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Abstract. We derive the equations governing the linear stability of Kerr–Newman
spacetime to coupled electromagnetic-gravitational perturbations. The equations gen-
eralize the celebrated Teukolsky equation for curvature perturbations of Kerr, and the
Regge–Wheeler equation for metric perturbations of Reissner–Nordström. Because of the
“apparent indissolubility of the coupling between the spin-1 and spin-2 fields”, as put
by Chandrasekhar, the stability of Kerr–Newman spacetime cannot be obtained through
standard decomposition in modes. Due to the impossibility to decouple the modes of the
gravitational and electromagnetic fields, the equations governing the linear stability of

Kerr–Newman have not been previously derived. Using a tensorial approach that was
applied to Kerr, we produce a set of generalized Regge–Wheeler equations for perturba-
tions of Kerr–Newman, which are suitable for the study of linearized stability by physical
space methods. The physical space analysis overcomes the issue of coupling of spin-1 and
spin-2 fields and represents the first step towards an analytical proof of the stability of
the Kerr–Newman black hole.
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1. Introduction

One of the fundamental problems in General Relativity is to understand the final
state of evolution of initial data for the Einstein equation. Through gravitational
collapse and dispersion of gravitational waves, the geometry to which solutions to
the Einstein equation are expected to relax outside the event horizon of a black
hole is the one given by the known stationary and axisymmetric explicit solutions:
the Kerr and the Kerr–Newman black hole.
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According to General Relativity, the interaction between gravitational and elec-
tromagnetic fields in a spacetime is governed by the Einstein–Maxwell equation:

Ricμν(g) = 2FμλF
λ

ν − 1
2
gμνF

αβFαβ , D[μFνλ] = 0, DμFμν = 0, (1.1)

where Ric denotes the Ricci curvature of the metric, D its covariant derivative and
F is an antisymmetric 2-tensor, called the electromagnetic tensor, which satisfies
the Maxwell equations.

The Kerr–Newman metric [30] is the most general known explicit black hole
solution to the Einstein–Maxwell equation (1.1), and it is a 3-parameter family
which describes the gravitational field around an isolated rotating charged black hole
of mass M , angular momentum Ma and electric charge Q, within the subextremal
range

√
a2 +Q2 < M . Its expression in Boyer–Lindquist coordinates (t, r, θ, ϕ) is

given by

gM,a,Q = − Δ
|q|2 (dt− a sin2 θdϕ)2 +

|q|2
Δ
dr2 + |q|2dθ2 +

sin2 θ

|q|2 (adt− (r2 + a2)dϕ)2,

where

Δ = r2 − 2Mr + a2 +Q2, |q|2 = r2 + a2 cos2 θ.

The Kerr–Newman metric generalizes the Reissner–Nordström s̈olution (for a =
0), and also the Kerr (for Q = 0) and Schwarzschild metric (for Q = a = 0),
which are solutions to the Einstein vacuum equation. As such, the Kerr–Newman
spacetime plays a fundamental role in describing the final state of evolution in
General Relativity.

As part of the resolution of the description of the final state, we focus on the
issue of stability of the Kerr–Newman black hole, which consists in showing that
solutions to the Einstein equation which are given as small perturbations of the
initial data of such a black hole asymptotically converge in time to a member of the
Kerr–Newman family. The stability of the Kerr–Newman family can be analyzed
at different levels:

(1) the linear stability consists in the analysis of the linearized Einstein–Maxwell
equation around the background metric gM,a,Q. It can be further divided into
(a) mode stability and (b) full linear stability.

(2) the nonlinear stability consists in the analysis of the full Einstein–Maxwell equa-
tion for a perturbation of a member of the Kerr–Newman family.

The mode analysis (a) of the Einstein equation consists in analyzing only special
solutions, the so-called mode solutions. In the simplified case of the linear wave
equation

�gM,a,Qψ = 0, (1.2)
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where �gM,a,Q is the D’Alembertian associated to the Kerr–Newman metric, mode
solutions are solutions of the separated form

ψ(r, t, θ, φ) = e−iωteimφR(r)S(θ), (1.3)

where ω ∈ C is the time frequency and m is the azimuthal mode. Because of the
integrability of the geodesic flow in the Kerr–Newman metric, functions of the form
(1.3) are solutions to the wave equation (1.2), as long as R(r) satisfies a radial ODE
and S(θ) satisfies an angular ODE (which defines spheroidal harmonics Sωm�). The
mode stability consists in proving that solutions of the form (1.3) with finite initial
energy do not have imaginary part of ω which is positive, i.e. do not exponentially
grow in time. The mode stability of Schwarzschild, Reissner–Nordström and Kerr
black hole was obtained as a combination of many results in black hole perturbation
theory by the physics community in the 1970s and 1980s, see [3, 4, 32, 37–39].

Particularly relevant are the case of axial metric perturbations of Schwarzschild,
which are governed by the so-called Regge–Wheeler equation [32], of the form

�gMψ =
4
r2

(
1 − 2M

r

)
ψ. (1.4)

Observe that the potential on the right-hand side of (1.4) is positive in the exterior
of the black hole. Inspired by (1.4), we denote by Regge–Wheeler equation any
equation of the form �gψ − V ψ = 0 for a positive real potential V .

In the case of gravitational perturbations of Kerr, in order to obtain an equation
decoupled from any other component, one needs to consider perturbations at the
level of curvature. The extreme null Weyl scalars then satisfy the Teukolsky equation
of spin s = ±2 and s = ±1 for gravitational and electromagnetic perturbations of
Kerr, respectively [37], of the form

T [s](ψ) := �gM,aψ
[s] +

2s
|q|2 (r −M)∂rψ

[s] +
2s
|q|2

(
a(r −M)

Δ
+ i

cos θ
sin2 θ

)
∂ϕψ

[s]

+
2s
|q|2

(
M(r2 − a2)

Δ
− r − ia cos θ

)
∂tψ

[s] − s

|q|2 (s cot2 θ − 1)ψ[s] = 0,

(1.5)

which is also a separable equation. In [32, 38] (see also [33, 36]), the mode analysis of
the Regge–Wheeler and the Teukolsky equation was proved, and a transformation
theory [4] (now known as Chandrasekhar transformation) was discovered to connect
the metric perturbations approach to the curvature perturbations one. The results
in the mode analysis are collected in the monumental book by Chandrasekhar [4].

Nevertheless, mode stability for Eq. (1.2) is still consistent with the unbounded-
ness of (finite initial energy) solutions as the time increases, i.e. it does not exclude
the possibility that

lim sup
t→∞

ψ(r, t, θ, φ) = ∞. (1.6)
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This is because statements at the level of the single mode solutions do not imply
boundedness statements for the infinite superposition of those modes. The full linear
stability (b) consists in proving a uniform bound for a general solution ψ of (1.2),
and therefore excluding (1.6).

Extensive progress has been obtained in the last 15 years which allowed to go
beyond the mode analysis in Kerr spacetime, tackling the full linear stability (b) for
the linear wave equation. A robust geometric interpretation of the redshift effect
[8], a physical space analysis of the trapping region and the superradiance [11],
a hierarchy of r-weighted decay [9] all contributed to a complete understanding
of the boundedness of solutions to the linear wave equation, finally proving that
(1.6) indeed does not happen. The complete resolution of boundedness and decay
statements for the linear wave equation (1.2) was obtained for slowly rotating Kerr
solutions [10] and then for the full subextremal range |a| < M [12] (see also [2, 35]).
Similarly, proofs of boundedness and decay statements for the Teukolsky equation
have been obtained in Schwarzschild [6] (see also [24–27]) in Reissner–Nordström
[14, 16] and in Kerr, for slowly rotating [7, 29] and very recently in the full subex-
tremal range [34]. These results have been used to obtain proof of the full linear
stability of Schwarzschild [6], Reissner–Nordström, for small charge [17] and then
in the full subextremal range [15], and for slowly rotating Kerr [1, 21]. Concerning
the full nonlinear stability of black hole solutions to the Einstein equation, the only
known result is the proof of nonlinear stability of Schwarzschild under the class of
symmetry of axially symmetric polarized perturbations [28]. In the presence of a
positive cosmological constant, the Kerr–de Sitter and the Kerr–Newman–de Sitter
family with small angular momentum have also been proved to be nonlinearly stable
[22, 23].

Quite strikingly, the Kerr–Newman solution stands up as genuinely different
from the similar cases of Kerr or Reissner–Nordström, even in the simplest possible
form of stability, i.e. the mode stability as studied by the black hole perturba-
tion theory community. As stated by Chandrasekhar in [4, Sec. 111], “the methods
that have proved to be so successful in treating the gravitational perturbations of
the Kerr spacetime do not seem to be applicable (nor susceptible to easy gener-
alizations) for treating the coupled electromagnetic-gravitational perturbations of
the Kerr–Newman spacetime.” The techniques applied in those early works, which
relied on decomposition in frequency modes of perturbations of the solutions, failed
to be extended to the case of Kerr–Newman spacetime, despite the manifest sim-
ilarity of the metric to the Kerr case. Again as pointed out by Chandrasekhar in
[4, Sec. 111], “the principal obstacle is in finding separated equation” and in the
“apparent indissolubility of the coupling between the spin-1 and spin-2 fields in
the perturbed spacetime”. Following the same procedure as in the case of Kerr
or Reissner–Nordström, one reaches a point where the equations cannot be decou-
pled or separated any further. In [4, p. 583], Chandrasekhar gives an explanation
of “why the system of equations proves intractable in contrast to apparently sim-
ilar system of equations encountered in the treatment of the perturbations of the
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Reissner–Nordström and Kerr spacetimes”. The reason has to do with the inter-
action of the spin-1 and spin-2 fields in a non-spherically symmetric background.
We summarize his argument here and describe how we intend to overcome such
difficulties towards an analytical proof of the stability of the Kerr–Newman black
hole.

1.1. Why the analytical proof of mode stability

for Kerr–Newman fails

Being the most general explicit black hole solution of the Einstein equation coupled
with matter, the Kerr–Newman spacetime has been at the center of analytical and
numerical research for decades. Numerical works strongly support the mode stability
of Kerr–Newman spacetime [13, 31], and the Kerr–Newman metric is expected to be
stable as a solution to the fully nonlinear Einstein–Maxwell equation. Nevertheless,
an analytical proof of even its mode stability is missing, and the state of the art on
this problem is pretty much the same as described by Chandrasekhar [4] in 1983.
We now explain what are the main issues.

The Einstein–Maxwell equation (1.1) governs the interaction between the gravi-
tational radiation, encoded in the left-hand side of the equation (i.e. the curvature),
and the electromagnetic radiation, encoded in the right-hand side (i.e. the elec-
tromagnetic tensor). From the study of perturbations of Kerr, we know that the
gravitational and the electromagnetic radiation are transported by a spin-2 field
ψ[2] and a spin-1 ψ[1], respectively. This is more precisely related to the fact that
the extreme null component of the Weyl curvature is a 2-tensor on the sphere (θ, ϕ),
while the extreme null component of the electromagnetic tensor is a 1-tensor on the
sphere.

When taken independently, the gravitational and electromagnetic perturbations
of Kerr satisfy the Teukolsky equation (1.5) for spin s = ±2 or s = ±1, respec-
tively. On the other hand, when considering coupled electromagnetic-gravitational
perturbations of Kerr–Newman, one should expect a system of coupled Teukolsky
equations, as in the case of Reissner–Nordström [14, 16], of the schematic form:

T [1](ψ[1]) = div(ψ[2]),

T [2](ψ[2]) = ∇⊗̂(ψ[1]),
(1.7)

where the angular operators on the right-hand side relate 1-tensors and 2-tensors.
More precisely, if ψ[1] is a 1-tensor and ψ[2] is a symmetric traceless 2-tensor, then
div(ψ[2])a := ∇bψ

[2]
ab is a 1-tensor and 2∇⊗̂(ψ[1])ab = ∇aψ

[1]
b + ∇bψ

[1]
a − δabdivψ[1]

is a symmetric traceless 2-tensor on the sphere.
The issue in the analysis of a coupled system like (1.7) comes from the decom-

position in modes. The mode decomposition of the Teukolsky variables

ψ[s[(t, r, θ, φ) = e−iωteimφR[s](r)S[s]
m�(aω, cos θ)
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involves the spin s-weighted spheroidal harmonics S[s]
m�(aω, cos θ) which are eigen-

functions of the spin s-weighted Laplacian

Δ[s] =
1

sin θ
∂θ(sin θ∂θ) −

m2 + 2ms cos θ + s2

sin2 θ
+ a2ω2 cos2 θ − 2aωs cosθ.

For a = 0, they reduce to the spherical harmonics S[s]
m�(0, cos θ) = Y

[s]
m�(cos θ). Spin-

weighted spherical harmonics of different spins are simply related through the angu-
lar operators div and ∇⊗̂, and have the same eigenvalues. Schematically:

∇⊗̂(Y [1]
m�) = −λY [2]

m�,

div(Y [2]
m�) = λY

[1]
m� .

On the other hand, in the general axisymmetric case, as in Kerr or Kerr–Newman,
the spin-weighted spheroidal harmonics of different spins are not simply related
through those angular operators.

We are now ready to explain the “apparent indissolubility of the coupling
between the spin-1 and spin-2 fields” [4] for electromagnetic-gravitational pertur-
bations of Kerr–Newman, in contrast with Reissner–Nordström or Kerr. In a spher-
ically symmetric background, as in Reissner–Nordström, the fact that the spheri-
cal harmonics of different spins are simply related through the angular derivatives
implies that the decomposition in modes of the system of Teukolsky equations
(1.7) passes through. When considering the separated versions of the equations,
one obtains

T [1](Y [1]
m�) = div(Y [2]

m�) = λY
[1]
m� ,

T [2](Y [2]
m�) = ∇⊗̂(Y [1]

m�) = −λY [2]
m�,

giving two decoupled equations for the spin-1 and the spin-2 fields. For gravitational
perturbations of Kerr one only uses the spin-2 decomposition for T [2](Y [2]

m�) = 0, so
the problem of the coupling does not arise.

In electromagnetic-gravitational perturbations of the axially symmetric Kerr–
Newman, the interaction between the spin-2 and spin-1 prevents the separability
in modes. In particular, when trying to derive equations for S[1]

m� and for S[2]
m�, one

cannot separate them:

T [1](S[1]
m�) = div(S[2]

m�),

T [2](S[2]
m�) = ∇⊗̂(S[1]

m�),

as the right-hand side of the first equation cannot be written in terms of S[1]
m� and

the right-hand side of the second equation cannot be written in terms of S[2]
m�.

These are the main obstacles to separability of the equations in the case of
electromagnetic-gravitational perturbations of Kerr–Newman spacetime. As Chan-
drasekhar ends at [4, p. 583], “one might be inclined to conclude that a decoupling
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of the system of equations and a separation of the variables will be possible, if at
all, only by contemplating equations of order 4 or higher”.

1.2. Towards the full linear stability of Kerr–Newman

In treating the coupled electromagnetic-gravitational perturbations of Kerr–
Newman spacetime, the decomposition in modes of the equations, which had the
objective of simplifying the analysis of the perturbations, actually makes them
unsolvable as consequence of the discussion in the previous section. Observe that
such failure is explicitly related to the fact that the equations as analyzed in [4]
required the decomposition in spheroidal harmonics, which yields the problem of
non-separability of the decomposition. There is no reason to believe that if one does
not decompose in modes nor separate the equations using the spheroidal harmonics
such problems could not be circumvented.

Our approach to solve this issue is to abandon the decomposition in modes, and
perform a physical space analysis of the equations. Following the road map that
mathematicians have taken in the last few years in interpreting in physical space the
mode analysis done by the physics community, the Kerr–Newman solution may be
the case where a physical space approach could succeed where the mode analysis in
physics failed. Observe that our proof of boundedness of a general solution through a
physical space analysis will in particular imply the absence of exponentially growing
modes, therefore proving mode stability.

We summarize here the four main ingredients in the analysis: the formalism
to study perturbations of the Kerr–Newman spacetime, the identification of the
gauge-invariant quantities in the linear perturbations, the derivation of the system of
coupled Teukolsky equations, and finally the derivation, through the Chandrasekhar
transformation, of a system of generalized Regge–Wheeler equations.

1.2.1. The GKS formalism

As a first step, we present the formalism which we use to treat perturbations of
axially symmetric Petrov Type D spacetimes, like Kerr or Kerr–Newman . One
way to analyze the perturbations is to use the Newman–Penrose (NP) formalism,
which consists in decomposing all the components in null frames, obtaining complex
scalars. We instead make use of a more geometric formalism, more commonly used in
the mathematical community, and first developed in the proof of nonlinear stability
of Minkowski space [5]. Such formalism was extended in [19] for general Petrov Type
D spacetime in the context of the nonlinear stability of Kerr.

We recall that a Petrov Type D spacetime’s Weyl curvature Wμναβ is diagonaliz-
able by two linearly independent eigenvectors, the so-called principal null-directions.
We call the outgoing null direction e4 and the ingoing one e3. The tangent space
orthogonal to them is spanned by two orthonormal vectors, ea, for a = 1, 2. Observe
that in Kerr, the orthogonal structure determined by the principal null frames e3, e4
is not integrable, i.e. e1 and e2 do not span the tangent space of a 2-surface, like



April 7, 2022 13:29 WSPC/S0219-8916 JHDE 2250001

8 E. Giorgi

in Schwarzschild. This can be seen in the non-symmetry of the 2-tensors χ and χ

defined by

χ(ea, eb) = g(Dae4, eb), χ(ea, eb) = g(Dae3, eb), a, b = 1, 2,

which in the case of an integrable horizontal structure would be the null second
fundamental forms of the embedding of the sphere in the spacetime, therefore being
symmetric. In the case of Kerr or Kerr–Newman, the 2-tensor χ and χ are not
symmetric in a and b.

In the GKS formalism (from the authors in [19]), the non-integrability of the
horizontal structure is allowed, and all components are decomposed in null frames,
obtaining a range of complex 2-tensors, 1-tensors and scalars. See Sec. 2 for the
description of the formalism, with particular attention to the comparison with the
NP formalism in Sec. 2.5. We extend it here to the case of the Einstein–Maxwell
equation, by deriving the equations in their full generality in Sec. 3.

We then apply this general formalism to the case of Kerr–Newman and its linear
perturbations. More precisely, the GKS quantities which vanish in Kerr–Newman,
are considered to be O(ε), where ε is a smallness parameter, in linear perturbations
of Kerr–Newman, see Sec. 4. The next step is to identify the O(ε)-quantities which
govern the linear perturbations.

1.2.2. The identification of the gauge-invariant quantities

The first issue to specifically treat electromagnetic-gravitational perturbations of
Kerr–Newman spacetime is to identify what are the Teukolsky variables which rep-
resent the electromagnetic and gravitational radiations, respectively. Since those
variables have a physical meaning, they should be independent of the choice of coor-
dinates to a certain extent, or more precisely being (quadratically) invariant under
infinitesimal tetrad transformations. For example, the spin-2 complex Teukolsky
variable given by

Aab = W(e4, ea, e4, eb) + i ∗W(e4, ea, e4, eb),

where ∗ denotes the Hodge dual, is a symmetric traceless 2-tensor on the horizontal
structure (which corresponds to Ψ0 in NP formalism) and is known to be invariant
under infinitesimal rotations of the frame. More precisely, if a rotation is applied
to the frame (e3, e4, e1, e2) into a new frame (e′3, e′4, e′1, e′2) which is ε-close to the
previous one, the variable A′ computed with respect to the primed frame is ε2-close
to the original one, i.e. A′ = A+O(ε2). The quantity A is precisely the Teukolsky
variable representing gravitational perturbations of Kerr, and satisfies the Teukolsky
equation of spin 2 [19, 37].

For electromagnetic-gravitational perturbations of Kerr–Newman, the Teukol-
sky variable A is not sufficient to describe the full perturbation. In particular, one
would need a quantity satisfying a spin 1 Teukolsky equation as the electromagnetic
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contribution. The Teukolsky variable of spin 1 in electromagnetic perturbations of
Kerr, i.e.

(F)Ba = F(e4, ea) + i ∗F(e4, ea),

where F is the electromagnetic tensor, is not invariant under infinitesimal rotations
of the frame, and therefore cannot represent electromagnetic radiation. This prob-
lem appears already in the perturbations of Reissner–Nordström spacetime, where
(F)B also fails to be gauge-invariant. In the case of Reissner–Nordström, two addi-
tional quantities f and β̃, a 2-tensor and a 1-tensor, respectively, were identified to
be gauge-invariant and satisfy a coupled system of Teukolsky equation [14, 16].

Inspired by the quantities in Reissner–Nordström, in Sec. 5, we define the sym-
metric traceless 2-tensor F and the 1-tensor B which are quadratically invariant
upon infinitesimal rotation of the frame (see (5.2) and (5.3) for the precise defini-
tion). In addition to those, we have the gauge-invariant 1-tensor X which is auxiliary
in the derivation.

1.2.3. The system of coupled Teukolsky equations

As described above, we have defined four gauge-invariant quantities for linear
electromagnetic-gravitational perturbations of Kerr–Newman, given by

A, F, B, X,

where A and F are symmetric traceless 2-tensors, and therefore good candidates to
represent gravitational radiation and B and X are 1-tensors, to represent electro-
magnetic radiation. As in the case of Reissner–Nordström it turns out that F and
B are the most significant quantities, while A and X can be thought of as auxiliary
quantities.

Observe that under a rotation of the frame given by a conformal rescaling of
the null vectors e3 and e4, i.e. if e′3 = λe3 and e′4 = λ−1e4 for a real scalar λ,
the quantities A and X change as A′ = λ2A, X′ = λ2X, while F and B change as
F′ = λF, B′ = λB. We say that F and B are of conformal type 1 and A and X of
conformal type 2.

In Sec. 6, we derive the wave-like equations satisfied by A, F and B as a con-
sequence of the Einstein–Maxwell equations. We obtain the following system of
coupled Teukolsky equations, see Theorem 6.1:

T1(B) = M1[F,X],

T2(F) = M2[A,X,B],

T3(A) = M3[F,X],

where the Ts are Teukolsky operators and Ms denotes the dependence on the right-
hand side of each equation.

The projection to the first component of the Teukolsky operators gives the
Teukolsky equation for complex scalars. It turns out that in Kerr–Newman, not
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only the spin of the variable is not the only parameter appearing in the Teukolsky
equation, but so does its conformal type. We define for a complex scalar ψ of spin
s and conformal type c the Teukolsky operator

T [s,c](ψ) := �gM,a,Qψ +
2c
|q|2 (r −M)∂rψ +

2
|q|2

(
c
a(r −M)

Δ
+ si

cos θ
sin2 θ

)
∂ϕψ

+
2
|q|2

(
c

(
M(r2 − a2) −Q2r

Δ
− r

)
− sia cos θ

)
∂tψ

+
1
|q|2 (s− s2 cot2 θ)ψ.

By comparing it to (1.5), one can see that for c = s, the Teukolsky operator T [s,s](ψ)
reduces to the standard Teukolsky operator in Kerr. In Kerr–Newman, it is impor-
tant to keep the distinction since F is of spin 2 and conformal type 1.

Due to the non-separability in modes, our goal is to analyze the Teukolsky
equations in physical space. Unfortunately, this is not possible, even in the case of
Schwarzschild or Kerr. Recall that to prove boundedness of the energy for a solution
of the wave equation �ψ = 0, one multiplies it by ∂tψ and integrate it by parts.
For example, in the case of Minkowski:

0 = �ψ · ∂tψ =
(
− ∂2

t ψ + ∂2
xψ

)
· ∂tψ

= −∂2
tψ · ∂tψ − ∂t∂xψ · ∂xψ + ∂x(∂xψ · ∂tψ)

= −1
2
∂t(|∂tψ|2 + |∂xψ|2) + boundary terms.

Upon integration on a causal domain, one can neglect the boundary terms obtaining
conservation of the energy. Similarly for a Regge–Wheeler equation, the term with
the potential can be written as a boundary term:

0 =
(
�ψ − V ψ

)
· ∂tψ

= −1
2
∂t(|∂tψ|2 + |∂xψ|2) −

1
2
V ∂t(|ψ|2) + boundary terms

= −1
2
∂t(|∂tψ|2 + |∂xψ|2 + V |ψ|2) + boundary terms.

If the potential V is positive, one obtains the conservation of a positive definite
energy. The Teukolsky equation is instead of the form �ψ−V ψ = c1∂rψ+ c2∂ϕψ+
c3∂tψ, and so clearly one cannot obtain boundedness of the energy directly in this
way, because of the presence of the first-order terms. This motivates our search for
a more amenable system of equations, of the Regge–Wheeler type.

1.2.4. The system of generalized Regge-Wheeler equations

One would like to transform the system of Teukolsky equations, which are
intractable to physical space energy estimates, to a system of Regge–Wheeler-type
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equations. Such transformation is related to the passage from curvature perturba-
tions to metric perturbations, and was referred to as “transformation theory” in [4].
Chandrasekhar describes such transformation in the mode analysis as consisting in
taking derivatives along the null direction of the Teukolsky variables, in order to
obtain solutions to the Regge–Wheeler equation. Dafermos–Holzegel–Rodnianski
crucially extended the Chandrasekhar transformation to a physical space one,
first in Schwarzschild [6] and then in Kerr [7], see also [29]. In [19, 28], physi-
cal space nonlinear analogue of the Chandrasekhar transformation have also been
introduced.

Following this idea, in Sec. 7, we define the Chandrasekhar-transformed of the
quantities B and F in the case of linear perturbations of Kerr–Newman, and obtain
the main result of the paper, see Theorem 7.3 for the precise statement.

Theorem 1.1. Consider a linear electromagnetic-gravitational perturbation of
Kerr–Newman spacetime gM,a,Q, with associated gauge-invariant quantities B and
F. Then there exist a 1-tensor p and a symmetric traceless 2-tensor qF, obtained
as Chandrasekhar-transformed of B and F, respectively, such that p and qF satisfy
the following coupled system of generalized Regge–Wheeler equations:

�gM,a,Qp − i
2a cosθ
|q|2 ∇tp − V1p = 4Q2 (r − ia cos θ)3

|q|5 divqF + l.o.t. (1.8)

�gM,a,QqF − i
4a cos θ
|q|2 ∇tq

F − V2q
F = −1

2
(r + ia cos θ)3

|q|5 ∇⊗̂p + l.o.t. (1.9)

with real positive potentials V1 and V2 and l.o.t. denotes lower order terms with
respect to p and qF.

These equations represent the main system of equations governing
electromagnetic-gravitational perturbations of the Kerr–Newman spacetime. In par-
ticular observe that, in applying the Chandrasekhar transformation, the dependence
on the auxiliary quantities A and X disappears. The above equations have the same
structure as the generalized Regge–Wheeler equation in Kerr obtained in [19]. Also,
for a = 0 the above system of equations reduces to the Regge–Wheeler system of
Reissner–Nordström in [15], for which boundedness of the energy was obtained in
the full subextremal range.

The above theorem is proved through a careful (and lengthy) computation which
consists in applying an ingoing null derivative to both Teukolsky equations for B

and F, and then choose a precise complex rescaling of the transformed quantities.
Such rescaling is applied in order to obtain the above structure of the equations, for
which boundedness of the energy can be obtained in physical space. Observe that the
above equations are not precisely of the Regge–Wheeler form, but have additional
terms, like the first-order term ∇t and the coupling terms on the right-hand side.
Nevertheless, in Theorem 1.1, we are careful to obtain precisely a structure which
allows for the proof of boundedness of energy in physical space. More precisely,
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upon multiplying Eq. (1.8) by ∇tp and Eq. (1.9) by ∇tqF and taking their real
part, we obtain the following simplifications:

(1) The Regge–Wheeler pieces of the equations, i.e.
(
�gM,a,Qp − V1p

)
∇tp and(

�gM,a,QqF −V2q
F
)
∇tqF, for real positive potentials, can be written as bound-

ary term,
(2) The first-order terms, being of the form i∇t, get cancelled in the energy esti-

mates:

i
2a cosθ
|q|2 ∇tp∇tp + i

2a cos θ
|q|2 ∇tp∇tp = 0,

i
4a cos θ
|q|2 ∇tq

F∇tqF + i
4a cos θ
|q|2 ∇tqF∇tq

F = 0.

(3) The coupling terms, given by adjoint operators div and ∇⊗̂ multiplied by com-
plex conjugate functions, get simplified upon summing the estimates for the
two equations:

(r − ia cos θ)3

|q|5 divqF∇tp − (r + ia cos θ)3

|q|5 ∇⊗̂p∇tqF = l.o.t.

(4) The lower order terms have a favorable structure in using transport equations
to be estimated.

As a consequence of the above theorem, the good properties of the equations
obtained in Reissner–Nordström and in Kerr can be generalized to the case of
Kerr–Newman. This strikingly compares with the equations in separated modes
as described at the beginning of this introduction, which could not be generalized
from the Kerr and Reissner–Nordström case. By avoiding the decomposition in
modes, and maintaining the above equations for the 1-tensor p and the 2-tensor
qF, the issue of non-commutativity of the decomposition is not present and a phys-
ical space analysis of the above system is possible. In Sec. 7.4, we sketch how to
prove that solutions to the generalized Regge–Wheeler equations as obtained in
Theorem 1.1 have bounded energy. Such proof has to be combined with spacetime
Morawetz estimates to obtain the complete statement of boundedness and decay
for the Teukolsky system of equations. More precisely, such analysis would have
to avoid decomposition in modes for the solutions, for example in the spirit of [2]
for small angular momentum. Nevertheless, the Morawetz estimates, which will be
obtained in a future work, are much less sensitive to the structure of the equation,
and the procedure described in Sec. 7.4 to obtain bounded energy is crucial to justify
the precise structure of the equations here derived.

This paper is organized as follows. In Sec. 2, we recall the general formal-
ism introduced in [19] and in Sec. 3, we derive the Einstein–Maxwell equations
in their full generality. In Sec. 4, we introduce the Kerr–Newman spacetime and
its linear perturbations. In Sec. 5, we define the main gauge-invariant quantities in
electromagnetic-gravitational perturbations of Kerr–Newman spacetime. In Sec. 6,
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we derive the system of Teukolsky equations satisfied by the gauge-invariant quan-
tities. Finally, in Sec. 7, we define the Chandrasekhar transformation in Kerr–
Newman and derive the Regge–Wheeler-type equations for the perturbations, prov-
ing the main theorem of the paper.

To facilitate the reading of the paper, we diverted most of the proofs (involving
lengthy computations) to the appendix. In Appendix A, we collect the explicit com-
putations needed in the first five sections of the paper. In Appendix B, we derive
the system of Teukolsky equations and in Appendix C, we derive the system of
generalized Regge–Wheeler equations.

2. The GKS Formalism

In this section, we collect the main definitions and preliminaries to the formalism
introduced in [19]. From the authors of [19] we refer to this formalism as GKS
formalism. We refer to [19, Sec. 2] for more details.

2.1. Null pairs and horizontal structures

Let (M,g) be a Lorentzian 4-dimensional manifold. Consider an arbitrary null pair
e3 = L and e4 = L, i.e.

g(e3, e3) = g(e4, e4) = 0, g(e3, e4) = −2.

We say that a vectorfield X is horizontal if

g(L,X) = g(L,X) = 0.

On the set of horizontal vectors, given a fixed orientation we define the induced
volume form by ∈ (X,Y ) := 1

2 ∈ (X,Y, L, L).
Observe that the commutator [X,Y ] of two horizontal vectorfields may fail to

be horizontal. We say that the pair (L, L) is integrable if the set of horizontal
vectorfields forms an integrable distribution, i.e. X,Y horizontal implies that [X,Y ]
is horizontal.

