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STABILITY AND BIFURCATION OF MIXING IN THE KURAMOTO
MODEL WITH INERTIA\ast 

HAYATO CHIBA\dagger AND GEORGI S. MEDVEDEV\ddagger 

Abstract. The Kuramoto model of coupled second order damped oscillators on convergent
sequences of graphs is analyzed in this work. The oscillators in this model have random intrinsic
frequencies and interact with each other via nonlinear coupling. The connectivity of the coupled
system is assigned by a graph which may be random as well. In the thermodynamic limit the
behavior of the system is captured by the Vlasov equation, a hyperbolic partial differential equation
for the probability distribution of the oscillators in the phase space. We study stability of mixing,
a steady state solution of the Vlasov equation, corresponding to the uniform distribution of phases.
Specifically, we identify a critical value of the strength of coupling, at which the system undergoes
a pitchfork bifurcation. It corresponds to the loss of stability of mixing and marks the onset of
synchronization. As for the classical Kuramoto model, the presence of the continuous spectrum on
the imaginary axis poses the main difficulty for the stability analysis. To overcome this problem, we
use the methods from the generalized spectral theory developed for the original Kuramoto model.
The analytical results are illustrated with numerical bifurcation diagrams computed for the Kuramoto
model on Erd\H os--R\'enyi and small-world graphs. Applications of the second order Kuramoto model
include power networks, coupled pendula, and various biological networks. The analysis in this paper
provides a mathematical description of the onset of synchronization in these systems.
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1. Introduction. In this paper, we study the following system of coupled second
order damped oscillators on a convergent sequence of graphs \{ \Gamma n\} :

(1.1) \"\theta i + \gamma \.\theta i = \omega i +
2K

n

n\sum 
j=1

anij sin (\theta j  - \theta i) , i \in [n] = \{ 1, 2, . . . , n\} ,

where \theta i, i \in [n], denotes the phase of the ith oscillator, \gamma > 0 is a damping constant,
K is the coupling strength, and anij is the adjacency matrix of \Gamma n. Intrinsic frequencies
\omega i, i \in [n], are independent identically distributed random variables drawn from the
probability distribution with density g. By rescaling time, intrinsic frequencies, and
K, one can make \gamma = 1, which will be assumed without loss of generality throughout
this paper.

System of ordinary differential equations (1.1) may be viewed as an extension of
the classical Kuramoto model (KM), which is used to study collective behavior in
large coupled systems [8]. In this context, it is called the KM with inertia because
the second order terms in (1.1) introduce inertial effects into the system's dynamics.
On the other hand, system (1.1) has a clear mechanical interpretation. For instance,
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it may be viewed as a system of coupled pendula or coupled power generators, as
it is perhaps best known [11, 15]. Like its classical counterpart, the KM with iner-
tia features transition to synchronization. For small positive values of the coupling
strength, the system exhibits irregular dynamics, called mixing. Upon increasing the
coupling strength K, mixing loses stability and a gradual (soft) transition to synchro-
nization takes place. The onset of synchronization in the classical KM with all-to-all
coupling was analyzed in [1, 5] and in the model on graphs in [3, 4]. The analysis
of synchronization in the KM with inertia involves new technical challenges related
to the dimensionality of the phase space, which make it an interesting stability prob-
lem. In addition, synchronization in the KM with inertia has important applications.
First, synchronization provides a more efficient regime of operation of power networks.
Therefore, it is important to know what factors determine stability of synchrony in
the second order model on graphs. Previous studies of the onset of synchronization in
the KM with inertia [13, 14] relied on asymptotic analysis and numerical simulations.
In this work, for the first time we perform a rigorous linear stability analysis of mixing
and identify the instability of mixing. Furthermore, we perform a formal center man-
ifold reduction and identify the bifurcation, marking the onset of synchronization, as
a pitchfork bifurcation. We verified these results numerically for the KM on various
graphs including Erd\H os--R\'enyi (ER) and small-world (SW) graphs.

To proceed, we rewrite (1.1) as a system of coupled second order ordinary differ-
ential equations and add a separate equation for \omega i:

\.\theta i = \psi i + \omega i,

\.\psi i =  - \psi i +
2K

n

n\sum 
j=1

anij sin(\theta j  - \theta i),

\.\omega i = 0, i \in [n].

(1.2)

To study the dynamics of (1.2) for large n, we employ the following Vlasov equa-
tion:

(1.3) \partial tf + \partial \theta ((\psi + \omega )f) + \partial \psi (( - \psi +N[f ])f) = 0, f = f(t, \theta , \psi , \omega , x),

where

N[f ](t, \theta , x) =
K

i

\Bigl( 
e - i\theta h(t, x) - ei\theta h(t, x)

\Bigr) 
.

Here and below, we use i =
\surd 
 - 1 to denote the imaginary unit. Furthermore,

f(t, \theta , \psi , \omega , x)d\theta d\psi d\omega is the probability that the state of the oscillator at point x \in 
[0, 1] at time t \in R+ is in (\theta , \theta + d\theta )\times (\psi ,\psi + d\psi )\times (\omega , \omega + d\omega ). The justification of
the Vlasov equation as a mean field limit for the original KM on graphs can be found
in [3, 7]. It extends verbatim to cover the model at hand.

The following local order parameter plays a key role in the analysis of synchro-
nization in the KM model:

(1.4) h(t, x) =

\int 
T\times R2\times I

W (x, y)ei\theta f(t, \theta , \psi , \omega , y)d\theta d\psi d\omega dy,

where I = [0, 1] and T = R/2\pi Z. W is a square integrable function on I2, which
describes the limit of the graph sequence \{ \Gamma n\} . W is called a graphon. For the
details on graph limits and their applications to the continuum description of the
dynamical networks, we refer the interested reader to [3, 10].
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A weak (distribution--valued) solution f(t, \theta , \psi , \omega , x) of the initial value problem
for the Vlasov equation (1.3) yields the probability distribution of particles in the
phase space T \times R2 for each (t, x) \in R+ \times I (cf. [6, 7]). By mixing we call the
following steady state solution of (1.3):

(1.5) fmix =
g(\omega )

2\pi 
\delta (\psi ),

where \delta stands for Dirac's delta function and g(\omega ) is the probability density function
characterizing the distribution of intrinsic frequencies. fmix corresponds to the sta-
tionary regime when the values of \theta i are distributed uniformly over T. Stability of
mixing is the main theme of this paper.

In the next section, we recast the stability problem in the Fourier space and derive
the linearized problem. The next step is to characterize the spectrum of the linearized
operator. This is done in section 3. We start by describing the setting for the spectral
problem. To this end, we define function spaces and operators involved in the linear
stability problem. After that we derive a transcendental equation for the eigenvalues
of the linearized problem. The analysis of the eigenvalue problem shows that the
bifurcating eigenvalue fails to cross the imaginary axis filled by the residual spectrum.
To overcome this difficulty, following the analysis of the classical KM [1, 4], we use the
weak formulation for the eigenvalue problem for the linearized operator based on a
carefully selected Gelfand triplet and the analytic continuation of the resolvent oper-
ator past the imaginary axis. In this setting the generalized eigenvalues are defined as
singular points of the generalized resolvent. The corresponding eigenfunction is used
in the center manifold reduction of the system's dynamics. This concludes a rigorous
linear stability analysis of mixing and sets the scene for the bifurcation analysis. In
section 3.5, we prove that mixing is asymptotically stable in the subcritical regime. In
section 4, we show that mixing undergoes a pitchfork bifurcation marking the onset
of synchronization. The center manifold reduction is done under the assumption of
the existence of the center manifold. However, the formal center manifold reduction
alone is a formidable problem, as the analysis in this section shows. The proof of
existence of the center manifold requires new additional techniques and is beyond the
scope of this paper. The analytical results are illustrated with numerical examples of
the bifurcation in the KM on ER and SW graphs in section 5.

2. The Fourier transform. As a probability density function, g is a nonnega-
tive integrable function such that

(2.1)

\int 
R
g(s)ds = 1.

Since \omega does not change in time, f satisfies the following constraint:

g(\omega ) =

\int 
T\times R

f(t, \theta , \psi , \omega , x)d\theta d\psi \forall (t, x) \in R+ \times I.(2.2)

In addition, throughout this paper, we will assume the following.

Assumption 2.1. Let g be a real analytic function. In addition, let the Fourier
transform \^g(\eta ) :=

\int 
R e

i\eta \omega g(\omega )d\omega be continuous on R and

(2.3) lim
\eta \rightarrow \infty 

| \^g(\eta )| ea\eta = 0

for some 0 < a < 1.
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Remark 2.2. By the Paley--Wiener theorem, (2.3) implies that g(\omega ) has an ana-
lytic continuation to the region 0 < Im(z) < a.

In preparation for the stability analysis of mixing, we rewrite (1.3) using Fourier
variables:

(2.4) uj(t, \zeta , \eta , x) =

\int 
R2\times T

ei(j\theta +\zeta \psi +\eta \omega )f(t, \theta , \psi , \omega , x)d\theta d\psi d\omega , j \in Z.

