D can be written as

D(u) =
∫

R2
e2π i u·zφ(z)dz, u = (u1, u2), z := (z1, z2), u · z = u1z1 + u2z2.

(6.19)
3. Recall that Un and V n are step functions (cf. (6.10)). Likewise, the solutions of the

finite-dimensional IVPs (6.6), (6.7) can be written as

wn(t, x) =
n∑

i=1

wn
i (t)1Qn

i
(x), w ∈ {u, v}. (6.20)

Denote
δni (t) := uni (t) − vni (t), i ∈ [n]. (6.21)

By subtracting (6.8) from (6.6), we have

δni (s) = δni (0) +
∫ s

0




n−1
n∑

j=1

Un
i j

(
D

(
uni (τ ), u

n
j (τ )

)
− D

(
vni (τ ), v

n
j (τ )

))

+
[
f
(
uni (τ ), τ

)
− f

(
vni (τ ), τ

)]
+ n−1

n∑

j=1

(
Un
i j − Vn

i j

)
D

(
vni (τ ), v

n
j (τ )

)



 dτ,

(6.22)
where Un and V n were defined in (6.10).
By continuity, there are 0 ≤ ti ≤ T and σi ∈ {1,−1} such that

sup
s∈[0,T ]

∣∣δni (s)
∣∣ = σiδ

n
i (ti ), i ∈ [n]. (6.23)

Thus,
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/(T ) :=
∫

sup
s∈[0,T ]

∣∣un(s, x) − vn(s, x)
∣∣ dx = n−1

n∑

i=1

σiδ
n
i (ti )

= n−1
n∑

i=1

σiδ
n
i (0)

+
∫ T

0
n−2

n∑

i, j=1

σiUn
i j

(
D

(
uni (τ ), u

n
j (τ )

)
− D

(
uni (τ ), u

n
j (τ )

))
1[0,ti ](τ )dτ

+
∫ T

0
n−1

n∑

i=1

σi
[
f
(
uni (τ ), τ

)
− f

(
vni (τ ), τ

)]
1[0,ti ](τ )dτ

+
∫ T

0
n−2

n∑

i, j=1

σi

(
Un
i j − V n

i j

)
D

(
vni (τ ), v

n
j (τ )

)
1[0,ti ](τ )dτ

= n−1
n∑

i=1

σiδ
n
i (0) + I1 + I2 + I3. (6.24)

Using Lipschitz continuity of D and f (cf. (2.2) and (2.1)) and the fact that |Un
i j | ≤ 1,

we have

I1 + I2 ≤
∫ T

0

(
2LD + L f

)
/(τ )dτ. (6.25)

On the other hand, using (6.19), we estimate

I3 ≤ n−2
∫ T

0

∫

R2

∣∣∣∣∣∣

n∑

i, j

(
V n
i j −Un

i j

)
e2π i u

n
i (τ )z1e2π i v

n
j (τ )z2

∣∣∣∣∣∣
|φ(z)| dzdτ (6.26)

Decomposing e2π i u
n
i (τ )z1 and e2π i v

n
j (τ )z2 into sums of real and imaginary parts, each

not exceeding 1 in absolute value, we have

I3 ≤ 4T ‖Un − V n‖∞→1‖φ‖L1(R2). (6.27)

Combining (6.24), (6.25), and (6.27), and using Gronwall’s inequality and the defi-
nition of δni (0), we obtain

∫
sup

s∈[0,T ]

∣∣un(s, x) − vn(s, x)
∣∣ dx

≤e(2LD+L f )T
(
4T ‖φ‖L1(R2)‖Un−V n‖∞→1+‖gn − hn‖L2([0,1])

)
. (6.28)

4. Using (6.28) and (6.18), we have

sup
t∈[0,T ]

∫ (
un(t, x) − vn(t, x)

)2 dx

≤ 2M sup
t∈[0,T ]

∫ ∣∣un(t, x) − vn(t, x)
∣∣ dx ≤ 2M

∫
sup

t∈[0,T ]

∣∣un(t, x) − vn(t, x)
∣∣ dx

≤ 2Me(2LD+L f )T
(
4T ‖φ‖L1(R2)‖Un − V n‖∞→1 + ‖gn − hn‖L2([0,1])

)
.