Given an arbitrary vectorfield X we denote by (h)X its horizontal projection,

(h)X = X +
1
2
g(X, L)L +

1
2
g(X,L)L.

A k-covariant tensor-field U is said to be horizontal if for any X1, . . . , Xk, we have

U(X1, . . . , Xk) = U( (h)X1, . . . ,
(h)Xk).

Definition 2.1. For any horizontal X,Y we definea

γ(X,Y ) = g(X,Y ) (2.1)

aIn the particular case where the horizontal structure is integrable, γ is the induced metric and χ
and χ are the null second fundamental forms.
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and

χ(X,Y ) = g(DXL, Y ), χ(X,Y ) = g(DX L, Y ),

where D is the covariant derivative of g.

Observe that χ and χ are symmetric if and only if the horizontal structure is
integrable, as follows from

χ(X,Y ) − χ(Y,X) = g(DXL, Y ) − g(DY L,X) = −g(L, [X,Y ]).

Given X,Y horizontal vectors, the covariant derivative DXY fails in general to
be horizontal. We thus define,b

∇XY :=(h) (DXY ) = DXY − 1
2
χ(X,Y )L− 1

2
χ(X,Y )L.

Given a general covariant, horizontal tensor-field U we define its horizontal
covariant derivative according to the formula

∇ZU(X1, . . . , Xk) = Z(U(X1, . . . , Xk)) − U(∇ZX1, . . . , Xk)

− · · · − U(X1, . . . ,∇ZXk).

Given X horizontal, DLX and DLX are in general not horizontal. We thus define

∇4X := (h)(DLX) = DLX − 1
2
g(X,DL L)L− 1

2
g(X,DLL)L,

∇3X := (h)(DLX) = DLX − 1
2
g(X,DL L)L − 1

2
g(X,DLL)L.

We can extend the operators ∇4 and ∇3 to arbitrary k-covariant, horizontal tensor-
fields U as above. Therefore, with the above definitions ∇, ∇4 and ∇3 take hori-
zontal tensor-fields into horizontal tensor-fields. We can then extend the definition
of horizontal covariant derivative to any X in the tangent space of M and Y hori-
zontal as

ḊXY :=(h) (DXY ) (2.2)

and we can extend it to horizontal tensor-fields as above.
Given a horizontal structure defined by e3 = L, e4 = L, we associate a null frame

by choosing orthonormal horizontal vectorfields e1, e2 such that γ(ea, eb) = δab for
a, b = 1, 2. For an arbitrary orthonormal horizontal frame (ea)a=1,2, we denote
∇aY = ∇eaY . We write ∇Y to denote the 2-tensor whose contraction with ea

results in ∇aY , i.e. ∇Y (ea) = ∇aY .
In what follows, we fix a null pair e3 = L and e4 = L and an orientation on the

horizontal tensors.

bIn the integrable case, ∇ coincides with the Levi-Civita connection of the metric induced on the
integral surfaces of the horizontal distribution.
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Definition 2.2. Given a 2-covariant horizontal tensor-field U and an arbitrary
orthonormal horizontal frame (ea)a=1,2 we define the trace of U as

tr(U) := δabUab = δab (s)Uab,

where (s)Uab = 1
2 (Uab + Uba). We define the anti-trace of U by

(a)tr(U) :=∈ab Uab =∈ab (a)Uab,

where (a)Uab = 1
2 (Uab − Uba).

A general horizontal, 2-tensor U can be decomposed according to

Uab = (s)Uab + (a)Uab = Ûab +
1
2
δab tr(U) +

1
2
∈ab

(a)tr(U).

Definition 2.3. We denote by s0 = s0(M) the set of pairs of real scalar functions
on M, s1 = s1(M) the set of real horizontal 1-forms on M and by s2 = s2(M) the
set of real symmetric traceless horizontal 2-tensors on M.

We define the following operators on horizontal tensors.

Definition 2.4. We define the duals of f ∈ s1 and u ∈ s2 by

∗fa =∈ab fb, ( ∗u)ab =∈ac ucb.

Given ξ, η ∈ s1 we denote

ξ · η := δabξaηb,

ξ ∧ η := ∈ab ξaηb = ξ · ∗η,

(ξ⊗̂η)ab :=
1
2
(
ξaηb + ξbηa − δabξ · η

)
.

Given ξ ∈ s1, u ∈ s2 we denote

(ξ · u)a := δbcξbuac.

Given u, v ∈ s2 we denote

(u ∧ v)ab :=∈ab uacvcb.

For f ∈ s1 and u ∈ s2 we define the frame-dependent operators

divf = δab∇bfa, curlf =∈ab ∇afb,

(∇⊗̂f)ba =
1
2
(
∇bfa + ∇afb − δab(divf)

)
,

(divu)a = δbc∇buca.
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2.2. Ricci, electromagnetic and curvature components

In what follows, we define Ricci coefficients, electromagnetic and curvature compo-
nents of a general spacetime (M,g).

Definition 2.5. We define the horizontal 1-forms

η(X) :=
1
2
g(X,DL L), η(X) :=

1
2
g(X,DLL),

ξ(X) :=
1
2
g(X,DL L), ξ(X) :=

1
2
g(X,DLL),

ζ(X) =
1
2
g(DXL, L).

and the scalars

ω :=
1
4
g(DL L,L), ω :=

1
4
g(DLL, L).

Observe that the quantities underlined are obtained from the non-underlined
ones by interchanging the null vectors e3 = L and e4 = L.

Definition 2.6. The horizontal tensor-fields χ, χ, η, η, ζ, ξ, ξ, ω, ω are called the
connection coefficients of the null pair (L, L). Given an arbitrary basis of horizontal
vectorfields e1, e2, we write using the short hand notation Da = Dea , a = 1, 2,

χ
ab

= g(Da L, eb), χab = g(DaL, eb),

ξ
a

=
1
2
g(DL L, ea), ξa =

1
2
g(DLL, ea),

ω =
1
4
g(DL L,L), ω =

1
4
g(DLL, L),

η
a

=
1
2
g(DL L, ea), ηa =

1
2
g(DLL, ea),

ζa =
1
2
g(DaL, L).

We easily derive the Ricci formulae

Daeb = ∇aeb +
1
2
χabe3 +

1
2
χ

ab
e4,

Dae4 = χabeb − ζae4,

Dae3 = χ
ab
eb + ζae3,

D3ea = ∇3ea + ηae3 + ξ
a
e4,

D3e3 = −2ωe3 + 2ξ
b
eb,

D3e4 = 2ωe4 + 2ηbeb,

D4ea = ∇4ea + η
a
e4 + ξae3,
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D4e4 = −2ωe4 + 2ξbeb,

D4e3 = 2ωe3 + 2η
b
eb.

(2.3)

Definition 2.7. We introduce the notation

tr χ := tr(χ), (a)trχ := (a)tr(χ), trχ := tr(χ), (a)trχ := (a)tr(χ).

The symmetric traceless part of χ and χ, denoted χ̂ and χ̂, are called the (outgoing
and ingoing, respectively) shear of the horizontal distribution, while the scalars tr χ
and trχ are the (outgoing and ingoing respectively) expansion of the distribution.
The scalars (a)trχ and (a)trχ measure the integrability defects of the distribution.

In particular we can write

χab = χ̂ab +
1
2
δab tr χ+

1
2
∈ab

(a)trχ. (2.4)

Let F be an antisymmetric 2-tensor on (M,g). We define the null components
of F as the horizontal vectors β(F), β(F) by the formulas

(F)β(X) = β(F)(X) = F(X,L),

(F)β(X) = β(F)(X) = F(X,L),

�(F)(X,Y ) = F(X,Y ).

For a 2-form F, the dual ∗F denotes the Hodge dual on (M,g) of F, defined by
∗Fαβ = 1

2 ∈μναβ Fμν .
It is convent to express in terms of the following two scalar quantities:

(F)ρ = ρ(F) =
1
2
F(L,L), ∗ (F)ρ = ∗ρ(F) =

1
2

∗F(L,L). (2.5)

Thus, �(F)(X,Y ) = − ∗ρ(F) ∈ (X,Y ) for horizontal vectors X,Y . i.e. Fab =
− ∈ab

∗ρ.
Let W be a Weyl field on (M,g). We define the null components of the Weyl field

W, horizontal 2-tensors α(W), α(W), �(W) and horizontal 1-tensors β(W), β(W)
by the formulas

α(W)(X,Y ) = W(L,X,L, Y ),

α(W)(X,Y ) = W(L,X, L, Y ),

β(W)(X) =
1
2
W(X,L, L, L),

β(W)(X) =
1
2
W(X, L, L, L),

�(W)(X,Y ) = W(X, L, Y, L).

Recall that if W is a Weyl field its Hodge dual ∗W, defined by ∗Wαβμν =
1
2∈μν

ρσWαβρσ, is also a Weyl field. It is convenient to express it in terms of the
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following two scalar quantities:

ρ(W) =
1
4
W(L, L, L, L), ∗ρ(W) =

1
4

∗W(L, L, L, L). (2.6)

Thus, �(X,Y ) = −ρ γ(X,Y ) + ∗ρ ∈ (X,Y ) for horizontal vectors X,Y . We have

Wa3b4 = �ab = (−ρδab + ∗ρ ∈ab),

Wab34 = 2 ∈ab
∗ρ,

Wabcd = − ∈ab∈cd ρ,

Wabc3 = ∈ab
∗β

c
,

Wabc4 = − ∈ab
∗βc.

2.3. Complex notations

Recall Definition 2.3 of the set of horizontal tensors sk on M. By Definition 2.4,
the duals of real horizontal tensors are real horizontal tensors of the same type. We
define the complexified version of horizontal tensors on M.

Definition 2.8. We denote by sk(C) the set of complex anti-self-dual k-tensors
on M. More precisely, a + ib ∈ s0(C) is a complex scalar function on M with
(a, b) ∈ s0, F = f + i ∗f ∈ s1(C) is a complex anti-self-dual 1-tensor on M with
f ∈ s1 and U = u + i ∗u ∈ s2(C) is a complex anti-self-dual symmetric traceless
2-tensor on M with u ∈ s2.

Observe that F ∈ s1(C) and U ∈ s2(C) are indeed anti-self-dual tensors, i.e.

∗F = −iF, ∗U = −iU.

In particular, F2 = −iF1 and U12 = −iU11, U22 = −U11, where we denote F1 :=
F (e1) and U11 := U(e1, e1) the contraction of the tensors with the horizontal frame.

We extend the definitions for the Ricci, electromagnetic and curvature compo-
nents given in Sec. 2.2 to the complex case by using the anti-self-dual tensors.

Definition 2.9. Let (M,g) be a Lorentzian 4-dimensional manifold. We define the
following complexified versions of the Ricci components :

X = χ+ i ∗χ, X = χ+ i ∗χ,

H = η + i ∗η, H = η + i ∗η,

Ξ = ξ + i ∗ξ, Ξ = ξ + i ∗ξ,

Z = ζ + i ∗ζ.

In particular, note that

trX = tr χ− i (a)trχ, X̂ = χ̂+ i ∗χ̂, trX = trχ− i (a)trχ, X̂ = χ̂+ i ∗χ̂.
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We define the following complexified versions of the electromagnetic components :

(F)B = (F)β + i ∗ (F)β, (F)B = (F)β + i ∗ (F)β

(F)P = (F)ρ+ i ∗ (F)ρ,

and of the curvature components

A = α+ i ∗α, A = α+ i ∗α,

B = β + i ∗β, B = β + i ∗β,

P = ρ+ i ∗ρ.

With the above definition, the complex scalars, one-forms and symmetric trace-
less 2-tensors are, respectively, given by

trX, trX,P, (F)P ∈ s0(C),

H, H,Z,Ξ,Ξ, (F)B, (F)B,B,B ∈ s1(C),

X̂, X̂, A,A ∈ s2(C).

Definition 2.10. We define the complexified version of the ∇ horizontal deriva-
tive as

D = ∇ + i ∗∇, D = ∇− i ∗∇.

More precisely,

• For a+ ib ∈ s0(C)

D(a+ ib) := (∇ + i ∗∇)(a+ ib),

D(a+ ib) := (∇− i ∗∇)(a+ ib).

• For F = f + i ∗f ∈ s1(C)

D · (f + i ∗f) := (∇− i ∗∇) · (f + i ∗f) = 2
(
divf + icurlf

)
,

D⊗̂(f + i ∗f) := (∇ + i ∗∇)⊗̂(f + i ∗f) = 2
(
∇⊗̂f + i ∗(∇⊗̂f)

)
.

• For U = u+ i ∗u ∈ s2(C),

D(u+ i ∗u) := (∇− i ∗∇)(u + i ∗u) = 2
(
divu+ i ∗(divu)

)
.

For F ∈ s1(C), the operator −D⊗̂ is formally adjoint to the operator D · U
applied to U ∈ s2(C), as shown in the following lemma.
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Lemma 2.11. For F = f + i ∗f ∈ s1(C) and U = u+ i ∗u ∈ s2(C), we have

(D⊗̂F ) · U = −F · (D · U) − ((H + H)⊗̂F ) · U + Dα(F · U). (2.7)

Proof. We have

(∇⊗̂f) · u =
1
2
(
∇afb + ∇bfa − δabdivf

)
uab = (∇afb)uab

= ∇a(uabfb) − (divu) · f

Let ξ ∈ s1. Then the difference between the spacetime and the horizontal divergence
is given by

Dαξ
α −∇aξ

a = −1
2
(
D3ξ4 + D4ξ3) = (η + η) · ξ,

which applied to ξ = u · f gives

(∇⊗̂f) · u = Dα(uαbfb) − (η + η) · (u · f) − (divu) · f

= −(divu) · f − ((η + η)⊗̂f) · u+ Dα(uαbfb).

By complexifying the above, we obtain the stated identity.

2.4. Frame transformations and conformal invariance

A general frame transformation of the null frame basis vectors {e3, e4, ea} into
a transformed null frame {e′3, e′4, e′a} can be decomposed into the following three
elementary types:

• rotations of class I, which leave the vector e4 unchanged

e′4 = e4, e′3 = e3 + μ
a
ea +

1
4
|μ|2e4, e′a = ea +

1
2
μ

a
e4 (2.8)

• rotations of class II, which leave the vector e3 unchanged

e′3 = e3, e′4 = e4 + μaea +
1
4
|μ|2e3 e′a = ea +

1
2
μae3, (2.9)

• rotations of class III, which leave the directions of e3 and e4 unchanged and
rotate ea

e′3 = λ−1e3, e′4 = λe4, e′a = Oabe
b, (2.10)

where μ and μ are real one-forms, λ is a real function, Oab is a orthogonal matrix,
and the repeated indices indicate the sum on those.

Definition 2.12. We say that a frame transformation is conformal if it is a rota-
tion of class III with Oab = Iab the identity matrix, i.e. such that

e′3 = λ−1e3, e′4 = λe4, e′a = ea (2.11)

for a real function λ.
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Note that under a conformal frame transformation, the Ricci, electromagnetic,
curvature components get modified in the following way:

trχ′ = λ−1trχ, (a)trχ′ = λ−1 (a)trχ, tr χ′ = λtr χ, (a)trχ′ = λ (a)trχ

ξ′ = λ2ξ, η′ = η, η′ = η, ξ′ = λ−2ξ

(F)β′ = λ (F)β, (F)ρ′ = (F)ρ, ∗ (F)ρ′ = ∗ (F)ρ, (F)β′ = λ−1 (F)β

α′ = λ2α, β′ = λβ, ρ′ = ρ, ∗ρ′ = ∗ρ, β′ = λ−1β, α′ = λ−2α

and similarly for their complex counterparts, and

ω′ = λ−1

(
ω +

1
2
e3(logλ)

)
, ω′ = λ

(
ω − 1

2
e4(log λ)

)
, ζ′ = ζ −∇(logλ).

Definition 2.13. We say that a horizontal tensor f is conformal invariant of type
s if, under the conformal frame transformation (2.11), it changes as f ′ = λsf .

Remark 2.14. Note that s is precisely what in [5] is called the signature of the
tensor.c

Observe that if f is conformal invariant of type s, then ∇3f,∇4f,∇af are not
conformal invariant. In GKS formalism, we correct the lacking of being conformal
invariant by making the following definition.

Lemma 2.15. If f is conformal invariant of type s, then

(1) (c)∇3f := ∇3f − 2sωf is conformal invariant of type (s− 1).
(2) (c)∇4f := ∇4f + 2sωf is conformal invariant of type (s+ 1).
(3) (c)∇af := ∇af + sζaf is conformal invariant of type s.

Also, (c)Df := (c)∇f + i ∗ (c)∇f = Df + sZf is conformal invariant of type s.

2.5. Comparison with the Newman–Penrose formalism

The GKS formalism here recalled is strongly connected with the more familiar NP
formalism. In NP formalism, one chooses a basis of null vectors (n, l,m,m) with n
and l real and m complex, scaled such that g(n, l) = −1. They are related to the
null frame (e3, e4, e1, e2) here presented for example by

n =
1
2
e3, l = e4, m =

1√
2
(e1 + ie2), m =

1√
2
(e1 − ie2).

In NP formalism, the connection coefficients, electromagnetic and curvature com-
ponents are all complex scalar functions obtained by contracting the tensors with

cFor a horizontal tensor f defined in terms of the null frames e3 and e4, its signature is the
number of e4 = L used in its definition minus the number of e3 = L. For example, the signature
of α = W(L, ea, L, eb) is 2 − 0 = 2, while the signature of η = 1

2
g(DLL, ea) is 1 − 1 = 0.
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the null frame. For example, the extreme null curvature component Ψ0 is the spin-2
complex scalar defined as

Ψ0 = −Wμνγσl
μmν lγmσ

= −W(l,m, l,m).

In GKS formalism, the extreme null curvature component is a complex horizontal
2-tensor, as in

Aab = W(e4, ea, e4, eb) + i ∗W(e4, ea, e4, eb)

= αab + i ∗αab.

The relation between Ψ0 and Aab is the following: the projection of the horizontal
2-tensor A into its first component gives, up to a scalar, precisely the complex scalar
Ψ0, i.e.

A(e1, e1) = α(e1, e1) + i ∗α(e1, e1) = −Ψ0.

Such relation also explains why the complex scalar Ψ0 is of spin-2, as it can be
realized as a projection of a 2-tensor. Similarly, in NP formalism the extreme elec-
tromagnetic component φ0 is the spin-1 complex scalar defined as

φ0 = −Fμν l
μmν = −F(l,m).

In GKS formalism, the extreme electromagnetic component is a complex horizontal
1-tensor, as in

(F)Ba = F(L, ea) + i ∗F(L, ea) = (F)βa + i ∗ (F)βa

and the projection of the horizontal 1-tensor (F)B into its first component gives, up
to a scalar, precisely the complex scalar φ0, i.e.

(F)B(e1) = (F)β(e1) + i ∗ (F)β(e1) = −φ0.

The information about the spin of the complex scalars in NP formalism is encoded
in the tensors in GKS formalism: a spin 2-scalar is substituted by a horizontal
2-tensor, and a spin 1-scalar by a horizontal 1-tensor.

For future reference, we collect here a table of conversion from NP and GKS
formalism, where it is understood that the correspondence between the curva-
ture, electromagnetic and Ricci components holds up to projection on the first
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component.

NP formalism GKS formalism

D,Δ ∇4,∇3

δ, δ D⊗̂,D·
Ψ0,Ψ4 A,A

Ψ1,Ψ3 B,B

Ψ2 P

φ0, φ2
(F)B, (F)B

φ1
(F)P

σ, λ X̂, X̂

τ, π H, H

κ, ν Ξ,Ξ
α, β Z

ρ, μ trX, trX
ε, γ ω, ω

The conformal derivatives in GKS formalism are the equivalent of the spin and
boost weight operators defined in GHP formalism. Just as in GHP formalism, the
derivatives absorb in their definitions the Ricci coefficients ε, γ, α and β, similarly
our (c)∇3, (c)∇4 and (c)∇a absorb ω, ω and Z.

3. The Einstein–Maxwell Equations in Full Generality

The Einstein–Maxwell equations are given by

Rμν = 2FμλFν
λ − 1

2
gμνFαβFαβ , (3.1)

D[μFνλ] = 0, DμFμν = 0. (3.2)

where Rμν denotes the Ricci curvature of (M,g) and Fμν is an antisymmetric
2-tensor. In this section, we derive the null Einstein–Maxwell equations in full gen-
erality, for a spacetime with a non-integrable null frame, therefore paying particular
attention to the symmetric and antisymmetric part of χ and χ.

3.1. The Maxwell equations

The equation D[μFνλ] = 0 in (3.2) gives three independent equations. The first one
is obtained in the following way, using (2.3):

0 = DaF34 + D3F4a + D4Fa3

= ∇a(F34) − F(χ
ab
eb + ζae3, e4) − F(e3,−ζae4 + χabeb)

+∇3(F4a) − F(2ωe4 + 2ηbeb, ea) − F(e4, ηae3 + ξ
a
e4)
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+∇4(Fa3) − F(η
a
e4 + ξae3, e3) − F(ea, 2ωe3 + 2η

b
eb)

= 2∇a( (F)ρ) − χ
ab

(F)βb + χab
(F)β

b
−∇3

(F)βa + 2ω (F)βa

−2 ∈ab ηb
∗ (F)ρ+ 2ηa

(F)ρ+ ∇4
(F)β

a
+ 2η

a
(F)ρ− 2ω (F)β

a
+ 2 ∈ab ηb

∗ (F)ρ.

By writing

χab
(F)β

b
=

(
χ̂ab +

1
2
δab tr χ+

1
2
∈ab

(a)trχ
)

(F)β
b

= χ̂ab
(F)β

b
+

1
2
tr χ (F)β

a
+

1
2

(a)trχ ∗ (F)β
a

and using the definition of Hodge duals, we obtain

∇3
(F)βa −∇4

(F)β
a

= −1
2
trχ (F)βa + 2ω (F)βa − 1

2
(a)trχ ∗ (F)βa

+
1
2
tr χ (F)β

a
− 2ω (F)β

a
+

1
2

(a)trχ ∗ (F)β
a

+ 2∇a( (F)ρ) + 2
(
ηa + η

a

)
(F)ρ+ 2

(
∗η

a
− ∗ηa

)
∗ (F)ρ

− χ̂
ab

(F)βb + χ̂ab
(F)β

b
. (3.3)

The second equation is obtained in the following way:

0 = DaFb3 + DbF3a + D3Fab

= ∇a(Fb3) − F(
1
2
χabe3 +

1
2
χ

ab
e4, e3) − F(eb, χac

ec + ζae3)

+∇b(F3a) − F(χ
bc
ec + ζbe3, ea) − F(e3,

1
2
χbae3 +

1
2
χ

ba
e4)

+∇3(Fab) − F(ηae3 + ξ
a
e4, eb) − F(ea, ηbe3 + ξ

b
e4)

= ∇a
(F)β

b
−∇b

(F)β
a

+ (χ
ab

− χ
ba

) (F)ρ+ χ
ac

∈bc
∗ (F)ρ− ζa

(F)β
b

+χ
bc

∈ca
∗ (F)ρ+ ζb

(F)β
a
− ∈ab ∇3

∗ (F)ρ+ ηa
(F)β

b
+ ξ

a
(F)β

b

− ηb
(F)β

a
− ξ

b
(F)βa.

Contracting the above with ∈ab and recalling that curl (F)β =∈ab ∇a
(F)β

b
, we have

∇3
∗ (F)ρ− curl (F)β = −

(
trχ ∗ (F)ρ− (a)trχ (F)ρ

)
+

(
η − ζ

)
· ∗ (F)β + ξ · ∗ (F)β.

The third equation is obtained from symmetrization of the above:

∇4
∗ (F)ρ− curl (F)β = −

(
tr χ ∗ (F)ρ+ (a)trχ (F)ρ

)
+

(
η + ζ

)
· ∗ (F)β + ξ · ∗ (F)β.
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The equation DμFμν = δbcDbFcν− 1
2D4F3ν− 1

2D3F4ν = 0 gives three additional
independent equations. The first one is obtained in the following way:

0 = δbcDbFca − 1
2
D4F3a − 1

2
D3F4a

= δbc

(
∈ac ∇b

∗ (F)ρ− F
(

1
2
χ

bc
e4 +

1
2
χbce3, ea

)
− F

(
ec,

1
2
χ

ba
e4 +

1
2
χbae3

))

+
1
2
∇4

(F)β
a

+
1
2
F(2ωe3 + 2η

c
ec, ea) +

1
2
F(e3, ηa

e4 + ξae3)

+
1
2
∇3

(F)βa +
1
2
F(2ωe4 + 2ηcec, ea) +

1
2
F(e4, ηae3 + ξ

a
e4)

= ∈ac ∇c
∗ (F)ρ+

1
2
trχ (F)βa +

1
2
tr χ (F)β

a
− 1

2
χ

ca
(F)βc −

1
2
χca

(F)β
c

+
1
2
∇4

(F)β
a
− ω (F)β

a
− η

c
∗ (F)ρ ∈ca +η

a
(F)ρ+

1
2
∇3

(F)βa

−ω (F)βa − ηc
∗ (F)ρ ∈ca −ηa

(F)ρ.

By writing

χca
(F)β

c
=

(
χ̂ca +

1
2
δca tr χ+

1
2
∈ca

(a)trχ
)

(F)β
c

= χ̂ca
(F)β

c
+

1
2
tr χ (F)β

a
− 1

2
(a)trχ ∗ (F)β

a

we obtain

∇4
(F)β

a
+ ∇3

(F)βa = −1
2
trχ (F)βa − 1

2
(a)trχ ∗ (F)βa + 2ω (F)βa

− 1
2
tr χ (F)β

a
− 1

2
(a)trχ ∗ (F)β

a
+ 2ω (F)β

a

− 2 ∈ac ∇c
∗ (F)ρ− 2

( ∗ηa + ∗η
a

) ∗ (F)ρ+ 2
(
ηa − η

a

)
(F)ρ

+ χ̂
ca

(F)βc + χ̂ca
(F)β

c
. (3.4)

Summing and subtracting (3.3) and (3.4), we obtain

∇3
(F)β −∇( (F)ρ) + ∗∇ ∗ (F)ρ = −1

2
(
trχ (F)β + (a)trχ ∗ (F)β

)
+ 2ω (F)β

+ 2
(
η (F)ρ− ∗η ∗ (F)ρ

)
+ χ̂ · (F)β

and

∇4
(F)β + ∇( (F)ρ) + ∗∇ ∗ (F)ρ = −1

2
(
tr χ (F)β + (a)trχ ∗ (F)β

)
+ 2ω (F)β

− 2
(
η (F)ρ+ ∗η ∗ (F)ρ

)
+ χ̂ · (F)β.
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The last equation is obtained by

0 = δbcDbFc4 −
1
2
D4F34

= δbc

(
∇b

(F)βc − F
(

1
2
χ

bc
e4 +

1
2
χbce3, e4

)
− F(ec,−ζbe4 + χbaea)

)

−1
2

(
2∇4

(F)ρ− F(2ωe3 + 2η
a
ea, e4) − F(e3,−2ωe4 + 2ξaea)

)
= div (F)β − tr χ (F)ρ+ ζ · (F)β + (a)trχ ∗ (F)ρ−∇4

(F)ρ+ η · (F)β − ξ · (F)β,

which gives

∇4
(F)ρ− div (F)β = −

(
tr χ (F)ρ− (a)trχ ∗ (F)ρ

)
+ (ζ + η) · (F)β − ξ · (F)β,

∇3
(F)ρ+ div (F)β = −

(
trχ (F)ρ+ (a)trχ ∗ (F)ρ

)
+ (ζ − η) · (F)β + ξ · (F)β.

(3.5)

We summarize the Maxwell equations in the following proposition.

Proposition 3.1. We have

∇3
(F)β −∇( (F)ρ) + ∗∇ ∗ (F)ρ

= −1
2
(
trχ (F)β + (a)trχ ∗ (F)β

)
+ 2ω (F)β + 2

(
η (F)ρ− ∗η ∗ (F)ρ

)
+ χ̂ · (F)β,

∇4
(F)β + ∇( (F)ρ) + ∗∇ ∗ (F)ρ

= −1
2
(
tr χ (F)β + (a)trχ ∗ (F)β

)
+ 2ω (F)β + 2

(
− η (F)ρ− ∗η ∗ (F)ρ

)
+ χ̂ · (F)β,

∇4
(F)ρ− div (F)β = −

(
tr χ (F)ρ− (a)trχ ∗ (F)ρ

)
+ (ζ + η) · (F)β − ξ · (F)β,

∇3
(F)ρ+ div (F)β = −

(
trχ (F)ρ+ (a)trχ ∗ (F)ρ

)
+ (ζ − η) · (F)β + ξ · (F)β,

∇4
∗ (F)ρ− curl (F)β = −

(
tr χ ∗ (F)ρ+ (a)trχ (F)ρ

)
+ (η + ζ) · ∗ (F)β + ξ · ∗ (F)β,

∇3
∗ (F)ρ− curl (F)β = −

(
trχ ∗ (F)ρ− (a)trχ (F)ρ

)
+ (η − ζ) · ∗ (F)β + ξ · ∗ (F)β.

In complex notations and using conformal derivatives, we have

(c)∇3
(F)B − (c)D (F)P = −1

2
trX (F)B + 2 (F)PH +

1
2
X̂ · (F)B,

(c)∇4
(F)B + (c)D (F)P = −1

2
trX (F)B − 2 (F)P H +

1
2
X̂ · (F)B,

(c)∇4
(F)P − 1

2
(c)D · (F)B = −trX (F)P +

1
2
H · (F)B − 1

2
Ξ · (F)B,

(c)∇3
(F)P +

1
2

(c)D · (F)B = −trX (F)P − 1
2
H · (F)B +

1
2
Ξ · (F)B.



April 7, 2022 13:29 WSPC/S0219-8916 JHDE 2250001

Electromagnetic-gravitational perturbations of Kerr–Newman spacetime 27

Proof. We derive the equation for (F)B. From the above equation for (F)β and its
dual, we have

∇3
(F)B = ∇3( (F)β + i ∗ (F)β)

= ∇ (F)ρ− ∗∇ ∗ (F)ρ+ i
( ∗∇ (F)ρ+ ∇ ∗ (F)ρ

)
− 1

2
(
trχ (F)β + (a)trχ ∗ (F)β

)
− 1

2
i
(
trχ ∗ (F)β − (a)trχ (F)β

)
+ 2ω

(
(F)β + i ∗ (F)β

)
+ 2

(
η (F)ρ− ∗η ∗ (F)ρ

)
+ 2i

( ∗η (F)ρ+ η ∗ (F)ρ
)

+ χ̂ · (F)β + i ∗(χ̂ · (F)β),

which gives

∇3
(F)B −D (F)P = −1

2
trX (F)B + 2ω (F)B + 2 (F)PH +

1
2
X̂ · (F)B.

From the equations for (F)ρ and ∗ (F)ρ, we obtain

∇4
(F)P = ∇4( (F)ρ+ i ∗ (F)ρ)

= div (F)β + icurl (F)β −
(
tr χ (F)ρ− (a)trχ ∗ (F)ρ

)
− i

(
tr χ ∗ (F)ρ+ (a)trχ (F)ρ

)
+

(
ζ + η

)
· (F)β + i

(
η + ζ

)
· ∗ (F)β

− ξ · (F)β + iξ · ∗ (F)β,

which gives

∇4
(F)P − 1

2
D · (F)B = −trX (F)P +

1
2
(
Z + H

)
· (F)B − 1

2
Ξ · (F)B

as desired. The other equations are obtained by symmetrization. Using the fact
that (F)B is conformal invariant of type 1, (F)B is conformal of type −1 and (F)P is
conformal of type 0, we easily deduce the equations with conformal derivatives.