The Vlasov partial differential equation is then rewritten as a system of differential
equations for the Fourier coefficients uj , j \in Z:

\partial tuj =  - 
\int 
ei(j\theta +\zeta \psi +\eta \omega )

\partial 

\partial \theta 
\{ (\psi + \omega )f\} d\theta d\psi d\omega 

 - 
\int 
ei(j\theta +\zeta \psi +\eta \omega )

\partial 

\partial \psi 
\{ ( - \psi +N[f ])f\} d\theta d\psi d\omega 

= ij

\int 
ei(j\theta +\zeta \psi +\eta \omega )(\psi + \omega )fd\theta d\psi d\omega 

+ i\zeta 

\int 
ei(j\theta +\zeta \psi +\eta \omega )

\biggl( 
 - \psi +

K

i
(e - i\theta h - ei\theta h)

\biggr) 
fd\theta d\psi d\omega 

= (j  - \zeta )
\partial uj
\partial \zeta 

+ j
\partial uj
\partial \eta 

+K\zeta (h(t, x)uj - 1  - h(t, x)uj+1), j \in Z,

(2.5)

where

(2.6) h(t, x) =

\int 
I

W (x, y)u1(t, 0, 0, y)dy

is the local order parameter. In addition, we have the following constraints:

u0(t, 0, 0, x) = 1,(2.7)

u - j(t, - \zeta , - \eta , x) = uj(t, \zeta , \omega , x), j \in N.(2.8)

Here, (2.7) follows from (2.2), and (2.8) follows from the fact that f is real. Thus, it
is sufficient to restrict to j \in N

\bigcup 
\{ 0\} in (2.5).

By changing from \zeta to \xi given by the relations

(2.9)

\biggl\{ 
\zeta  - j =  - e - \xi j , \zeta  - j < 0,
\zeta  - j = e - \xi j , \zeta  - j \geq 0,

and setting

(2.10) vj(t, \xi j , \eta , x) :=

\Biggl\{ 
uj(t, j  - e - \xi j , \eta , x), \zeta  - j < 0,

uj(t, j + e - \xi j , \eta , x), \zeta  - j \geq 0,

we obtain

\partial tvj = \partial \xi jvj + j\partial \eta vj +K(j  - e - \xi j )
\Bigl( 
h(t, x)vj - 1  - h(t, x)vj+1

\Bigr) 
,

h(t, x) =

\int 
I

W (x, y)v1(t, 0, 0, y)dy,

subject to the constraint v0(t,\infty , \eta , x) = \^g(\eta ). For j \geq 0, we adopt the first line of
(2.9) because in the definition of the local order parameter, we need u1(t, 0, 0, x), for
which \zeta  - j =  - 1 < 0. By the same reasoning, we use the second line for j \leq  - 1.
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The steady state of the Vlasov equation, fmix, in the Fourier space has the fol-
lowing form:

(2.11) v0 = \^g(\eta ), vj = 0, j \in N.

To investigate the stability of (2.11), let w0 = v0  - \^g(\eta ) and wj = vj for j \not = 0.
Then we obtain the system
(2.12)\left\{                   

dw0

dt
=
\partial w0

\partial \xi 0
 - Ke - \xi 0

\Bigl( 
h(t, x)w - 1  - h(t, x)w1

\Bigr) 
,

\partial tw1 = \partial \xi 1w1 + \partial \eta w1 +K(1 - e - \xi 1)
\Bigl( 
h(t, x)\^g(\eta ) + h(t, x)w0  - h(t, x)w2

\Bigr) 
,

dwj
dt

=
\partial wj
\partial \xi j

+ j
\partial wj
\partial \eta 

+K(j  - e - \xi j )
\Bigl( 
h(t, x)wj - 1  - h(t, x)wj+1

\Bigr) 
, j \geq 2,

h(t, x) =

\int 
I

W (x, y)w1(t, 0, 0, y)dy,

and w0(t,\infty , \eta , x) = 0. Our goal is to investigate the stability and bifurcations of the
steady state (mixing) wj = 0, j \in Z, of this system.

The linearized system has the following form:

dw1

dt
= \bfitL 1[w1] +K\bfitB [w1] =: \bfitS [w1],(2.13)

dwj
dt

= \bfitL j [wj ], j \geq 0 and j \not = 1,(2.14)

where

\bfitL j [\phi ](\xi , \eta , x) = (\partial \xi + j\partial \eta )\phi (\xi , \eta , x), j \in Z,(2.15)

\bfitB [\phi ](\xi , \eta , x) = (1 - e - \xi )\^g(\eta )\bfitW [\phi (0, 0, \cdot )](x),(2.16)

and

(2.17) \bfitW [f ](x) =

\int 
R
W (x, y)f(y)dy.

3. The spectral analysis.

3.1. The setting. To define the operators used in the linearized system (2.13)
and (2.14) formally, we introduce the following Banach spaces. For \alpha \in [0, 1), let

(3.1) \beta +
1 (\eta ) = max\{ 1, e\alpha \eta \} , \beta  - 

1 (\eta ) = min\{ 1, e\alpha \eta \} , and \beta 2(\xi ) = min\{ e\xi , 1\} ,

and define

\scrX \pm 
\alpha = \{ \phi : continuous on R, \| \phi \| \scrX \pm 

\alpha 
:= sup

\eta 
\beta \pm 
1 (\eta )| \phi (\eta )| <\infty \} ,

\scrY \pm 
\alpha = \{ \phi : continuous on R2, \| \phi \| \scrY \pm 

\alpha 
:= sup

\xi ,\eta 
\beta \pm 
1 (\eta )\beta 2(\xi )| \phi (\xi , \eta )| <\infty \} ,

\scrH \pm 
\alpha = L2(I;\scrY \pm 

\alpha ).

(3.2)

The norms on \scrH \pm 
\alpha are defined by

(3.3) \| \phi \| 2\scrH \pm 
\alpha 
=

\int 
I

\Biggl( 
sup
\xi ,\eta 

\beta \pm 
1 (\eta )\beta 2(\xi )| \phi (\xi , \eta , x)| 

\Biggr) 2

dx.



6 HAYATO CHIBA AND GEORGI S. MEDVEDEV

They form a Gelfand triplet

\scrH +
\alpha \subset \scrH +

0 = \scrH  - 
0 \subset \scrH  - 

\alpha ,

which will be used in section 3.4. Below, the function spaces in (3.2) are used for
\alpha \in \{ 0, a\} , where a is the same as in (2.3). Recall that \^g \in \scrX +

a for certain 0 < a < 1
(cf. Assumption 2.1).

Now we can formally discuss the operators involved in the linearized problem
(2.13)--(2.14). First, we note that \bfitW defined in (2.17) can be viewed as the Fredholm
integral operator on L2(I). It is a compact self-adjoint operator. Therefore, the
eigenvalues of \bfitW are real with the only accumulation point at 0. We denote the set
of eigenvalues of \bfitW by \sigma p(\bfitW ).

Next, we turn to operators \bfitL j and \bfitB . It follows that they are densely defined on
\scrH +

0 . In addition, \bfitB is a bounded operator, as shown in the following lemma.

Lemma 3.1. \bfitB is a bounded operator on \scrH +
0 .

Proof. When \alpha = 0, \beta \pm 
1 (\eta ) = 1. By the Cauchy--Schwarz inequality, we have

| | \bfitB [\phi ]| | 2\scrH +
0
=

\int 
I

\Biggl( 
sup
\xi ,\eta 

\bigl\{ 
\beta 2(\xi )(1 - e - \xi )| \^g(\eta )| 

\bigr\} \bigm| \bigm| \bigm| \int 
I

W (x, y)\phi (0, 0, y)dy
\bigm| \bigm| \bigm| \Biggr) 2

dx

\leq 
\int 
I2

| W (x, y)| 2dxdy \cdot sup
\eta 

\bigl\{ 
| \^g(\eta )| 2

\bigr\} 
sup
\xi ,\eta 

\bigl\{ 
\beta 2(\xi )

2(1 - e - \xi )2
\bigr\} \int 

I

| \phi (0, 0, x)| 2dx

= | | \bfitW | | 2L2 \cdot sup
\eta 

\bigl\{ 
| \^g(\eta )| 2

\bigr\} 
sup
\xi ,\eta 

\bigl\{ 
\beta 2(\xi )

2(1 - e - \xi )2
\bigr\} \int 

I

(\beta 2(0)| \phi (0, 0, x)| )2dx

\leq | | \bfitW | | 2L2 \cdot sup
\eta 

\bigl\{ 
| \^g(\eta )| 2

\bigr\} 
sup
\xi ,\eta 

\biggl\{ 
\beta 2(\xi )

2(1 - e - \xi )2
\int 
I

(\beta 2(\xi )| \phi (\xi , \eta , x)| )2dx
\biggr\} 

= | | \bfitW | | 2L2 \cdot sup
\eta 

| \^g(\eta )| 2 \cdot sup
\xi 
\beta 2(\xi )

2(1 - e - \xi )2| | \phi | | 2\scrH +
0
.

For both cases \xi \geq 0 and \xi \leq 0, we have sup\xi \beta 2(\xi )
2(1 - e - \xi )2 = 1, which proves the

lemma.

Since \bfitL j is closed and \bfitB is bounded, \bfitS = \bfitL 1 +K\bfitB is also a closed operator on
\scrH +

0 .

3.2. The spectrum of \bfitS . In this section, we establish several basic facts about
the spectra of \bfitL j and \bfitS . In particular, we describe the residual spectrum and derive
a transcendental equation for the eigenvalues of \bfitS . Throughout this section, we view
\bfitL j and \bfitS as operators densely defined on \scrH +

0 (cf. (3.2)--(3.3)).
Let j \in Z be fixed, and consider

(3.4) (\lambda  - \bfitL j)u = v.