12
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Finally, given (̂U, g) and (̂V, h), fix two representatives (U, g) ∈ (̂U, g) and (V, h) ∈
(̂V, h). Denote the corresponding solutions of the IVP and their equivalence classes by
u, v and û, v̂ respectively. Using Lemma 6.1, we have

dŶ (û, v̂) = inf
σ

‖uσ − v‖C(0,T ;L2([0,1]))

≤ C inf
σ

{
‖Uσ − V ‖∞→1 + ‖gσ − h‖L2([0,1])

}

= CdX̂

(
(̂U, g), (̂V, h)

)
.

This shows the continuity of F : X̂ → Ŷ needed for the application of the contraction
principle to the dynamical model at hand.

7. Application to Atypical Edge Counts

Throughout this section, W ∈ S is arbitrary but fixed. LetG(n,W ) denote a W-random
graph model defined by (3.1). Specifically, Hn ∈ G(n,W ) means that

Hn =
∑

i, j

Xn
i j1Qn

i j
,

where Xn
i j are independent random variables defined by (1.3), (1.4). We will refer to

Hn as an element of S or as an element of G(n,W ) interchangeably, i.e., Hn may be
interpreted as a function or as a graph depending on the context.

The number of directed edges (counting self-edges) in Hn ∈ G(n,W ) is given by

|E(Hn)| = n2L(Hn), (7.1)

where

L(V ) :=
∫

[0,1]2
V (x)dx, V ∈ S.

Note thatL( fσ ) = L( f ) for every f ∈ S and σ ∈ P [cf. (3.7)]. Thus,L is a well-defined
functional on Ŝ as well as on S. By the SLLN,

n−2|E(Hn)| → w := L(W ) as n → ∞ a.s..

The following theorem characterizes realizations ofG(n,W ) conditioned on large devi-
ations of n−2|E(Hn)| from its expected value w.

Theorem 7.1. Let 0 < δ < 1 − w. Then for every ε > 0 and n ∈ N

P
(
δ∞→1

(
Ĥn, V̂ +

δ

)
≥ ε

∣∣∣ n−2|E(Hn)| ≥ w + δ
)

≤ e−C+(ε,δ)n2 , (7.2)

where the positive constant C+(ε, δ) depends on ε and δ but not on n. V +
δ ∈ S is the

unique minimizer of I [cf. (4.1)] restricted to

F+
δ = {V ∈ S : L(V ) = w + δ} ,
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i.e.,

I (V +
δ ) = inf

V∈F+
δ

I (V ).

Likewise, given 0 < δ < w for every ε > 0 and n ∈ N, we have

P
(

δ∞→1

(
Ĥn, V̂−

δ

)
≥ ε

∣∣∣ n−2|E(Hn)| ≤ w − δ
)

≤ e−C−(ε,δ)n2 , (7.3)

where C−(ε, δ) > 0 is independent of n and V−
δ ∈ S is the unique minimizer of I

restricted to

F−
δ = {V ∈ S : L(V ) = w − δ} .

The proof of Theorem 7.1 relies on the following lemma, which also identifies the
minimizers V±

δ in the theorem.

Lemma 7.2. Recall that W ∈ S is given and w = L(W ). Consider the constrained
optimization problem

inf
{
ϒ(V,W ) :

∫

[0,1]2
V (x, y)dxdy ≥ m

}
(7.4)

with m ∈ (w, 1). Then the unique (up to sets of Lebesgue measure zero) minimizer of
(7.4) is given by

V ∗(x, y) = W (x, y)e−λ∗

1 − W (x, y) +W (x, y)e−λ∗ , (7.5)

where λ∗ is the unique solution to
∫

[0,1]2
W (x, y)e−λ∗

1 − W (x, y) +W (x, y)e−λ∗ dxdy = m.