3.2. The Ricci identities

We now compute the Ricci curvature Rμν of (M,g) in terms of the decomposition
in frames according to the Einstein equation (3.1):

Ra3 = 2FaλF3
λ = 2δbcFabF3c − Fa3F34 = 2 ∗ (F)ρ ∗ (F)β

a
− 2 (F)ρ (F)β

a
,

Ra4 = 2 ∗ (F)ρ ∗ (F)βa + 2 (F)ρ (F)βa,

R33 = 2gλμF3λF3μ = 2δabF3aF3b = 2 (F)β · (F)β,

R44 = 2 (F)β · (F)β,

R34 = (F34)2 + 2 (F)β · (F)β +
(
− 2 (F)ρ2 + 2 ∗ (F)ρ2 − 2 (F)β · (F)β

)
= 2 (F)ρ2 + 2 ∗ (F)ρ2,
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Rab = −Fa3Fb4 − Fa4Fb3 + 2δcdFacFbd − 1
2
δab

(
− 2 (F)ρ2 + 2 ∗ (F)ρ2 − 2 (F)β · (F)β

)
= − (F)β

a
(F)βb − (F)βa

(F)β
b
+ 2 ∗ (F)ρ2 ∈ac∈bc

− 1
2
δab

(
− 2 (F)ρ2 + 2 ∗ (F)ρ2 − 2 (F)β · (F)β)

= −2( (F)β⊗̂ (F)β)ab +
(

(F)ρ2 + ∗ (F)ρ2
)
δab.

Using the decomposition of the Riemann curvature in Weyl curvature and Ricci
tensor:

Rαβγδ = Wαβγδ +
1
2
(gβδRαγ + gαγRβδ − gβγRαδ − gαδRβγ), (3.6)

we compute the components of the Riemann tensor:

Ra33b = Wa33b −
1
2
δabR33 = −αab −

(
(F)β · (F)β

)
δab,

Ra34b = Wa34b + Rab −
1
2
δabR34 = ρδab − ∗ρ ∈ab −2( (F)β⊗̂ (F)β)ab,

Ra334 = Wa334 − Ra3 = 2β
a
− 2 ∗ (F)ρ ∗ (F)β

a
+ 2 (F)ρ (F)β

a
,

R3434 = W3434 + 2R34 = 4ρ+ 4 (F)ρ2 + 4 ∗ (F)ρ2,

Ra3cb = Wa3cb +
1
2
(δacR3b − δabR3c)

= ∈cb
∗β

a
+ δac( ∗ (F)ρ ∗ (F)β

b
− (F)ρ (F)β

b
)

− δab

( ∗ (F)ρ ∗ (F)β
c
− (F)ρ (F)β

c

)
.

The Ricci identities are obtained from the definition of Riemann curvature and
are given by, see [19]:

∇3χba
= 2∇bξa

− 2ω χ
ba

− χ
bc
χ

ca
+ 2

(
− 2ζbξa

+ ηbξa
+ η

a
ξ

b

)
+ Rb33a,

∇3χba = 2∇bηa + 2ωχba − χ
bc
χca + 2(ξ

b
ξa + ηa ηb) + Ra43b,

∇4χba
= 2∇bηa

+ 2ωχ
ba

− χbcχca
+ 2(ξbξa

+ η
a
η

b
) + Ra34b,

∇4χba = 2∇bξa − 2ω χba − χbcχca + 2
(
2ζbξa + η

b
ξa + ηaξb

)
+ Rb44a.

∇3ζa + 2∇aω = −χ
ab

(ζb + ηb) + 2ω(ζ − η)a + χabξb
+ 2ωξ

a
− 1

2
Ra334.

∇4ζa − 2∇aω = χab(−ζb + η
b
) + 2ω(ζ + η)a − χ

ab
ξb − 2ωξa +

1
2
Ra443,

∇3ηa
−∇4ξa

= −χ
ba

(η − η)b − 4ωξ
a

+
1
2
Ra334,
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∇4ηa −∇3ξa = −χba(η − η)b − 4ωξa +
1
2
Ra443,

∇3ω + ∇4ω = 4ωω + ξ · ξ + (η − η) · ζ − η · η +
1
4
R3434,

∇aχbc + ζaχbc = ∇bχac + ζbχac + (χab − χba)ηc + (χ
ab

− χ
ba

)ξc + Rb4ac,

∇aχbc
− ζaχbc

= ∇bχac
− ζbχac

+ (χ
ab

− χ
ba

)η
c
+ (χab − χba)ξ

c
+ Rb3ac.

We summarize the result of their complexification, with the above values of the
Riemann curvature in the following.

Proposition 3.2. In complex notations and using the conformal derivatives we
have the following Ricci identities:

(c)∇3trX +
1
2
(trX)2 = (c)D · Ξ + Ξ · H + Ξ ·H − 1

2
X̂ · X̂ − (F)B · (F)B,

(c)∇4trX +
1
2
(trX)2 = (c)D · Ξ + Ξ ·H + Ξ ·H − 1

2
X̂ · X̂ − (F)B · (F)B,

(c)∇3trX +
1
2
trXtrX = (c)D ·H +H ·H + 2P + Ξ · Ξ − 1

2
X̂ · X̂,

(c)∇4trX +
1
2
trXtrX = (c)D · H + H · H + 2P + Ξ · Ξ − 1

2
X̂ · X̂,

(c)∇3X̂ + �(trX)X̂ = (c)D⊗̂Ξ + Ξ⊗̂(H + H) −A,

(c)∇4X̂ + �(trX)X̂ = (c)D⊗̂Ξ + Ξ⊗̂(H +H) −A,

(c)∇3X̂ +
1
2
trX X̂ = (c)D⊗̂H +H⊗̂H − 1

2
trXX̂ +

1
2
Ξ⊗̂Ξ − 1

2
(F)B⊗̂ (F)B,

(c)∇4X̂ +
1
2
trX X̂ = (c)D⊗̂H + H⊗̂H − 1

2
trXX̂ +

1
2
Ξ⊗̂Ξ − 1

2
(F)B⊗̂ (F)B,

(c)∇3H − (c)∇4Ξ = −1
2
trX(H −H) − 1

2
X̂ · (H −H) +B + (F)P (F)B,

(c)∇4H − (c)∇3Ξ = −1
2
trX(H − H) − 1

2
X̂ · (H − H) −B − (F)P (F)B,

1
2

(c)D · X̂ =
1
2

(c)DtrX − i	(trX)H − i	(trX)Ξ −B + (F)P (F)B,

1
2

(c)D · X̂ =
1
2

(c)DtrX − i	(trX)H − i	(trX)Ξ +B − (F)P (F)B.

Also, for the non-conformal Z, ω and ω:

∇3Z +
1
2
trX(Z +H) − 2ω(Z −H)

= −2Dω − 1
2
X̂ · (Z +H) +

1
2
trXΞ + 2ωΞ −B − (F)P (F)B +

1
2
Ξ · X̂,
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∇4Z +
1
2
trX(Z − H) − 2ω(Z + H)

= 2Dω +
1
2
X̂ · (−Z + H) − 1

2
trXΞ − 2ωΞ −B − (F)P (F)B − 1

2
Ξ · X̂,

∇3ω + ∇4ω − 4ωω − ξ · ξ − (η − η) · ζ + η · η = ρ+ (F)ρ2 + ∗ (F)ρ2.

Note that we are missing the traditional Gauss equation which, in the integrable
case, connects the Gauss curvature of a sphere to a Riemann curvature component.
We now state the non-integrable analogue of the Gauss equation, see [19].

Proposition 3.3. The following identities hold true for f ∈ s1 and u ∈ s2:

(
∇a∇b −∇b∇a

)
fc =

1
2
∈ab ( (a)trχ∇3 + (a)trχ∇4)fc −

1
2
Ecdabf

d + Rcdabf
d

(
∇a∇b −∇b∇a

)
ust =

1
2
∈ab ( (a)trχ∇3 + (a)trχ∇4)ust −

1
2
Esdabudt −

1
2
Etdabusd

+Rsdabudt + Rtdabusd,

where

Ecdab := χacχbd
+ χ

ac
χbd − χbcχad

− χ
bc
χad. (3.7)

Proof. See [19, Proposition 2.34].

3.3. The Bianchi identities

The Bianchi identities for the Weyl curvature are given by

DαWαβγδ =
1
2
(DγRβδ − DδRβγ) =: Jβγδ. (3.8)

The null Bianchi identities are given by, see [19],

∇3α− 2∇⊗̂β

= −1
2
(
trχα+ (a)trχ ∗α) + 4ωα+ 2(ζ + 4η)⊗̂β − 3(ρχ̂+ ∗ρ ∗χ̂) + a,

∇4α+ 2∇⊗̂β

= −1
2
(
tr χα− (a)trχ ∗α) + 4ωα+ 2(ζ − 4η)⊗̂β − 3(ρχ̂− ∗ρ ∗χ̂) + a,

where

aab = Jba4 + Jab4 −
1
2
δabJ434, aab = Jba3 + Jab3 −

1
2
δabJ343.
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We also have

∇4β − divα

= −2(tr χβ − (a)trχ ∗β) − 2ωβ + α · (2ζ + η) + 3(ξρ+ ∗ξ ∗ρ) − J4a4,

∇3β + divα

= −2(trχβ − (a)trχ ∗β) − 2ωβ − α · (−2ζ + η) − 3(ξρ− ∗ξ ∗ρ) + J3a3,

∇3β + div�

= −(trχβ + (a)trχ ∗β) + 2ω β + 2β · χ̂+ 3(ρη + ∗ρ ∗η) + α · ξ + J3a4,

∇4β − div�̌

= −(tr χβ + (a)trχ ∗β) + 2ω β + 2β · χ̂− 3(ρη − ∗ρ ∗η) − α · ξ − J4a3,

where

div� = −(∇ρ+ ∗∇ ∗ρ), div�̌ = −(∇ρ− ∗∇ ∗ρ).

Finally,

∇4ρ− divβ = −3
2
(tr χρ+ (a)trχ ∗ρ) + (2η + ζ) · β − 2ξ · β − 1

2
χ̂ · α− 1

2
J434,

∇4
∗ρ+ curlβ = −3

2
(tr χ ∗ρ− (a)trχρ) − (2η + ζ) · ∗β − 2ξ · ∗β

+
1
2
χ̂ · ∗α− 1

2
∗J434,

∇3ρ+ divβ = −3
2
(trχρ− (a)trχ ∗ρ) − (2η − ζ) · β + 2ξ · β − 1

2
χ̂ · α− 1

2
J343,

∇3
∗ρ+ curlβ = −3

2
(trχ ∗ρ+ (a)trχρ) − (2η − ζ) · ∗β − 2ξ · ∗β

− 1
2
χ̂ · ∗α+

1
2

∗J343.

We compute the Js terms through the Ricci curvature, and then use the Maxwell
equations to simplify them. We summarize the final Bianchi identities in the fol-
lowing, and defer the proof to the appendix.

Proposition 3.4. In complex notations and using the conformal derivatives we
have the following Bianchi identities:

(c)∇3A+
1
2
trXA

= (c)D⊗̂B + 4H⊗̂B − 3PX̂ − 2 (F)P

(
−1

2
(c)D⊗̂ (F)B + (F)PX̂

)
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+
1
2
∇4( (F)B⊗̂ (F)B) +

1
2

(c)∇3( (F)B⊗̂ (F)B)

+
(
−1

2
trX (F)B +

1
2
X̂ · (F)B +

1
2
X̂ · (F)B + (F)PΞ

)
⊗̂ (F)B,

(c)∇4A+
1
2
trXA

= − (c)D⊗̂B − 4H⊗̂B − 3PX̂ + 2 (F)P

(
−1

2
(c)D⊗̂ (F)B − (F)PX̂

)

+
1
2
∇3( (F)B⊗̂ (F)B) +

1
2

(c)∇4( (F)B⊗̂ (F)B)

+
(
−1

2
trX (F)B +

1
2
X̂ · (F)B +

1
2
X̂ · (F)B − (F)PΞ

)
⊗̂ (F)B.

We also have

(c)∇4B − 1
2

(c)D ·A

= −2trXB +
1
2
A · H +

(
3P − 2 (F)P (F)P

)
Ξ + (F)P (c)∇4( (F)B)

+
1
2

(c)D( (F)B · (F)B),

(c)∇3B +
1
2

(c)D · Å

= −2trX B − 1
2
A ·H −

(
3P − 2 (F)P (F)P

)
Ξ + (F)P (c)∇3( (F)B)

+
1
2

(c)D( (F)B · (F)B)

and

(c)∇3B − (c)DP = −trXB +B · X̂ + 3PH +
1
2
A · Ξ

+ (F)P (c)D( (F)P ) − 1
2
trX (F)P (F)B − trX (F)P (F)B

+
1
2
( (c)D · (F)B) (F)B − (F)PX̂ · (F)B − 1

2
(F)PX̂ · (F)B,

(c)∇4B + (c)DP = −trXB +B · X̂ − 3P H − 1
2
A · Ξ

− (F)P (c)D( (F)P ) − 1
2
trX (F)P (F)B − trX (F)P (F)B

+
1
2
( (c)D · (F)B) (F)B + (F)PX̂ · (F)B +

1
2

(F)PX̂ · (F)B.
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Finally,

(c)∇4P − 1
2

(c)D · B = −3
2
trXP − trX (F)P (F)P + H ·B − Ξ ·B − 1

4
X̂ · A

+
1
2

(F)P (c)D · (F)B +H · (F)P (F)B

+ (c)∇3( (F)B⊗̂ (F)B) +
(
−trX (F)B − 1

2
X̂ · (F)B

)
⊗̂ (F)B,

(c)∇3P +
1
2

(c)D · B = −3
2
trXP − trX (F)P (F)P −H · B + Ξ · B − 1

4
X̂ · A

− 1
2

(F)P (c)D · (F)B − H · (F)P (F)B

+ (c)∇4( (F)B⊗̂ (F)B) +
(
−trX (F)B − 1

2
X̂ · (F)B

)
⊗̂ (F)B.

Proof. See Appendix A.1.

4. The Kerr–Newman Spacetime and its Linear Perturbations

In this section, we introduce the Kerr–Newman spacetime and its representation
within the formalism above introduced. For a more complete description of the
Kerr–Newman spacetime see [20].

4.1. The Kerr–Newman metric

The Kerr–Newman black hole gM,a,Q represents the most general explicit solution of
a stationary, rotating (with spin a) and charged (with charge Q) black hole of mass
M . We consider the Kerr–Newman metric in standard Boyer–Lindquist coordinates
(t, r, θ, ϕ):

gM,a,Q = − Δ
|q|2 (dt− a sin2 θdϕ)2 +

|q|2
Δ
dr2 + |q|2dθ2 +

sin2 θ

|q|2 (adt− (r2 + a2)dϕ)2,

where

q = r + ia cos θ, q = r − ia cos θ (4.1)

and

Δ = r2 − 2Mr + a2 +Q2,

|q|2 = r2 + a2(cos θ)2.

The metric gM,a,Q is a solution to the Einstein–Maxwell equations (3.1) and
(3.2), with electromagnetic tensor F = dA, and vector potential A given by

A = −Qr

|q|2 (dt− a sin2 θdφ).

We note that ∂t and ∂ϕ are Killing vectorfields of the metric.
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The Kerr–Newman metric is of Petrov Type D, i.e. its Weyl curvature can be
diagonalized with two linearly independent eigenvectors, the so-called principal null
directions. The principal null frame is givend by

e4 =
r2 + a2

Δ
∂t + ∂r +

a

Δ
∂ϕ, e3 =

r2 + a2

|q|2 ∂t −
Δ
|q|2 ∂r +

a

|q|2 ∂ϕ,

e1 =
1√
|q|2

∂θ, e2 =
a sin θ√

|q|2
∂t +

1√
|q|2 sin θ

∂ϕ.

With respect to the principal null frame, we have

χ̂ = χ̂ = ξ = ξ = 0, (F)β = (F)β = 0, α = β = β = α = 0

or their complexified versions,e

X̂ = X̂ = Ξ = Ξ = 0, (F)B = (F)B = 0, A = B = B = A = 0. (4.2)

With the above choice of principal null frame, the Ricci coefficients are given by

tr χ =
2r
|q|2 ,

(a)trχ =
2a cos θ
|q|2 , trχ = −2rΔ

|q|4 ,
(a)trχ =

2aΔ cos θ
|q|4

ω =
a2 cos2 θ(r −M) +Mr2 − a2r −Q2r

|q|4 , ω = 0, η = −ζ.

Also, we have

η1 = −a
2 sin θ cos θ

|q|3 , η2 =
a sin θr
|q|3 ,

∗η1 =
a sin θr
|q|3 , ∗η2 =

a2 sin θ cos θ
|q|3 ,

η
1

= −a
2 sin θ cos θ

|q|3 , η
2

= −a sin θr
|q|3 ,

∗η
1

= −a sin θr
|q|3 , ∗η

2
=
a2 sin θ cos θ

|q|3 .

Their complexified values are given by

trX =
2
q
, trX = − 2Δ

qq2
, H = −Z,

H1 =
ai sin θ q

|q|3 , H2 =
a sin θ q
|q|3 ,

Z1 =
ai sin θ q

|q|3 , Z2 =
a sin θ q
|q|3 .

dThere is an indeterminacy in the principal null frame as one may replace the pair (e3, e4) with
(λ−1e3, λe4) for any λ > 0. The formulas in this section correspond to the choice of λ such that
e4 is geodesic.
eIn NP formalism, this corresponds to the vanishing of σ = λ = κ = ν = 0, Φ0 = Φ1 = Φ3 =
Φ4 = 0 and φ0 = φ2 = 0.
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The non-vanishing electromagnetic components are given by

(F)ρ =
Q(r2 − a2 cos2 θ)

|q|4 , ∗ (F)ρ =
2aQr cos θ

|q|4

with complexified value

(F)P =
Q

q2
.

The non-vanishing curvature components are given by

ρ =
1
|q|6 (−2Mr3 + 2Q2r2 + 6Ma2 cos2 θr − 2Q2a2 cos2 θ),

∗ρ =
a cos θ
|q|6 (6Mr2 − 4Q2r − 2Ma2 cos2 θ),

with complexified value

P = −2M
q3

+
2Q2

q3q
.

4.2. The Einstein–Maxwell equations in Kerr–Newman

Using the vanishing of the Ricci, curvature and electromagnetic components given
by (4.2), one can see that many of the Einstein–Maxwell equations obtained in Sec.
3 become trivial in Kerr–Newman. We denote those which are not trivially satisfied
as reduced equations, and we collect them in the following proposition.

Proposition 4.1. The reduced Maxwell equations in Kerr–Newman are

(c)∇4
(F)P = −trX (F)P, (c)∇3

(F)P = −trX (F)P, (4.3)

(c)D (F)P = −2 (F)PH, (c)D (F)P = −2 (F)P H. (4.4)

The reduced Ricci identities in Kerr–Newman are

(c)∇3trX +
1
2
(trX)2 = 0, (c)∇4trX +

1
2
(trX)2 = 0, (4.5)

(c)∇3trX +
1
2
trXtrX = (c)D ·H +H ·H + 2P, (4.6)

(c)∇4trX +
1
2
trXtrX = (c)D · H + H · H + 2P , (4.7)

(c)D⊗̂H +H⊗̂H = 0, (c)D⊗̂H + H⊗̂H = 0, (4.8)

(c)∇3H +
1
2
trX(H −H) = 0, (c)∇4H +

1
2
trX(H − H) = 0, (4.9)

(c)DtrX − (trX − trX)H = 0, (c)DtrX − (trX − trX)H = 0. (4.10)
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The reduced Bianchi identities in Kerr–Newman are

(c)DP = −
(
3P − 2 (F)P (F)P

)
H, (c)DP = −

(
3P − 2 (F)P (F)P

)
H, (4.11)

(c)∇4P = −3
2
trXP − trX (F)P (F)P , (c)∇3P = −3

2
trXP − trX (F)P (F)P

(4.12)

From the above we deduce (see also [19]) the following identities for q = r +
ia cos θ:

∇3q =
1
2
trX q, ∇4q =

1
2
trXq Dq = qH, Dq = q H. (4.13)

4.3. The wave operators in Kerr–Newman spacetime

In what follows, we will need to express the equations governing electromagnetic-
gravitational perturbations of Kerr–Newman in terms of wave operators applied
to k-horizontal tensor fields. In this section, we collect useful formulas for those
operators.

Consider the wave operator for Ψ ∈ sk(C) defined as

�̇kΨab := gμνḊμḊνΨab, (4.14)

where Ḋ is the horizontal covariant derivative as defined in (2.2).

Lemma 4.2. The wave operator for Ψ ∈ sk(C) is given by

�̇kΨ = −1
2
(
∇3∇4Ψ + ∇4∇3Ψ

)
+ ΔkΨ +

(
ω − 1

2
trχ

)
∇4Ψ

+
(
ω − 1

2
tr χ

)
∇3Ψ + (η + η) · ∇Ψ, (4.15)

where Δk = δab∇a∇b is the Laplacian operator for horizontal k-tensors. More pre-
cisely, for F ∈ s1(C) we have

�̇1F = −∇3∇4F + Δ1F +
(

2ω − 1
2
trχ

)
∇4F − 1

2
tr χ∇3F + 2η · ∇F

+ i
(
− ∗ρ+ η ∧ η

)
F

= −∇3∇4F +
1
2
D · (D⊗̂F ) +

(
2ω − 1

2
trX

)
∇4F

− 1
2
trX∇3F + (H +H) · ∇F

+
(

1
4
tr χtrχ+

1
4

(a)trχ (a)trχ+ ρ− (F)ρ2 − ∗ (F)ρ2 + i
(
− ∗ρ+ η ∧ η

))
F
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and for U ∈ s2(C) we have

�̇2U = −∇3∇4U + Δ2U +
(

2ω − 1
2
trχ

)
∇4U − 1

2
tr χ∇3U + 2η · ∇U

+ i
(
−2 ∗ρ+ 2η ∧ η

)
U

= −∇3∇4U +
1
2
D⊗̂(D · U) +

(
2ω − 1

2
trX

)
∇4U

− 1
2
trX∇3U + (H +H) · ∇U +

(
−1

2
tr χtrχ− 1

2
(a)trχ (a)trχ− 2ρ

+ 2 (F)ρ2 + 2 ∗ (F)ρ2 + i(−2 ∗ρ+ 2η ∧ η)
)
U.

Proof. For the proof of (4.15) see [19, Lemma 5.4].
For F ∈ s1(C) and U ∈ s2(C), using the commutators, see [19, Lemma 5.2]:

[∇3,∇4]F = −2ω∇3F + 2ω∇4F + 2(η − η) · ∇F + 2i
(
− ∗ρ+ η ∧ η

)
F,

[∇3,∇4]U = −2ω∇3U + 2ω∇4U + 2(η − η) · ∇U + 4i
(
− ∗ρ+ η ∧ η

)
U,

we obtain

�̇1F = −∇3∇4F + Δ1F +
(

2ω − 1
2
trχ

)
∇4F − 1

2
tr χ∇3F

+ 2η · ∇F + i
(
− ∗ρ+ η ∧ η

)
F,

�̇2U = −∇3∇4U + Δ2U +
(

2ω − 1
2
trχ

)
∇4U − 1

2
tr χ∇3U

+ 2η · ∇U + i
(
−2 ∗ρ+ 2η ∧ η

)
U.

Using the following Gauss relations, see Lemma A.7:

D · (D⊗̂F ) = 2Δ1F + i( (a)trχ∇3 + (a)trχ∇4)F

−
(

1
2
tr χtrχ+

1
2

(a)trχ (a)trχ+ 2ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2

)
F,

(
D⊗̂(D · U)

)
= 2Δ2U − i( (a)trχ∇3 + (a)trχ∇4)U

+
(
tr χtrχ+ (a)trχ (a)trχ+ 4ρ− 4 (F)ρ2 − 4 ∗ (F)ρ2

)
U

we obtain

�̇1F = −∇3∇4F +
1
2
D · (D⊗̂F ) +

(
2ω − 1

2
(trχ+ i (a)trχ)

)
∇4F

− 1
2
(tr χ+ i (a)trχ)∇3F + 2η · ∇F +

(
1
4
tr χtrχ+

1
4

(a)trχ (a)trχ

+ ρ− (F)ρ2 − ∗ (F)ρ2 + i(− ∗ρ+ η ∧ η)
)
F
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and

�̇2U = −∇3∇4U +
1
2
D⊗̂(D · U) +

(
2ω − 1

2
(trχ− i (a)trχ)

)
∇4U

− 1
2
(tr χ− i (a)trχ)∇3U2η · ∇U +

(
−1

2
tr χtrχ− 1

2
(a)trχ (a)trχ

− 2ρ+ 2 (F)ρ2 + 2 ∗ (F)ρ2 + i(−2 ∗ρ+ 2η ∧ η)
)
U.

By writing trχ+ i (a)trχ = trX, tr χ+ i (a)trχ = trX and 2η = H +H , we obtain
the stated expressions.

4.4. Linear perturbations of Kerr–Newman

In this section, we define the linear electromagnetic-gravitational perturbations of
the Kerr–Newman spacetime. Recall that as Kerr–Newman is of Petrov Type D,
the following coefficients:

X̂, X̂,Ξ,Ξ, A,B,B,A, (F)B, (F)B

vanish in the background. For this reason, our definition of linear perturbations
of Kerr–Newman consists in solutions to the Einstein–Maxwell equations where
quadratic expressions in the above terms are neglected.

Definition 4.3. A linear electromagnetic-gravitational perturbation of the Kerr–
Newman spacetimef is a solution to the Einstein–Maxwell equations of Sec.
3, where quadratic expressions of terms which vanish in the background (i.e.
X̂, X̂,Ξ,Ξ, A,B,B,A, (F)B, (F)B) are neglected.

For example, consider the Maxwell equation:

(c)∇3
(F)B − (c)D (F)P = −1

2
trX (F)B + 2 (F)PH +

1
2
X̂ · (F)B.

The last term, 1
2X̂ · (F)B, is quadratic in X̂ and (F)B, and therefore it is neglected in

linear electromagnetic-gravitational perturbations of Kerr–Newman. The linearized
version of the above Maxwell equation then reduces to

(c)∇3
(F)B − (c)D (F)P = −1

2
trX (F)B + 2 (F)PH.

A similar procedure can be applied to all the Einstein–Maxwell equations of Sec. 3.
We collect them in the following proposition.

fThis same definition can also be used to define linear electromagnetic-gravitational perturbations
of any Petrov Type D spacetime.
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Proposition 4.4. A linear electromagnetic-gravitational perturbation of the Kerr–
Newman spacetime consists in a set of complex horizontal scalars, one-forms, 2-
tensors

trX, trX,P, (F)P ∈ s0(C),

H, H,Z,Ξ,Ξ, (F)B, (F)B,B,B ∈ s1(C),

X̂, X̂, A,A ∈ s2(C),

which satisfy the following linearized Einstein–Maxwell equations, comprised of the
linearized Maxwell equations:

(c)∇3
(F)B − (c)D (F)P = −1

2
trX (F)B + 2 (F)PH, (4.16)

(c)∇4
(F)B + (c)D (F)P = −1

2
trX (F)B − 2 (F)P H, (4.17)

(c)∇4
(F)P − 1

2
(c)D · (F)B = −trX (F)P +

1
2
H · (F)B, (4.18)

(c)∇3
(F)P +

1
2

(c)D · (F)B = −trX (F)P − 1
2
H · (F)B, (4.19)

the linearized Ricci identities:

(c)∇3trX +
1
2
(trX)2 = (c)D · Ξ + Ξ · H + Ξ ·H, (4.20)

(c)∇4trX +
1
2
(trX)2 = (c)D · Ξ + Ξ ·H + Ξ ·H, (4.21)

(c)∇3trX +
1
2
trXtrX = (c)D ·H +H ·H + 2P, (4.22)

(c)∇4trX +
1
2
trXtrX = (c)D · H + H · H + 2P, (4.23)

(c)∇3X̂ + �(trX)X̂ = (c)D⊗̂Ξ + Ξ⊗̂(H + H) −A, (4.24)

(c)∇4X̂ + �(trX)X̂ = (c)D⊗̂Ξ + Ξ⊗̂(H +H) −A, (4.25)

(c)∇3X̂ +
1
2
trX X̂ = (c)D⊗̂H +H⊗̂H − 1

2
trXX̂, (4.26)

(c)∇4X̂ +
1
2
trX X̂ = (c)D⊗̂H + H⊗̂H − 1

2
trXX̂, (4.27)

(c)∇3H − (c)∇4Ξ = −1
2
trX(H −H) − 1

2
X̂ · (H −H) +B + (F)P (F)B,

(4.28)
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(c)∇4H − (c)∇3Ξ = −1
2
trX(H − H) − 1

2
X̂ · (H − H) −B − (F)P (F)B,

(4.29)
1
2

(c)D · X̂ =
1
2

(c)DtrX − i	(trX)H − i	(trX)Ξ −B + (F)P (F)B, (4.30)

1
2

(c)D · X̂ =
1
2

(c)DtrX − i	(trX)H − i	(trX)Ξ +B − (F)P (F)B, (4.31)

∇3ω + ∇4ω − 4ωω − (η − η) · ζ + η · η = ρ+ (F)ρ2 + ∗ (F)ρ2 (4.32)

and the linearized Bianchi identities :

(c)∇3A+
1
2
trXA

= (c)D⊗̂B + 4H⊗̂B − 3PX̂ − 2 (F)P

(
−1

2
(c)D⊗̂ (F)B + (F)PX̂

)
(4.33)

(c)∇4A+
1
2
trXA

= − (c)D⊗̂B − 4H⊗̂B − 3PX̂ + 2 (F)P

(
−1

2
(c)D⊗̂ (F)B − (F)PX̂

)
(4.34)

(c)∇4B − 1
2

(c)D ·A

= −2trXB +
1
2
A · H +

(
3P − 2 (F)P (F)P

)
Ξ + (F)P (c)∇4( (F)B), (4.35)

(c)∇3B +
1
2

(c)D ·A

= −2trX B − 1
2
A ·H −

(
3P − 2 (F)P (F)P

)
Ξ + (F)P (c)∇3( (F)B) (4.36)

(c)∇3B − (c)DP

= −trXB + 3PH + (F)P (c)D( (F)P ) − 1
2
trX (F)P (F)B − trX (F)P (F)B,

(4.37)
(c)∇4B + (c)DP

= −trXB − 3P H − (F)P (c)D( (F)P ) − 1
2
trX (F)P (F)B − trX (F)P (F)B

(4.38)

(c)∇4P − 1
2

(c)D · B

= −3
2
trXP − trX (F)P (F)P + H · B +

1
2

(F)P (c)D · (F)B +H · (F)P (F)B,

(4.39)
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(c)∇3P +
1
2

(c)D · B

= −3
2
trXP − trX (F)P (F)P −H ·B − 1

2
(F)P (c)D · (F)B − H · (F)P (F)B.