Applying the Fourier transform to both sides of (3.4) and using (2.15), we have

(\lambda  - i\zeta  - ij\omega )\scrF [u] = \scrF [v],

where

(3.5) \scrF [v](\zeta , \omega , x) =
1

(2\pi )2

\int 
R2

e - i(\xi \zeta +\eta \omega )v(\xi , \eta , x)d\xi d\eta .
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Thus,

(3.6) u = (\lambda  - \bfitL j)
 - 1v = \scrF  - 1\scrF [u] =

\int 
R2

ei(\xi \zeta +\eta \omega )

\lambda  - i\zeta  - ij\omega 
\scrF [v](\zeta , \omega , x)d\zeta d\omega .

Next we use (3.6) to locate the residual spectrum of \bfitL j .

Lemma 3.2. For arbitrary j \in Z, the residual spectrum of \bfitL j is given by

\sigma (\bfitL j) = \{ z \in C :  - 1 \leq \Re z \leq 0\} .1

Proof. The proof is based on (3.6) and the following identity for \Re \lambda \not = 0:

(3.7)
1

\lambda  - i\zeta  - ij\omega 
=

\left\{       
\int \infty 

0

e - (\lambda  - i\zeta  - ij\omega )tdt, \Re \lambda > 0,

 - 
\int 0

 - \infty 
e - (\lambda  - i\zeta  - ij\omega )tdt, \Re \lambda < 0,

By plugging (3.7) into (3.6), we have

(3.8) (\lambda  - \bfitL j)
 - 1[v](\xi , \eta , x) =

\left\{       
\int \infty 

0

e - \lambda tv(\xi + t, \eta + jt, x)dt, \Re \lambda > 0,

 - 
\int 0

 - \infty 
e - \lambda tv(\xi + t, \eta + jt, x)dt \Re \lambda < 0.

The right-hand side of (3.8) belongs to \scrH +
0 for any v \in \scrH +

0 only if \Re \lambda <  - 1 or
\Re \lambda > 0. For  - 1 \leq \Re \lambda \leq 0, the set of v such that the right-hand side exists is not
dense in \scrH +

0 .The statement of the lemma follows.

Next, we turn to the eigenvalue problem for \bfitS (cf. (2.13)):

(3.9) \lambda v = (\bfitL 1 +K\bfitB )v.

Lemma 3.3. Let \mu be a nonzero eigenvalue of \bfitW , and let V \in L2(I) be a corre-
sponding eigenfunction. Define

(3.10) D(\lambda ; \xi , \eta ) =

\int 
R

\biggl( 
1

\lambda  - i\omega 
 - e - \xi 

\lambda + 1 - i\omega 

\biggr) 
ei\eta \omega g(\omega )d\omega 

and

(3.11) D(\lambda ) := D(\lambda ; 0, 0) =

\int 
R

\biggl( 
1

\lambda  - i\omega 
 - 1

\lambda + 1 - i\omega 

\biggr) 
g(\omega )d\omega .

Then the root \lambda = \lambda (\mu ) of the equation

(3.12) D(\lambda ) =
1

K\mu 
,

not belonging to \partial \sigma (\bfitL 1) = \{ z \in C : \Re z =  - 1 or \Re z = 0\} , is an eigenvalue of \bfitS on
\scrH +

0 . For each such root \lambda = \lambda (\mu ) the corresponding eigenfunction is given by

(3.13) v(\xi , \eta , x) = D(\lambda ; \xi , \eta )V (x).

1Here and below, we use \Re z and \Im z to denote the real and imaginary parts of z \in C.
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Proof. From (3.9) we obtain

(3.14) v = K(\lambda  - \bfitL 1)
 - 1(1 - e - \xi )\^g(\eta )\bfitW [v(0, 0, \cdot )].

By (3.6),

(\lambda  - \bfitL 1)
 - 1(1 - e - \xi )\^g(\eta ) =

\int 
R2

ei(\xi \zeta +\eta \omega )

\lambda  - i(\zeta + \omega )
\scrF [(1 - e - \xi )\^g(\eta )]d\zeta d\omega 

=

\int 
R2

ei(\xi \zeta +\eta \omega )

\lambda  - i(\zeta + \omega )
(\delta (\zeta ) - \delta (\zeta  - i))g(\omega )d\zeta d\omega 

= D(\lambda ; \xi , \eta ),

(3.15)

where we used (3.10) in the last line. The combination of (3.14) and (3.15) yields

(3.16) v = KD(\lambda ; \xi , \eta )\bfitW [v(0, 0, \cdot )].

By plugging \xi = \eta = 0 into (3.16), we have

(3.17) v(0, 0, x) = KD(\lambda )\bfitW [v(0, 0, \cdot )](x).

If \lambda = \lambda (\mu ) solves (3.12), then (3.17) holds for

(3.18) v(0, 0, x) = V (x).

This shows that the set of roots of (3.12) for \mu \in \sigma p(\bfitW ) coincides with the set of
eigenvalues of \bfitS . The corresponding eigenfunctions are found from (3.16):

(3.19) v = K\mu D(\lambda (\mu ); \xi , \eta )V,

which coincides with (3.13) up to a multiplicative constant. It remains to show that
v \in \scrH +

0 when \lambda /\in \partial \sigma (\bfitL 1). To this end, note that (3.7) is applicable to (3.10) when
\Re \lambda \not = 0, 1 as

D(\lambda ; \xi , \eta ) =

\left\{   
\int \infty 
0
e - \lambda t(1 - e - (\xi +t))\^g(\eta + t)dt if \Re \lambda > 0,\int  - \infty 

0
e - \lambda t\^g(\eta + t)dt - 

\int \infty 
0
e - \lambda te - (\xi +t)\^g(\eta + t)dt if  - 1 < \Re \lambda < 0,\int  - \infty 

0
e - \lambda t(1 - e - (\xi +t))\^g(\eta + t)dt if \Re \lambda <  - 1.

This shows that D(\lambda ; \xi , \eta ) \in \scrY +
0 and v \in \scrH +

0 if \^g \in \scrX +
0 and \lambda /\in \partial \sigma (\bfitL 1).

3.3. The eigenvalue equation. In this subsection, we study (3.12), whose
roots yield the eigenvalues of \bfitS .

Note that D(\lambda ; \xi , \eta ) is a holomorphic function on H0 := \{ \lambda \in C : \Re \lambda > 0\} .
Using Assumption 2.1, D(\lambda ; \cdot ) can be extended analytically to Ha := \{ \lambda \in C : \Re \lambda >
 - a\} , 0 < a < 1. Indeed, by rewriting the integrand in the definition of D(\lambda ; \xi , \eta ),

D(\lambda ; \xi , \eta ) =

\int \infty 

0

e - \lambda t(1 - e - (\xi +t))\^g(\eta + t)dt

=

\int \infty 

0

e - (\lambda +a)te - a\eta (1 - e - (\xi +t))ea(\eta +t)\^g(\eta + t)dt,

one can see that this integral exists and defines an analytic function on Ha because
\^g \in \scrX +

a (cf. Assumption 2.1). Moreover, by applying the Sokhotski--Plemelj formula
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[12] to (3.10), the analytic continuation is also written by
(3.20)

\scrD (\lambda ; \xi , \eta ) =

\left\{               

\int 
R

\biggl( 
1

\lambda  - i\omega 
 - e - \xi 

\lambda + 1 - i\omega 

\biggr) 
ei\eta \omega g(\omega )d\omega (= D(\lambda ; \xi , \eta )), \Re \lambda > 0,

lim
x\rightarrow 0+

\int 
R

\biggl( 
1

x+ i(y  - \omega )
 - e - \xi 

1 + i(y  - \omega )

\biggr) 
ei\eta \omega g(\omega )d\omega , \lambda = iy,\int 

R

\biggl( 
1

\lambda  - i\omega 
 - e - \xi 

\lambda + 1 - i\omega 

\biggr) 
ei\eta \omega g(\omega )d\omega + 2\pi e\eta \lambda g( - i\lambda ),  - a < \Re \lambda < 0.

From these expressions, it turns out that for  - a < \Re \lambda < 0, \scrD (\lambda ; \cdot ) \in \scrY  - 
a , while

\scrD (\lambda ; \cdot ) \in \scrY +
a for \Re \lambda > 0.

Denote \scrD (\lambda ) = \scrD (\lambda ; 0, 0). \scrD (\lambda ) provides an analytic continuation of D(\lambda ) to Ha.
Definition 3.4. Let \mu be a nonzero eigenvalue of \bfitW , and let V denote the cor-

responding eigenfunction. Suppose \lambda \in Ha is a root of the following equation:

(3.21) \scrD (\lambda ) =
1

K\mu 
.

Then \lambda is called a generalized eigenvalue of \bfitS . The corresponding generalized eigen-
function is given by

v = \scrD (\lambda ; \xi , \mu )V (x) \in \scrH  - 
a .

Remark 3.5. Generalized eigenvalues coincide with regular eigenvalues on H0.
The reason the roots of (3.21) are called generalized eigenvalues of \bfitS will become
clear in section 3.4. See [2] for the generalized spectral theory.

The following theorem describes solutions of (3.21) for even unimodal g.