The analogous statement holds for the case of m ∈ (0, w).

Remark 7.3. Suppose W is measurable with respect to a certain σ -algebra of subsets
of [0, 1]2. Then the minimizer is measurable with respect to the same σ -algebra. In
particular, if W is a step function with respect to a given partition of [0, 1]2 then so is
V ∗.

The proof of the lemma will be given after the proof of Theorem 7.1.

Proof of Theorem 7.1. Consider

F+
≥δ = {V ∈ S : L(V ) ≥ w + δ} .

We continue to use F̂+
≥δ to denote the corresponding subset of Ŝ:

F̂+
≥δ =

{
V̂ ∈ Ŝ : V ∈ F+

≥δ

}
.

F̂+
≥δ is a closed subset of the metric space

(
Ŝ, δ∞→1

)
. Moreover,

inf
int(F̂+

≥δ)
I = inf

F̂+
≥δ

I,
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since the right hand side is a finite convex function of δ on (0, 1−w). Here, int(A) stands
for the interior of A. Lemma 7.2 implies existence of a unique minimizer of ϒ(·,W ) on
F+

≥δ . Denote this minimizer by V +
δ . By Lemma 7.2, V +

δ ∈ F+
≥δ .

Recall the definition of the rate function I on Ŝ [cf. (4.1)]. Clearly, V̂ +
δ ∈ F̂+

δ is the
unique minimizer of I on F̂+

≥δ . Estimate (7.2) is standard in the large deviations theory
(cf. [4, Theorem 1.4]). Estimate (7.3) is proved similarly. 12
Proof of Lemma 7.2. Note that V → ϒ(V,W ) is convex and non-negative with its
minimum of zero uniquely attained at V = W . Since the constraint L(V ) = b is linear
in V , the solution to (7.4) with ≥ m replaced by = b is convex and non-negative with
its minimum of zero uniquely attained at b = w. Hence the solution to (7.4) is the same
as that obtained when ≥ m replaced by = m.

We first consider the case where

W (x, y) = wk for (x, y) ∈ Dk, k = 1, . . . , K ,

and with each Dk measurable and [0, 1]2 is the disjoint union of Dk, k = 1, . . . , K .
Let

R( p‖ q) = p log
(
p
q

)
+ (1 − p) log

(
1 − p
1 − q

)
.

It is easy to argue that aminimizer exists,whichwe call V ∗.Withm(·) denotingLebesgue
measure, Jensen’s inequality gives

ϒ(V ∗,W ) =
K∑

k=1

∫

Dk

R(V ∗(x, y)
∥∥W (x, y))dxdy

=
K∑

k=1

∫

Dk

R(V ∗(x, y)
∥∥wk)dxdy

≥
K∑

k=1

m(Dk)R
(

1
m(Dk)

∫

Dk

V ∗(x, y)dxdy
∥∥∥∥wk

)
,

which by strict convexity of p → R( p‖ q) shows that V ∗ must be constant on each Dk .
Let the values be vk . Then the minimization problem becomes

inf

{
K∑

k=1

m(Dk)R (vk‖wk) :
K∑

k=1

m(Dk)vk = m

}

,

where 0 ≤ vk ≤ 1 for k = 1, . . . , K .
Using the convexity, the unique solution can be easily found using Lagrange multi-

pliers. Note that

d
dp

R( p‖ q) = log
(
p
q

)
− log

(
1 − p
1 − q

)
.

Thus we obtain the equations

log
(
vk

wk

)
− log

(
1 − vk

1 − wk

)
+ λ = 0,
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for k = 1, . . . , K , which have the unique solution

vk =
wke−λ

1 − wk + wke−λ
.