(4.40)

Remark 4.5. Observe that the above definition of linear perturbations does not
rely on a linear expansion of the metric of the form

g = gm,a,Q + ε g(1) + ε2 g(2) + · · ·

for a smallness parameter ε. If one performs the above decomposition, applied to
the Ricci, curvature and electromagnetic components, and selects the ε-expansion
of the Einstein–Maxwell equations, then a choice of gauge would be needed in order
to evaluate the values of the background metric gm,a,Q. Definition 4.3 instead is
more general, and has the only effect of discarding the ε2 terms, without choosing
a gauge in doing so.

5. Gauge-Invariant Quantities in Perturbations of Kerr–Newman

In this section, we identify the gauge-invariant quantities in linear gravitational-
electromagnetic perturbations of Kerr–Newman spacetime. Those quantities play
a fundamental role in the resolution of the stability of Kerr–Newman, as, being
affected only quadratically by a change of coordinates, they are good candidate to
represent gravitational and electromagnetic radiation.

5.1. Linear frame transformations

Recall the rotations of class I, class II and class III which transform the basis vectors
{e3, e4, ea} into {e′3, e′4, e′a} as introduced in Sec. 2.4. Those rotations depend on
the one-forms μ and μ, on the scalar function λ and on the orthogonal matrix
Oab. Observe that the dependence of the equations and the coefficients on λ has
already been taken into account in the definitions of conformal derivatives, and the
dependence on the matrix Oab is accounted for in the use of horizontal tensors as
opposed to scalars. In this way, all the equations we have are already invariant to
a rotation of class III. We now consider the change in the coefficients caused by
rotations of class I and class II.

In the context of linear perturbations of a spacetime, we consider linear
frame transformations, i.e. those where quadratic expressions in the μ and μ are
neglected. Combining the transformations given by (2.8) and (2.9), and neglecting
the quadratic terms |μ|2 and |μ|2, we obtain the general linear frame transformations
as defined here.
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Definition 5.1. A linear frame transformation of the basis vectors {e3, e4, ea} into
{e′3, e′4, e′a} is a transformation of the form

e′4 = e4 + μaea,

e′3 = e3 + μ
a
ea,

e′a = ea +
1
2
μ

a
e4 +

1
2
μae3,

(5.1)

where μ and μ are real one-forms.

When a linear frame transformation is applied to the frame, the Ricci, curvature
and electromagnetic components change accordingly. For example, the electromag-
netic component (F)β is modified in the following way:

(F)β′
a = F(e′a, e

′
4) = F(ea +

1
2
μ

a
e4 +

1
2
μae3, e4 + μbeb)

= F(ea, e4) +
1
2
μaF(e3, e4) + μbF(ea, eb) +

1
2
μ

a
μbF(e4, eb)

+
1
2
μaμbF(e3, eb).

By neglecting the quadratic terms in μ and μ, we then obtain
(F)β′

a = (F)βa + μa
(F)ρ− ∈ab μb

∗ (F)ρ = (F)βa + μa
(F)ρ− ∗μa

∗ (F)ρ.

By considering the complexification of the (F)β, i.e. (F)B, and by defining M :=
μ+ i ∗μ, we deduce

(F)B′ = (F)β′ + i ∗ (F)β′ = (F)β + μ (F)ρ− ∗μ ∗ (F)ρ

+ i ∗( (F)β + μ (F)ρ− ∗μ ∗ (F)ρ)

= (F)β + i ∗ (F)β + μ (F)ρ− ∗μ ∗ (F)ρ+ i ∗μ (F)ρ+ iμ ∗ (F)ρ

= (F)β + i ∗ (F)β + ( (F)ρ+ i ∗ (F)ρ)(μ+ i ∗μ) = (F)B + (F)PM.

In the same way, we can compute how all the Ricci, curvature and electromag-
netic components get transformed by a linear frame transformation of the form
(5.1). We collect those transformations in the following lemma.

Lemma 5.2. The linear frame transformation (5.1) modifies the Ricci, curvature
and electromagnetic components in the following way:

trX ′ = trX +
1
2

(c)D ·M +
1
2
H ·M, trX ′ = trX +

1
2

(c)D ·M +
1
2
H ·M,

X̂ ′ = X̂ +
1
2

(c)D⊗̂M +
1
2
H⊗̂M, X̂

′
= X̂ +

1
2

(c)D⊗̂M +
1
2
H⊗̂M.

H ′ = H +
1
2

(c)∇3M +
1
4
trXM, H ′ = H +

1
2

(c)∇4M +
1
4
trXM.

Ξ′ = Ξ +
1
2

(c)∇4M +
1
4
trXM, Ξ′ = Ξ +

1
2

(c)∇3M +
1
4
trXM
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and

(F)B′ = (F)B + (F)PM, (F)P ′ = (F)P, (F)B′ = (F)B − (F)PM,

A′ = A, B′ = B +
3
2
PM, P ′ = P, B′ = B − 3

2
PM, A′ = A,

where M =:= μ+ i ∗μ and M := μ+ i ∗μ.

Proof. See [28].

5.2. Gauge-invariant quantities and their relations

The linear frame transformations of the form (5.1) can be used to pick a gauge in the
perturbations. In particular, the quantities which are not modified by such a linear
frame transformation may have a physical meaning, since they do not depend at the
linear level on the choice of coordinates. We call such quantities gauge-invariant, and
they are good candidates to represent electromagnetic or gravitational radiation.

Definition 5.3. A horizontal tensor Ψ ∈ s(C) is said to be gauge-invariant if it is
not modified by a linear frame transformations of the form (5.1), i.e. if Ψ′ = Ψ.

One of the main steps in analyzing electromagnetic-gravitational perturbations
of Kerr–Newman is then to identify the gauge-invariant quantities. We identify in
the following lemma four gauge-invariant quantities and their symmetric version.

Lemma 5.4. For a linear electromagnetic-gravitational perturbation of the Kerr–
Newman spacetime, the following symmetric traceless 2-tensors :

A, A

and

F = −1
2

(c)D⊗̂ (F)B − 3
2
H⊗̂ (F)B + (F)PX̂,

F = −1
2

(c)D⊗̂ (F)B − 3
2
H⊗̂ (F)B − (F)PX̂

(5.2)

and the following 1-tensors :

B = 2 (F)PB − 3P (F)B, B = 2 (F)PB − 3P (F)B (5.3)

and

X = (c)∇4
(F)B +

3
2
trX (F)B − 2 (F)PΞ, X = (c)∇3

(F)B +
3
2
trX (F)B + 2 (F)PΞ

(5.4)

are gauge-invariant.
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Proof. The invariance of A and A is straightforward from Lemma 5.2. We check
the invariance of F:

F′ = −1
2

(c)D′⊗̂ (F)B′ − 3
2
H ′⊗̂ (F)B′ + (F)P ′X̂ ′

= −1
2

(c)D⊗̂
(

(F)B + (F)PM
)
− 3

2
H⊗̂

(
(F)B + (F)PM

)

+ (F)P

(
X̂ +

1
2

(c)D⊗̂M +
1
2
H⊗̂M

)

= F − 1
2

(c)D (F)P ⊗̂M − 1
2

(F)P (c)D⊗̂M − 3
2

(F)PH⊗̂M

+ (F)P

(
1
2

(c)D⊗̂M +
1
2
H⊗̂M

)

= F − 1
2
(−2 (F)PH)⊗̂M − (F)PH⊗̂M = F,

where we usedg (4.4). Similarly for F. We check the invariance of B:

B′ = 2 (F)P ′B′ − 3P
′ (F)B′ = 2 (F)P

(
B +

3
2
PF

)
− 3P

(
(F)B + (F)PF

)

= B + 2 (F)P

(
3
2
PF

)
− 3P

(
(F)PF

)
= B

and similarly for B. Finally, we check the invariance of X:

X′ = (c)∇4( (F)B + (F)PF ) +
3
2
trX( (F)B + (F)PF )

− 2 (F)P

(
Ξ +

1
2

(c)∇4F +
1
4
trXF

)

= (c)∇4
(F)B +

3
2
trX (F)B − 2 (F)PΞ

− trX (F)PF + (F)P (c)∇4(F ) +
3
2
trX( (F)PF ) − 2 (F)P

(
1
2

(c)∇4F +
1
4
trXF

)

= (c)∇4
(F)B +

3
2
trX (F)B − 2 (F)PΞ = X

and similarly for X.

gObserve that by using the linearized Maxwell equation (4.16), one obtains

( (c)D (F)P )b⊗M =

„
(c)∇3

(F)B +
1

2
trX (F)B − 2 (F)PH

« b⊗M

= −2 (F)PH b⊗M+ quadratic terms

since the terms in (F)B and M are quadratic for linear perturbations of Kerr–Newman, and are
therefore neglected. From now on, when multiplied by a quantity which vanishes on the back-
ground, we can then use the reduced equations of Proposition 4.1.
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Remark 5.5. The identification of the above gauge-invariant quantities for lin-
ear perturbations of Kerr–Newman is a crucial new part of this work. In order to
compare them in NP formalism, we collect here their equivalent, where the corre-
spondence has to be understood through the projection to the first component, as
explained in Sec. 2.5.

NP formalism GKS formalism

Ψ0 A

f := −δφ0 + (2β + 3τ)φ0 − 2σφ1 F

b := 3φ0Ψ2 − 2φ1Ψ1 B

x := Dφ0 − (3ρ+ 2ε)φ0 + 2κφ1 X

We point out that in [4, p. 240], Eq. (213), in the context of perturbations of
Reissner–Nordström, Chandrasekhar notes “parenthetically, that while a gauge, in
which Ψ1 and φ1 vanish simultaneously, cannot be chosen, the combination 2Ψ1φ1−
3φ0Ψ2 is invariant to first order for infinitesimal rotations”.

The complex scalar b identified in [4] corresponds precisely to the projection to
the first component of our gauge-invariant quantity B. Nevertheless, such quantity
was not used in the subsequent analysis in [4]. Indeed, it was used to show that a
gauge where Ψ1 and φ1 vanish identically cannot be chosen, while a gauge where
φ0 = φ2 = 0, the so-called phantom gauge, can be chosen. In [4], the equations
governing the perturbations in the NP formalism were written in the phantom
gauge, and all the analysis was performed in such a gauge. In particular, by choosing
the phantom gauge, the above quantity was being reduced to a rescaled version of
the curvature component Ψ1.

No previous mention of f nor x in the context of perturbations of Kerr–Newman
is known to the author.

Remark 5.6. In the case of linear electromagnetic-gravitational perturbations of
Reissner–Nordström, the gauge-invariant quantities A, F, B and X, respectively
reduce to the quantities α, f, β̃ and x, first appearing in [14, 16]. More precisely, in
Reissner–Nordström the Ricci coefficients H, H, (a)trχ, (a)trχ, ∗ (F)ρ, ∗ρ vanish in
the background, and therefore the terms H⊗̂ (F)B, H⊗̂ (F)B, ∗ (F)ρX̂, ∗ (F)ρX̂ in
the definition of F, B and X become quadratic for linear perturbations of Reissner–
Nordström. The real parts of A, F, B and X reduce to

�(F) = −∇⊗̂ (F)β + (F)ρχ̂+ quadratic terms = f,

�(B) = 2 (F)ρβ − 3ρ (F)β+ quadratic terms = β̃,

�(X) = ∇4
(F)β +

3
2
tr χ (F)β − 2 (F)ρξ+ quadratic terms = x,

with f, β̃ and x, as defined in [14, 16].
In the case of gravitational perturbations of Kerr, the only gauge-invariant quan-

tity which has relevance is Ψ0,Ψ4 or A,A, the well-known Teukolsky variables. The
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quantities F, B and X, since contain electromagnetic components, only make sense
for solutions to the Einstein–Maxwell equations.

Observe that by adding and subtracting 3 (F)PH⊗̂ (F)B and 3 (F)P H⊗̂ (F)B to
the linearized Bianchi identities (4.33) and (4.34), respectively, using the definition
of F and F (5.2), those Bianchi identity become

(c)∇3A+
1
2
trXA = (c)D⊗̂B +H⊗̂

(
4B − 3 (F)P (F)B

)
− 3PX̂ − 2 (F)PF, (5.5)

(c)∇4A+
1
2
trXA = − (c)D⊗̂B − H⊗̂

(
4B − 3 (F)P (F)B

)
− 3PX̂ + 2 (F)PF (5.6)

We summarize here some fundamental relations between the above gauge invari-
ant quantities A, F, B and X obtained as consequence of the linearized Einstein–
Maxwell equation. The relations between A, F, B and X can be obtained by sym-
metrization.

Proposition 5.7. In a linear electromagnetic-gravitational perturbation of the
Kerr–Newman spacetime, the following relations among the gauge invariant quan-
tities A, F, B and X hold trueh:

• The following relation between the (c)∇3 derivative of A, the (c)D derivative of
B and F:

(F)P
(

(c)∇3A+
1
2
trXA

)
=

1
2

(c)D⊗̂B + 3H⊗̂B −
(
3P + 2 (F)P (F)P

)
F

(5.7)

• The following relation between the (c)∇4 derivative of F, the (c)D derivative of
X and A:

(c)∇4F +
(

3
2
trX +

1
2
trX

)
F = −1

2
(c)D⊗̂X − 1

2
(3H + H)⊗̂X − (F)PA

(5.8)

hIn NP formalism, the above relations have the following form:

2φ1

` − ΔΨ0 +
`
4γ − μ

´
Ψ0

´
= δb− 2(β + 3τ)b+

`
3Ψ2 + 2φ1φ1

´
f

Df− `
3ρ + ρ + 3ε − ε

´
f = −δx+

`
3β + 3τ − π + α

´
x− 2φ1Ψ0

Db− 2
`
ε + 3ρ

´
b = −2φ1

`
δΨ0 − 4αΨ0 + πΨ0

´
+

`
3Ψ2 − 2φ1φ1

´
x

Δx+
`
μ − 3γ − γ

´
x = −δf+

`
τ + 3α − β

´
f + 2b, [4pt]

where f, b, x are defined as in Remark 5.5.
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• The following relation between the (c)∇4 derivative of B, the (c)D derivative of
A and X:

(c)∇4B + 3trXB = (F)P
(

(c)D ·A+ H · A
)
−

(
3P − 2 (F)P (F)P

)
X. (5.9)

• The following relation between the (c)∇3 derivative of X, the (c)D derivative of
F and B:

(c)∇3X +
1
2
trX X = − (c)D · F −H · F − 2B. (5.10)

Proof. See Appendix A.2.

6. The System of Teukolsky Equations

In this section, we state the first theorem of the paper, which contains the coupled
system of Teukolsky equations for the gauge-invariant quantities A, F and B. These
equations govern the linear electromagnetic-gravitational perturbations of Kerr–
Newman spacetime, and generalize the Teukolsky equation for A in the case of Kerr.
The system of Teukolsky equations for B, F and A can be obtained by symmetry.

Theorem 6.1. Consider a linear electromagnetic-gravitational perturbation of
Kerr–Newman spacetime gM,a,Q as in Definition 4.3. Then its associated complex
tensors and gauge-invariant quantities A, F, B and X, satisfy the following coupled
system of Teukolsky equations:

T1(B) = M1[F,X], (6.1)

T2(F) = M2[A,X,B], (6.2)

T3(A) = M3[F,X], (6.3)

where

• on the left-hand side of the equations, T denotes the Teukolsky differential oper-
ators, respectively, given by

T1(B) := − (c)∇3
(c)∇4B +

1
2

(c)D · ( (c)D⊗̂B) − 3trX (c)∇3B

−
(

3
2
trX +

1
2
trX

)
(c)∇4B + (6H +H + 3H) · (c)∇B

+
(
−9

2
trXtrX − 4 (F)P (F)P + 9H ·H

)
B, (6.4)

T2(F) := − (c)∇3
(c)∇4F +

1
2

(c)D⊗̂( (c)D · F) −
(

3
2
trX +

1
2
trX

)
(c)∇3F

− 1
2

(
trX + trX

)
(c)∇4F +

(
4H +H + H

)
· (c)∇F
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+
(
−3

4
trXtrX − 1

4
trXtrX + 3P − P + 4 (F)P (F)P − 3

2
(c)D ·H

)
F

+
1
2
H⊗̂(H · F),

(6.5)

T3(A) := − (c)∇4
(c)∇3A+

1
2

(c)D⊗̂( (c)D · A) −
(

1
2
trX + 2trX

)
(c)∇3A

− 1
2
trX (c)∇4A+

(
4H + H + H

)
· (c)∇A+

(
− trXtrX

+ 2P − 2 (F)P (F)P
)
A+ 2H⊗̂

(
H ·A

)
(6.6)

• on the right-hand side of the equations, M denotes the coupling terms, where the
terms in squared parenthesis indicate the quantities involved in the expressions,
respectively, given by

M1[F,X] := 2 (F)P (F)P
(
2 (c)D · F + 4H · F −

(
2trX − trX

)
X

)
, (6.7)

M2[A,X,B] := − (F)P

(
(c)∇3A+

1
2

(
3trX − trX

)
A

)
+

(
3
2

(c)∇3H

)
⊗̂X

+ (2H − H) ⊗̂B, (6.8)

M3[F,X] := 2 (F)P
(
2 (c)∇4F + 2trXF + (H +H)⊗̂X

)
. (6.9)

Proof. The derivation of the above Teukolsky equations relies on Proposition 5.7,
and is obtained in Appendix B.

We collect here few remarks about Theorem 6.1.

(1) The Teukolsky operators T1, T2 and T3 are wave-like operators, as it can be
seen by comparing the expressions for �̇1 and �̇2 given in Lemma 4.2. More
precisely, their highest order terms are given by a wave operator, with the
additional presence of first-order terms.

(2) Observe that the system of Eqs. (6.1)–(6.3) for B, F and A also involve the
gauge-invariant quantity X. Nevertheless, X is considered here an auxiliary
quantity which only appears on the right-hand side M1, M2 and M3 at the first
order. More precisely, the system of Teukolsky equations (6.1)–(6.3), combined
with the transport equation (5.10) for X, gives a complete system of equations.

(3) In the case of linear gravitational perturbations of Kerr spacetimes (which cor-
responds to Kerr–Newman for (F)P = 0), Eq. (6.3) for A reduces to T3(A) = 0,
i.e. the Teukolsky equation of spin +2 in Kerr, as obtained in [19].

(4) In the case of linear electromagnetic-gravitational perturbations of Reissner–
Nordström (which corresponds to Kerr–Newman for H = H = (a)trχ =
(a)trχ = 0), the real parts of the Teukolsky system (6.1)–(6.3) reduces to the
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following Teukolsky equations for β̃, f and α

T1(β̃) = 2 (F)ρ2
(
4divf − trχ x

)
,

T2(f) = − (F)ρ
(

(c)∇3α+ trχα
)
,

T3(α) = 4 (F)ρ
(

(c)∇4f + tr χf
)
,

where

T1(β̃) := − (c)∇3
(c)∇4β̃ − 2divD∗/2β̃ − 3tr χ (c)∇3β̃ − 2trχ (c)∇4β̃

+
(
−9

2
tr χtrχ− 4 (F)ρ2

)
β̃,

T2(f) := − (c)∇3
(c)∇4f − 2D∗/2divf − trχ (c)∇4f

− 2tr χ (c)∇3f + (−tr χtrχ+ 2ρ+ 4 (F)ρ2)f,

T3(α) := − (c)∇4
(c)∇3α− 2D∗/2divα− 1

2
trχ (c)∇4α− 5

2
tr χ (c)∇3α

+
(
−tr χtrχ+ 2ρ− 2 (F)ρ2

)
α.

The quantities β̃, f and α (as recalled in Remark 5.6) and the above quantities
were obtained in [14, 16].

Finally, we relate the above system of Teukolsky equations for the horizontal ten-
sors B, F and A to the equations verified by their projection to the first component,
as one would have obtained using the NP formalism.

Using that for F ∈ s1(C) and U ∈ s2(C) with f = F1 = F (e1) and u = u11 =
u(e1, e1) their scalar projections, we have, see [19, Appendix D]

(�̇2F )11 = �gf + i
2
|q|2

cos θ
sin2 θ

∂ϕf +
(
−2

(r2 + a2)2

|q|6 cot2 θ +
2a2 cos2 θΔ

|q|6

)
f,

(�̇2U)11 = �gu+ i
4
|q|2

cos θ
sin2 θ

∂ϕu+
(
−4

(r2 + a2)2

|q|6 cot2 θ +
4a2 cos2 θΔ

|q|6

)
u,

we can deduce the scalar Teukolsky equations satisfied by the projections of B, F

and A.
An interesting aspect of the system of Teukolsky equations in Kerr–Newman

is that we have to differentiate between the spin and the conformal type of the
quantities B, F and A. As B is a horizontal 1-tensor and F and A are horizontal
2-tensors, their projections B1 and F11, A11 will respectively be scalars of spin 1
and spin 2. On the other hand, B and F are of conformal type 1, while A is of
conformal type 2. We define the relevant rescaling of those projections up to some
functions of q and q so that we can relate them to the standard Teukolsky equation
in the literature [37].
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We define the following rescaled projected quantities:

b =
q7/2

q1/2
B1, f = qF11, α =

q

q
A11

and we collect in the following table their respective spin and conformal type:

Spin type s Conformal type c

b 1 1
f 2 1
α 2 2

We define the following Teukolsky operator of spin type s and conformal type c
in Kerr–Newman, applied to a scalar ψ of spin type s and conformal type c to be
given by

T [s,c](ψ) := �gM,a,Qψ +
2c
|q|2 (r −M)∂rψ +

2
|q|2

(
c
a(r −M)

Δ
+ si

cos θ
sin2 θ

)
∂ϕψ

+
2
|q|2

(
c

(
M(r2 − a2) −Q2r

Δ
− r

)
− sia cos θ

)
∂tψ

+
1
|q|2 (s− s2 cot2 θ)ψ. (6.10)

In particular notice that the conformal type c is relevant in the real parts of the
coefficients of the first derivative, while the spin type s is relevant in the imaginary
parts. Observe that the above Teukolsky operator reduces to the standard one [37]
in Kerr for spin s applied to Ψ0, Ψ4, φ0, φ2 by using c = s, since these quantities
have the same spin and conformal type.

One can then show that the projections to the first components of the Teukolsky
differential operators T1, T2, T3 given by (6.4)–(6.4) can be written in terms of the
scalar Teukolsky operator (6.10). More precisely:

q7/2

q1/2
(T1(B))1 = T [1,1](b), q(T2(F))11 = T [2,1](f),

q

q
(T3(A))11 = T [2,2](α).

Just like in Schwarzschild, Kerr and Reissner–Nordström, boundedness and
decay for solutions to the Teukolsky equations cannot be obtained directly. Since
in Kerr–Newman is crucial to avoid the decomposition in modes as recalled in the
introduction, we proceed in deriving a system of generalized Regge–Wheeler equa-
tions from the Teukolsky ones.

7. The System of Generalized Regge–Wheeler Equations

In this section, we derive the Regge–Wheeler system of equations governing the
electromagnetic-gravitational perturbations of Kerr–Newman spacetime, therefore
proving the main result of the paper.
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7.1. The invariant quantities P, Q and p, q

We introduce here the crucial invariant quantities satisfying the Regge–Wheeler
equations. Those quantities are derived from the gauge-invariant quantities B and
F, through the following conformal operator.

Definition 7.1. Let Ψ ∈ sk(C) be a gauge-invariant quantity of conformal type s.
We define the Chandrasekhar operator PC : sk(C) → sk(C) to be

PC(Ψ) := (c)∇3Ψ + CΨ ∈ sk(C) (7.1)

for a scalar function C of conformal type −1.

We immediately observe that PC(Ψ) ∈ sk(C) is gauge-invariant of conformal
type s− 1.

We define the invariant quantities P and Q as the Chandrasekhar-transformed
of the gauge-invariant quantities B and F, respectively. In addition we allow for a
rescaling of those quantities.

Definition 7.2. We define the invariant quantities P ∈ s1(C) and Q ∈ s2(C) as

P := PC1(B) = (c)∇3B + C1B ∈ s1(C), (7.2)

Q := PC2(F) = (c)∇3F + C2F ∈ s2(C) (7.3)

for scalar functions C1 and C2 to be determined. We also define their rescaled
version p ∈ s1(C) and qF ∈ s2(C) as

p := f1(q, q)P = f1(q, q)
(

(c)∇3B + C1B
)
∈ s1(C), (7.4)

qF := f2(q, q)Q = f2(q, q)
(

(c)∇3F + C2F
)
∈ s2(C), (7.5)

where f1 and f2 are functions of q = r+ia cos θ and q = r−ia cos θ to be determined.

The quantities p and q can be seen as first-order differential operators applied
to the gauge-invariant quantities B and F, which satisfy the Teukolsky system of
equations. Observe that P, Q and p, qF are all of conformal type 0.

7.2. Statement of the main theorem and remarks

We now state the main result regarding the wave equations satisfied by p and qF.

Theorem 7.3. Consider a linear electromagnetic-gravitational perturbation of
Kerr–Newman spacetime gM,a,Q as in Definition 4.3, with associated gauge-
invariant quantities B and F.
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Then there exist choices of complex scalar functions C1, C2 f1, f2, in the defi-
nitions of p and qF, explicitly:

p = q
1
2 q

9
2

(
(c)∇3B +

(
2trχ− 5

2
i (a)trχ

)
B

)
∈ s1(C),

qF = qq2
(

(c)∇3F +
(
trχ− 3i (a)trχ

)
F
)
∈ s2(C),

such that the invariant 1-tensor p ∈ s1(C) and the symmetric traceless 2-tensor
qF ∈ s2(C) satisfy the following coupled system of wave equations:

�̇1p − i
2a cos θ
|q|2 ∇tp − V1p = 4Q2 q

3

|q|5
(
D · qF

)
+ Lp[B,F], (7.6)

�̇2q
F − i

4a cos θ
|q|2 ∇tq

F − V2q
F = −1

2
q3

|q|5

(
D⊗̂p − 3

2
(H − H) ⊗̂p

)
+ LqF [B,F]

(7.7)

where

• �̇1 and �̇2 denote the wave operators for horizontal 1-tensors and 2-tensors,
respectively, as defined in (4.14),

• the potentials V1 and V2 are real positive scalar functions (whose precise expres-
sion is given by (7.39)), which for a = 0 coincide with the potentials of the
Regge–Wheeler system of equations in Reissner–Nordström [15], i.e.

V1 = −1
4
tr χtrχ+ 5 (F)ρ2 +O

(
|a|
r4

)
, V2 = −tr χtrχ+ 2 (F)ρ2 +O

(
|a|
r4

)
.

• Lp[B,F] and LqF [B,F] are linear first-order operators in B and F, respectively,
given by

Lp[B,F] = q1/2q9/2
[
− ZB

a · (c)∇B + 2 (F)P (F)P Y F
a ( (c)D · F)

+ (2 (F)P (F)P Y B
0 − ZB

0 )B + 2 (F)P (F)P
(
Y F

0 · F + Y X
0 X

)]
and

LqF [B,F] = qq2
[
WF

4
(c)∇4F +

(
WF

a − ZF
a

)
· (c)∇F +WX

a
(c)D⊗̂X +WB

a
(c)D⊗̂B

+ (WF
0 − ZF

0 )F +WB
0 ⊗̂B +WX

0 ⊗̂X
]
,

where

— WF
4 and WX

a are real functions,
— ZB

a and (WF
a − ZF

a ) are real one-forms,
— WB

a and Y F
a are imaginary functions given by WB

a = 3
4 i

(a)trχ and Y F
a =

−3i (a)trχ

and Y B
0 , ZB

0 , Y
X
0 , (WF

0 − ZF
0 ) are complex functions, and Y F

0 , W
B
0 , WX

0 are
complex one-forms, all of which vanish for zero angular momentum.
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We call the system of Eqs. (7.6)–(7.7) a system of generalized Regge–Wheeler
equations.

We now remark what are the crucial structures of the system of generalized
Regge–Wheeler equations (7.6)–(7.7) which make them analyzable in physical space.

(1) The only first-order terms present in both equations is of the form i∇t, as
in the generalized Regge–Wheeler equation obtained in Kerr [7, 19, 29]. Such
first-order term has good divergence properties in the derivation of the energy
estimates. Schematically, when multiplying Eq. (7.6) by ∇tp and taking the real
part, one obtains a cancellation from the first-order term:

i∇tp · ∇tp + i∇tp · ∇tp = i∇tp · ∇tp − i∇tp · ∇tp = 0.

This allows to derive the energy estimates without loss of derivatives. Similarly
for Eq. (7.7).

(2) The reality of the potentials V1 and V2 is also crucial in the derivation of the
estimates. When deriving the energy estimates and multiplying Eq. (7.6) by
∇tp and taking the real part, one obtains

V1p · ∇tp + V1p · ∇tp = �(V1)(p · ∇tp + p · ∇tp) + i	(V1)(p · ∇tp − ip · ∇tp)

=
1
2
�(V1)∇t(|p|2) + i	(V1)(p · ∇tp − ip · ∇tp).

If the imaginary part of the potential is not zero, then the last term cannot be
written as a boundary term, and the energy estimates cannot be closed. In addi-
tion, the positivity of the real part of the potentials give positive contribution
to the energy in the boundary terms. Similarly for Eq. (7.7).

(3) The highest order coupling terms on the right-hand side of the equations are
of the form q3

|q|5 (D · qF) and − q3

|q|5 (D⊗̂p), up to a multiplication by the positive

constant 8Q2. In particular observe that the functions multiplying the operators
D· and D⊗̂ are complex conjugate. Such structure is crucial in the cancellation
of those coupling terms once the estimates for the two equations are summed,
since D· and D⊗̂ are adjoint operators up to lower order terms, as obtained in
Lemma 2.11.

Such lower order terms, together with the derivatives falling to the func-
tions q3

|q|5 and q3

|q|5 , are crucial in treating the coupling terms q3

|q|5 (D · qF) and

− q3

|q|5 (D⊗̂p− 3
2 (H − H)⊗̂p), precisely to cancel the term − 3

2 (H − H)⊗̂p in the
estimates.

(4) The first-order operatorsLp[B,F] and LqF [B,F] contain terms which are \ order
in differentiability with respect to p and qF. In particular, in the derivation of
the energy estimates it is crucial that the highest order terms relative to the
corresponding equations have real coefficients. More precisely, in the equation
for p, the operator Lp[B,F] should have real coefficients for the quantities which
are lower order with respect to p, i.e. (c)∇B, while in the equation for qF, the
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operator LF
q [B,F] should have real coefficients for the quantities which are lower

order with respect to qF, i.e. (c)∇4F and (c)∇F.
On the other hand, the lower order terms which are coupled should can-

cel, similarly to the coupling terms above. It is therefore crucial to obtain a
cancellation in the terms WB

a = 3
4 i

(a)trχ and Y F
a = −3i (a)trχ.

It is remarkable that a choice of complex functions C1, C2, f1 and f2 which
realizes all the above exists and can be found. In particular, the freedom in the
choice of these functions is not enough to impose each one of the above conditions.
We instead will prove the theorem by imposing condition 1 (i.e. the only first-order
term is of the form i∇t) and condition 2 (i.e. the potentials are real), and this will
uniquely determine the functions C1, C2, f1 and f2. We then show that with those
choices, conditions 3 and 4 are also satisfied.

We summarize here the main steps of the proof.

(a) We compute the commutator between the Chandrasekhar operator PC and the
Teukolsky operators T1 and T2. In order to cancel the lower order terms in the
commutator, we impose conditions on the real part of the functions C1 and C2,
and obtain

�(C1) = 2trχ, �(C2) = trχ.

This is done in Sec. 7.3.1. With such choice we can compute the wave equations
for the Chandrasekhar-transformed P and Q quantities, in Sec. 7.3.2.