Theorem 3.6. Suppose g is an even unimodal probability density function, and
denote

(3.22) Kc = (\mu maxg0)
 - 1,

where

(3.23) g0 := \pi g(0) - 
\int 
R

g(s)

1 + s2
ds

and \mu max is the largest (positive) eigenvalue of \bfitW .
Under Assumption 2.1, the following hold:
1. For K \in [0,Kc), there are no generalized eigenvalues with positive real part.
2. For sufficiently small \epsilon > 0, there is a real generalized eigenvalue \lambda = \lambda (K)

for K \in (Kc  - \epsilon ,\infty ). In addition,

\lambda (Kc) = 0 and \lambda \prime (Kc) > 0.

Remark 3.7. Using the identity \pi  - 1 =
\int 
R(1+s

2) - 1ds, one can see that g0 defined
in (3.23) is positive:

(3.24) g0 =

\int 
R

g(0) - g(s)

1 + s2
ds > 0.

Remark 3.8. The positive generalized eigenvalue \lambda (K),K > Kc, identified in the
theorem is an eigenvalue of \bfitS . At K = Kc + 0 it hits the residual spectrum of \bfitS .
There are no eigenvalues of \bfitS for K \leq Kc. However, as a generalized eigenvalue,
\lambda (K) is well defined for Kc - \epsilon < K \leq Kc. It crosses the imaginary axis transversally
at K = Kc.
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Fig. 1. A unimodal probability density function g (a) and the corresponding critical curve (b).

The proof of the theorem relies on the following observations.

Lemma 3.9. Let g be an even unimodal probability density function (Figure 1a).
Then

lim
x\rightarrow 0+

\scrD (x+ iy) = \pi g(y) - i \cdot p. v.
\int 
R

g(s)

y  - s
ds - 

\int 
R

g(s)

1 + i(y  - s)
ds,(3.25)

lim
y\rightarrow \pm \infty 

lim
x\rightarrow 0+

\scrD (x+ iy) = 0,(3.26)

\scrD \prime (0) < 0.(3.27)

Here, p. v. stands for the Cauchy principal value of an improper integral. In addition,
\scrC = \scrD (iR) is a bounded closed curve which intersects the positive real semiaxis at a
unique point (g0, 0) (see Figure 1b).

We postpone the proof of Lemma 3.9 until after the proof of the theorem.

Proof of Theorem 3.6. Let \mu > 0 be an eigenvalue of \bfitW . Note that \scrC = \scrD (iR) is
a bounded closed curve intersecting the positive real semiaxis at a single point (g0, 0)
by Lemma 3.9. Since \scrD (\lambda ) is holomorphic in H0, by the argument principle, the
eigenequation

(3.28) \scrD (\lambda ) = (K\mu ) - 1

has a root in H0 if the winding number of \scrD about (K\mu ) - 1 is positive. Therefore,
(3.28) has no roots in H0 for 0 < K\mu < g - 1

0 for any \mu \in \sigma p(\bfitW )\setminus \{ 0\} , i.e., for
K \in [0,Kc) with Kc = (\mu maxg0)

 - 1. Since g(\omega ) is an even function, \scrD (iR) intersects
the positive real semiaxis when \lambda = 0. This implies that g0 = \lambda (0), which is obtained
from (3.25) as

lim
y\rightarrow 0

lim
x\rightarrow 0+

\scrD (x+ iy) = \pi g(0) + i \cdot p. v.
\int 
R

g(s)

s
ds - 

\int 
R

1 + is

1 + s2
g(s)ds

= \pi g(0) - 
\int 
R

1

1 + s2
g(s)ds.

This proves the first statement of the theorem with formulae (3.22) and (3.23).
Since \scrD \prime (0) \not = 0 by Lemma 3.9 and \scrD is holomorphic at 0, it is locally invertible,

and the inverse is a holomorphic function. By differentiating both sides of (3.28) with
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respect to K, we have

\lambda \prime (Kc) =
 - 1

\mu maxK2
c\scrD \prime (0)

> 0.

Since \mu max is an isolated eigenvalue of \bfitW , there are no other roots of (3.28) for
K \in (Kc  - \epsilon ,Kc + \epsilon ).

Proof of Lemma 3.9. Equation (3.25) follows from the Sokhotski--Plemelj formula
[12]. Equation (3.26) follows from (3.25), because g \in L1(R). To show (3.27), note
first that

\scrD \prime (\lambda ) =  - 
\int 
R

\biggl( 
1

(\lambda  - is)2
 - 1

(\lambda + 1 - is)2

\biggr) 
g(s)ds

=  - i

\int 
R

\biggl( 
1

\lambda  - is
 - 1

\lambda + 1 - is

\biggr) 
g\prime (s)ds.

(3.29)

Using the Sokhotski--Plemelj formula again, from (3.29) we get

(3.30) lim
\lambda \rightarrow 0+

D\prime (\lambda ) = p. v.

\int 
R

g\prime (s)

s
ds+ i

\biggl( \int 
R

1

1 - is
g\prime (s)ds - \pi g\prime (0)

\biggr) 
.

Since g\prime is an odd function, we have

lim
\lambda \rightarrow 0+

D\prime (\lambda ) = lim
\varepsilon \rightarrow 0+

\int \infty 

\varepsilon 

g\prime (s) - g\prime ( - s)
s

ds - 
\int 
R

sg\prime (s)

1 + s2
ds

= 2 lim
\varepsilon \rightarrow 0+

\int \infty 

\varepsilon 

g\prime (s)

s
ds - 2

\int \infty 

0

sg\prime (s)

1 + s2
ds

= 2 lim
\varepsilon \rightarrow 0+

\int \infty 

\varepsilon 

g\prime (s)

s(1 + s2)
ds < 0,

where we used that g\prime (s) \leq 0 for s > 0 and is not everywhere zero on R+ to obtain
the last inequality.

Finally, (3.26) implies that \scrC is a bounded closed curve. From (3.25), for \scrG (y) =
limx\rightarrow 0+ \scrD (x+ iy) we have

\Re \scrG (y) = \pi g(y) - 
\int 
R

g(s)

1 + (y  - s)2
ds,(3.31)

\Im \scrG (y) =
\int 
R

(y  - s)g(s)

1 + (y  - s)2
ds - p. v.

\int 
R

g(s)

y  - s
ds.(3.32)

Here, \Re z and \Im z stand for the real and imaginary parts of z \in C, respectively.
Using even symmetry of g, from (3.31) and (3.32) it follows that (g0, 0) is a point
of intersection of \scrC with the positive semiaxis (Figure 1b). Even symmetry and
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unimodality of g provides the uniqueness:

 - \Im D(x+ iy) =

\int 
R

\biggl( 
y  - \omega 

x2 + (y  - \omega )2
 - y  - \omega 

(x+ 1)2 + (y  - \omega )2

\biggr) 
g(\omega )d\omega 

=  - 
\int 
R

\biggl( 
\omega 

x2 + \omega 2
 - \omega 

(x+ 1)2 + \omega 2

\biggr) 
g(y + \omega )d\omega 

=  - 
\biggl\{ \int 0

 - \infty 
+

\int \infty 

0

\biggr\} \biggl( 
\omega 

x2 + \omega 2
 - \omega 

(x+ 1)2 + \omega 2

\biggr) 
g(y + \omega )d\omega 

=  - 
\int \infty 

0

\biggl( 
\omega 

x2 + \omega 2
 - \omega 

(x+ 1)2 + \omega 2

\biggr) 
g(y + \omega )d\omega 

+

\int \infty 

0

\biggl( 
\omega 

x2 + \omega 2
 - \omega 

(x+ 1)2 + \omega 2

\biggr) 
g(y  - \omega )d\omega 

=  - 
\int \infty 

0

\omega 
\bigl( 
(x+ 1)2  - x2

\bigr) 
(x2 + \omega 2) ((x+ 1)2 + \omega 2)

(g(y + \omega ) - g(y  - \omega )) d\omega .

(3.33)

Even symmetry of g implies that y = 0 solves \Im D(x + iy) = 0 (cf. (3.33)). For
unimodal g this solution is unique, because in this case g(y+\omega ) - g(y - \omega ) > 0 when
y < 0, \omega > 0 and g(y + \omega ) - g(y  - \omega ) < 0 when y > 0, \omega > 0.

3.4. The resolvent and the Riesz projector. In this section, we compute
the resolvent operator

\bfitR \lambda = (\lambda  - \bfitS )
 - 1

and the Riesz projector for \bfitS .

Lemma 3.10. For \phi \in \scrH +
0 ,

(3.34)

\bfitR \lambda \phi = (\lambda  - \bfitL 1)
 - 1
\phi +KD(\lambda ; \xi , \eta ) (\bfitI  - KD(\lambda )\bfitW )

 - 1
\bfitW 
\Bigl[ \Bigl( 

(\lambda  - \bfitL 1)
 - 1
\phi 
\Bigr) 
(0, 0, \cdot )

\Bigr] 
.

Proof. From the definitions of \bfitR \lambda and \bfitS we have

(3.35) (\lambda  - \bfitL 1  - K\bfitB )\bfitR \lambda \phi = \phi \forall \phi \in \scrH +
0 .

We rewrite (3.35) as

(\lambda  - \bfitL 1)
\Bigl( 
\bfitI  - K (\lambda  - \bfitL 1)

 - 1
\bfitB 
\Bigr) 
\bfitR \lambda \phi = \phi .