Since we have limits of zero and one for the right hand side as λ → ∞ and λ → −∞
wheneverwk /∈ {0, 1} as well as monotonicity, it is easy to check that there is the unique
solution λ∗ to

K∑

k=1

m(Dk)
wke−λ

1 − wk + wke−λ
= m,

which identifies the minimizer.
Next we consider the general case. We can find graphons {W δ, δ ∈ (0, 1)} such that

the following properties hold:

1. W δ converges to W uniformly,
2. {(x, y) : W (x, y) = 0} = {(x, y) : W δ(x, y) = 0} and {(x, y) : W (x, y) = 1} =

{(x, y) : W δ(x, y) = 1},
3. W δ(x, y) ↓ W (x, y) if W (x, y) ≤ 1/3 and W δ(x, y) ↑ W (x, y) if W (x, y) ≥ 2/3,
4. W δ takes on a finite collection of values.

Let V ∗,δ and λ∗,δ correspond to W δ according to the first part of the proof. Since

∫

[0,1]2
W δ(x, y)e−λ∗,δ

1 − W δ(x, y) +W δ(x, y)e−λ∗,δ dxdy = m

andW δ converges toW uniformly, it follows that λ∗,δ → λ∗. Let V ∗ = We−λ∗
/(1−W +

We−λ∗
), and suppose that V̄ is the minimizer for δ = 0, which will satisfy ϒ(V̄ ,W ) <

∞. Later in the proof we will show that

ϒ(V̄ ,W δ) → ϒ(V̄ ,W ). (7.6)

Temporarily assuming this, we also know that

ϒ(V ∗,δ,W δ) ≤ ϒ(V̄ ,W δ),

since V ∗,δ is the optimizer for W δ . It sollows from lower semicontinuity that

lim inf
δ→0

ϒ(V ∗,δ,W δ) ≥ ϒ(V ∗,W ),

where V ∗ defined above is the uniform limit of V ∗,δ . Combining the last three displays
gives ϒ(V ∗,W ) ≤ ϒ(V̄ ,W ). Since by assumption V̄ is the minimizer there must be
equality, and again using the strict convexity of p → R( p‖ q) except possibly on a set
of Lebesgue measure zero V ∗ = V̄ .

Thus we need to prove (7.6). Let '(z) = z log z − z + 1. We first claim that

∫

[0,1]2
W (x, y)'

(
V̄ (x, y)
W (x, y)

)
dxdy +

∫

[0,1]2
[1 − W (x, y)]'

(
1 − V̄ (x, y)
1 − W (x, y)

)
dxdy < ∞.
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To see this we rewrite as
∫

[0,1]2
V̄ (x, y) log

(
V̄ (x, y)
W (x, y)

)
dxdy −

∫

[0,1]2
V̄ (x, y)dxdy +

∫

[0,1]2
W (x, y)dxdy

+
∫

[0,1]2
[1 − V̄ (x, y)] log

(
1 − V̄ (x, y)
1 − W (x, y)

)
dxdy −

∫

[0,1]2
[1 − V̄ (x, y)]dxdy

+
∫

[0,1]2
[1 − W (x, y)]dxdy.

Since the integrals without log are bounded, the claim follows from ϒ(V̄ ,W ) < ∞. To
show (7.6) it suffices to prove

∫

[0,1]2
V̄ (x, y) log

(
V̄ (x, y)
W δ(x, y)

)
dxdy →

∫

[0,1]2
V̄ (x, y) log

(
V̄ (x, y)
W (x, y)

)
dxdy

and the analogous result for
∫

[0,1]2
[1 − V̄ (x, y)] log

(
1 − V̄ (x, y)
1 − W δ(x, y)

)
dxdy.

Choose a number a ∈ (0, 1/3) such that {W = a} has zero Lebesgue measure. Then
∫

{W≥a}
V̄ (x, y) log

(
V̄ (x, y)
W δ(x, y)

)
dxdy →

∫

{W≥a}
V̄ (x, y) log

(
V̄ (x, y)
W (x, y)

)
dxdy

follows from the dominated convergence theorem. For {W ≤ a} we use
∫

{W≤a}
V̄ (x, y) log

(
V̄ (x, y)
W δ(x, y)

)
dxdy =

∫

{W≤a}
W δ(x, y)'

(
V̄ (x, y)
W δ(x, y)

)
dxdy

+
∫

{W≤a}
V̄ (x, y)dxdy −

∫

{W≤a}
W δ(x, y)dxdy.