(b) We compute the effect on the wave equations of the rescaling of P and Q

through functions f1 and f2. In order to get only first-order terms of the form
i∇t (condition 1), we impose conditions on functions f1 and f2, and obtain

f1 = (q)1/2(q)9/2, f2 = qq2.

This is done in Sec. 7.3.3.
(c) We compute the right-hand side of the respective equations, and show that the

above choice of f1 and f2 implies the structure of the higher coupling terms
(condition 3). This is done in Sec. 7.3.4.

(d) We compute the potentials of the two equations, and impose the vanishing
of their imaginary parts. This uniquely determines the imaginary parts of the
functions C1 and C2, giving

	(C1) = −5
2

(a)trχ, 	(C2) = −3i (a)trχ.

This is done in Sec. 7.3.5.
(e) Finally, we compute the lower order terms in Lp[B,F] and LqF [B,F] and show

that the above choices for C1 and C2 imply the reality or the cancellation of
the relevant coefficients. This is done in Sec. 7.3.6.
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7.3. Proof of Theorem 7.3

In this section, we derive the proof of Theorem 7.3 while relying on the computations
in the appendix. Recall the Teukolsky equations (6.1) and (6.2) in Theorem 6.1, i.e.

T1(B) = M1[F,X],

T2(F) = M2[A,X,B].

We apply the Chandrasekhar operators PC1 and PC2 , for C1 and C2 to be deter-
mined, to the above equations, respectively. Recalling that P := PC1(B) and
Q := PC2(F), we obtain

T1(P) + [PC1 , T1](B) = PC1

(
M1[F,X]

)
, (7.8)

T2(Q) + [PC2 , T2](F) = PC2

(
M2[A,X,B]

)
. (7.9)

7.3.1. The commutators [PC , T ]

We compute the commutators between the Teukolsky operators T1 and T2 and the
first-order differential operator PC as defined in (7.1) for any scalar function C. In
order to eliminate the highest order terms which cannot be expressed in terms of
P or Q (i.e. (c)∇4B and (c)∇4F), we need to impose conditions on the real part of
the functions C1 and C2. We obtain the following proposition.

Proposition 7.4. Let P = PC1(B) = (c)∇3B+C1B and Q = PC2(F) = (c)∇3F+
C2F, such that C1 and C2 satisfy, respectively,

(c)∇3C1 +
1
2

(
trX + trX

)
C1 − trXtrX = 0, (7.10)

(c)∇3C2 +
1
2

(
trX + trX

)
C2 −

1
2
trXtrX = 0. (7.11)

Then the commutators between the Chandrasekhar operators PC1 and PC2 and the
Teukolsky operators T1 and T2 are, respectively, given by

[PC1 , T1](B) = 2η · ∇P − 1
2

(
trX + trX

)
∇4P + V̂1P

− 1
2
(
trX + trX

)
M1[F,X] − LP[B,F],

[PC2 , T2](F) = 2η · ∇Q − 1
2
(
trX + trX

)
∇4Q + V̂2Q − 1

2
(
trX + trX

)
×M2[A,X,B] − LQ[B,F],
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where

• the potentials V̂1 and V̂2 are given by

V̂1 = IB
3 + JB

3 +KB
3 +MB

3

= −5
2
tr χtrχ− 4ρ− 2 (F)ρ2 +O

(
|a|
r3

)
, (7.12)

V̂2 = IF
3 + JF

3 +KF
3 +MF

3

= −3
2
tr χtrχ− 4ρ− 2 (F)ρ2 +O

(
|a|
r3

)
, (7.13)

where the precise coefficients are given in Appendix C
• LP[B,F] and LQ[B,F] are linear first-order operators in B and F, given by

LP[B,F] := −ZB
a · (c)∇B −

(
4trχ (F)ρ2 + ZB

0

)
B, (7.14)

LQ[B,F] := −ZF
a · (c)∇F +

(
4trχ (F)ρ2 − ZF

0

)
F, (7.15)

where ZB
a and ZF

a are complex one-forms and ZB
0 and ZB

0 are complex functions
of (r, θ), all of which vanish for zero angular momentum, having the following
fall-off in r:

ZB
a , Z

F
a = O

(
|a|
r3

)
, ZB

0 , Z
F
0 = O

(
|a|
r4

)
.

Proof. See Appendix C.1.

Observe that the transport equations (7.10) and (7.11) only impose conditions
on the real parts of C1 and C2. Indeed, for any real constants p1, p2, the scalar
functions C1 and C2 given by

C1 = 2trχ+ ip1
(a)trχ, C2 = trχ+ ip2

(a)trχ (7.16)

are of conformal type −1 and satisfy (7.10) and (7.11), respectively.

7.3.2. The wave equations for P and Q

Recall the Teukolsky operators T1 and T2, see (6.4) and (6.5). We then obtain for
P and Q, respectively,

T1(P) = −∇3∇4P +
1
2
D · (D⊗̂P) − 3trX∇3P −

(
3
2
trX +

1
2
trX − 2ω

)
∇4P

+
(
6H +H + 3H

)
· ∇P +

(
−9

2
trXtrX − 4 (F)P (F)P + 9H ·H

)
P,

T2(Q) = −∇3∇4Q +
1
2
D⊗̂(D · Q) −

(
3
2
trX +

1
2
trX

)
∇3Q
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− 1
2

(
trX + trX − 4ω

)
∇4Q +

(
4H +H + H

)
· ∇Q

+
(
−3

4
trXtrX − 1

4
trXtrX + 3P − P + 4 (F)P (F)P

− 3
2

(c)D ·H + η · η + iη ∧ η
)

Q,

where recall that P and Q are both of conformal type 0.
From the commuted equations (7.8) and (7.9) and using the formulas for the

commutators given by Proposition 7.4, we obtain, respectively, by writing 2η =
H + H :

−∇3∇4P +
1
2
D · (D⊗̂P) − 3trX∇3P −

(
2trX + trX − 2ω

)
∇4P

+
(
6H +H + H + 4H

)
· ∇P

+
(
−9

2
trXtrX − 4 (F)P (F)P + 9H ·H + V̂1

)
P

= PC1

(
M1[F,X]

)
+

1
2

(
trX + trX

)
M1[F,X] + LP[B,F]

and

−∇3∇4Q +
1
2
D⊗̂(D · Q) −

(
3
2
trX +

1
2
trX

)
∇3Q

−(trX + trX − 2ω)∇4Q + (4H +H + 2H + H) · ∇Q

+
(
−3

4
trXtrX − 1

4
trXtrX + 3P − P + 4 (F)P (F)P

− 3
2

(c)D ·H + η · η + iη ∧ η + V̂2

)
Q

= PC2

(
M2[A,X,B]

)
+

1
2

(
trX + trX

)
M2[A,X,B] + LQ[B,F].

Using the formulas for the wave operator according to Lemma 4.2

�̇1P = −∇3∇4P +
1
2
D · (D⊗̂P) +

(
2ω − 1

2
trX

)
∇4P

− 1
2
trX∇3P + (H +H) · ∇P

+
(

1
4
tr χtrχ+

1
4

(a)trχ (a)trχ+ ρ− (F)ρ2 − ∗ (F)ρ2 + i
(
− ∗ρ+ η ∧ η

))
P,

�̇2Q = −∇3∇4Q +
1
2
D⊗̂(D · Q) +

(
2ω − 1

2
trX

)
∇4Q
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− 1
2
trX∇3Q + (H +H) · ∇Q +

(
−1

2
tr χtrχ− 1

2
(a)trχ (a)trχ− 2ρ

+ 2 (F)ρ2 + 2 ∗ (F)ρ2 + i(−2 ∗ρ+ 2η ∧ η)
)

Q,

we can rewrite the above as

�̇1P = 5
2 trX∇3P +

(
2trX + 1

2 trX
)
∇4P −

(
5H + H + 4H

)
· ∇P + Ṽ1P

PC1

(
M1[F,X]

)
+ 1

2

(
trX + trX

)
M1[F,X] + LP[B,F],

(7.17)

where

Ṽ1 =
9
2
trXtrX + 4 (F)P (F)P − 9H ·H − V̂1 +

1
4
tr χtrχ

+
1
4

(a)trχ (a)trχ+ ρ− (F)ρ2 − ∗ (F)ρ2 + i
(
− ∗ρ+ η ∧ η

)
(7.18)

and

�̇2Q =
3
2
trX∇3Q +

(
1
2
trX + trX

)
∇4Q −

(
3H + 2H + H

)
· ∇Q + Ṽ2Q

+PC2

(
M2[A,X,B]

)
+

1
2

(
trX + trX

)
M2[A,X,B] + LQ[B,F], (7.19)

where

Ṽ2 =
3
4
trXtrX +

1
4
trXtrX − 3P + P − 4 (F)P (F)P +

3
2

(c)D ·H − η · η

− iη ∧ η − V̂2 −
1
2
tr χtrχ− 1

2
(a)trχ (a)trχ− 2ρ+ 2 (F)ρ2 + 2 ∗ (F)ρ2

+ i(−2 ∗ρ+ 2η ∧ η). (7.20)

7.3.3. The rescaling from P to p and from Q to qF

Observe that the wave equations (7.17) and (7.19) satisfied by P and Q present
first-order derivatives ∇3, ∇4 and ∇ on their right-hand side. In order to have only
a first-order term of the form i∇t, we need to define rescaled versions of P and Q.
The rescaling is obtained through functions of q = r + ia cos θ and q = r − ia cos θ,
i.e.

p = f1(q, q)P ∈ s1(C), qF = f2(q, q)Q ∈ s2(C).

Proposition 7.5. Let f1 and f2 be of the respective forms

f1 = (q)n1(q)5−n1 , for any real n1,

f2 = (q)n2(q)3−n2 , for any real n2,
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Then

�̇1p = if1

[
2a cos θ
|q|2 ∇tP + (1 − 2n1)

(
2aΔ cos θ

|q|4 ∇rP +
2a sin θr

|q|4 ∇θP

)]

+
(
Ṽ1 + f−1

1 �(f1)
)
p

+ f1

[
PC1

(
M1[F,X]

)
+

1
2

(
trX + trX

)
M1[F,X] + LP[B,F]

]
and

�̇2q
F = if2

[
4a cos θ
|q|2 ∇tQ + (1 − n2)

(
4aΔ cos θ

|q|4 ∇rQ +
4a sin θr

|q|4 ∇θQ

)]

+
(
Ṽ2 + f−1

2 �(f2)
)
qF

+ f2

[
PC2

(
M2[A,X,B]

)
+

1
2

(
trX + trX

)
M2[A,X,B] + LQ[B,F]

]
.

In particular, observe that for n1 = 1
2 and n2 = 1, i.e.

f1 = (q)1/2(q)9/2, f2 = qq2, (7.21)

the dependence on the ∇r and ∇θ derivatives cancels out and we obtain

�̇1p = i
2a cos θ
|q|2 ∇tp +

(
Ṽ1 + f−1

1 �(f1)
)

p

+ f1

[
PC1

(
M1[F,X]

)
+

1
2

(
trX + trX

)
M1[F,X] + LP[B,F]

]
(7.22)

and

�̇2q
F = i

4a cos θ
|q|2 ∇tq

F +
(
Ṽ2 + f−1

2 �(f2)
)

qF

+ f2

[
PC2

(
M2[A,X,B]

)
+

1
2

(
trX + trX

)
M2[A,X,B] + LQ[B,F]

]
.

(7.23)

Proof. See Appendix C.2.

7.3.4. The right-hand side of the equations

Proposition 7.6. Let M1[F,X] and M2[A,X,B] be the right-hand sides of the
Teukolsky equations, as defined in (6.7) and (6.8). Let PC1 and PC2 be the operators
defined in (7.1) with C1 and C2 given by (7.16). Then the following relations hold
true:

PC1

(
M1[F,X]

)
+

1
2
(
trX + trX

)
M1[F,X]

= 4 (F)P (F)P
(
D · Q + (2H +H) · Q

)
+ LM1[B,F,X],
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PC2

(
M2[A,X,B]

)
+

1
2
(
trX + trX

)
M2[A,X,B]

=
(
3P + 2 (F)P (F)P

)
Q − 1

2
(
D⊗̂P + (3H + 2H)⊗̂P

)
+ LM2 [B,F,X],

where LM1[F,X] and LM2 [B,F,X] are linear first-order operator in B, F and X,
given by

LM1[B,F,X] := (4trχ (F)ρ2) B + 2 (F)P (F)P
(
Y F

a
(c)D · F + Y F

0 · F

+Y B
0 B + Y X

0 X
)

(7.24)

and

LM2[B,F,X] := −(4trχ (F)ρ2) F +WF
4

(c)∇4F +WF
a · (c)∇F +WF

0 F

+WB
a

(c)D⊗̂B +WB
0 ⊗̂B +WX

a
(c)D⊗̂X +WX

0 ⊗̂X, (7.25)

where Y F
a , Y B

0 and Y X
0 are complex functions of (r, θ) and Y F

0 is a complex one-
form, all of which vanish for zero angular momentum, having the following fall-off
in r:

Y F
a , Y

B
0 = O

(
|a|
r2

)
, Y F

0 , Y
X
0 = O

(
|a|
r3

)

and WF
4 , W

F
0 , W

B
a and WX

a are complex functions of (r, θ) and WF
a , W

B
0 and WX

0

are complex one-forms, all of which vanish for zero angular momentum, having the
following fall-off in r:

WB
a = O

(
|a|
r2

)
, WF

4 ,W
F
a ,W

B
0 ,WX

a = O

(
|a|
r3

)
, WF

0 ,W
X
0 = O

(
|a|
r4

)
.

Proof. See Appendix C.3.

Using (7.22) and (7.23) and the above proposition, we deduce

�̇1p = i
2a cosθ
|q|2 ∇tp +

(
Ṽ1 + f−1

1 �(f1)
)
p

+ f1
[
4 (F)P (F)P

(
D · Q +

(
2H +H

)
· Q

)
+ LM1 [B,F,X] + LP[B,F]

]
(7.26)

and

�̇2q
F = i

4a cos θ
|q|2 ∇tq

F +
(
Ṽ2 + f−1

2 �(f2) + 3P + 2 (F)P (F)P
)

qF

+ f2

[
−1

2
(
D⊗̂P + (3H + 2H)⊗̂P

)
+ LM2 [B,F,X] + LQ[B,F]

]
.

(7.27)
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We are now left to express the right-hand side in terms of p = f1P and qF = f2Q.
We write

(c)D · Q = f−1
2 ( (c)D · qF) + (c)D(f−1

2 ) · qF = f−1
2 ( (c)D · qF) − f−2

2
(c)D(f2) · qF,

(c)D⊗̂P = f−1
1 ( (c)D⊗̂p) + (c)D(f−1

1 )⊗̂p = f−1
1 ( (c)D⊗̂p) − f−2

1
(c)D(f1)⊗̂p.

This implies

�̇1p = i
2a cos θ
|q|2 ∇tp + V1p + 4 (F)P (F)P (f1f−1

2 )

×
(
D · qF +

(
2H +H − f−1

2
(c)D(f2)

)
· qF

)
+ Lp[B,F] (7.28)

and

�̇2q
F = i

4a cos θ
|q|2 ∇tq

F + V2q
F − 1

2
(f2f−1

1 )
(
D⊗̂p

+
(
3H + 2H − f−1

1
(c)D(f1)

)
⊗̂p

)
+ LqF [B,F], (7.29)

where we define

V1 := Ṽ1 + f−1
1 �(f1), (7.30)

V2 := Ṽ2 + f−1
2 �(f2) + 3P + 2 (F)P (F)P (7.31)

and

Lp[B,F] := f1
[
LM1 [B,F,X] + LP[B,F]

]
, (7.32)

LqF [B,F] := f2
[
LM2 [B,F,X] + LQ[B,F]

]
. (7.33)

We now simplify the coupling terms on the right-hand sides of the above. From
(4.13), we deduce

D(qnqm) = nqn−1(Dq)qm +mqnqm−1(Dq) = (nH +mH)qnqm,

D(qnqm) = (mH + nH)qnqm.
(7.34)

We therefore have, for f1 = (q)1/2(q)9/2 and f2 = qq2:

2H +H − f−1
2

(c)D(f2) = 2H +H − (2H +H) = 0,

3H + 2H − f−1
1

(c)D(f1) = 3H + 2H −
(

1
2
H +

9
2
H

)
= −3

2
H +

3
2
H.

We also write

4 (F)P (F)P (f1f−1
2 ) = 4

Q

q2
Q

q2
(q)1/2(q)9/2(q)−1(q)−2 = 4Q2 q

1/2

q5/2
=

4Q2

|q|5 q
3,

(f2f−1
1 ) = qq2(q)−1/2(q)−9/2 =

q1/2

q5/2
=

q3

|q|5 .
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We therefore finally obtain

�̇1p − i
2a cosθ
|q|2 ∇tp − V1p = 4Q2 q

3

|q|5
(
D · qF

)
+ Lp[B,F], (7.35)

�̇2q
F − i

4a cos θ
|q|2 ∇tq

F − V2q
F = −1

2
q3

|q|5

(
D⊗̂p − 3

2
(H − H) ⊗̂p

)
+LqF [B,F]. (7.36)

7.3.5. The potentials of the equations

In this section, we compute the potentials V1 and V2 as obtained in (7.30) and (7.31).
We determine the imaginary parts of the complex functions C1 = 2trχ+ ip1

(a)trχ
and C2 = trχ + ip2

(a)trχ given in (7.16) such that the imaginary part of the
potentials vanish.

Proposition 7.7. Choosing p1 = − 5
2 and p2 = −3 in the definition of C1 and C2

(7.16), i.e. for

C1 = 2trχ− 5
2
i (a)trχ, (7.37)

C2 = trχ− 3i (a)trχ (7.38)

the potentials V1 and V2 in Eqs. (7.35) and (7.36) are real, i.e. 	(V1) = 	(V2) = 0,
and are given by

V1 = −1
4
tr χtrχ+ divη +

1
2
η · η +

1
2
|η|2 + 5 (F)ρ2 + 5 ∗ (F)ρ2,

V2 = −tr χtrχ+ 4divη + 2η · η + 2|η|2 + 2 (F)ρ2 + 2 ∗ (F)ρ2.

In particular, modulo O(|a|) terms, we have

V1 = −1
4
tr χtrχ+ 5 (F)ρ2 +O

(
|a|
r3

)
,

V2 = −tr χtrχ+ 2 (F)ρ2 +O

(
|a|
r3

)
.

Proof. See Appendix C.4.

Using the values in Kerr–Newman given in Sec. 4.1, we obtain

−1
4
tr χtrχ+ divη +

1
2
η · η +

1
2
|η|2

=
r4 − 2Mr3 + (2 − 3 cos2 θ)a2r2 +Q2r2 − 2a4 cos2 θ

|q|6
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and therefore, explicitly,

V1 =
r4 − 2Mr3 + (2 − 3 cos2 θ)a2r2 +Q2r2 − 2a4 cos2 θ

|q|6 +
5Q2

|q|4 ,

V2 = 4
r4 − 2Mr3 + (2 − 3 cos2 θ)a2r2 +Q2r2 − 2a4 cos2 θ

|q|6 +
2Q2

|q|4 .
(7.39)

7.3.6. The lower order terms

We finally simplify the lower order terms Lp[B,F] and LqF [B,F] as defined in (7.32)
and (7.33).

Using (7.14) and (7.24), we obtain

Lp[B,F] = f1
[
LM1 [B,F,X] + LP[B,F]

]
= q1/2q9/2

[
(4trχ (F)ρ2)B + 2 (F)P (F)P

×
(
Y F

a
(c)D · F + Y F

0 · F + Y B
0 B + Y X

0 X
)

−ZB
a · (c)∇B −

(
4trχ (F)ρ2 + ZB

0

)
B

]
= q1/2q9/2

[
− ZB

a · (c)∇B + 2 (F)P (F)P Y F
a ( (c)D · F)

+ (2 (F)P (F)P Y B
0 − ZB

0 )B + 2 (F)P (F)P
(
Y F

0 · F + Y X
0 X

)]
.

Using (7.15) and (7.25), we obtain

LqF [B,F] = f2
[
LM2[B,F,X] + LQ[B,F]

]
= qq2

[
− (4trχ (F)ρ2)F +WF

4
(c)∇4F +WF

a · (c)∇F +WF
0 F

+WB
a

(c)D⊗̂B +WB
0 ⊗̂B +WX

a
(c)D⊗̂X +WX

0 ⊗̂X − ZF
a · (c)∇F

+
(
4trχ (F)ρ2 − ZF

0

)
F
]

= qq2
[
WF

4
(c)∇4F +

(
WF

a − ZF
a

)
· (c)∇F +WX

a
(c)D⊗̂X +WB

a
(c)D⊗̂B

+ (WF
0 − ZF

0 )F +WB
0 ⊗̂B +WX

0 ⊗̂X
]
.

We now summarize in the following the structure of the above terms.

Lemma 7.8. With the above choices of C1 and C2, we have that the highest order
terms in Lp[B,F] and LqF [B,F] satisfies the following:

• WF
4 and WX

a are real functions,
• ZB

a and WF
a − ZF

a are real one-forms,
• WB

a = 3
4 i

(a)trχ and Y F
a = −3i (a)trχ.

Proof. See Appendix C.5.
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7.4. Sketch of boundedness of the energy

We here sketch how to prove boundedness of the energy for the system of equations
(7.6) and (7.7) as obtained in Theorem 7.3:

�̇1p − i
2a cos θ
|q|2 ∇tp − V1p = 4Q2 q

3

|q|5
(
D · qF

)
+ Lp[B,F],

�̇2q
F − i

4a cos θ
|q|2 ∇tq

F − V2q
F = −1

2
q3

|q|5

(
D⊗̂p − 3

2
(H − H) ⊗̂p

)
+ LqF [B,F].

To fully close energy estimates, we need to combine them with spacetime local
integrated Morawetz estimates, which will be done in a future work [18] by making
use of the hidden symmetry in Kerr–Newman to avoid decomposition in modes.
Nevertheless, in this section, we show that all the crucial structures obtained in
Theorem 7.3 are precisely what one needs to perform energy estimates, once the
Morawetz estimate, which is less sensitive to the structure of the lower order terms,
are achieved.

As a general rule,i in order to obtain energy estimates for the wave equation
�ψ = 0, we multiply the equation by ∇tψ, and integrate by parts. Since we are
dealing with complex tensors, we then multiply the equation �̇1p by ∇tp and the
equation �̇2q

F by ∇tqF, respectively, and then add the conjugate of each one to
take the real part.

Doing so, we obtain from each one of the above equations the following:

�̇1p · ∇tp + �̇1p · ∇tp

= i
2a cos θ
|q|2 ∇tp · ∇tp + i

2a cos θ
|q|2 ∇tp · ∇tp + V1p · ∇tp + V1p · ∇tp

+ 4Q2 q
3

|q|5
(
D · qF

)
· ∇tp + 4Q2 q

3

|q|5
(
D · qF

)
· ∇tp

+Lp[B,F] · ∇tp + Lp[B,F] · ∇tp (7.40)

and

�̇2q
F · ∇tqF + �̇2qF · ∇tq

F

= i
4a cos θ
|q|2 ∇tq

F · ∇tqF + i
4a cos θ
|q|2 ∇tq

F · ∇tqF + V2q
F · ∇tqF + V2qF · ∇tq

F

− 1
2
q3

|q|5
(
D⊗̂p

)
· ∇tqF − 1

2
q3

|q|5
(
D⊗̂p

)
· ∇tq

F

iIn the case of Kerr–Newman, in the ergoregion we need to multiply by the timelike ∂t + a
r2+a2 ∂ϕ.

The analysis is identical since the term involving the ∂ϕ can be absorbed for small a by the
non-degenerate Morawetz estimates away from the trapping region.
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+
3
4
q3

|q|5
(
(H − H) ⊗̂p

)
· ∇tqF +

3
4
q3

|q|5
((
H − H

)
⊗̂p

)
· ∇tq

F

+LqF [B,F] · ∇tqF + LqF [B,F] · ∇tq
F.

(7.41)

We now analyze each term on the left-hand side.

(1) The structure of the first-order terms ∇t in the equations of the form if(r, θ)∇t,
for a real function f(r, θ) is crucial for the cancellation of these terms. Indeed,

i
2a cos θ
|q|2 ∇tp · ∇tp + i

2a cos θ
|q|2 ∇tp · ∇tp

= i
2a cos θ
|q|2 ∇tp · ∇tp − i

2a cos θ
|q|2 ∇tp · ∇tp = 0,

i
4a cos θ
|q|2 ∇tq

F · ∇tqF + i
4a cosθ
|q|2 ∇tq

F · ∇tqF

= i
4a cos θ
|q|2 ∇tq

F · ∇tqF − i
4a cos θ
|q|2 ∇tq

F · ∇tqF = 0.

(2) The reality of the potentials V1 and V2 allows to write the terms involving the
potential as boundary terms in the usual way:

V1p · ∇tp + V1p · ∇tp = V1

(
p · ∇tp + p · ∇tp

)
= V1∂t(|p|2) = ∂t(V1|p|2),

V2q
F · ∇tqF + V2qF · ∇tq

F = V2

(
qF · ∇tqF + qF · ∇tq

F
)

= V2∂t(|qF|2) = ∂t(V2|qF|2).

Being V1 and V2 positive for |a|/M � 1, they give a coercive contribution to
the energies.

(3) In order to obtain cancellation for the terms involving coupling, we need to sum
the estimates for the two equations. Observe that the complex functions which
multiply the coupling terms, i.e. q3

|q|5 and q3

|q|5 , are conjugate complex functions,
and such structure is crucial for the cancellation. Since the coupling terms differ
by a constant factor 8Q2, we multiply the second identity (7.41) by 8Q2 and
sum to (7.40) and obtain

�̇1p · ∇tp + �̇1p · ∇tp − ∂t(V1|p|2)

+ 8Q2
(
�̇2q

F · ∇tqF + �̇2qF · ∇tq
F − ∂t(V2|qF|2)

)
= 4Q2 q

3

|q|5
(
D · qF

)
· ∇tp + 4Q2 q

3

|q|5
(
D · qF

)
· ∇tp

− 4Q2 q
3

|q|5
(
D⊗̂p

)
· ∇tqF − 4Q2 q

3

|q|5
(
D⊗̂p

)
· ∇tq

F
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+ 6Q2 q
3

|q|5
(
(H − H) ⊗̂p

)
· ∇tqF + 6Q2 q

3

|q|5
((
H − H

)
⊗̂p

)
· ∇tq

F

+Lp[B,F] · ∇tp + Lp[B,F] · ∇tp

+ 8Q2(LqF [B,F] · ∇tqF + LqF [B,F] · ∇tq
F).

We now consider the first two lines on the right-hand side of the above. We
put together the terms which are multiplied by the function q3

|q|5 and those

multiplied by q3

|q|5 . We first integrate by parts in t in the first term, and obtain

2Q2

(
2
q3

|q|5
(
D · qF

)
· ∇tp − 2

q3

|q|5
(
D⊗̂p

)
· ∇tq

F + 3
q3

|q|5
((
H − H

)
⊗̂p

)
· ∇tq

F

)

+ 2Q2

(
2
q3

|q|5
(
D · qF

)
· ∇tp − 2

q3

|q|5
(
D⊗̂p

)
· ∇tqF

+ 3
q3

|q|5
(
(H − H) ⊗̂p

)
· ∇tqF

)

= 2Q2

(
−2

q3

|q|5
(
D · ∇tq

F
)
· p − 2

q3

|q|5
(
D⊗̂p

)
· ∇tq

F

+ 3
q3

|q|5
((
H − H

)
⊗̂p

)
· ∇tq

F

)

+ 2Q2

(
−2

q3

|q|5
(
D · ∇tqF

)
· p − 2

q3

|q|5
(
D⊗̂p

)
· ∇tqF

+ 3
q3

|q|5
(
(H − H)⊗̂p

)
· ∇tqF

)
.

Recall Lemma 2.11 that relates the operator D⊗̂ and D·. Applying it to F = p,
U = ∇tq

F, we obtain

(D⊗̂p) · ∇tqF = −p · (D · ∇tqF) − ((H + H)⊗̂p) · ∇tqF + Dα(p · ∇tqF).

Using the above we write, modulo spacetime divergence terms:

−2
q3

|q|5
(
D · ∇tqF

)
· p

= 2D
(
q3

|q|5

)
∇tqF · p + 2

q3

|q|5∇tqF · (D⊗̂p) + 2
q3

|q|5 ((H + H)⊗̂p) · ∇tqF

= 2D(q1/2(q)−5/2)∇tqF · p + 2
q3

|q|5∇tqF · (D⊗̂p)

+ 2
q3

|q|5 ((H + H)⊗̂p) · ∇tqF
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= (H − 5H)
q3

|q|5∇tqF · p + 2
q3

|q|5∇tqF · (D⊗̂p)

+ 2
q3

|q|5 ((H + H)⊗̂p) · ∇tqF

= (3H − 3H)
q3

|q|5∇tqF · p + 2
q3

|q|5∇tqF · (D⊗̂p)

since from (7.34) we have D(q1/2q−5/2) = (1
2 H − 5

2H) q3

|q|5 . Similarly,

−2
q3

|q|5
(
D · ∇tq

F
)
· p = (3H − 3H)

q3

|q|5∇tq
F · p + 2

q3

|q|5∇tq
F · (D⊗̂p).

We finally obtain

2Q2

(
−2

q3

|q|5
(
D · ∇tq

F
)
· p − 2

q3

|q|5
(
D⊗̂p

)
· ∇tq

F

+ 3
q3

|q|5
((
H − H

)
⊗̂p

)
· ∇tq

F

)
+ 2Q2

(
−2

q3

|q|5
(
D · ∇tqF

)
· p

− 2
q3

|q|5
(
D⊗̂p

)
· ∇tqF + 3

q3

|q|5
(
(H − H) ⊗̂p

)
· ∇tqF

)

= 2Q2 q
3

|q|5
(
(3H − 3H)∇tq

F · p + 2∇tq
F · (D⊗̂p) − 2

(
D⊗̂p

)
· ∇tq

F

+ 3
((
H − H

)
⊗̂p

)
· ∇tq

F
)

+ 2Q2 q
3

|q|5
(
(3H − 3H)∇tqF · p

+ 2∇tqF · (D⊗̂p) − 2
(
D⊗̂p

)
· ∇tqF + 3

((
H − H

)
⊗̂p

)
· ∇tqF

)
= 0.

Observe that upon a spacetime integration, the coupling terms cancel out,
and therefore they only give contributions to boundary terms. Even though
those terms do not have a definite sign, the modified energy terms are positive
in the case of Reissner–Nordström for |Q| < M , as proved in [15]. In particular,
for small angular momentum |a| �M they remain positive in Kerr–Newman.

By putting the above together we have

�̇1p · ∇tp + �̇1p · ∇tp − ∂t(V1|p|2) + 8Q2
(
�̇2q

F · ∇tqF + �̇2qF · ∇tq
F

− ∂t(V2|qF|2)
)
− ∂t

(
4Q2

|q|5 q
3
(
D · qF

)
· p +

4Q2

|q|5 q
3
(
D · qF

)
· p

)

= Lp[B,F] · ∇tp + Lp[B,F] · ∇tp + 8Q2(LqF [B,F] · ∇tqF

+LqF [B,F] · ∇tq
F).
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(4) In order to absorb the lower order terms on the right of the above estimates,
one needs to combine the above energy estimates with boundedness of trapped
spacetime energies, as given by Morawetz estimates. Moreover, through trans-
port estimates one can show to bound all first derivatives of B, F and X by a
degenerate Morawetz bulk for p and qF.