Thus, (3.15) gives

\bfitR \lambda \phi = (\lambda  - \bfitL 1)
 - 1
\phi +K (\lambda  - \bfitL 1)

 - 1
\bfitB \bfitR \lambda \phi 

= (\lambda  - \bfitL 1)
 - 1
\phi +KD(\lambda ; \xi , \eta )\bfitW [(\bfitR \lambda \phi )(0, 0, \cdot )] .(3.36)

By setting \xi = \eta = 0 and applying \bfitW to both sides of (3.36), after some algebra we
obtain

(3.37) \bfitW [(\bfitR \lambda \phi )(0, 0, \cdot )] = (\bfitI  - KD(\lambda )\bfitW )
 - 1

\bfitW 
\Bigl[ \Bigl( 

(\lambda  - \bfitL 1)
 - 1
\phi 
\Bigr) 
(0, 0, \cdot )

\Bigr] 
.

By plugging (3.37) into (3.36), we obtain (3.34).
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From (3.34) one can see that the spectrum of \bfitS , as an operator on \scrH +
0 , is the

union of the residual spectrum of \bfitL 1 and point spectrum of \bfitS coming from the factor
(\bfitI  - KD(\lambda )\bfitW )

 - 1
;

\sigma (\bfitS ) = \sigma (\bfitL 1)
\bigcup 
\sigma p(\bfitS ).

Although \{ z \in C :  - 1 \leq \Re z \leq 0\} is a residual spectrum of \bfitL 1, as shown in section
3.3, D(\lambda ; \xi , \eta ) and D(\lambda ) have the analytic continuations from H0 to Ha denoted by
\scrD (\lambda ; \xi , \eta ) and \scrD (\lambda ), respectively. Recall that \scrD (\lambda ; \xi , \eta ) \in \scrY  - 

a when \^g \in \scrX +
a . In a

similar manner, we can verify that (\lambda  - \bfitL 1)
 - 1

has an analytic continuation from H0

to Ha as an operator from \scrH +
a to \scrH  - 

a . Using them, we define the analytic continuation
of \bfitR \lambda from H0 to Ha by
(3.38)

\scrR \lambda \phi = (\lambda  - \bfitL 1)
 - 1
\phi +K\scrD (\lambda ; \xi , \eta ) (\bfitI  - K\scrD (\lambda )\bfitW )

 - 1
\bfitW 
\Bigl[ \Bigl( 

(\lambda  - \bfitL 1)
 - 1
\phi 
\Bigr) 
(0, 0, \cdot )

\Bigr] 
.

This is an operator from \scrH +
a into \scrH  - 

a called the generalized resolvent. Note that the
generalized eigenvalues in Definition 3.4 are the poles of \scrR \lambda . Recall the definitions of
the Banach spaces \scrH \pm 

a and \scrH \pm 
0 (cf. (3.2)) and note that they form Gelfand triplet:

\scrH +
a \subset \scrH +

0 = \scrH  - 
0 \subset \scrH  - 

a .

For the analytic continuation, the domain of \scrR \lambda is restricted to \scrH +
a and the range is

extended to \scrH  - 
a .

The corresponding generalized Riesz projection \scrP \lambda : \scrH +
a \rightarrow \scrH  - 

a is given by

(3.39) \scrP \lambda \phi =
1

2\pi i

\oint 
c

\scrR z\phi dz,

where c is a positively oriented closed curve, which encircles an eigenvalue \lambda but no
other generalized eigenvalues. Note that the generalized eigenfunction corresponding
to \lambda in Definition 3.4 is an element of the image \scrP \lambda . We conclude this section with the
computation of the generalized Riesz projection for the bifurcating eigenvalue \lambda = 0:

(3.40) \scrP 0[\phi ] =
1

2\pi i

\oint 
c

\scrR z\phi dz,

where c is a positively oriented contour around the origin, which does not contain any
other generalized eigenvalues of \bfitS .

Here and in the remainder of this paper, we suppress the subscript of \scrP 0 since
from now on we will only be interested in the bifurcating eigenvalue. Further, suppose
that \mu max, the largest positive eigenvalue of \bfitW , is simple. The Riesz projection for
\bfitW corresponding to \mu max is denoted by

(3.41) \bfitP [\Phi ] =
1

2\pi i

\oint 
C

(z  - \bfitW )
 - 1

\Phi dz,

where C is a positively oriented contour around \mu max, which does not contain any
other eigenvalues of \bfitW .

Lemma 3.11.

(3.42) \scrP [\phi ](\xi , \eta , x) = \rho 1\scrD (0; \xi , \eta )\bfitP [\Phi ](0, 0, x),

where \Phi := lim\lambda \rightarrow 0+ (\lambda  - \bfitL 1)
 - 1
\phi and \rho 1 > 0.
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Proof. First, note that
(3.43)

\scrR \lambda [\phi ](\xi , \eta , x) = \Phi \lambda (\xi , \eta , x) +K\scrD (\lambda ; \xi , \eta ) (\bfitI  - K\scrD (\lambda )\bfitW )
 - 1

\bfitW [\Phi \lambda (0, 0, \cdot )] (x),

where

(3.44) \Phi \lambda := (\lambda  - \bfitL 1)
 - 1
\phi .

Using (3.43), we have

(3.45)

\oint 
c

\scrR z[\phi ](\xi , \eta , x)dz = K

\oint 
c

\scrD (z; \xi , \eta ) (\bfitI  - K\scrD (z)\bfitW )
 - 1

\bfitW [\Phi z(0, 0, \cdot )](x)dz,

where we used
\oint 
c
\Phi z(\xi , \eta , x)dz = 0, because \Phi z(\xi , \eta , x) is regular inside c. By conti-

nuity \scrD \prime (z) \not = 0 on c provided c is sufficiently small. Change the variable in (3.45) to
z := z(\alpha ) such that

(3.46) \alpha = (K\scrD (z))
 - 1
.

Note that

(3.47) \mu max = (Kc\scrD (0))
 - 1
,

as follows from (3.21). We have\oint 
c

\scrR z[\phi ](\xi , \eta , x)dz =  - 
\oint 
C

\scrD (z(\alpha ); \xi , \eta )

\alpha 2\scrD \prime (z(\alpha ))
\bfitW (\bfitI  - \alpha  - 1\bfitW ) - 1[\Phi z(\alpha )](0, 0, x)d\alpha 

=  - 
\oint 
C

\scrD (z(\alpha ); \xi , \eta )

\alpha \scrD \prime (z(\alpha ))
\bfitW (\alpha  - \bfitW ) - 1

\bigl[ 
\Phi z(\alpha )

\bigr] 
(0, 0, x)d\alpha ,

(3.48)

where C stands for the image of c under (3.46). Since \mu max is a simple eigenvalue of

\bfitW , (\alpha  - \bfitW )
 - 1

has a simple pole \alpha = \mu max inside C, while the other factor under
the integral is regular. Thus, (3.48) yields

(3.49)

\oint 
c

\scrR z[\phi ](\xi , \eta , x)dz =
 - \scrD (0; \xi , \eta )

\mu max\scrD \prime (0)
\bfitW 

\oint 
C

(\alpha  - \bfitW )
 - 1

[\Phi ] (0, 0, x)d\alpha .

Noting that the integral on the right-hand side implements the Riesz projection of \bfitW 
for \mu max, we further have

1

2\pi i

\oint 
c

\scrR z[\phi ](\xi , \eta , x)dz =
 - \scrD (0; \xi , \eta )

\mu max\scrD \prime (0)
\bfitW 

1

2\pi i

\oint 
C

(\alpha  - \bfitW )
 - 1

[\Phi ] (0, 0, x)d\alpha 

=
 - \scrD (0; \xi , \eta )

\mu max\scrD \prime (0)
\bfitW \bfitP [\Phi ] (0, 0, x)

= \rho 1\scrD (0; \xi , \eta )\bfitP [\Phi ] (0, 0, x),

(3.50)

where \rho 1 =  - (\scrD \prime (0))
 - 1

> 0 by Lemma 3.9.

3.5. Asymptotic stability. We conclude this section with an application to lin-
ear asymptotic stability of mixing. For K \in [0,Kc), \bfitS has no eigenvalues; nonetheless
mixing is asymptotically stable in the appropriate topology.
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Theorem 3.12. Suppose Assumption 2.1 holds. Then for K \in [0,Kc) the mixing
state is linearly asymptotically stable under the perturbations from \scrH +

a \subset \scrH  - 
a in the

topology of \scrH  - 
a .

Proof. We estimate the semigroups of the linearized systems (2.13), (2.14). Each
of the operators \bfitL j , j \geq 1, generates a continuous semigroup on \scrH +

a \subset \scrH  - 
a in the

topology of \scrH  - 
a :

e\bfitL jt[\phi ](\xi , \eta , x) = \phi (\xi + t, \eta + jt, x), j \geq 1,(3.51)

lim
t\rightarrow \infty 

\| e\bfitL jt[\phi ](t)\| \scrH  - 
a
= 0.