Since the last term converges to
∫
{W≤a} W (x, y)dxdy, it is enough to show

∫

{W≤a}
W δ(x, y)'

(
V̄ (x, y)
W δ(x, y)

)
dxdy →

∫

{W≤a}
W (x, y)'

(
V̄ (x, y)
W (x, y)

)
dxdy.

To do this we construct a dominating function for

W δ(x, y)'
(

V̄ (x, y)
W δ(x, y)

)
.

Note that V̄ ≤ 1. If V̄ = 0 the quantity in the last display is bounded by 1. If V̄ > 0 then
we compute sup1≥a≥W a'

(
V̄ /a

)
to obtain the dominating function. Since by calculus

the unique extreme point is a = V̄ at which it is a minumum, the maximum must be on
the boundary, and we find

sup
1≥a≥W

a'

(
V̄
a

)
≤ W'

(
V̄
W

)
∨ '

(
V̄

)
.

Since W δ decreases to W in {W ≤ a} this is indeed a dominating function, and so (7.6)
holds. 12



P. Dupuis, G. S. Medvedev

8. Generalization and an Open Problem

In this section, we first describe a useful generalization of the analysis in the main
part of the paper, which is to extend the LDP to cover the original model (1.7) with
random parameters. We also discuss the case of the dynamical model on a sequence of
sparse graphs, which is an interesting open problem. Questions involving large deviation
estimates for sparse random graphs arise in probabilistic combinatorics [5]. Startingwith
the work of Chatterjee and Dembo [7], there has been a big development in this area
recently. For the current state of research, we refer an interested reader to the preprint
by Harel et al. [14] and references therein. The analysis in the previous sections of the
present paper suggests a natural extension of the LDP derived for the dense networks to
their sparse counterparts. To explain this extension, we formulate the dynamical model
on a convergent sequence of sparse W-random graphs [1]. We then conjecture, based on
the similarity between a rescaled version of the sparse random graph and an appropriate
Poisson random measure, that the LDP holds for sparse W-random graphs in the space
of nonnegative finite measures with the vague topology and with the same rate function
as for the sequence of Poisson random measures. We further conjecture that this LDP
can be upgraded to the LDPwith the same rate function in the space of graphons with the
cut norm topology, which would afford further application to the dynamical problem.
We support this conjecture by demostrating the key estimate needed for the proof of the
lower large deviations bound and outlining the steps needed for the proof of the upper
bound. The latter however leads to new technical difficulties, which will be addressed
elsewhere.

8.1. Random parameters. We now revisit (1.1), (1.2) to address the dependence of f
on random parameters. To this end, we rewrite (1.1), (1.2) as follows

u̇ni = f (uni , η
n
i , t) +

1
n

n∑

j=1

Xn
i j D(uni , u

n
j ), η̇ni = 0,

uni (0) = gni , ηni (0) = ξni , i ∈ [n],
(8.1)

where ξni ∈ Rd is a random array. Thus, the random parameters can be treated in the
same way as the initial data.

We formulate the assumptions on {ξni } in analogy to how this was done for {gni } in
Sect. 2. Specifically, let {Jn} be a sequence of iid Bd -valued random variables indepen-
dent from {Xn

i j } and {Gn}. Then

ξni = n
∫

Qn
i

J n(y)dy, i ∈ [n]

and

J̄ n(x) = ξni for x ∈ Qn
i .

In analogy to Assumption 2.1, we impose the following.

Assumption 8.1. { J̄ n} satisfies the LDP in Bd with the rate function L and scaling
sequence n2.
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All other assumptions on the data in (8.1) remain the same with one exception: the
Lipschitz condition (2.1) is replaced by the condition

| f (u, ξ, t) − f (u′, ξ ′, t)| ≤ L f
(
|u − u′| + |ξ − ξ ′|

)
u, u′ ∈ R, ξ, ξ ′ ∈ Rd , t ≥ 0.