Assuming such estimates, we briefly explain how to absorb the lower order
terms above. Recall that

Lp[B,F] = q1/2q9/2
[
− ZB

a · (c)∇B + 2 (F)P (F)P Y F
a ( (c)D · F)

+ (2 (F)P (F)P Y B
0 − ZB

0 )B + 2 (F)P (F)P
(
Y F

0 · F + Y X
0 X

)]
and

LqF [B,F] = qq2
[
WF

4
(c)∇4F +

(
WF

a − ZF
a

)
· (c)∇F +WX

a
(c)D⊗̂X

+WB
a

(c)D⊗̂B + (WF
0 − ZF

0 )F +WB
0 ⊗̂B +WX

0 ⊗̂X
]

The terms on the second line of the above expressions (i.e. the lowest order
terms) can be absorbed for small |a| � M , by integration by parts in t and
then bounding by Cauchy–Schwarz. For example,

q1/2q9/2(2 (F)P (F)P Y B
0 − ZB

0 )B · ∇tp

= −q1/2q9/2(2 (F)P (F)P Y B
0 − ZB

0 )∇tB · p

≤ O(ar)
(
|∇tB|2 + |p|2

)
.

Both terms on the right-hand side appear without degeneracy at the trapping
region in the Morawetz bulks, and therefore they can be absorbed by that for
small |a| � M . The same will be true for the other terms of lower order, which
contains only one derivative of B, F or X.

In what follows, we therefore only look at the terms which highest number
of derivatives, since the lower order terms can be treated as above. We now
consider

qq2WF
4

(c)∇4F · ∇tqF + qq2WF
4

(c)∇4F · ∇tq
F.

Since WF
4 is real, we have

= WF
4

(
qq2 (c)∇4F · ∇tqF + q2q (c)∇4F · ∇tq

F
)

= WF
4

(
qq2∇tF · ∇4qF + q2q∇tF · ∇4q

F
)

= WF
4

(
qq2∇3F · ∇4qF + q2q∇3F · ∇4q

F
)

+ · · · .
Writing qq2∇3F = qF + l.o.t., we obtain

= WF
4

(
qF · ∇4qF + qF · ∇4q

F
)

+ · · · = WF
4 ∇4(|qF|2),

which gives a boundary term. The same happens for the termsWX
a

(c)D⊗̂X, ZB
a ·

(c)∇B and
(
WF

a − ZF
a

)
· (c)∇F, which because of the reality of the coefficients,

can be written as boundary terms.
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We now look at the coupling terms in the lower order terms, i.e.

(q1/2q9/22 (F)P (F)P Y F
a ( (c)D · F)) · ∇tp + (q1/2q9/22 (F)P (F)P Y F

a ( (c)D · F))

· ∇tp + 8Q2(qq2WB
a

(c)D⊗̂B · ∇tqF + qq2WB
a

(c)D⊗̂B · ∇tq
F).

Writing that (F)P (F)P = Q2

|q|4 and WB
a = 3

4 i
(a)trχ and Y F

a = −3i (a)trχ, we
have

= −6Q2 q
1/2q9/2

|q|4 i (a)trχ( (c)D · F) · ∇tp + 6Q2 q
9/2q1/2

|q|4 i (a)trχ( (c)D · F) · ∇tp

+ 6Q2qq2i (a)trχ (c)D⊗̂B · ∇tqF − 6Q2q2qi (a)trχ (c)D⊗̂B · ∇tq
F

= −6Q2i (a)trχ
[q1/2q9/2

|q|4 ( (c)D · F) · ∇tp + q2q (c)D⊗̂B · ∇tq
F
]

+ 6Q2i (a)trχ
[q9/2q1/2

|q|4 ( (c)D · F) · ∇tp + qq2 (c)D⊗̂B · ∇tqF
]
.

Now by recalling that qq2∇3F = qF + l.o.t. and q1/2q9/2∇3B = p + l.o.t., we
obtain, only looking at the highest order terms:

q1/2q9/2

|q|4 ( (c)D · F) · ∇tp + q2q (c)D⊗̂B · ∇tq
F

= −q
1/2q9/2

|q|4 ( (c)D · ∇tF) · p − q2q (c)D⊗̂∇tB · qF

= −q
1/2q9/2

|q|4 ( (c)D · ∇3F) · p − q2q (c)D⊗̂∇3B · qF

= −q
1/2q9/2

|q|4
1
qq2

( (c)D · qF) · p − q2q
1

q1/2q9/2
(c)D⊗̂p · qF

= −q
1/2

q5/2

[
( (c)D · qF) · p + (c)D⊗̂p · qF

]
= 0.

The remaining terms are therefore only of lower order, and can be absorbed as
shown before for small |a| �M by Cauchy–Schwarz.
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Appendix A. Explicit Computations

We collect here some explicit computations needed in Secs. 2–5.



April 7, 2022 13:29 WSPC/S0219-8916 JHDE 2250001

70 E. Giorgi

A.1. Derivation of the Bianchi identities

Lemma A.1. We have the following for the decomposition in frames of Jβγδ in
(3.8):

J434 = −∇4( (F)ρ2 + ∗ (F)ρ2) + 2(η − 2η) ·
( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β

)
+ 2ξ ·

( ∗ (F)ρ ∗ (F)β − (F)ρ (F)β
)

+ ∇3( (F)β · (F)β) − 4ω( (F)β · (F)β), (A.1)

Jab4 = ∇b( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa) + (ζb + η
b
)( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa)

+ η
a
( ∗ (F)ρ ∗ (F)βb + (F)ρ (F)βb) −

1
2
∇4( (F)ρ2 + ∗ (F)ρ2)δab

−χba( (F)ρ2 + ∗ (F)ρ2) + ∇4( (F)β⊗̂ (F)β)ab +
1
2
χbc( (F)β⊗̂ (F)β)ca

− 1
2
χ

ba
(F)β · (F)β + ξa( ∗ (F)ρ ∗ (F)β

b
− (F)ρ (F)β

b
)

+ ξb( ∗ (F)ρ ∗ (F)β
a
− (F)ρ (F)β

a
), (A.2)

J4a4 = − (c)∇4( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa) − tr χ( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa)

+ (a)trχ( ∗ (F)ρ (F)βa − (F)ρ ∗ (F)βa) + 2
(

(F)ρ2 + ∗ (F)ρ2
)
ξa

+∇a( (F)β · (F)β) + (2ζa + η
a
) (F)β · (F)β − 2ξb( (F)β⊗̂ (F)β)ab, (A.3)

J3a4 = ∇a( (F)ρ2 + ∗ (F)ρ2) − 1
2
tr χ( ∗ (F)ρ ∗ (F)β

a
− (F)ρ (F)β

a
)

− 1
2
trχ( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa) − 1

2
(a)trχ ∗( ∗ (F)ρ ∗ (F)β

a
− (F)ρ (F)β

a
)

− 1
2

(a)trχ ∗( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa) − (c)∇4( ∗ (F)ρ ∗ (F)β
a
− (F)ρ (F)β

a
)

+ 2
(

(F)ρ2 + ∗ (F)ρ2
)
η

a
+ ξa

(F)β · (F)β − χ̂ab( ∗ (F)ρ ∗ (F)β
b
− (F)ρ (F)β

b
)

− χ̂( ∗ (F)ρ ∗ (F)βb + (F)ρ (F)βb) − 2η
b
( (F)β⊗̂ (F)β)ab, (A.4)

∗J434 = 2curl( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β) + 2ζ · ∗( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β)

− 2 (a)trχ( (F)ρ2 + ∗ (F)ρ2) + (a)trχ (F)β · (F)β. (A.5)

The other quantities are obtained by symmetrization, where in interchanging the 3
with the 4, one interchanges (F)β ↔ (F)β, (F)ρ ↔ − (F)ρ, ∗ (F)ρ ↔ ∗ (F)ρ, ζ ↔ −ζ,
η ↔ η, χ̂↔ χ and tr χ↔ trχ, ω ↔ ω.

Proof. We compute J434:

2J434 = D3R44 − D4R43

= ∇3(R44) − 2R(D3e4, e4) −∇4(R34) + R(D4e4, e3) + R(e4,D4e3)
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= 2∇3( (F)β · (F)β) −∇4(2 (F)ρ2 + 2 ∗ (F)ρ2) − 2R(2ωe4 + 2ηaea, e4)

+R(−2ωe4 + 2ξaea, e3) + R(e4, 2ωe3 + 2η
a
ea)

= −2∇4( (F)ρ2 + ∗ (F)ρ2) − 4ωR44 + 2(η
a
− 2ηa)Ra4

+ 2ξaRa3 + 2∇3( (F)β · (F)β)

= −2∇4( (F)ρ2 + ∗ (F)ρ2) + 4 ∗ (F)ρ
(
η − 2η

)
· ∗ (F)β + 4 (F)ρ

(
η − 2η

)
· (F)β

+ 4 ∗ (F)ρξ · ∗ (F)β − 4 (F)ρξ · (F)β + 2∇3( (F)β · (F)β) − 8ω( (F)β · (F)β).

This proves (A.1). We compute Jab4:

2Jab4 = DbR4a − D4Rab

= ∇b(R4a) − R(Dbe4, ea) − R(e4,Dbea) −∇4(Rab)

+R(D4ea, eb) + R(ea,D4eb)

= ∇b(2 ∗ (F)ρ ∗ (F)βa + 2 (F)ρ (F)βa) −∇4(−2( (F)β⊗̂ (F)β)ab

+ ( (F)ρ2 + ∗ (F)ρ2)δab) − R(−ζbe4 + χbcec, ea) − R
(
e4,

1
2
χ

ba
e4 +

1
2
χbae3

)
+R(η

a
e4 + ξae3, eb) + R(ea, ηb

e4 + ξbe3)

= ∇b(2 ∗ (F)ρ ∗ (F)βa + 2 (F)ρ (F)βa) −∇4(−2( (F)β⊗̂ (F)β)ab

+ ( (F)ρ2 + ∗ (F)ρ2)δab) + ζbRa4 − χbcRca − 1
2
χ

ba
R44

− 1
2
χbaR43 + η

a
R4b + ξaR3b + η

b
Ra4 + ξbRa3.

Using the Ricci decomposition, this proves (A.2). We compute J4a4:

2J4a4 = DaR44 − D4R4a

= ∇a(R44) − 2R(Dae4, e4) −∇4(R4a) + R(D4e4, ea) + R(e4,D4ea)

= 2∇a( (F)β · (F)β) − 2∇4( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa) − 2R(−ζae4 + χabeb, e4)

+R(−2ωe4 + 2ξbeb, ea) + R(e4, ηa
e4 + ξae3)

= −2∇4( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa) − 2χab(2 ∗ (F)ρ ∗ (F)βb + 2 (F)ρ (F)βb)

− 2ω(2 ∗ (F)ρ ∗ (F)βa + 2 (F)ρ (F)βa) + 4
(

(F)ρ2 + ∗ (F)ρ2
)
ξa

+ 2∇a( (F)β · (F)β) + (4ζa + 2η
a
) (F)β · (F)β − 4ξb( (F)β⊗̂ (F)β)ab,

which proves (A.3). We compute J3a4:

2J3a4 = DaR43 − D4R3a
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= ∇a(R34) − R(Dae4, e3) − R(e4,Dae3) −∇4(R3a) + R(D4e3, ea)

+R(e3,D4ea)

= ∇a(2 (F)ρ2 + 2 ∗ (F)ρ2) − R(χabeb − ζae4, e3) − R(e4, χab
eb + ζae3)

−∇4(2 ∗ (F)ρ ∗ (F)β
a
− 2 (F)ρ (F)β

a
) + R(2ωe3 + 2η

b
eb, ea)

+R(e3, ηa
e4 + ξae3)

= 2∇a( (F)ρ2 + ∗ (F)ρ2) − χab(2 ∗ (F)ρ ∗ (F)β
b
− 2 (F)ρ (F)β

b
)

−χ
ab

(2 ∗ (F)ρ ∗ (F)βb + 2 (F)ρ (F)βb)

− 2∇4( ∗ (F)ρ ∗ (F)β
a
− (F)ρ (F)β

a
) + 2ω(2 ∗ (F)ρ ∗ (F)β

a
− 2 (F)ρ (F)β

a
)

+ 2η
b
(−2( (F)β⊗̂ (F)β)ab +

(
(F)ρ2 + ∗ (F)ρ2

)
δab) + η

a
(2 (F)ρ2 + 2 ∗ (F)ρ2)

+ 2ξa (F)β · (F)β,

which proves (A.4). We compute ∗J434 using (A.2):
∗J434 = −2Jab4 ∈ab

= 2curl( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β) + 2ζ · ∗( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β)

−2 (a)trχ( (F)ρ2 + ∗ (F)ρ2) + (a)trχ (F)β · (F)β,

which proves (A.5).

Lemma A.2. Using Maxwell equations as in Proposition 3.1, we obtain

J434 = −2div( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β) − 2
(
ζ + 4η

)
·
(

(F)ρ (F)β + ∗ (F)ρ ∗ (F)β
)

+ 2tr χ( (F)ρ2 + ∗ (F)ρ2) + 2
(

2 (c)∇3
(F)β +

1
2
trχ (F)β − χ̂ · (F)β

)
· (F)β.

(A.6)

Proof. We compute

∇4( (F)ρ2 + ∗ (F)ρ2)

= 2 (F)ρ∇4
(F)ρ+ 2 ∗ (F)ρ∇4

∗ (F)ρ

= 2 (F)ρ
(
div (F)β −

(
tr χ (F)ρ− (a)trχ ∗ (F)ρ

)
+

(
ζ + η

)
· (F)β − ξ · (F)β

)
+ 2 ∗ (F)ρ

(
curl (F)β −

(
tr χ ∗ (F)ρ+ (a)trχ (F)ρ

)
+

(
η + ζ

)
· ∗ (F)β

+ ξ · ∗ (F)β
)

= 2 (F)ρdiv (F)β + 2 ∗ (F)ρcurl (F)β − 2tr χ( (F)ρ2 + ∗ (F)ρ2)

+ 2(ζ + η) ·
(

(F)ρ (F)β + ∗ (F)ρ ∗ (F)β
)

+ 2ξ ·
( ∗ (F)ρ ∗ (F)β − (F)ρ (F)β

)
.
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We now compute div( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β). It is given by

div( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β)

= ∇ ∗ (F)ρ · ∗ (F)β + ∗ (F)ρdiv ∗ (F)β + ∇ (F)ρ · (F)β + (F)ρdiv (F)β

= (F)ρdiv (F)β + ∗ (F)ρcurl (F)β +
(
∇ (F)ρ− ∗∇ ∗ (F)ρ

)
· (F)β.

Using the Maxwell equation

∇( (F)ρ) − ∗∇ ∗ (F)ρ = ∇3
(F)β +

1
2
(
trχ (F)β + (a)trχ ∗ (F)β

)
− 2ω (F)β

− 2
(
η (F)ρ− ∗η ∗ (F)ρ

)
− χ̂ · (F)β

we obtain

div( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β)

= (F)ρdiv (F)β + ∗ (F)ρcurl (F)β − 2η ·
(

(F)ρ (F)β + ∗ (F)ρ ∗ (F)β
)

+
(

(c)∇3
(F)β +

1
2
trχ (F)β − χ̂ · (F)β

)
· (F)β. (A.7)

This therefore gives

∇4( (F)ρ2 + ∗ (F)ρ2)

= 2div( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β) − 2tr χ( (F)ρ2 + ∗ (F)ρ2)

+ 2
(
ζ + η + 2η

)
·
(

(F)ρ (F)β + ∗ (F)ρ ∗ (F)β
)

+ 2ξ ·
( ∗ (F)ρ ∗ (F)β − (F)ρ (F)β

)
− 2

(
(c)∇3

(F)β +
1
2
trχ (F)β − χ̂ · (F)β

)
· (F)β.

Using (A.1) and the above, we deduce (A.6).

The complexified Bianchi identity for A is given by

∇3A−D⊗̂B = −1
2
trXA+ 4ωA+ (Z + 4H)⊗̂B − 3PX̂ + a + i ∗a. (A.8)

We compute a, using (A.1) and (A.2):

a = 2∇⊗̂( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β) + 2(ζ + 2η)⊗̂( ∗ (F)ρ ∗ (F)β + (F)ρ (F)βb)

− 2( (F)ρ2 + ∗ (F)ρ2)χ̂+ 2∇4( (F)β⊗̂ (F)β) + (c)∇3( (F)β⊗̂ (F)β) + χ · ( (F)β⊗̂ (F)β)

+ 2ξ⊗̂( ∗ (F)ρ ∗ (F)β − 2 (F)ρ (F)β). (A.9)
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Using (A.9), we have

a + i ∗a = D⊗̂
(( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β

)
+ i ∗( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β

))
+ ((ζ + 2η) + i ∗(ζ + 2η))⊗̂(( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β)

+ i ∗( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β)) − 2( (F)ρ2 + ∗ (F)ρ2)(χ̂+ i ∗χ̂)

+∇4( (F)B⊗̂ (F)B) +
1
2

(c)∇3( (F)B⊗̂ (F)B)

+
1
2
X̂ · ( (F)B⊗̂ (F)B) + (F)P (Ξ⊗̂ (F)B).

Observe that

(F)P (F)B =
( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β

)
+ i ∗( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β

)
and (F)P (F)P = (F)ρ2 + ∗ (F)ρ2. We can therefore write

a + i ∗a = D⊗̂( (F)P (F)B) + (Z + 2H)⊗̂( (F)P (F)B) − 2 (F)P (F)PX̂

+∇4( (F)B⊗̂ (F)B) +
1
2

(c)∇3( (F)B⊗̂ (F)B)

+
1
2
X̂ · ( (F)B⊗̂ (F)B) + (F)P (Ξ⊗̂ (F)B)

= (F)PD⊗̂( (F)B) + D (F)P ⊗̂ (F)B + (Z + 2H)⊗̂( (F)P (F)B) − 2 (F)P (F)PX̂

+∇4( (F)B⊗̂ (F)B) +
1
2

(c)∇3( (F)B⊗̂ (F)B)

+
1
2
X̂ · ( (F)B⊗̂ (F)B) + (F)P (Ξ⊗̂ (F)B).

Using the Maxwell equation for (c)D (F)P we write

a + i ∗a = (F)PD⊗̂( (F)B) + (−2 (F)P H)⊗̂ (F)B + (Z + 2H)⊗̂( (F)P (F)B)

− 2 (F)P (F)PX̂ +
1
2
∇4( (F)B⊗̂ (F)B) +

1
2

(c)∇3( (F)B⊗̂ (F)B)

+
(
−1

2
trX (F)B +

1
2
X̂ · (F)B +

1
2
X̂ · (F)B + (F)PΞ

)
⊗̂ (F)B

= −2 (F)P

(
−1

2
(D + Z)⊗̂ (F)B + (F)PX̂

)
+

1
2
∇4( (F)B⊗̂ (F)B)

+
1
2

(c)∇3( (F)B⊗̂ (F)B)

+
(
−1

2
trX (F)B +

1
2
X̂ · (F)B +

1
2
X̂ · (F)B + (F)PΞ

)
⊗̂ (F)B.
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From (A.8), we obtain

∇3A−D⊗̂B = −1
2
trXA+ 4ωA+ (Z + 4H)⊗̂B − 3PX̂ − 2 (F)P

×
(
−1

2
(D + Z)⊗̂ (F)B + (F)PX̂

)

+
1
2
∇4( (F)B⊗̂ (F)B) +

1
2

(c)∇3( (F)B⊗̂ (F)B)

+
(
−1

2
trX (F)B +

1
2
X̂ · (F)B +

1
2
X̂ · (F)B + (F)PΞ

)
⊗̂ (F)B,

which proves the first equation.
The complexified Bianchi identity for B is given by

∇4B − 1
2
D · A = −2trXB − 2ωB +

1
2
A · (2Z + H) + 3P Ξ − (J4a4 + i ∗J4a4).

Using (A.3), we have
∗J4a4 = −∇4

∗( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa) − tr χ(− ∗ (F)ρ (F)βa + (F)ρ ∗ (F)βa)

+ (a)trχ( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa) − 2ω ∗( ∗ (F)ρ ∗ (F)βa + (F)ρ (F)βa)

+ 2
(

(F)ρ2 + ∗ (F)ρ2
) ∗ξa + ∗∇a( (F)β · (F)β) + ∗(2ζa + η

a
) (F)β · (F)β

− 2 ∗ξb( (F)β⊗̂ (F)β)ab

and therefore

J4a4 + i ∗J4a4 = −∇4( (F)P (F)Ba) − trX (F)P (F)Ba − 2ω (F)P (F)Ba + 2 (F)P (F)PΞa

+
1
4
D( (F)B · (F)B) +

1
2
(2Z + H) (F)B · (F)B − 1

2
Ξ · ( (F)B⊗̂ (F)B).

Using the Maxwell equation for (c)∇4
(F)P we obtain

J4a4 + i ∗J4a4 = − (F)P∇4( (F)Ba) − 2ω (F)P (F)Ba + 2 (F)P (F)PΞa

+
1
2
D( (F)B · (F)B) + Z (F)B · (F)B,

which proves the second equation. The other complexified Bianchi identity for β is
given by

∇3B −DP = −trXB + 2ωB +B · X̂ + 3PH +
1
2
A · Ξ +

(
J3a4 + i ∗J3a4

)
.

Using (A.4), we have

J3a4 + i ∗J3a4 = D( (F)P (F)P ) +
1
2
trX (F)P (F)B − 2ω (F)P (F)B − 1

2
trX (F)P (F)B

+∇4( (F)P (F)B) + 2 (F)P (F)P H +
1
2
Ξ( (F)B · (F)B) − (F)PX̂ · (F)B

− (F)PX̂ · (F)B − H · ( (F)B⊗̂ (F)B).
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Using the Maxwell equations, we obtain

J3a4 + i ∗J3a4 = D( (F)P ) (F)P + (F)PD( (F)P ) +
1
2
trX (F)P (F)B − 2ω (F)P (F)B

− 1
2
trX (F)P (F)B − trX (F)P (F)B + (F)P (−D (F)P − 1

2
trX (F)B

+ 2ω (F)B − 2 (F)P H) + 2 (F)P (F)P H +
1
2
( (c)D · (F)B) (F)B

− (F)PX̂ · (F)B − 1
2

(F)PX̂ · (F)B

= (F)PD( (F)P ) − 1
2
trX (F)P (F)B − trX (F)P (F)B

+
1
2
( (c)D · (F)B) (F)B − (F)PX̂ · (F)B − 1

2
(F)PX̂ · (F)B,

which gives the desired formula. The complexified Bianchi identity for P is given by

∇4P − 1
2
D ·B = −3

2
trXP +

1
2
(2H + Z) ·B − Ξ ·B − 1

4
X̂ · A

− 1
2
(
J434 + i ∗J434

)
.

We compute using (A.6) and (A.5):

J434 + i ∗J434 = −2div( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β) + 2icurl( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β)

− 2
(
ζ + i ∗ζ + 4η

)
·
(

(F)ρ (F)β + ∗ (F)ρ ∗ (F)β
)

+ 2(tr χ− i (a)trχ)( (F)ρ2 + ∗ (F)ρ2)

+ 2
(

2 (c)∇3
(F)β +

1
2
trχ (F)β − χ̂ · (F)β

)
· (F)β + i (a)trχ (F)β · (F)β.

Observe that
(F)P (F)B =

( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β
)
− i ∗( ∗ (F)ρ ∗ (F)β + (F)ρ (F)β

)
and therefore

J434 + i ∗J434 = −D · ( (F)P (F)B) − Z · (F)P (F)B + 2trX (F)P (F)P

− 2
(
H +H

)
·
(

(F)P (F)B + (F)P (F)B
)

+ 2 (c)∇3( (F)B⊗̂ (F)B)

+
(
−1

2
trX (F)B − X̂ · (F)B

)
⊗̂ (F)B.

Using the Maxwell equations for (c)D (F)P we obtain

J434 + i ∗J434 = 2trX (F)P (F)P − (F)PD · (F)B − Z · (F)P (F)B − 2H · (F)P (F)B

+ (c)∇3( (F)B⊗̂ (F)B) +
(
−trX (F)B − 1

2
X̂ · (F)B

)
⊗̂ (F)B,

which gives the desired formula.
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A.2. Proof of Proposition 5.7

Here we derive (5.7)–(5.10).

A.2.1. Derivation of (5.7)

Multiply the Bianchi identity (5.5) by (F)P :

(F)P (c)∇3A+
1
2
trX (F)PA

= (F)P (c)D⊗̂B +H⊗̂
(
4 (F)PB − 3 (F)P (F)P (F)B

)
− 3P (F)PX̂ − 2 (F)P (F)PF.

Multiply the definition of F (5.2) by 3P :

3PF = −3
2
P (c)D⊗̂ (F)B − 9

2
H⊗̂P (F)B + 3P (F)PX̂.

Summing the above we obtain the cancellation of 3P (F)PX̂:(
3P + 2 (F)P (F)P

)
F + (F)P (c)∇3A+

1
2

(F)P trXA

=
1
2
(
2 (F)P (c)D⊗̂B − 3P (c)D⊗̂ (F)B

)
+H⊗̂

(
4 (F)PB − 3 (F)P (F)P (F)B − 9

2
P (F)B

)
.

On the other hand
(c)D⊗̂B = (c)D⊗̂

(
2 (F)PB − 3P (F)B

)
=

(
2 (F)P (c)D⊗̂B − 3P (c)D⊗̂ (F)B

)
+ 2 (c)D (F)P ⊗̂B − 3 (c)DP ⊗̂ (F)B

=
(
2 (F)P (c)D⊗̂B − 3P (c)D⊗̂ (F)B

)
− 4H⊗̂ (F)PB

+
(
9P − 6 (F)P (F)P

)
H⊗̂ (F)B.

Therefore(
3P + 2 (F)P (F)P

)
F + (F)P (c)∇3A+

1
2

(F)P trXA

=
1
2
(

(c)D⊗̂B + 4H⊗̂ (F)PB −
(
9P − 6 (F)P (F)P

)
H⊗̂ (F)B

)
+H⊗̂

(
4 (F)PB − 3 (F)P (F)P (F)B − 9

2
P (F)B

)
=

1
2

(c)D⊗̂B + 3H⊗̂B,

which proves (5.7).

A.2.2. Derivation of (5.8)

Using the definition of F (5.2), we compute

(c)∇4F = (c)∇4

(
−1

2
(c)D⊗̂ (F)B − 3

2
H⊗̂ (F)B + (F)PX̂

)
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= −1
2

(c)∇4
(c)D⊗̂ (F)B − 3

2
(c)∇4H⊗̂ (F)B − 3

2
H⊗̂ (c)∇4

(F)B

+ (c)∇4
(F)PX̂ + (F)P (c)∇4X̂.

Recall the following commutator formula, for F = f + i ∗f ∈ s1(C) of conformal
type s, see [19, Lemma 5.3]:

[ (c)∇4,
(c)D⊗̂]F = −1

2
trX( (c)D⊗̂F + (1 − s)H⊗̂F ) +H⊗̂ (c)∇4F. (A.10)

Applying (A.10) to F = (F)B and s = 1, using (4.9), (4.3) and (4.25), we obtain

(c)∇4F = −1
2

(c)D⊗̂ (c)∇4
(F)B − 1

2

(
−1

2
trX (c)D⊗̂ (F)B + H⊗̂ (c)∇4

(F)B

)

− 3
2

(
−1

2
trX(H − H)

)
⊗̂ (F)B − 3

2
H⊗̂ (c)∇4

(F)B − trX (F)PX̂

+ (F)P

(
−1

2
(trX + trX)X̂ + (c)D⊗̂Ξ + (H + H)⊗̂Ξ −A

)

= −1
2

(c)D⊗̂ (c)∇4
(F)B +

1
4
trX (c)D⊗̂ (F)B − 1

2
(
3H + H

)
⊗̂ (c)∇4

(F)B

+
3
4
trX(H − H)⊗̂ (F)B − 3

2
trX (F)PX̂ − 1

2
trX (F)PX̂

+ (F)P
(

(c)D⊗̂Ξ + (H + H)⊗̂Ξ −A
)
.

On the other hand, using the definition of X (5.4) we compute using (4.10) and
(4.4):

(c)D⊗̂X = (c)D⊗̂
(

(c)∇4
(F)B +

3
2
trX (F)B − 2 (F)PΞ

)

= (c)D⊗̂ (c)∇4
(F)B +

3
2

(c)DtrX⊗̂ (F)B +
3
2
trX (c)D⊗̂ (F)B

− 2 (c)D (F)P ⊗̂Ξ − 2 (F)P (c)D⊗̂Ξ

= (c)D⊗̂ (c)∇4
(F)B +

3
2
(trX − trX)H⊗̂ (F)B +

3
2
trX (c)D⊗̂ (F)B

+ 4 (F)PH⊗̂Ξ − 2 (F)P (c)D⊗̂Ξ.

This implies

−1
2

(c)D⊗̂ (c)∇4
(F)B = −1

2
(c)D⊗̂X +

3
4
(trX − trX)H⊗̂ (F)B +

3
4
trX (c)D⊗̂ (F)B

+ 2 (F)PH⊗̂Ξ − (F)P (c)D⊗̂Ξ.
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By plugging in to the above expression for (c)∇4F, we obtain

(c)∇4F = −1
2

(c)D⊗̂X +
3
4
(trX − trX)H⊗̂ (F)B +

3
4
trX (c)D⊗̂ (F)B + 2 (F)PH⊗̂Ξ

− (F)P (c)D⊗̂Ξ +
1
4
trX (c)D⊗̂ (F)B − 1

2
(3H + H) ⊗̂ (c)∇4

(F)B

+
3
4
trX(H − H)⊗̂ (F)B − 3

2
trX (F)PX̂ − 1

2
trX (F)PX̂

+ (F)P
(

(c)D⊗̂Ξ + (H + H)⊗̂Ξ −A
)

= −1
2

(c)D⊗̂X +
(

3
4
trX +

1
4
trX

)
(c)D⊗̂ (F)B −

(
3
2
trX +

1
2
trX

)
(F)PX̂

+
3
4
trXH⊗̂ (F)B − 3

4
trXH⊗̂ (F)B − 1

2
(
3H + H

)
⊗̂ (c)∇4

(F)B

+ (F)P ((3H + H)⊗̂Ξ −A).

Using again the definition of F (5.2) to write − 1
2

(c)D⊗̂ (F)B+ (F)PX̂ = F+ 3
2H⊗̂ (F)B,

we finally obtain

(c)∇4F = −
(

3
2
trX +

1
2
trX

)
F − 1

2
(c)D⊗̂X −

(
3
2
trX +

1
2
trX

)
3
2
H⊗̂ (F)B

+
3
4
trXH⊗̂ (F)B − 3

4
trXH⊗̂ (F)B − 1

2
(
3H + H

)
⊗̂ (c)∇4

(F)B

+ (F)P ((3H + H)⊗̂Ξ −A)

= −
(

3
2
trX +

1
2
trX

)
F − 1

2
(c)D⊗̂X − 1

2
(3H + H)

⊗̂
(

(c)∇4
(F)B +

3
2
trX (F)B − 2 (F)PΞ

)
− (F)PA.

Using again the definition of X (5.4), this proves (5.8).

A.2.3. Derivation of (5.9)

Using the definition of B (5.3), we compute

(c)∇4B + 3trXB = 2 (c)∇4
(F)PB + 2 (F)P (c)∇4B − 3 (c)∇4P

(F)B − 3P (c)∇4
(F)B

+ 3trX
(
2 (F)PB − 3P (F)B

)
.