For \bfitL 0, the same statement holds because of the constraint w0(t,\infty , \eta , x) = 0.
Since \bfitB is a bounded operator, \bfitS generates a continuous semigroup expressed by

the Laplace inversion formula for \phi \in \scrH +
a :

e\bfitS t[\phi ](\xi , \eta , x) =
1

2\pi i
lim
c\rightarrow \infty 

\int b+ic

b - ic

e\lambda t\scrR \lambda [\phi ](\xi , \eta , x)d\lambda (3.52)

for some positive b. Let K \in [0,Kc) be arbitrary but fixed. By Theorem 3.6, there
exists \epsilon > 0 such that there are no generalized eigenvalues in \{  - \epsilon \leq \Re z\} and the
generalized resolvent \scrR \lambda is holomorphic in this region. Hence, the integral pass can
be moved to the left half plane, and we obtain

e\bfitS t[\phi ](\xi , \eta , x) =
1

2\pi i
lim
c\rightarrow \infty 

\int  - \epsilon +ic

 - \epsilon  - ic

e\lambda t\scrR \lambda [\phi ](\xi , \eta , x)d\lambda 

=
e - \varepsilon t

2\pi i
lim
c\rightarrow \infty 

\int c

 - c
iei\lambda t\scrR i\lambda  - \epsilon [\phi ](\xi , \eta , x)d\lambda \rightarrow 0

(3.53)

in \scrH  - 
a as t\rightarrow \infty .

4. The pitchfork bifurcation. In this section, we study a pitchfork bifurcation
of mixing underlying the onset of synchronization in the second order KM. This
bifurcation is identified as the point in the parameter space at which a generalized
eigenvalue crosses the imaginary axis. Its analysis requires generalized spectral theory
[2].

4.1. Assumptions and the main result. Throughout this section, we assume
the following:
(A-1) \mu max > 0 is a simple eigenvalue of \bfitW with the corresponding eigenfunction

Vmax;
(A-2) g is an even unimodal probability density function subject to Assumption 2.1.
Assumption (A-1) holds for many common graph sequences encountered in applica-
tions including all-to-all, ER, and SW graphs, to name a few [3]. Assumption (A-2)
covers the most representative case. It can be relaxed. We impose it for simplicity.

Remark 4.1. Suppose \bfitW has negative eigenvalues. Denote the smallest negative
eigenvalue \mu min, and assume that it is simple with the corresponding eigenfunction
Vmin. Then after setting W :=  - W and K :=  - K, we find that the resultant system
satisfies (A), and the analysis below shows that the original system undergoes a
pitchfork bifurcation at K - 

c = (g0\mu min)
 - 1 < 0.

Under these assumptions, as follows from the analysis in section 3 that, at K =
Kc, \bfitS has a simple generalized eigenvalue \lambda = 0. The corresponding eigenfunction is
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(cf. (3.19))

(4.1) v0 = Kc lim
\lambda \rightarrow 0+

D(\lambda (\mu max); \xi , \eta )Vmax \in \scrH  - 
a .

Finally, we postulate the existence of a one-dimensional center manifold for the
vector field in (2.12) for K = Kc. As we already stated in the introduction, the proof
of this fact is a very technical problem, which is not addressed in this paper. The
proof of existence of a center manifold in the classical KM can be found in [1].

In the remainder of this section, we perform a center manifold reduction and show
that at K = Kc, the system undergoes a pitchfork bifurcation. The branch of stable
steady state solutions bifurcating from mixing is given in terms of the corresponding
values of the order parameter:

(4.2) | h\infty (x)| = K - 2
c (\mu max\rho 2\rho 3(x))

 - 1/2
\sqrt{} 
K  - Kc +O(K  - Kc),

where \rho 2 > 0 and \rho 3(x) are as defined below. In many applications, \rho 3(x) \equiv 1 (see
Remark 4.3 for more details).

4.2. The center manifold reduction. The existence of the one-dimensional
center manifold at K = Kc implies the following Ansatz for the solutions of (2.12)
with K = Kc + \epsilon 2, 0 < \epsilon \ll 1:

w1 = \scrP w1 + (\bfitI  - \scrP )w1 = \epsilon c(t)v0 +O(\epsilon 2),(4.3)

wk = qk(w1), k \in N1 := \{ 0\} 
\bigcup 

\{ 2, 3, . . . \} ,(4.4)

where \scrP is the Riesz projector (cf. (3.40)), c(t) is the function determining the location
on the slow manifold, and qk, k \in N1, are smooth functions such that qk(0) = q\prime k(0) =
0.

Using the Ansatz (4.3) and (4.4), below we derive (4.2). Let K = Kc + \epsilon 2, and
rewrite equations for w0, w1, and w2 in (2.12) as follows:

\partial tw0 = \partial \xi 0w0  - Ke - \xi 0
\Bigl( 
h(t, x)w - 1  - h(t, x)w1

\Bigr) 
,(4.5)

\partial tw1 = \bfitS 0w1 + \epsilon 2
\bigl( 
1 - e - \xi 1

\bigr) 
h(t, x)\^g(\eta )(4.6)

+ K
\bigl( 
1 - e - \xi 1

\bigr) \Bigl( 
h(t, x)w0  - h(t, x)w2

\Bigr) 
,

\partial tw2 = \partial \xi 2w2 + 2\partial \eta w2 +K(2 - e - \xi 2)
\Bigl( 
h(t, x)w1  - h(t, x)w3

\Bigr) 
,(4.7)

where \xi i, i \in N, are as defined in (2.9), and \bfitS 0 is defined by setting K = Kc in the
expression for \bfitS (cf. (2.13)). In particular,

(4.8) \bfitS w1 = \bfitS 0w1 + \epsilon 2
\bigl( 
1 - e - \xi 1

\bigr) 
h(t, x)\^g(\eta ).
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Lemma 4.2. Let

P0(\lambda ; \xi 1, \omega ) =
e - \xi 1  - 1

\lambda  - i\omega 
 - e - \xi 1  - 1

\lambda + i\omega 
 - e - \xi 1  - 1

\lambda + 1 - i\omega 
 - 1

2

(e - \xi 1  - 1)2

\lambda + 1 - i\omega 
(4.9)

+
e - \xi 1  - 1

\lambda + 1 + i\omega 
 - 1

2

(e - \xi 1  - 1)2

\lambda + 1 + i\omega 
,

P2(\lambda ; \xi 1, \omega ) =
1

(\lambda  - i\omega )2
+

1

2

(e - \xi 1 + 1)2

(\lambda + 1 - i\omega )2
+

1

\lambda  - i\omega 
 - 1

\lambda + 1 - i\omega 
(4.10)

 - e - \xi 1 + 1

\lambda  - i\omega 
 - 2(e - \xi 1 + 1)

\lambda + 1/2 - i\omega 
+

3(e - \xi 1 + 1)

\lambda + 1 - i\omega 
,

P1(\lambda ; \xi 1, \eta ) =

\int 
R
(\lambda  - \bfitL 1)

 - 1 \bigl[ \bigl( 
1 - e - \xi 1

\bigr) 
(P0  - P2) e

i\eta \omega 
\bigr] 
g(\omega )d\omega .(4.11)

On the center manifold, we have

h(t, x) = \epsilon c(t)Vmax(x) +O(\epsilon 2),(4.12)

w0 = K2
c \epsilon 

2| c(t)| 2| Vmax| 2 lim
\lambda \rightarrow 0+

\int 
R
P0(\lambda ; \xi 1, \omega )e

i\eta \omega g(\omega )d\omega +O(\epsilon 3),(4.13)

w2 = K2
c \epsilon 

2c(t)2V 2
max lim

\lambda \rightarrow 0+

\int 
R
P2(\lambda ; \xi 1, \omega )e

i\eta \omega g(\omega )d\omega +O(\epsilon 3).(4.14)

In addition,

(4.15) \rho 2 =  - lim
\lambda \rightarrow 0+

P1(\lambda ; 0, 0) > 0.

The number \rho 2 is determined solely by g(\omega ). Its expression will be given at the
end of section 4.3. With Lemma 4.2 in hand, we now turn to the center manifold
reduction. The proof of the lemma is given in the next subsection.

We want to project both sides of (4.6) onto the eigenspace spanned by v0. To
this end, we note

(4.16) \scrP [\partial tw1] = \epsilon \.c(t)v0 and \scrP [\bfitS 0w1] = 0,

as follows from (4.3). Further, from Lemma 3.11,

\scrP 
\bigl[ \bigl( 
1 - e - \xi 1

\bigr) 
h(t, x)\^g(\eta )

\bigr] 
(4.17)

= \rho 1 lim
\lambda \rightarrow 0+

\biggl\{ 
\scrD (\lambda ; \xi 1, \eta ) \bfitP 

\Bigl[ 
(\lambda  - \bfitL 1)

 - 1 \bigl( 
1 - e - \xi 1

\bigr) 
\^g(\eta )h(t, x)

\Bigr] \bigm| \bigm| \bigm| 
\xi 1=\eta =0

\biggr\} 
.

By the first line in (3.15),

(4.18) (\lambda  - \bfitL 1)
 - 1 \bigl( 

1 - e - \xi 1
\bigr) 
\^g(\eta ) = \scrD (\lambda ; \xi 1, \eta ).