The continuum limit for (8.1) is given by

∂t u(t, x) = f (u, j (x), t) +
∫

W (x, y)D (u(t, x), u(t, y)) dy,

u(0, x) = g(x),
(8.2)

where g ∈ B and j ∈ Bd . The initial value problem (8.2) has a unique solution u ∈
Y . (Recall that Y stands for C([0, T ], L2([0, 1])).) Furthermore, we can formulate a
counterpart of Lemma 4.2 for the model at hand. Specifically, let

(W, g, j) ∼ (W ′, g′, j ′) if W ′ = Wσ , g′ = gσ , & j ′ = jσ for some σ ∈ P.

and redefine X := S × B × Bd and X̂ = X /∼. Let

F : X ' (W, g, j) (→ u ∈ Y

denote the map between the data and the solution of the initial value problem (8.1). As
before,

F(Wσ , gσ , jσ ) = uσ ∀σ ∈ P.

Thus, F : X̂ → Ŷ is well defined. The analysis of Sect. 6 with straightforward mod-
ifications then implies that that F is a continuous mapping. Here, the metric in Ŷ is
unchanged and

dX̂

(
̂(U, g, j), ̂(U ′, g′, j ′)

)
= inf

σ

{
‖Uσ −U ′‖∞→1 + ‖gσ − g′‖B + ‖ jσ − j ′‖Bd

}
,

(8.3)
where (U, g, j) ∈ ̂(U, g, j) and (U ′, g′, j ′) ∈ ̂(U ′, g′, j ′) are arbitrary representatives.

This leads to the following.

Theorem 8.2. For W ∈ S let (Hn, gn, Jn) be a sequence of random graphons and
random initial data and parameters and let Assumptions 2.1 and 8.1 hold. Denote by
un the corresponding solutions of (8.1). Then {ûn} satisfies an LDP on X̂ with scaling
sequence n2 and the rate function

J(û) = inf{I (Ŵ ) + K (ĝ) + L( ĵ) : ̂(W, g, j) = F−1(û)}.

8.2. Sparsity. Let W : [0, 1]2 → [0, 1] as before and let 0 < αn ≤ 1, n ∈ N, be a
nonincreasing sequence. If αn → 0, we in addition assume that

α2
nn → ∞. (8.4)

Define {"n} by
P(Xn

i j = 1) = αnWn
i j . (8.5)

If αn → α∞ > 0, {"n} is a sequence of dense graphs as before. If αn ↘ 0 then graphs
{"n} are sparse.
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Example 8.3. Sparse Erdős–Rényi graphs: W ≡ 1, αn ↘ 0. Dynamical models on
sparse Erdős–Rényi graphs were studied in [9,26].

On sparse graphs {"n}, the dynamical model takes the form

u̇ni = f (uni , t) + (αnn)−1
n∑

j=1

Xn
i j D(uni , u

n
j ). (8.6)

The new scaling of the interaction term, (αnn)−1, is used to account for sparsity.
To apply the analysis of the large deviations in the main part of the paper to the model

at hand, note that

(αnn)−1
n∑

j=1

Xn
i j D(uni , u

n
j ) = n−1

n∑

j=1

Xn
i j D(uni , u

n
j ),

where

Xn
i j = α−1

n Xn
i j , EXn

i j = Wn
i j .

This suggests that in the sparse case one needs to study rescaled random variables

Hn = α−1
n Hn .