Using (4.35), (4.3), (4.12), we obtain

(c)∇4B + 3trXB

= −2trX (F)PB + 2 (F)P

(
1
2

(c)D · A− 2trXB +
1
2
A · H + 3P Ξ
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+ (F)P
(

(c)∇4
(F)B − 2 (F)PΞ

))
− 3

(
−3

2
trX P − trX (F)P (F)P

)
(F)B

− 3P (c)∇4
(F)B + 3trX

(
2 (F)PB − 3P (F)B

)
,

which gives

(c)∇4B + 3trXB = (F)P
(

(c)D ·A+ H · A
)
−

(
3P − 2 (F)P (F)P

)
×

(
(c)∇4

(F)B +
3
2
trX (F)B − 2 (F)PΞ

)
,

which, using the definition of X (5.4), proves (5.9).

A.2.4. Derivation of (5.10)

Using the definition of X (5.4), we compute

(c)∇3X = (c)∇3

(
(c)∇4

(F)B +
3
2
trX (F)B − 2 (F)PΞ

)

= (c)∇4
(c)∇3

(F)B + [ (c)∇3,
(c)∇4] (F)B +

3
2
trX (c)∇3

(F)B

+
3
2

(c)∇3trX (F)B − 2 (c)∇3
(F)PΞ − 2 (F)P (c)∇3Ξ.

We compute each term. Using (4.16) and (4.7), we obtain

(c)∇4
(c)∇3

(F)B = (c)∇4

(
−1

2
trX (F)B + (c)D (F)P + 2 (F)PH

)

= −1
2
trX (c)∇4

(F)B − 1
2

(c)∇4trX (F)B + (c)∇4
(c)D (F)P

+ 2 (F)P (c)∇4H + 2 (c)∇4
(F)PH

= −1
2
trX (c)∇4

(F)B +
(

1
4
trXtrX − 1

2
(c)D · H − 1

2
H · H − P

)

× (F)B + (c)D (c)∇4
(F)P + [ (c)∇4,

(c)D] (F)P + 2 (F)P (c)∇4H

+ 2 (c)∇4
(F)PH

= L1 + L2 + L3 + L4 + L5.

We simplify L1 by making use of the definition of X and writing (c)∇4
(F)B =

X − 3
2 trX (F)B + 2 (F)PΞ. We obtain

L1 = −1
2
trX (c)∇4

(F)B +
(

1
4
trXtrX − 1

2
(c)D · H − 1

2
H · H − P

)
(F)B
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= −1
2
trX

(
X − 3

2
trX (F)B + 2 (F)PΞ

)

+
(

1
4
trXtrX − 1

2
(c)D · H − 1

2
H · H − P

)
(F)B,

which gives

L1 = −1
2
trX X +

(
1
4
trXtrX +

3
4
trXtrX − 1

2
(c)D · H − 1

2
H · H − P

)
(F)B

+ (F)P (−trXΞ). (A.11)

We compute L2 using (4.18):

L2 = (c)D (c)∇4
(F)P = (c)D

(
−trX (F)P +

1
2

(c)D · (F)B +
1
2
H · (F)B

)

= − (c)DtrX (F)P − trX (c)D (F)P +
1
2

(c)D( (c)D · (F)B) +
1
2

(c)D(H · (F)B).

Using (4.30) to write

(c)DtrX = (c)D · X̂ + (trX − trX)H + (trX − trX)Ξ + 2B − 2 (F)P (F)B

and using the Leibniz rules to write (c)D(H · (F)B) = ( (c)D· H) (F)B+ H · (c)D (F)B,
we obtain

L2 = −trX (c)D (F)P − (trX − trX)H (F)P +
1
2

(c)D( (c)D · (F)B) +
1
2
H · (c)D (F)B

− 2 (F)PB +
(

2 (F)P (F)P +
1
2

(c)D · H
)

(F)B

+ (F)P
(
− (c)D · X̂ − (trX − trX)Ξ

)
.

Using the definition of B to write 2 (F)PB = B + 3P (F)B, we finally obtain

L2 = −B − trX (c)D (F)P − (trX − trX)H (F)P +
1
2

(c)D( (c)D · (F)B)

+
1
2
H · (c)D (F)B +

(
− 3P + 2 (F)P (F)P +

1
2

(c)D · H
)

(F)B

+ (F)P
(
− (c)D · X̂ − (trX − trX)Ξ

)
. (A.12)

To compute L3 we first have the following lemma.
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Lemma A.3. Let G = g1 + ig2 ∈ s0(C) be a 0-conformal invariant scalar function.
Then

[ (c)∇4,
(c)D]G = −1

2
trX (c)DG+ H (c)∇4G+ Ξ (c)∇3G− 1

2
X̂ · (c)DG.

(A.13)

Proof. From the commutators, see [19, Lemma 2.39]

[∇4,∇a]G = −1
2

(
tr χ∇aG+ (a)trχ ∗∇G

)
+ (η

a
+ ζa)∇4G− χ̂ab∇bG+ ξa∇3G,

[∇4,
∗∇a]G = −1

2

(
tr χ ∗∇aG− (a)trχ∇G

)
+ ∗(η

a
+ ζa)∇4G

− ∗χ̂ab∇bG+ ∗ξa∇3G,

we obtain

[∇4,D]G = −1
2
(
tr χ∇aG+ (a)trχ ∗∇G

)
+ (H + Z)∇4G− χ̂ab∇bG+ Ξ∇3G

− 1
2
i
(
tr χ ∗∇aG− (a)trχ∇G

)
− i ∗χ̂ab∇bG.

Writing ∇ = 1
2D + 1

2D, we obtain the desired formula with non-conformal deriva-
tives. Using conformal derivatives we have

[ (c)∇4,
(c)D]G = (c)∇4

(c)DG− (c)D (c)∇4G = ∇4DG−D∇4G− Z∇4G,

which gives the desired formula.

We compute L3 by applying (A.13) to (F)P (which is of conformal type 0) and
using (4.18), (4.3) and (4.4), we obtain

L3 = [ (c)∇4,
(c)D] (F)P

= −1
2
trX (c)D (F)P + H (c)∇4

(F)P + Ξ (c)∇3
(F)P − 1

2
X̂ · (c)D (F)P

= −1
2
trX (c)D (F)P + H

(
−trX (F)P +

1
2

(c)D · (F)B +
1
2
H · (F)B

)

− trX (F)PΞ − 1
2
X̂ · (−2H (F)P ),

which gives

L3 = −1
2
trX (c)D (F)P − trX (F)P H +

1
2
H · (c)D (F)B +

1
2
(H · H) (F)B

+ (F)P
(
X̂ · H − trXΞ

)
. (A.14)

We compute L4 using (4.29)

L4 = 2 (F)P (c)∇4H

= 2 (F)P

(
−1

2
trX(H − H) + (c)∇3Ξ − 1

2
X̂ · (H − H) −B − (F)P (F)B

)
,
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which can be written as

L4 = −B − (F)P trX(H − H) +
(
− 3P − 2 (F)P (F)P

)
(F)B

+ (F)P
(
2 (c)∇3Ξ − X̂ · (H − H)

)
. (A.15)

We compute L5 using (4.18)

L5 = 2 (c)∇4
(F)PH = 2

(
−trX (F)P +

1
2

(c)D · (F)B +
1
2
H · (F)B

)
H,

which can be written as

L5 = −2trX (F)PH +H · (c)D (F)B +
(
H · H

)
(F)B. (A.16)

Putting together (A.11), (A.12), (A.14)–(A.16), we obtain

(c)∇4
(c)∇3

(F)B

= −1
2
trX X − 2B −

(
1
2
trX + trX

) (
(c)D (F)P + 2H (F)P

)

+
1
2

(c)D( (c)D · (F)B) +
1
2
H · (c)D (F)B +

(
H +

1
2
H

)
· (c)D (F)B

+
(

1
4
trXtrX +

3
4
trXtrX − 7P +H · H

)
(F)B

+ (F)P
(
− (c)D · X̂ + X̂ · (−H + 2H) + 2 (c)∇3Ξ − (3trX − trX)Ξ

)
.

Using (4.16) to substitute (c)D (F)P + 2 (F)PH = (c)∇3
(F)B + 1

2 trX (F)B we obtain

(c)∇4
(c)∇3

(F)B

= −1
2
trX X − 2B −

(
1
2
trX + trX

)
(c)∇3

(F)B +
1
2

(c)D( (c)D · (F)B)

+
1
2
H · (c)D (F)B +

(
H +

1
2
H

)
· (c)D (F)B

+
(

1
4
trXtrX − 7P +H · H

)
(F)B + (F)P

(
− (c)D · X̂ + X̂ · (−H

+ 2H) + 2 (c)∇3Ξ − (3trX − trX)Ξ
)
. (A.17)

In order to compute [ (c)∇3,
(c)∇4] (F)B, we first have the following lemma.
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Lemma A.4. Let F = f + i ∗f ∈ s1(C) be of conformal type s. Then

[ (c)∇3,
(c)∇4]F

=
1
2
(H − H) · (c)DF +

1
2
(H − H) · (c)DF

+
(

(s− 1)P + (s+ 1)P + 2s (F)P (F)P − s+ 1
2

(H · H) +
1 − s

2
(H · H)

)
F.

(A.18)

Proof. From, see [19, Lemma 2.39]

[∇4,∇3]fa = 2ω∇3fa − 2ω∇4fa + 2(η
b
− ηb)∇bfa + 2(η · f)ηa

− 2(η · f)η
a
− 2 ∗ρ ∗fa

[∇4,∇3] ∗fa = 2ω∇3
∗fa − 2ω∇4

∗fa + 2(η
b
− ηb)∇b

∗fa + 2(η · ∗f)ηa

− 2(η · ∗f)η
a

+ 2 ∗ρfa

we derive for F = f + i ∗f ,

[∇4,∇3]Fa = 2ω∇3Fa − 2ω∇4Fa + 2(η
b
− ηb)∇bFa

+ (H · F )ηa − (H · F )η
a

+ (P − P )Fa

= 2ω∇3Fa − 2ω∇4Fa + 2(η
b
− ηb)∇bFa +

1
2
(H ·H)Fa

− 1
2
(H · H)Fa + (P − P )Fa.

We have

[ (c)∇3,
(c)∇4]F = [∇3,∇4]F − 2ω∇4F + 2ω∇3F + 2s(∇3ω + ∇4ω − 4ωω)F

and using (4.32), we obtain

[ (c)∇3,
(c)∇4]F = −2ω∇3F + 2ω∇4F − 2(η − η) · ∇F − 1

2
(H ·H)Fa

+
1
2
(H · H)Fa − (P − P )F − 2ω∇4F + 2ω∇3F

+ 2s
(

1
2
(P + P ) + (F)P (F)P + (η − η) · ζ − η · η

)
F

= 2(η − η) · (c)∇F +
(
(s− 1)P + (s+ 1)P + 2s (F)P (F)P

)
F

− 1
2
(H ·H)Fa +

1
2
(H · H)Fa − s

2
(H · H +H · H)F.

Finally observe that 2(η − η) · (c)∇F = 1
2 (H − H) · (c)DF + 1

2 (H − H) · (c)DF .
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Specializing (A.18) to F = (F)B and s = 1, we compute

[ (c)∇3,
(c)∇4] (F)B =

1
2
(H − H) · (c)D (F)B +

1
2
(H − H) · (c)D (F)B

+
(
2P + 2 (F)P (F)P −H · H

)
(F)B. (A.19)

We also compute using (4.22)

3
2

(c)∇3trX (F)B =
(
−3

4
trX trX +

3
2

(c)D ·H +
3
2
H ·H + 3P

)
(F)B (A.20)

and using (4.3)

− 2 (c)∇3
(F)PΞ = 2trX (F)PΞ. (A.21)

Using (A.17), (A.19)–(A.21), we obtain

(c)∇3X

= (c)∇4
(c)∇3

(F)B + [ (c)∇3,
(c)∇4] (F)B +

3
2
trX (c)∇3

(F)B +
3
2

(c)∇3trX (F)B

− 2 (c)∇3
(F)PΞ − 2 (F)P (c)∇3Ξ

= −1
2
trX X − 2B −

(
1
2
trX + trX

)
(c)∇3

(F)B +
1
2

(c)D( (c)D · (F)B) +
1
2
H

· (c)D (F)B +
(
H +

1
2
H

)
· (c)D (F)B +

(
1
4
trXtrX − 7P +H · H

)
(F)B

+ (F)P
(
− (c)D · X̂ + X̂ · (−H + 2H) + 2 (c)∇3Ξ − (3trX − trX)Ξ

)
+

1
2
(H − H) · (c)D (F)B +

1
2
(H − H) · (c)D (F)B

+
(
2P + 2 (F)P (F)P −H · H

)
(F)B +

3
2
trX (c)∇3

(F)B

+
(
−3

4
trX trX +

3
2

(c)D ·H +
3
2
H ·H + 3P

)
(F)B

+ 2trX (F)PΞ − 2 (F)P (c)∇3Ξ,

which gives

(c)∇3X +
1
2
trX X + 2B

=
1
2

(c)D( (c)D · (F)B) +
1
2
H · (c)D (F)B +

3
2
H · (c)D (F)B

− 1
2

(
trX − trX

)
(c)∇3

(F)B
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+
(

1
4
trXtrX − 3

4
trX trX − 2P + 2 (F)P (F)P +

3
2

(c)D ·H +
3
2
H ·H

)
(F)B

+ (F)P
(
− (c)D · X̂ + X̂ · (−H + 2H) − (trX − trX)Ξ

)
.

(A.22)

We now write the right-hand side of the equation in terms of F. We have the
following lemma.

Lemma A.5. The following formula for the divergence of F holds :

(c)D · F +H · F

= −1
2
(trX − trX)X − 1

2
(c)D( (c)D · (F)B) − 3

2
H · (c)D (F)B

− 1
2
H · (c)D (F)B − 1

2
(trX − trX) (c)∇3

(F)B

+
[
1
4
trXtrX +

3
4
trXtrX − 1

2
trXtrX − ω(trX − trX) +

1
2
D · Z − 1

2
D · Z

+P + P − 2 (F)P (F)P − 3
2

(c)D ·H − 3
2
H ·H

]
(F)B

+ (F)P
(

(c)D · X̂ +
(
H − 2H

)
· X̂ − (trX − trX) (F)PΞ

)
.

Proof. Using the definition of F (5.2) we compute

(c)D · F +H · F = (c)D ·
(
−1

2
(c)D⊗̂ (F)B − 3

2
H⊗̂ (F)B + (F)PX̂

)

+H ·
(
−1

2
(c)D⊗̂ (F)B − 3

2
H⊗̂ (F)B + (F)PX̂

)

= −1
2

(c)D · ( (c)D⊗̂ (F)B) − 3
2

(c)D · (H⊗̂ (F)B) + (F)P (c)D · X̂

+ (c)D (F)P · X̂ − 1
2
H · (c)D⊗̂ (F)B − 3

2
H ·

(
H⊗̂ (F)B

)
+ (F)PX̂ ·H.

Using Leibniz rules, the above simplifies to

(c)D · F +H · F = −1
2

(c)D · ( (c)D⊗̂ (F)B) − 3
2
H · (c)D (F)B − 1

2
H · (c)D (F)B

+
(
−3

2
(c)D ·H − 3

2
H ·H

)
(F)B + (F)P

(
(c)D · X̂

+
(
H − 2H

)
· X̂

)
.
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Since (F)B is of conformal type 1, we have

(c)D · ( (c)D⊗̂ (F)B) = D · (D⊗̂ (F)B) + Z · D (F)B + Z · D (F)B

+ (D · Z + Z · Z) (F)B,

(c)D( (c)D · (F)B) = D(D · (F)B) + Z · D (F)B + Z · D (F)B + (D · Z + Z · Z) (F)B.

Using the relation (A.30) of Lemma A.7, which we prove below, applied to (F)B:

D · (D⊗̂ (F)B) = D(D · (F)B) + (trX − trX)∇3
(F)B + (trX − trX)∇4

(F)B

−
(

1
2
trXtrX +

1
2
trXtrX + 2P + 2P − 4 (F)P (F)P

)
(F)B

we obtain

(c)D · ( (c)D⊗̂ (F)B)

= D(D · (F)B) + Z · D (F)B + Z · D (F)B + (D · Z + Z · Z) (F)B

+ (trX − trX)∇3
(F)B + (trX − trX)∇4

(F)B

−
(

1
2
trXtrX +

1
2
trXtrX + 2P + 2P − 4 (F)P (F)P

)

= (c)D( (c)D · (F)B) + (trX − trX)
(

(c)∇3
(F)B + 2ω (F)B

)
+ (trX − trX)∇4

(F)B

−
(

1
2
trXtrX +

1
2
trXtrX + 2P + 2P − 4 (F)P (F)P + D · Z −D · Z

)
.

This finally gives

(c)D · F +H · F = −1
2

(c)D( (c)D · (F)B) − 3
2
H · (c)D (F)B − 1

2
H · (c)D (F)B

− 1
2
(trX − trX) (c)∇3

(F)B − 1
2
(trX − trX) (c)∇4

(F)B

+
[
1
4
trXtrX +

1
4
trXtrX − ω(trX − trX) + P + P − 2 (F)P (F)P

− 3
2

(c)D ·H − 3
2
H ·H +

1
2
D · Z − 1

2
D · Z

]
(F)B

+ (F)P
(

(c)D · X̂ +
(
H − 2H

)
· X̂

)
.

Using the definition of X to write (c)∇4
(F)B = X − 3

2 trX (F)B + 2 (F)PΞ we obtain
the final expression.
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We can therefore write the right-hand side of (A.22) as

(c)∇3X +
1
2
trX X + 2B = − (c)D · F −H · F − 1

2
(trX − trX)X

+
(

1
4
trXtrX − 1

4
trXtrX − ω(trX − trX) +

1
2
D · Z

− 1
2
D · Z + P − P

)
(F)B.

Observe that the coefficient of (F)B vanishes. We therefore obtain (5.10).
We are now left to prove Lemma A.7. We first recall the following Gauss

equation.

Proposition A.6. We have

(1) For ψ ∈ s1(C):

(
∇1∇2 −∇2∇1

)
ψ =

1
2
( (a)trχ∇3 + (a)trχ∇4)ψ

+ i

(
1
4
tr χtrχ+

1
4

(a)trχ (a)trχ+ ρ− (F)ρ2 − ∗ (F)ρ2

)
ψ

(A.23)

or also:(
∇1∇2 −∇2∇1

)
ψ =

1
2
( (a)trχ∇3 + (a)trχ∇4)ψ

+
1
2
i

(
1
4
trXtrX +

1
4
trXtrX + P + P − 2 (F)P (F)P

)
ψ.

(A.24)

(2) For Ψ ∈ s2(C):

(
∇1∇2 −∇2∇1

)
Ψ =

1
2
( (a)trχ∇3 + (a)trχ∇4)Ψ

+ 2i
(

1
4
tr χtrχ+

1
4

(a)trχ (a)trχ+ ρ− (F)ρ2 − ∗ (F)ρ2

)
Ψ

(A.25)

or also(
∇1∇2 −∇2∇1

)
Ψ =

1
2
( (a)trχ∇3 + (a)trχ∇4)Ψ

+ i

(
1
4
trXtrX +

1
4
trXtrX + P + P − 2 (F)P (F)P

)
Ψ.

(A.26)
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Proof. See [19, Proposition 5.5].

We are now left to prove the following lemma.

Lemma A.7. Let ψ ∈ s1(C) and Ψ ∈ s2(C). The following relations hold true:

D(D · ψ) = 2Δ1ψ − i( (a)trχ∇3 + (a)trχ∇4)ψ

+
(

1
4
trXtrX +

1
4
trXtrX + P + P − 2 (F)P (F)P

)
ψ, (A.27)

D · (D⊗̂ψ) = 2Δ1ψ + i( (a)trχ∇3 + (a)trχ∇4)ψ

−
(

1
4
trXtrX +

1
4
trXtrX + P + P − 2 (F)P (F)P

)
ψ, (A.28)

D⊗̂(D · Ψ) = 2Δ2Ψ − i( (a)trχ∇3 + (a)trχ∇4)Ψ

+
(

1
2
trXtrX +

1
2
trXtrX + 2P + 2P − 4 (F)P (F)P

)
Ψ. (A.29)

In particular,

D · (D⊗̂ψ) = D(D · ψ) + (trX − trX)∇3ψ + (trX − trX)∇4ψ

−
(

1
2
trXtrX +

1
2
trXtrX + 2P + 2P − 4 (F)P (F)P

)
ψ. (A.30)

Proof. Define Za := (D(D ·ψ))a = DaD
b
ψb and evaluate it in the frame. We have

Z1 = D1D1ψ1 + D1D2ψ2

=
(
∇1 + i ∗∇1

)(
∇1 − i ∗∇1

)
ψ1 +

(
∇1 + i ∗∇1

)(
∇2 − i ∗∇2

)
ψ2

=
(
∇1 + i∇2

)(
∇1 − i∇2

)
ψ1 +

(
∇1 + i∇2

)(
∇2 + i∇1

)
ψ2

=
(
∇1∇1 + ∇2∇2 − i(∇1∇2 −∇2∇1)

)
ψ1

+
(
∇1∇2 −∇2∇1 + i(∇1∇1 + ∇2∇2)

)
ψ2.

Using that ψ2 = −iψ1, we obtain Z1 = 2Δ1ψ1 − 2i(∇1∇2 −∇2∇1)ψ1. Also,

Z2 = D2D1ψ1 + D2D2ψ2

=
(
∇2 + i ∗∇2

)(
∇1 − i ∗∇1

)
ψ1 +

(
∇2 + i ∗∇2

)(
∇2 − i ∗∇2

)
ψ2

=
(
∇2 − i∇1

)(
∇1 − i∇2

)
ψ1 +

(
∇2 − i∇1

)(
∇2 + i∇1

)
ψ2

=
(
∇2∇1 −∇1∇2 − i(∇1∇1 + ∇2∇2)

)
ψ1

+
(
∇1∇1 + ∇2∇2 + i(∇2∇1 −∇1∇2)

)
ψ2

=
(
2∇1∇1 + 2∇2∇2 + 2i(∇2∇1 −∇1∇2)

)
ψ2,
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which gives

(D(D · ψ))a = 2Δ1ψa − 2i(∇1∇2 −∇2∇1)ψa.

Using the Gauss equation (A.24) we obtain (A.27). Define Ya := 2
(
D · (D⊗̂ψ)

)
a
,

and evaluate it in coordinates, i.e. Ya = DbDaψb + DbDbψa − δabD
bDdψd. We have

Y1 = DbD1ψb + DbDbψ1 − δ1bD
bDdψd

=
(
D1D1 + D2D2

)
ψ1 +

(
D2D1 −D1D2

)
ψ2

=
((
∇1 − i ∗∇1

)(
∇1 + i ∗∇1

)
+

(
∇2 − i ∗∇2

)(
∇2 + i ∗∇2

))
ψ1

+
((
∇2 − i ∗∇2

)(
∇1 + i ∗∇1

)
−

(
∇1 − i ∗∇1

)(
∇2 + i ∗∇2

))
ψ2

=
((
∇1 − i∇2

)(
∇1 + i∇2

)
+

(
∇2 + i∇1

)(
∇2 − i∇1

))
ψ1

+
((
∇2 + i∇1

)(
∇1 + i∇2

)
−

(
∇1 − i∇2

)(
∇2 − i∇1

))
ψ2

=
(
2∇1∇1 + 2∇2∇2 + 2i(∇1∇2 −∇2∇1)

)
ψ1

+
(
2∇2∇1 − 2∇1∇2 + 2i(∇1∇1 + ∇2∇2)

)
ψ2.

Using that ψ2 = −iψ1, we obtain Y1 = 4Δ1ψ1 + 4i(∇1∇2 −∇2∇1)ψ1. Also,

Y2 = DbD2ψb + DbDbψ2 − δ2bD
bDdψd =

(
D1D2 −D2D1

)
ψ1 +

(
D1D1 + D2D2

)
ψ2,

which gives

2
(
D · (D⊗̂ψ)

)
a

= 4Δ1ψa + 4i(∇1∇2 −∇2∇1)ψa.

Using the Gauss equation (A.24) we obtain (A.28). Finally, (A.29) is proved in
[19, Proposition 5.6].

Appendix B. Derivation of the Teukolsky Equations

In this section, we derive the system of Teukolsky equations for B, F, A.

B.1. The Teukolsky equation for B

Recall the relation (5.9):
(c)∇4B + 3trXB = (F)P

(
(c)D ·A+ H · A

)
+

(
2 (F)P (F)P − 3P

)
X.

We apply (c)∇3 to the above, and using (4.22) we obtain

(c)∇3
(c)∇4B = −3trX (c)∇3B +

(
3
2
trX trX − 3 (c)D ·H − 3H ·H − 6P

)
B

+ I1 + I2 + I3,

where

I1 = (c)∇3

(
(F)P

(
(c)D · A+ H · A

))
, I2 = (c)∇3

(
2 (F)P (F)P − 3P

)
X,

I3 =
(
2 (F)P (F)P − 3P

)
(c)∇3X.
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We compute I1. Using (4.3), we obtain

I1 = (c)∇3
(F)P

(
(c)D · A+ H ·A

)
+ (F)P (c)∇3

(
(c)D ·A+ H ·A

)
= −trX (F)P

(
(c)D ·A+ H · A

)
+ (F)P

(
(c)D · (c)∇3A+ [ (c)∇3, (c)D·]A

+ H · (c)∇3A+ (c)∇3H · A
)
.

Recall the following commutator formula, for U = u + i ∗u ∈ s2(C), see [19,
Lemma 5.3]:

[ (c)∇3, (c)D·]U = −1
2
trX ( (c)D · U + (s− 2)H · U) +H · ∇3U. (B.1)

Applying (B.1) to A with s = 2 we obtain

I1 = −trX (F)P
(

(c)D ·A+ H · A
)
− 1

2
trX (F)P (c)D ·A+ (F)P (c)∇3H · A

+ (F)P
(

(c)D · (c)∇3A+
(
H + H

)
· (c)∇3A

)
.

We write the last term of the above using (4.4) as

(F)P
(

(c)D · (c)∇3A+
(
H + H

)
· (c)∇3A

)
= (c)D · ( (F)P (c)∇3A) − (c)D (F)P · (c)∇3A+

(
H + H

)
· (F)P (c)∇3A

= (c)D · ( (F)P (c)∇3A) +
(
H + 3H

)
· (F)P (c)∇3A.

Using (5.7) to write

(F)P (c)∇3A = −1
2

(F)P trXA+
1
2

(c)D⊗̂B + 3H⊗̂B −
(
3P + 2 (F)P (F)P

)
F

we compute

(c)D · ( (F)P (c)∇3A)

= −1
2

(F)P trX (c)D ·A− 1
2
trX (c)D (F)P · A− 1

2
(F)P (c)DtrX ·A

+
1
2

(c)D · (c)D⊗̂B + 3H (c)D · B + 3 (c)D ·HB

−
(
3P + 2 (F)P (F)P

)
(c)D · F − (c)D

(
3P + 2 (F)P (F)P

)
· F.

Using (4.4), (4.10), (4.11), the above becomes

(c)D · ( (F)P (c)∇3A)

= −1
2

(F)P trX (c)D · A+ (F)P

(
3
2
trX − 1

2
trX

)
H ·A+

1
2

(c)D · (c)D⊗̂B

+ 3H (c)D · B + 3( (c)D ·H)B −
(
3P + 2 (F)P (F)P

)
(c)D · F

+
((

9P − 2 (F)P (F)P
)
H + 4 (F)P (F)PH

)
· F.
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We therefore obtain

I1 = −
(

3
2
trX +

1
2
trX

)
(F)P

(
(c)D ·A

)
+ (F)P

(
1
2
trXH − 1

2
trXH

)
· A

+
1
2

(c)D · (c)D⊗̂B + 3H (c)D · B + 3( (c)D ·H)B

−
(
3P + 2 (F)P (F)P

)
(c)D · F +

((
9P − 2 (F)P (F)P

)
H + 4 (F)P (F)PH

)
· F

+
(
H + 3H

)
·
(
−1

2
(F)P trXA+

1
2

(c)D⊗̂B + 3H⊗̂B −
(
3P + 2 (F)P (F)P

)
F

)
,

which finally gives

I1 = −
(

3
2
trX +

1
2
trX

)
(F)P

(
(c)D ·A+ H ·A

)
+

1
2

(c)D · (c)D⊗̂B

+ 3H (c)D · B +
(
H + 3H

)
·
(

1
2

(c)D⊗̂B

)
+ 3

(
(c)D ·H +H ·H

)
B

+ 9H ·
(
H⊗̂B

)
−

(
3P + 2 (F)P (F)P

)
(c)D · F

+
((

− 8 (F)P (F)P
)
H +

(
− 3P + 2 (F)P (F)P

)
H

)
· F.

We compute I2. Using (4.3) and (4.12) we have

I2 =
(
2 (c)∇3

(F)P (F)P + 2 (F)P (c)∇3
(F)P − 3 (c)∇3P

)
X

=
(

9
2
trXP +

(
trX − 2trX

)
(F)P (F)P

)
X

=
(
trX − 2trX

)
(F)P (F)P X +

(
3
2
trX

) (
3PX

)
.

We use (5.9) again to write

3PX = − (c)∇4B − 3trXB + (F)P
(

(c)D · A+ H ·A
)

+ 2 (F)P (F)PX

and substituting in the above we obtain

I2 = −3
2
trX (c)∇4B − 9

2
trXtrXB +

3
2
trX (F)P

(
(c)D · A+ H ·A

)
+

(
4trX − 2trX

)
(F)P (F)P X.

We compute I3. Using (5.10), we obtain

I3 =
(
2 (F)P (F)P − 3P

)
(c)∇3X

= −1
2
trX

(
2 (F)P (F)P − 3P

)
X −

(
2 (F)P (F)P − 3P

)
(c)D · F

−
(
2 (F)P (F)P − 3P

)
H · F +

(
− 4 (F)P (F)P + 6P

)
B.
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Putting the above together we obtain

(c)∇3
(c)∇4B = −3trX (c)∇3B − 3

2
trX (c)∇4B

+
(
−9

2
trXtrX +

3
2
trX trX − 4 (F)P (F)P

)
B

+
1
2

(c)D · (c)D⊗̂B + 3H (c)D · B +
(
H + 3H

)
·
(

1
2

(c)D⊗̂B

)

+ 9H ·
(
H⊗̂B

)
− 1

2
trX (F)P

(
(c)D · A+ H ·A

)
−

(
4 (F)P (F)P

)
(c)D · F +

((
− 8 (F)P (F)P

)
H

)
· F

+
(
4trX − 3trX

)
(F)P (F)P X +

3
2
trX PX.

Finally using (5.9) to write
(F)P

(
(c)D · A+ H · A

)
= (c)∇4B + 3trXB −

(
2 (F)P (F)P − 3P

)
X

we obtain

(c)∇3
(c)∇4B = −3trX (c)∇3B −

(
3
2
trX +

1
2
trX

)
(c)∇4B

+
(
−9

2
trXtrX − 4 (F)P (F)P

)
B +

1
2

(c)D · (c)D⊗̂B

+ 3H (c)D · B +
(
H + 3H

)
·
(

1
2

(c)D⊗̂B

)
+ 9H ·

(
H⊗̂B

)
−

(
4 (F)P (F)P

)
(c)D · F +

((
− 8 (F)P (F)P

)
H

)
· F

+
(
4trX − 2trX

)
(F)P (F)P X,

which gives the operator T1 as in (6.4). This completes the derivation of the Teukol-
sky equation for B.