After plugging (4.18) and (4.12) into (4.17), we have

\scrP 
\bigl[ \bigl( 
1 - e - \xi 1

\bigr) 
h(t, x)\^g(\eta )

\bigr] 
= \rho 1 lim

\lambda \rightarrow 0+

\Bigl\{ 
\scrD (\lambda ; \xi 1, \eta )\bfitP [\scrD (\lambda ; \xi 1, \eta )h(t, x)]\xi 1=\eta =0

\Bigr\} 
= \rho 1 lim

\lambda \rightarrow 0+
\{ \scrD (\lambda ; \xi 1, \eta )\scrD (\lambda )\} \bfitP [\epsilon c(t)Vmax] (0, 0, x) +O(\epsilon 2)

= \epsilon \rho 1c(t)Vmax(x) lim
\lambda \rightarrow 0+

\{ \scrD (\lambda ; \xi 1, \eta )\scrD (\lambda )\} +O(\epsilon 2)

=
\epsilon \rho 1c(t)v0
K2
c\mu max

+O(\epsilon 2),

(4.19)
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where we used (3.47) and (4.1) to obtain the last equality.
Finally, we turn to the last group of terms of the right-hand side of (4.6). By

Lemma 4.2,

h(t, x)w0  - h(t, x)w2 = \epsilon 3K2
c c(t)| c(t)| 2Vmax| Vmax| 2

\times lim
\lambda \rightarrow 0+

\int 
R
[P0  - P2] (\lambda ; \xi 1, \omega )e

i\eta \omega g(\omega )d\omega +O(\epsilon 4).
(4.20)

Further,

(\lambda  - \bfitL 1)
 - 1 \bigl[ 

(1 - e - \xi 1)
\bigl( 
hw0  - hw2

\bigr) \bigr] 
= \epsilon 3K2

c c(t)| c(t)| 2Vmax| Vmax| 2 lim
\lambda \rightarrow 0+

P1(\lambda ; \xi 1, \eta )

+O(\epsilon 4),

(4.21)

where P1 is defined as in (4.11). This yields

\scrP 
\bigl[ 
(1 - e - \xi 1)

\bigl( 
hw0  - hw2

\bigr) \bigr] 
= \rho 1 lim

\lambda \rightarrow 0+

\biggl\{ 
\scrD (\lambda ; \xi 1, \eta )\bfitP 

\Bigl[ 
(\lambda  - \bfitL 1)

 - 1 \bigl( 
1 - e - \xi 1

\bigr) \bigl( 
hw0  - \=hw2

\bigr) \Bigr] 
\xi 1=\eta =0

\biggr\} 
= \epsilon 3\rho 1K

2
c c(t)| c(t)| 2 lim

\lambda \rightarrow 0+

\bigl\{ 
\scrD (\lambda ; \xi 1, \eta )\bfitP 

\bigl[ 
Vmax| Vmax| 2

\bigr] 
P1(\lambda ; 0, 0)

\bigr\} 
+O(\epsilon 4)

= \epsilon 3\rho 1Kcc(t)| c(t)| 2v0
\bfitP 
\bigl[ 
Vmax| Vmax| 2

\bigr] 
Vmax

lim
\lambda \rightarrow 0+

P1(\lambda ; 0, 0) +O(\epsilon 4).

(4.22)

By projecting both sides of (4.6) onto the subspace spanned by v0 and using
(4.16), (4.19), and (4.22), we obtain

\epsilon \.cv0 =
\epsilon 3\rho 1

K2
c\mu max

c(t)v0 + \epsilon 3K2
c \rho 1c(t)| c(t)| 2v0

\bfitP [Vmax| Vmax| 2]
Vmax

lim
\lambda \rightarrow 0+

P1(\lambda ; 0, 0) +O(\epsilon 4).

This yields
(4.23)

\.c =
\epsilon 2\rho 1

K2
c\mu max

c(t)

\biggl( 
1 +K4

c\mu max lim
\lambda \rightarrow 0+

P1(\lambda ; 0, 0)
\bfitP [Vmax| Vmax| 2]

Vmax
| c(t)| 2

\biggr) 
+O(\epsilon 3).

Equation (4.23) describes the dynamics on the center manifold. Recalling that h(t, x) =
\epsilon c(t)Vmax + O(\epsilon 2) from Lemma 4.2, we rewrite this equation to the equation of the
local order parameter h = h(t, x) as

dh

dt
=

\rho 1
K2
c\mu max

h

\biggl( 
\epsilon 2 +K4

c\mu max lim
\lambda \rightarrow 0+

P1(\lambda ; 0, 0)
\bfitP [Vmax| Vmax| 2]
Vmax| Vmax| 2

| h| 2
\biggr) 
+O(\epsilon 4)

=
\rho 1

K2
c\mu max

h
\bigl( 
\epsilon 2  - K4

c\mu max\rho 2\rho 3| h| 2
\bigr) 
+O(\epsilon 4),(4.24)

where \rho 2 > 0 is defined as in (4.15) and \rho 3 is defined by

(4.25) \rho 3(x) :=
\bfitP [Vmax(x)| Vmax(x)| 2]
Vmax(x)| Vmax(x)| 2

.

Equation (4.24) has a fixed point given by (4.2). It undergoes a pitchfork bifurcation
at K = Kc. Since \rho 1 and \rho 2 are positive, the fixed point is stable when \rho 3 > 0 (see
below).
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Remark 4.3. In many applications, a graphon is of the form W (x, y) = G(x - y)
such that G(x) = G( - x). For instance, the family of SW graphs is defined by the
graphon of this type [3, 9]. In this case, W admits Fourier series expansion

W (x, y) =
\sum 
k\in Z

cke
2\pi ik(x - y), ck = c - k \in R,

\sum 
k\in Z

c2k <\infty .(4.26)

Then, eigenvalues of the operator \bfitW are the coefficients of the expansion. The largest
eigenvalue is given by

(4.27) \mu max = cm := sup\{ ck : k \in Z\} ,

and the corresponding eigenfunction is Vmax = e2\pi imx [4]. In this case, \rho 3 = 1. For
many important graphs such as ER and SW graphs, \mu max = c0 and Vmax = \rho 3 = 1.
In this case, the stable branch of equilibria is given through the values of the order
parameter

(4.28) | h\infty (x)| = K - 2
c (\mu max\rho 2)

 - 1/2
\sqrt{} 
K  - Kc +O(K  - Kc).

4.3. Proof of Lemma 4.2. By plugging (4.3) and (4.4) into (4.6) and recalling
that \bfitS 0v0 = 0, we immediately get

(4.29) \partial tw1 = O(\epsilon 2).

From this, (4.3), and (4.4), we further observe that

(4.30) \partial twk = q\prime k(w1)\partial tw1 = O(\epsilon 3), k \in N1.

From (4.3) and the equation for h in (2.12), we have

h(t, x) =

\int 
I

W (x, y)(\epsilon c(t)v0(0, 0, y) +O(\epsilon 2))dy

= \epsilon c(t)Kc lim
\lambda \rightarrow 0+

D(\lambda )

\int 
I

W (x, y)Vmax(y)dy +O(\epsilon 2)

= \epsilon c(t)Kc\mu max lim
\lambda \rightarrow 0+

D(\lambda )Vmax(x) +O(\epsilon 2)

= \epsilon c(t)Vmax(x) +O(\epsilon 2).

This shows (4.12).
Next we turn to the equation for w2:

\partial tw2 = \partial \xi 2w2 + 2\partial \eta w2 +K(2 - e - \xi 2)(hw1  - hw3).

Since \partial tw2 and hw3 are of order O(\epsilon 3), we have

(4.31) (\partial \xi 2 + 2\partial \eta )w2 =  - Kc\epsilon 
2c(t)2(2 - e - \xi 2)Vmaxv0 +O(\epsilon 3).

Lemma 4.4. On the center manifold, w2 is expressed as

w2 = K2
c \epsilon 

2c(t)2V 2
max

\times lim
\lambda \rightarrow 0+

\int 
R

\Bigl( 1

(\lambda  - i\omega )2
+

1

2

e - 2\xi 2

(\lambda + 1 - i\omega )2
+

1

\lambda  - i\omega 
 - 1

\lambda + 1 - i\omega 

 - e - \xi 2

\lambda  - i\omega 
 - 2e - \xi 2

\lambda + 1/2 - i\omega 
+

3e - \xi 2

\lambda + 1 - i\omega 

\Bigr) 
ei\eta \omega g(\omega )d\omega +O(\epsilon 3).(4.32)
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Proof. A straightforward substitution shows that (4.32) satisfies (4.31) up to
O(\epsilon )3.

By the relation e - \xi 2 = e - \xi 1 + 1 derived from (2.9), we obtain (4.14) with (4.10).
Next, the equation for w0 is given by

\partial tw0 = \partial \xi 0w0  - Ke - \xi 0
\bigl( 
hw - 1  - hw1

\bigr) 
.

Lemma 4.5. On the center manifold, w0 is expressed as

w0 = K2
c \epsilon 

2| c(t)| 2 \cdot | Vmax| 2

\times lim
\lambda \rightarrow 0+

\int 
R

\Bigl( e - \xi 0

\lambda  - i\omega 
 - e - \xi 0

\lambda + i\omega 
 - e - \xi 0 + e - 2\xi 0/2

\lambda + 1 - i\omega 
+
e - \xi 0  - e - 2\xi 0/2

\lambda + 1 + i\omega 

\Bigr) 
ei\eta \omega g(\omega )d\omega 

+O(\epsilon 3).(4.33)

Proof. By using w - 1(t, \xi  - 1, \eta , x) = w1(t, \xi  - 1, - \eta , x) and \partial w0/\partial t = O(\epsilon 3), we get

\partial w0

\partial \xi 0
= Kce

 - \xi 0 \cdot \epsilon 2| c(t)| 2
\Bigl( 
Vmaxv0(\xi  - 1, - \eta , x) - Vmaxv0(\xi 1, \eta , x)

\Bigr) 
+O(\epsilon 3)

= K2
c \epsilon 

2| c(t)| 2 \cdot | Vmax| 2e - \xi 0

\times lim
\lambda \rightarrow 0+

\int 
R

\Bigl( 1

\lambda + i\omega 
 - 1

\lambda  - i\omega 
 - 1 - e - \xi 0

\lambda + 1 + i\omega 
+

1 + e - \xi 0

\lambda + 1 - i\omega 

\Bigr) 
ei\eta \omega g(\omega )d\omega +O(\epsilon 3),

where the relation e - \xi \pm 1 = 1 \pm e - \xi 0 from (2.9) is used to write the right-hand
side as a function of \xi 0. Integrating both sides in \xi 0 with the boundary condition
w0(t,\infty , \eta , x) = 0 verifies the lemma.