By considering Hn(y)dy we can view Hn as taking values is the set of non-negative
finite measures on [0, 1]2 with the vague topology. This topology can be metrized so
that the space is a Polish space [4, Section A.4.1]. Let ' (z) = z log z−z+1 for z ≥ 0. To
identify a candidate for the rate function, consider the relative entropy for the graphons
corresponding to the rescaled Bernoulli random variables {Xn

i j } [cf. (8.5)]:

R ({αnV, 1−αnV }‖{αnW, 1 − αnW }) = αnV log
(
V
W

)
+(1 − αnV ) log

(
1 − αnV
1 − αnW

)

= αn

(
V log

(
V
W

)
+W − V + O(αn)

)

= αn

(
W'

(
V
W

)
+ O(αn)

)
,

This suggests that {Hn}n∈N as defined above satisfies the LDP with rate function

∫

[0,1]2
W (y)'

(
V (y)
W (y)

)
dy (8.7)

and the scaling sequence n2αn .
However, we would like to strengthen this to the cut-norm topology. One direction

is straightforward, in that we can still use Bernstein’s bound for the rescaled array, and
thereby establish the large deviation lower bound in the stronger topology. For example,
if we want to compare Hn and Wn as would be needed to establish the LLN in the
stronger topology, we find
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P
(
d∞→1(Hn,Wn) ≥ δ

)
≤ sup

an ,bn
P



 1
n2

n∑

i, j=1

ani b
n
j

[
ai j
αn

− Wn
i j

]
≥ δ





= sup
an ,bn

P



 1
n2

n∑

i, j=1

ani b
n
j

[
ai j − αnWn

i j

]
≥ αnδ





≤ en log 2e−n2h(αnδ) → 0

owing to our assumption (8.4) and h(αnδ) ≈ α2
nδ

2/2. The analogous estimate as needed
to establish the large deviation estimate in the cut norm also holds.

For the large deviation upper bound itwas essential toworkwith the equivalence class,
and there it was crucial that the set Ŝ was compact. We conjecture than an analogous
compactness holds here as well. Specifically, let

I (V̂ ) = inf
V∈V̂

∫

[0,1]2
W (y)'

(
V (y)
W (y)

)
dy.

Then we conjecture that under reasonable conditions on W the superlinear growth of '

implies level sets of I (V̂ ) are compact in the natural generalization of Ŝ, and that this
together with the Bernstein’s bound suffices to establish the upper bound.

9. Appendix: Proof of Lower Semicontinuity of I

We want to prove that

lim inf
n→∞ I (V̂ n) ≥ I (V̂ )

when V̂ n → V̂ . The latter means V n → V in d∞→1. Then we have to show that

lim inf
n→∞ inf

V∈V̂ n
ϒ(V,W ) ≥ inf

V∈V̂
ϒ(V,W ),

where

ϒ(V,W ) =
∫

[0,1]2
G(V (x),W (x))dx, G(v,w) = v log

( v

w

)
+ (1 − v) log

(
1 − v

1 − w

)
.

To simplify the proof we assume thatW is continuous and bounded away from 0 and
1. If W is measurable and bounded away from 0 and 1 the assumption of continuity can
be justified by Lusin’s Theorem, since for a general W we can find Wε with the same
bounds such that Wε is continuous and the set where Wε ;= W has Lebesgue measure
less than ε.

If W is not bounded away from 0 and 1 then we can replace G by Gh ≥ 0 that is
continuous and satisfies

Gh(v,w) ≤ G(v,w) and Gh(v,w) ↑ G(v,w).

Wecan then apply the argument belowwithGh replacingG to show lower semicontinuity
of the analogue I h of I for arbitrary W , and then need only show

lim inf
h→0

I h(V̂ ) ≥ I (V̂ ).
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This can also be done by a minor adaptation of the argument used below.
The proof will be based on weak convergence and a construction analogous to

the “chattering lemma” of control theory. Let V̄ n come within 1/n of the infimum
in infV∈V̂ n ϒ(V,W ). Then there is σ n ∈ P such that

ϒ(V̄ n,W ) = ϒ(V n,W ◦ σ n),

and it is enough to show the following. Let any subsequence of n be given and consider
a further subsequence (say n̄). Then given ε > 0 we can find σ ∈ P such that

lim inf
n̄→∞

ϒ(V n̄,W ◦ σ n̄) ≥ ϒ(V,W ◦ σ ) − ε.