The relation e - \xi 1 = 1 + e - \xi 0 gives (4.13) with (4.9).
Finally, we prove (4.15). Recall that

P1(\lambda ; \xi 1, \eta ) :=

\int 
R
(\lambda  - \bfitL 1)

 - 1 \bigl[ \bigl( 
1 - e - \xi 1

\bigr) 
(P0  - P2) e

i\eta \omega 
\bigr] 
g(\omega )d\omega .

By (3.6),

(\lambda  - \bfitL 1)
 - 1 \bigl[ \bigl( 

1 - e - \xi 1
\bigr) 
(P0  - P2) e

i\eta \omega 
\bigr] 
(\xi 1, \eta , x)

=

\int 
R2

ei(\xi 1\zeta +\eta \widetilde \omega )
\lambda  - i\zeta  - i\widetilde \omega \scrF [(1 - e - \xi 1) (P0  - P2) e

i\eta \omega ](\zeta , \widetilde \omega )d\zeta d\widetilde \omega .
Here, \scrF [(1  - e - \xi 1) (P0  - P2) e

i\eta \omega ] is the Fourier transform with respect to \xi 1 and \eta 
with parameters \lambda , \omega . Thus,

(\lambda  - \bfitL 1)
 - 1 \bigl[ \bigl( 

1 - e - \xi 1
\bigr) 
(P0  - P2) e

i\eta \omega 
\bigr] 
(\xi 1, \eta , x)

=

\int 
R2

ei(\xi 1\zeta +\eta \widetilde \omega )
\lambda  - i\zeta  - i\widetilde \omega \scrF [(1 - e - \xi 1) (P0  - P2)](\zeta ) \cdot \delta (\widetilde \omega  - \omega )d\zeta d\widetilde \omega 

=

\int 
R

ei(\xi 1\zeta +\eta \widetilde \omega )
\lambda  - i\zeta  - i\omega 

\scrF [(1 - e - \xi 1) (P0  - P2)](\zeta )d\zeta .

Hence, we obtain

P1(\lambda ; \xi 1, \eta ) =

\int 
R2

ei(\xi 1\zeta +\eta \omega )

\lambda  - i\zeta  - i\omega 
\scrF [(1 - e - \xi 1) (P0  - P2)](\zeta )g(\omega )d\zeta d\omega ,

P1(\lambda ; 0, 0) =

\int 
R2

1

\lambda  - i\zeta  - i\omega 
\scrF [(1 - e - \xi 1) (P0  - P2)](\zeta )g(\omega )d\zeta d\omega ,
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Fig. 2. The bifurcation diagrams for the second order KM on ER (a) and SW (b) random
graphs. In these experiments, the intrinsic frequencies are taken from the normal distribution with
mean 0 and standard deviation equal to 0.3. The parameters used for generating ER and SW graphs
are p = 0.5 for the former and p = 0.1 and r = 0.3 for the latter. The plot in (a) shows a pitchfork
bifurcation at Kc > 0. The bifurcation diagram for the small-world family shows two bifurcations
at K+

c > 0 and K - 
c < 0. The latter features a spatially heterogeneous pattern bifurcating from

mixing because the eigenfunction of \bfitW corresponding to the smallest negative eigenvalue \mu min is
not constant (see text for details). The red dashed lines indicate pitchfork bifurcations identified
analytically. These values are in good agreement with the results of numerical simulations. (Color
available online.)

where \scrF [(1  - e - \xi 1) (P0  - P2)] is the Fourier transform with respect to \xi 1. Here
(1  - e - \xi 1) (P0  - P2) is a linear combination of 1, e - \xi 1 , e - 2\xi 1 , e - 3\xi 1 . Hence, \scrF [(1  - 
e - \xi 1) (P0  - P2)] is a linear combination of \delta (\zeta ), \delta (\zeta  - i), \delta (\zeta  - 2i), \delta (\zeta  - 3i). By inte-
grating with respect to \zeta , after a straightforward albeit lengthy calculation we obtain

P1(\lambda ; 0, 0) =

\int 
R

\biggl( 
1

(\lambda  - i\omega )(\lambda + i\omega )
 - 1

(\lambda  - i\omega )3

\biggr) 
g(\omega )d\omega 

+
3

2

\int 
R

\biggl( 
1

\lambda  - i\omega 
 - 1

\lambda + i\omega 

\biggr) 
g(\omega )d\omega 

 - 
\int 
R

\biggl( 
12i\omega 7 + 4\omega 6 + 43i\omega 5 + 13\omega 4 + 58i\omega 3 + 25\omega 2 + 21i\omega + 10

(1 + \omega 2)3(1 + 4\omega 2)

\biggr) 
g(\omega )d\omega .

Since g is an even function,

P1(\lambda ; 0, 0) =

\int 
R

1

\lambda  - i\omega 

g(\omega )

i\omega 
d\omega +

1

2

\int 
R

1

\lambda  - i\omega 
g\prime \prime (\omega )d\omega 

 - 
\int 
R

\biggl( 
4\omega 6 + 13\omega 4 + 25\omega 2 + 10

(1 + \omega 2)3(1 + 4\omega 2)

\biggr) 
g(\omega )d\omega .

Further, the Sokhotski--Plemelj formula [12] shows that

lim
\lambda \rightarrow 0+

P1(\lambda ; 0, 0) =
1

2
\pi g\prime \prime (0) + 2 lim

\varepsilon \rightarrow 0

\int \infty 

\varepsilon 

g\prime (\omega )

w
d\omega 

 - 
\int 
R

\biggl( 
4\omega 6 + 13\omega 4 + 25\omega 2 + 10

(1 + \omega 2)3(1 + 4\omega 2)

\biggr) 
g(\omega )d\omega ,

which is a negative number, and \rho 2 is positive.

5. Examples. In this section, we apply the theory developed in the previous
sections to identify the pitchfork bifurcations in the KM with inertia on Erd\H os--R\'enyi
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(ER) and small-world (SW) graphs. The eigenvalues and eigenfunctions of the integral
operator \bfitW corresponding to these graphs were computed in our previous work [3].
Below, we will use this information without any further explanation. The interested
reader is referred to [3] for more details.

5.1. ER graphs. An ER graph G(n, p) is a graph on n nodes, for which the
probability of two given nodes being connected by an edge is equal to p \in (0, 1).
The edges between distinct pairs of nodes are assigned independently. G(n, p) is a
convergent sequence of graphs, whose limit is given by a constant function W \equiv p.
The largest eigenvalue of \bfitW is \mu max = p, and the corresponding eigenfunction is
constant Vmax \equiv 1 (cf. [3]). Thus, there is a pitchfork bifurcation at

Kc =
1

pg0
,

where g0 is defined as in (3.23). The bifurcation diagram in Figure 2b shows that in
the vicinity of Kc the order parameter undergoes a sharp transition from very small
positive values to the values close to 0.5. This corresponds to the loss of stability of
mixing and the onset of synchronization. Since Vmax is constant, the unstable mode
is spatially homogeneous. With minor modifications the analysis of the pitchfork
bifurcation can be extended to sparse ER graphs [10].

5.2. SW graphs. There are two types of random connections in an SW graph:
the short-range and the long-range. The former are assigned with probability 1  - p,
and the latter are assigned with probability p \in (0, 1/2). The connectivity is defined
by another parameter r \in (0, 1/2) (see [9] for the exact definition the SW graph
sequence used here). SW graphs in [9] are defined as W-random graphs with the
limiting graphon

W (x, y) =

\biggl\{ 
1 - p, d(x, y) < r,
p otherwise,

where d(x, y) = min\{ | x  - y| , 1  - | x  - y| \} . The eigenvalues and the corresponding
eigenfunctions of \bfitW for the SW graphs can be found in [3]. In particular, the largest
positive eigenvalue \mu max = 2r+p - 4rp is simple, and the corresponding eigenfunction
Vmax \equiv 1. This yields a pitchfork bifurcation at K+

c = (g0(2r + p - 4rp))
 - 1
.

In addition, \bfitW has negative eigenvalues. As was explained in Remark 4.1, if
the smallest negative eigenvalue \mu min is simple, then there is another bifurcation at
K - 
c = (g0\mu min)

 - 1
. The value of \mu min has the following form:

\mu min = (\pi k\ast ) - 1(1 - 2p) sin (2\pi k\ast )

for some integer k\ast \not = 0, which is not available analytically in general. The cor-
responding eigenfunction Vmin = e2\pi ik

\ast x is no longer constant. This implies that in
contrast to the bifurcation at K+

c , the steady state bifurcating from mixing at K - 
c < 0

is heterogeneous (Figure 2b). In [4], a bifurcation for a nonconstant eigenfunction and
the corresponding twisted state are studied for the classical KM in detail.

Acknowledgment. The authors thank Matthew Mizuhara for providing numer-
ical bifurcation diagrams.
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