To simplify notation we write n rather than n̄.
We define probability measures {µn} on [0, 1]5 by

µn(A1 × A2 × · · · × A5) =
∫

A2×A3

1A1(V
n(x1, x2))1A4(σ

n(x1))dx11A5(σ
n(x2))dx2.

By compactness we can assume that for the subsubsequence these converge weakly with
limit µ. Also, we can write

ϒ(V n,W ◦ σ n) =
∫

[0,1]2
G(V (x1, x2),W (σ n(x1), σ n(x2)))dx1dx2

=
∫

[0,1]5
G(v,W (y1, y2))µn(dv × dx1 × dx2 × dy1 × dy2),

and using the properties of G (bounded and lsc) and W (bounded and continuous)

lim inf
n→∞ ϒ(V n,W ◦ σ n) ≥

∫

[0,1]5
G(v,W (y1, y2))µ(dv × dx1 × dx2 × dy1 × dy2).

Given ε > 0 we need to construct σ ∈ P such that
∫

[0,1]5
G(v,W (y1, y2))µ(dv × dx1 × dx2 × dy1 × dy2) ≥ ϒ(V,W ◦ σ ) − ε.

With subscripts denoting marginal distributions, it is clear that

µ2,4(dx1 × dy1) = µ3,5(dx2 × dy2)

and, since each σ n is a measure preserving bijection, that

µ2(dx1) = dx1, µ3(dx2) = dx2, µ4(dy1) = dy1, µ5(dy2) = dy2.

Thus both marginals of µ2,4 (and µ3,5) are Lebesgue measure, but we do not know that
µ2,4 is the measure induced by a measure preserving bijection σ . We will approximate
µ2,4 to construct σ , and in doing so incur a small error in the integral which will be
smaller than ε.

Let ν(dx × dy) = µ2,4(dx × dy). Then it suffices to find a sequence θk ∈ P such
that if νk(A1 × A2) =

∫
A1

1A2(θk(x))dx , then νk converges to ν in the weak topology.
The construction is as follows. Let δ = 1/k. Then we partition [0, 1]2 according to

T k
i, j = [(i − 1)δ, iδ) × [( j − 1)δ, jδ), 1 ≤ i, j ≤ k
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and define mk
i, j = ν(T k

i, j ). Let

S(x, a) = {x + t (1, 1) : 0 ≤ t < a}.

The graph G ⊂ [0, 1]2 of θk is constructed recursively as follows.
Let j = 1, and set x1,1 = (0, 0). Then set G1,1 = S(x1,1,m1,1), and define x2,1 =

(δ,m1,1). We then iterate, setting

Gi+1,1 = Gi,1 ∪ S(xi,1,mi,1) and xi+1,1 =
(

iδ,
i∑

r=1

mr,1

)

until i = k − 1. This assigns all the mass of ν([0, 1) × [0, δ)) = δ to nearby points
consistent with a piecewise continuous measure preserving bijection. Specifically, the
projection of Gk,1 onto the y-axis gives the set [0, δ).

x1,1

x

y

x2,1
x3,1

x1,2
x2.2

m2,1m1,1

δ

δ

Fig. 1. Construction of σ
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Next consider j = 2. To maintain that the graph generate a measure preserving
bijection, we now start with x1,2 = (m1,1, δ). The iteration is now

Gi+1,2 = Gi,2 ∪ S(xi,2,mi,2) and xi+1,1 =
(

iδ + mi,1,

i∑

r=1

mr,2

)

.

For 1 < j ≤ k the definitions are x1, j = (
∑ j

l=1m1,l , jδ) and

Gi+1, j = Gi, j ∪ S(xi, j ,mi, j ) and xi+1, j =



iδ +
j∑

l=1

mi,l ,

i∑

r=1

mr, j



 .

See Fig. 1. Finally we set G = Gk,k . This graph defines an element θk of P . If νk(A1 ×
A2) =

∫
A1

1A2(θk(x))dx , then all mass inside T k
i, j under ν has stayed inside T k

i, j . As a
consequence νk converges weakly to ν, and the proof is complete.
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