B.2. The Teukolsky equation for F

Recall the relation (5.8):

(c)∇4F +
(

3
2
trX +

1
2
trX

)
F = −1

2
(c)D⊗̂X −

(
3
2
H +

1
2
H

)
⊗̂X − (F)PA.

We apply (c)∇3 to the above, and using (4.22) we obtain

(c)∇3
(c)∇4F = −

(
3
2
trX +

1
2
trX

)
(c)∇3F +

(
1
4
trXtrX +

3
4
trX trX − 3P − P

− 3
2

(c)D ·H − 1
2

(c)D ·H − 2H ·H
)

F +K1 +K2 +K3,
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where

K1 = −1
2

(c)∇3( (c)D⊗̂X), K2 = − (c)∇3

((
3
2
H +

1
2
H

)
⊗̂X

)
,

K3 = − (c)∇3( (F)PA).

We compute K1. Recall the following commutator formula, for F = f + i ∗f ∈
s1(C), see [19, Lemma 5.3]:

[ (c)∇3,
(c)D⊗̂]F = −1

2
trX

(
(c)D⊗̂F + (1 + s)H⊗̂F

)
+H⊗̂ (c)∇3F. (B.2)

Using (5.10) and (B.2) for s = 2, we have

K1 = −1
2

(c)D⊗̂( (c)∇3X) − 1
2
[ (c)∇3,

(c)D⊗̂]X

= −1
2

(c)D⊗̂( (c)∇3X) +
1
4
trX

(
(c)D⊗̂X + 3H⊗̂X

)
− 1

2
H⊗̂ (c)∇3X

= −1
2

(c)D⊗̂
(
−1

2
trX X − (c)D · F −H · F − 2B

)
+

1
4
trX

(
(c)D⊗̂X + 3H⊗̂X

)

− 1
2
H⊗̂

(
−1

2
trX X − (c)D · F −H · F − 2B

)
,

which gives using (4.10)

K1 =
1
2

(c)D⊗̂( (c)D · F +H · F) +
1
2
H⊗̂( (c)D · F +H · F)

+ (c)D⊗̂B +H⊗̂B +
1
4
(
trX + trX

)
(c)D⊗̂X

+
(

1
4
(trX − trX)H +

3
4
trXH +

1
4
trXH

)
⊗̂X.

Using (5.8) to write

(c)D⊗̂X = −2 (c)∇4F −
(
3trX + trX

)
F −

(
3H + H

)
⊗̂X − 2 (F)PA

we obtain

K1 =
1
2

(c)D⊗̂( (c)D · F +H · F) +
1
2
H⊗̂( (c)D · F +H · F) + (c)D⊗̂B +H⊗̂B

+
1
4
(
trX + trX

)(
− 2 (c)∇4F −

(
3trX + trX

)
F −

(
3H + H

)
⊗̂X − 2 (F)PA

)
+

(
1
4
(trX − trX)H +

3
4
trXH +

1
4
trXH

)
⊗̂X
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= −1
2
(
trX + trX

)
(c)∇4F − 1

4
(
trXtrX + 3trXtrX + 3trXtrX + trXtrX

)
F

+
1
2

(c)D⊗̂( (c)D · F +H · F) +
1
2
H⊗̂( (c)D · F +H · F) + (c)D⊗̂B +H⊗̂B

− 1
2
(
trX + trX

)
(F)PA− 1

2
trX

(
H +H

)
⊗̂X.

Using (5.7) to write

(c)D⊗̂B = 2 (F)P (c)∇3A+ (F)P trXA− 6H⊗̂B + 2
(
3P + 2 (F)P (F)P

)
F

we obtain

K1 = −1
2
(
trX + trX

)
(c)∇4F − 1

4
(
trXtrX + 3trXtrX + 3trXtrX + trXtrX

)
F

+ 2
(
3P + 2 (F)P (F)P

)
F

1
2

(c)D⊗̂
(

(c)D · F +H · F
)

+
1
2
H⊗̂

(
(c)D · F +H · F

)
+ 2 (F)P (c)∇3A+

1
2
(
trX − trX

)
(F)PA− 5H⊗̂B − 1

2
trX

(
H +H

)
⊗̂X.

We compute K2. Using (4.9) and (5.10)

K2 = − (c)∇3

(
3
2
H +

1
2
H

)
⊗̂X −

(
3
2
H +

1
2
H

)
⊗̂ (c)∇3X

=
(
−3

2
(c)∇3H +

1
4
trX(H −H)

)
⊗̂X −

(
3
2
H +

1
2
H

)

⊗̂
(
−1

2
trX X − (c)D · F −H · F − 2B

)

=
(

3
2
H +

1
2
H

)
⊗̂ (c)D · F +

(
3
2
H +

1
2
H

)
⊗̂

(
H · F

)

+
(
−3

2
(c)∇3H +

1
2
trX(H +H)

)
⊗̂X +

(
3H + H

)
⊗̂B.

We compute K3. Using (4.3), we obtain

K3 = − (c)∇3( (F)P )A− (F)P (c)∇3A = − (F)P (c)∇3A+ trX (F)PA.

We therefore obtain

(c)∇3
(c)∇4F = −

(
3
2
trX +

1
2
trX

)
(c)∇3F − 1

2
(
trX + trX

)
(c)∇4F
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+
(
−3

4
trXtrX − 1

4
trXtrX + 3P − P + 4 (F)P (F)P

− 3
2

(c)D ·H − 1
2

(c)D ·H − 2H ·H
)

F

+
1
2

(c)D⊗̂( (c)D · F +H · F) +
(

2H +
1
2
H

)
⊗̂( (c)D · F +H · F)

+ (F)P (c)∇3A+
1
2
(
3trX − trX

)
(F)PA+

(
−3

2
(c)∇3H

)
⊗̂X

+ (−2H + H)⊗̂B,

which gives the operator T2 as in (6.5) and this ends the derivation of the Teukolsky
equation for F.

B.3. The Teukolsky equation for A

This derivation is similar to the one obtained in [19]. Recall (5.5):

(c)∇3A+
1
2
trXA = (c)D⊗̂B +H⊗̂

(
4B − 3 (F)P (F)B

)
− 3PX̂ − 2 (F)PF.

We apply (c)∇4 to the above, and using (4.23) we obtain

(c)∇4
(c)∇3A = −1

2
trX (c)∇4A+

(
1
4
trXtrX − 1

2
(c)D · H − 1

2
H · H − P

)
A

+ J1 + J2 + J3 + J4,

where

J1 = (c)∇4
(c)D⊗̂B, J2 = (c)∇4

(
H⊗̂

(
4B − 3 (F)P (F)B

))
,

J3 = −3 (c)∇4(PX̂), J4 = −2 (c)∇4( (F)PF).

We compute J1. Using (A.10) for s = 1 we obtain

J1 = (c)D⊗̂( (c)∇4B) + [ (c)∇4,
(c)D⊗̂]B

= (c)D⊗̂( (c)∇4B) − 1
2
trX( (c)D⊗̂B) +H⊗̂ (c)∇4B.

Observe that the Bianchi identity (4.35) can be written in terms of X as

(c)∇4B + 2trXB +
3
2
trX (F)P (F)B − 3P Ξ =

1
2

(c)D ·A+
1
2
A · H + (F)PX.

(B.3)
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This gives

(c)D⊗̂( (c)∇4B) = −2trX (c)D⊗̂B − 2 (c)DtrX⊗̂B − 3
2

(c)DtrX⊗̂ (F)P (F)B

− 3
2
trX (c)D (F)P ⊗̂ (F)B − 3

2
trX (F)P (c)D⊗̂ (F)B + 3P (c)D⊗̂Ξ

+ 3 (c)DP ⊗̂Ξ + (F)P (c)D⊗̂X + (c)D (F)P ⊗̂X

+
1
2

(c)D⊗̂ (c)D ·A+
1
2

(c)D⊗̂(A · H).

We therefore obtain using again (B.3):

J1 = −
(

1
2
trX + 2trX

)
(c)D⊗̂B +

(
− 2 (c)DtrX − 2trXH

)
⊗̂B

− 3
2
trX (F)P (c)D⊗̂ (F)B − 3

2
(

(F)P (c)DtrX + trX (c)D (F)P + trX (F)P H
)

⊗̂ (F)B + 3P (c)D⊗̂Ξ + 3
(

(c)DP + HP
)
⊗̂Ξ + (F)P (c)D⊗̂X

+
(

(c)D (F)P + H (F)P
)
⊗̂X +

1
2

(c)D⊗̂ (c)D · A

+
1
2

(c)D⊗̂(A · H) +
1
2
H⊗̂

(
(c)D ·A

)
+

1
2
H⊗̂

(
A · H

)
.

We compute J2. Using (4.9), (B.3) and (4.3), we obtain

J2 = (c)∇4H⊗̂
(
4B − 3 (F)P (F)B

)
+H⊗̂

(
4 (c)∇4B − 3 (F)P (c)∇4

(F)B

− 3 (c)∇4
(F)P (F)B

)
= −1

2
trX(H − H)⊗̂

(
4B − 3 (F)P (F)B

)
+H⊗̂

[
4(−2trXB − 3

2
trX (F)P (F)B + 3P Ξ)

+ 4
(

1
2

(c)D · A+
1
2
A · H + (F)PX

)
− 3 (F)P (c)∇4

(F)B − 3(−trX (F)P ) (F)B

]
.

Writing (c)∇4
(F)B = X − 3

2 trX (F)B + 2 (F)PΞ, the above becomes

J2 =
(
− 2trX(5H − H)

)
⊗̂B +

3
2
(
− trX (F)P H + 2trX (F)PH

)
⊗̂ (F)B

+
(
12P − 6 (F)P (F)P

)
H⊗̂Ξ + (F)PH⊗̂X + 2H⊗̂

(
(c)D ·A

)
+ 2H⊗̂

(
A · H

)
.
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We compute J3. Using (4.12) and (4.25), we obtain

J3 = −3 (c)∇4(P )X̂ − 3P (c)∇4(X̂)

= −3
(
−3

2
trX P − trX (F)P (F)P

)
X̂

− 3P
(
−1

2
(trX + trX)X̂ + (c)D⊗̂Ξ + Ξ⊗̂(H +H) −A

)

= 3PA+
((

3
2
trX + 6trX

)
P + 3trX (F)P (F)P

)
X̂

− 3P
(

(c)D⊗̂Ξ + Ξ⊗̂(H +H)
)
.

We compute J4. Using (4.3) we obtain

J4 = −2 (c)∇4( (F)P )F − 2 (F)P (c)∇4F = 2 (F)P
(
− (c)∇4F + trXF

)
.

Summing the expressions obtained for J1, J2, J3 and J4 we obtain

(c)∇4
(c)∇3A

= −1
2
trX (c)∇4A+

(
1
4
trXtrX − 1

2
(c)D · H − 1

2
H · H + 2P

)
A

+
1
2

(c)D⊗̂ (c)D ·A+
1
2

(c)D⊗̂(A · H) +
1
2
H⊗̂

(
(c)D ·A

)
+

1
2
H⊗̂

(
A · H

)
+ 2H⊗̂

(
(c)D ·A

)
+ 2H⊗̂

(
A · H

)
−

(
1
2
trX + 2trX

)
(c)D⊗̂B

+
(
− 2 (c)DtrX − 10trXH

)
⊗̂B − 3

2
trX (F)P (c)D⊗̂ (F)B

− 3
2
(

(F)P (c)DtrX + trX (c)D (F)P + 2trX (F)P H − 2trX (F)PH
)
⊗̂ (F)B

+ 3
(

(c)DP +
(
3P − 2 (F)P (F)P

)
H

)
⊗̂Ξ + (F)P (c)D⊗̂X

+
(

(c)D (F)P + H (F)P + (F)PH
)
⊗̂X

+
((

3
2
trX + 6trX

)
P + 3trX (F)P (F)P

)
X̂ + 2 (F)P

(
− (c)∇4F + trXF

)
.

Using (5.5) to write

(c)D⊗̂B = (c)∇3A+
1
2
trXA−H⊗̂

(
4B − 3 (F)P (F)B

)
+ 3PX̂ + 2 (F)PF
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the above becomes

(c)∇4
(c)∇3A = −

(
1
2
trX + 2trX

)
(c)∇3A− 1

2
trX (c)∇4A

+
(
−trXtrX − 1

2
(c)D · H − 1

2
H · H + 2P

)
A

+
1
2

(c)D⊗̂ (c)D ·A+
1
2

(c)D⊗̂(A · H) +
1
2
H⊗̂

(
(c)D ·A

)
+

1
2
H⊗̂

(
A · H

)
+ 2H⊗̂

(
(c)D ·A

)
+ 2H⊗̂

(
A · H

)
+

(
− 2 (c)DtrX

+ 2trXH − 2trXH
)
⊗̂B − 3

2
trX (F)P (c)D⊗̂ (F)B − 3

2
(

(F)P (c)DtrX

+ trX (c)D (F)P + 2trX (F)P H + 4trXH − trX (F)PH
)
⊗̂ (F)B

+ 3
(

(c)DP +
(
3P − 2 (F)P (F)P

)
H

)
⊗̂Ξ + (F)P (c)D⊗̂X

+
(

(c)D (F)P + H (F)P + (F)PH
)
⊗̂X +

(
3trX (F)P (F)P

)
X̂

+ 2 (F)P

(
− (c)∇4F +

(
1
2
trX − 2trX

)
F

)
.

Observe that using (4.10) and (4.11), the coefficients of B and Ξ vanish. Finally
writing (c)D⊗̂ (F)B = −2F− 3H⊗̂ (F)B + 2 (F)PX̂, we obtain

(c)∇4
(c)∇3A = −

(
1
2
trX + 2trX

)
(c)∇3A− 1

2
trX (c)∇4A

+
(
−trXtrX − 1

2
(c)D · H − 1

2
H · H + 2P

)
A

+
1
2

(c)D⊗̂ (c)D ·A+
1
2

(c)D⊗̂(A · H) +
1
2
H⊗̂

(
(c)D · A

)
+

1
2
H⊗̂

(
A · H

)
+ 2H⊗̂

(
(c)D · A

)
+ 2H⊗̂

(
A · H

)
− 3

2
(

(F)P (c)DtrX + trX (c)D (F)P + 2trX (F)P H + trX (F)PH

− trX (F)PH
)
⊗̂ (F)B + (F)P (c)D⊗̂X +

(
(c)D (F)P + H (F)P

+ (F)PH
)
⊗̂X + 2 (F)P

(
− (c)∇4F +

(
1
2
trX − 1

2
trX

)
F

)
.

Observe that using (4.10) and (4.4), the coefficient of (F)B vanishes. Finally, we can
make use of (5.8) to write

(c)D⊗̂X = −2 (c)∇4F −
(
3trX + trX

)
F −

(
3H + H

)
⊗̂X − 2 (F)PA
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and obtain

(c)∇4
(c)∇3A

= −
(

1
2
trX + 2trX

)
(c)∇3A− 1

2
trX (c)∇4A

+
(
−trXtrX − 1

2
(c)D · H − 1

2
H · H + 2P − 2 (F)P (F)P

)
A

+
1
2

(c)D⊗̂ (c)D ·A+
1
2

(c)D⊗̂(A · H) +
1
2
H⊗̂

(
(c)D · A

)
+

1
2
H⊗̂(A · H

)
+ 2H⊗̂

(
(c)D ·A

)
+ 2H⊗̂

(
A · H

)
− 2 (F)P

(
2 (c)∇4F + 2trXF

+
(
H +H

)
⊗̂X

)
,

which gives the operator T3(A), as in [19]. This completes the derivation of the
Teukolsky equation for A.

Appendix C. Derivation of the Generalized Regge–Wheeler
System

C.1. Proof of Proposition 7.4

C.1.1. The commutators for PC

Lemma C.1. Let Ψ ∈ sk(C) of conformal type s. Recall the definition of PC(Ψ),
see (7.1),

PC(Ψ) = (c)∇3Ψ + CΨ ∈ sk(C).

Let F ∈ s1(C) of conformal type s. Then the following commutators hold :

[PC ,
(c)∇3]F = −( (c)∇3C)F,

[PC ,
(c)∇4]F = 2(η − η) · (c)∇F +

(
2s

(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 2i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C

)
F,

[PC ,
(c)∇a]F = −1

2
trχ (c)∇aF − 1

2
(a)trχ ∗ (c)∇aF + ηa

(c)∇3F

+ (Vs
[3,a] − (c)∇aC)F,

[PC ,
(c)D⊗̂]F = −1

2
trX (c)D⊗̂F +H⊗̂ (c)∇3F

+
(
− (c)DC − 1

2
(s+ 1)trXH

)
⊗̂F.
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Let U ∈ s2(C) of conformal type s. The following commutators hold :

[PC ,
(c)∇3]U = −( (c)∇3C)U,

[PC ,
(c)∇4]U = 2(η − η) · (c)∇U +

(
2s

(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 4i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C

)
U,

[PC ,
(c)∇a]U = −1

2
trχ (c)∇aU − 1

2
(a)trχ ∗ (c)∇aU + ηa

(c)∇3U

+ (Vs
[3,a] − (c)∇aC)U,

[PC , (c)D·]U = −1
2
trX (c)D · U +H · (c)∇3U +

(
− (c)DC − 1

2
(s− 2)trXH

)
· U.

Proof. We compute

[PC ,
(c)∇3]F = ( (c)∇3 + C)( (c)∇3F ) − (c)∇3( (c)∇3F + CF ) = −( (c)∇3C)F

and similarly for U . We compute

[PC ,
(c)∇4]F = ( (c)∇3 + C)( (c)∇4F ) − (c)∇4( (c)∇3F + C F )

= [ (c)∇3,
(c)∇4]F − ( (c)∇4C)F.

Recall from (A.18) and from [19]:

[ (c)∇3,
(c)∇4]F = 2(η − η) · (c)∇F +

(
2s

(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 2i

(
− ∗ρ+ η ∧ η

))
, F (C.1)

[ (c)∇3,
(c)∇4]U = 2(η − η) · (c)∇U +

(
2s

(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 4i

(
− ∗ρ+ η ∧ η

))
.U (C.2)

Using (C.1) and (C.2), we obtain the stated expressions.
We compute

[PC ,
(c)∇a]F = ( (c)∇3 + C)( (c)∇aF ) − (c)∇a( (c)∇3F + C F )

= [ (c)∇3,
(c)∇a]F − ( (c)∇aC)F.

Using that, see [19, Lemma 5.3]

[ (c)∇3,
(c)∇a]Fb = −1

2
trχ (c)∇aFb −

1
2

(a)trχ ∗ (c)∇aFb + ηa
(c)∇3Fb

+Vs
[3,a](F ), (C.3)

[ (c)∇3,
(c)∇a]Ubc = −1

2
trχ (c)∇aUbc −

1
2

(a)trχ ∗ (c)∇aUbc + ηa
(c)∇3Ubc

+Vs
[3,a](U), (C.4)
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where

Vs
[3,a](F ) = −1

2
trχ

(
sηaUb + ηbUa − δabη · U

)
− 1

2
(a)trχ

(
s ∗ηaUb + ηb

∗Ua− ∈ab η · U
)
,

Vs
[3,a](U) = −1

2
trχ

(
s(ηa)Ubc + ηbUac + ηcUab − δab(η · U)c − δac(η · U)b

)
−1

2
(a)trχ

(
s( ∗ηa)Ubc + ηb

∗Uac + ηc
∗Uab− ∈ab (η · U)c− ∈ac (η · U)b

)
,

we obtain the stated expressions.
We compute

[PC ,
(c)D⊗̂]F = ( (c)∇3 + C)( (c)D⊗̂F ) − (c)D⊗̂( (c)∇3F + CF )

= [ (c)∇3,
(c)D⊗̂]F − ( (c)DC)⊗̂F.

Using (B.2), we obtain the stated expression. We compute

[PC , (c)D·]U = ( (c)∇3 + C)( (c)D · U) − (c)D · ( (c)∇3U + CU)

= [ (c)∇3, (c)D·]U − ( (c)DC) · U.

Using (B.1), we obtain the stated expression.

C.1.2. The commutators for [PC1 , T1] and [PC2, T2]

Using (6.4) and (6.5), we separate the computations of [PC1 , T1] and [PC2 , T2] into
the following terms:

[PC1 , T1] = IB + JB +KB + LB +MB +NB, (C.5)

[PC2 , T2] = IF + JF +KF + LF +MF +NF, (C.6)

where

IB = −[PC1 ,
(c)∇3

(c)∇4]B, IF = −[PC2,
(c)∇3

(c)∇4]F,

JB =
1
2
[PC1 ,

(c)D · (c)D⊗̂]B, JF =
1
2
[PC2 ,

(c)D⊗̂ (c)D·]F,

KB = [PC1 ,−3trX (c)∇3]B, KF = [PC2 ,−
(

3
2
trX +

1
2
trX

)
(c)∇3]F,

LB = [PC1 ,−
(

3
2
trX +

1
2
trX

)
(c)∇4]B, LF = [PC2 ,−

1
2

(
trX + trX

)
(c)∇4]F,

MB = [PC1 ,
(
6H +H + 3H

)
· (c)∇]B, MF = [PC2 ,

(
4H +H + H

)
· (c)∇]F,
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NB =
[
PC1 ,

(
−9

2
trXtrX − 4 (F)P (F)P + 9H ·H

)]
B,

NF =
[
PC2 ,+

(
−3

4
trXtrX − 1

4
trXtrX + 3P − P + 4 (F)P (F)P − 3

2
(c)D ·H

)]
F

+
1
2
[PC2 , H⊗̂H ·]F.

C.1.3. Expressions for IB and IF

We have

IB = −[PC1 ,
(c)∇3

(c)∇4]B = −[PC1 ,
(c)∇3] (c)∇4B − (c)∇3([PC1 ,

(c)∇4]B)

= ( (c)∇3C1) (c)∇4B − (c)∇3([PC1 ,
(c)∇4]B).

Using Lemma C.1 applied to F = B of conformal type s = 1,

[PC1 ,
(c)∇4]B = 2(η − η) · (c)∇B +

(
2
(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 2i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C1

)
B (C.7)

we deduce

(c)∇3([PC1 ,
(c)∇4]B)

= 2(η − η) · (c)∇3
(c)∇B + 2 (c)∇3(η − η) · (c)∇B

+
(
2
(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 2i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C1

)
(c)∇3B

+ (c)∇3

(
2
(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 2i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C1

)
B.

Using (C.3) we write the above as

(c)∇3([PC1 ,
(c)∇4]B)

= 2(η − η) · (c)∇ (c)∇3B +
(
2 (c)∇3(η − η) − trχ(η − η) + (a)trχ ∗(η − η)

)
· (c)∇B +

(
2
(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η + η · (η − η)

)
+ 2i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C1

)
(c)∇3B +

[
(c)∇3

(
2
(
ρ+ (F)ρ2

+ ∗ (F)ρ2 − η · η
)

+ 2i
(
− ∗ρ+ η ∧ η

)
− (c)∇4C1

)
+ 2(η − η) · Vs=1

[3,a]

]
B.

We therefore obtain

IB = −2(η − η) · (c)∇ (c)∇3B + IB
4

(c)∇4B + IB
3

(c)∇3B + IB
a · (c)∇aB + IB

0 B,

(C.8)
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where

IB
4 = (c)∇3C1,

IB
3 = −2ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 − 2η · (η − 2η) + i

(
2 ∗ρ− 2η ∧ η

)
+ (c)∇4C1,

IB
a = −2 (c)∇3(η − η) + trχ(η − η) − (a)trχ ∗(η − η),

IB
0 = (c)∇3

[
− 2

(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 2i

( ∗ρ− η ∧ η
)

+ (c)∇4C1

]
− 2(η − η) · Vs=1

[3,a]. (C.9)

We have

IF = ( (c)∇3C2) (c)∇4F − (c)∇3([PC2 ,
(c)∇4]F).

Using Lemma C.1 applied to U = F of conformal type s = 1,

[PC2,
(c)∇4]F = 2(η − η) · (c)∇F +

(
2
(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 4i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C2

)
F. (C.10)

We similarly obtain

IF = −2(η − η) · (c)∇ (c)∇3F + IF
4

(c)∇4F + IF
3

(c)∇3F + IF
a · (c)∇aF + IF

0 F,

(C.11)

where

IF
4 = (c)∇3C2,

IF
3 = −2ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 − 2η · (η − 2η) + i

(
4 ∗ρ− 4η ∧ η

)
+ (c)∇4C2,

IF
a = −2 (c)∇3(η − η) + trχ(η − η) − (a)trχ ∗(η − η),

IF
0 = (c)∇3

[
− 2

(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 4i

( ∗ρ− η ∧ η
)

+ (c)∇4C2

]
− 2(η − η) · Vs=1

[3,a]. (C.12)

C.1.4. Expressions for JB and JF

We have

JB =
1
2
[PC1 ,

(c)D·]( (c)D⊗̂B) +
1
2

(c)D · ([PC1 ,
(c)D⊗̂]B).

Using Lemma C.1 applied to U = (c)D⊗̂B of conformal type s = 1, we have

[PC1 ,
(c)D·]( (c)D⊗̂B)

= −1
2
trX (c)D · ( (c)D⊗̂B) +H · ∇3( (c)D⊗̂B)
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+
(
− (c)DC1 +

1
2
trXH

)
· ( (c)D⊗̂B)

= −1
2
trX (c)D · ( (c)D⊗̂B) +H · (c)D⊗̂∇3B

+H ·
(
−1

2
trX

(
(c)D⊗̂B + 2H⊗̂B

)
+H⊗̂ (c)∇3B

)

+
(
− (c)DC1 +

1
2
trXH

)
· ( (c)D⊗̂B)

= −1
2
trX (c)D · ( (c)D⊗̂B) + 2H · (c)∇ (c)∇3B

+
(
− 2 (c)DC1 + (trX − trX)H

)
· (c)∇B + (H ·H) (c)∇3B

− trX(H ·H)B.

We also have

(c)D · ([PC1 ,
(c)D⊗̂]B)

= (c)D · (−1
2
trX (c)D⊗̂B +H⊗̂ (c)∇3B +

(
− (c)DC1 − trXH

)
⊗̂B)

= −1
2
trX (c)D · ( (c)D⊗̂B) + 2H · (c)∇ (c)∇3B

+
(
− 2 (c)DC1 − 2trXH − (trX − trX)H

)
· (c)∇B

+ ( (c)D ·H) (c)∇3B + (c)D ·
(
− (c)DC1 − trXH

)
B,

where we used (c)DtrX − (trX − trX)H = 0.
Putting the above together we obtain

JB = −1
2
(trX + trX)

(
1
2

(c)D · ( (c)D⊗̂B)
)

+ 2η · (c)∇ (c)∇3B + J̃B
3

(c)∇3B

+ J̃B
a · (c)∇B + J̃B

0 B,

where

J̃B
3 =

1
2
( (c)D ·H) +

1
2
(H ·H),

J̃B
a = −2 (c)∇C1 − trXH − 1

2
(trX − trX)H +

1
2
(trX − trX)H,

J̃B
0 =

1
2

(c)D ·
(
− (c)DC1 − trXH

)
− 1

2
trX(H ·H).
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Using the Teukolsky equation for B given by T1(B) = M1[F,X] and the expres-
sion for the Teukolsky operator (6.4) we can write

1
2

(c)D · (c)D⊗̂B

= (c)∇3
(c)∇4B + 3trX (c)∇3B +

(
3
2
trX +

1
2
trX

)
(c)∇4B

−
(
6H +H + 3H

)
· (c)∇B +

(
9
2
trXtrX + 4 (F)P (F)P − 9H ·H

)
B

+M1[F,X]

= (c)∇4
(c)∇3B + 3trX (c)∇3B +

(
3
2
trX +

1
2
trX

)
(c)∇4B

+
(
2(η − η) −

(
6H +H + 3H

))
· (c)∇B

+
(

9
2
trXtrX + 2P + 6 (F)P (F)P − 10H ·H

)
B + M1[F,X],

where we used (A.18) to write [ (c)∇3,
(c)∇4]B = 2(η−η)· (c)∇B+

(
2P+2 (F)P (F)P−

(H · H)
)
B. We therefore obtain

JB = −1
2
(trX + trX) (c)∇4

(c)∇3B + 2η · (c)∇ (c)∇3B

+ JB
4

(c)∇4B + JB
3

(c)∇3B + JB
a · (c)∇B + JB

0 B − 1
2
(trX + trX)M1[F,X],

(C.13)

where

JB
3 = −3

2
trX

(
trX + trX

)
+ J̃B

3 ,

JB
4 = −1

2
(
trX + trX

)(
3
2
trX +

1
2
trX

)
,

JB
a = −1

2
(trX + trX)

(
2(η − η) −

(
6H +H + 3H

))
+ J̃B

a ,

JB
0 = −1

2
(
trX + trX

)(
9
2
trXtrX + 2P + 6 (F)P (F)P − 10H ·H

)
+ J̃B

0 .

(C.14)

We have

JF =
1
2
[PC2 ,

(c)D⊗̂]( (c)D · F) +
1
2

(c)D⊗̂([PC2 ,
(c)D·]F).
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Using Lemma C.1 applied to F = (c)D · F of conformal type s = 1, we have

[PC2 ,
(c)D⊗̂]( (c)D · F)

= −1
2
trX (c)D⊗̂( (c)D · F) +H⊗̂ (c)∇3( (c)D · F)

+
(
− (c)DC2 − trXH

)
⊗̂( (c)D · F)

= −1
2
trX (c)D⊗̂( (c)D · F) +H⊗̂( (c)D · (c)∇3F − 1

2
trX ( (c)D · F −H · F)

+H · ∇3F) +
(
− (c)DC2 − trXH

)
⊗̂( (c)D · F)

= −1
2
trX (c)D⊗̂( (c)D · F) + 2H · (c)∇ (c)∇3F + (H ·H)∇3F

+
(
− 2 (c)DC2 − (2trX + trX)H

)
· (c)∇F +

1
2
trX (H ·H)F.

We also have

(c)D⊗̂([PC2 ,
(c)D·]F)

= (c)D⊗̂
(
−1

2
trX (c)D · F +H · (c)∇3F +

(
− (c)DC2 +

1
2
trXH

)
· F

)

= −1
2
trX (c)D⊗̂( (c)D · F) + 2H · (c)∇ (c)∇3F

+
(
− 2 (c)DC2 + trX H −

(
trX − trX

)
H

)
· (c)∇F

+ ( (c)D ·H) (c)∇3F + (c)D ·
(
− (c)DC2 +

1
2
trXH

)
F,

where we used (c)DtrX − (trX − trX)H = 0.
Putting the above together we obtain

JF = −1
2
(
trX + trX

) (
1
2

(c)D⊗̂( (c)D · F)
)

+ 2η · (c)∇ (c)∇3F + J̃F
3 ∇3F

+ J̃F
a · (c)∇F + J̃F

0 F,

where

J̃F
3 =

1
2
( (c)D ·H) +

1
2
(H ·H),

J̃F
a = −2 (c)∇C2 +

1
2
trXH − 1

2
(
trX − trX

)
H − 1

2
(2trX + trX)H,

J̃F
0 =

1
2

(c)D ·
(
− (c)DC2 +

1
2
trXH

)
+

1
4
trX (H ·H).
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Using the Teukolsky equation for F given by T2(F) = M2[A,X,B] and the expres-
sion for the Teukolsky operator (6.5) we can write

1
2

(c)D⊗̂( (c)D · F)

= (c)∇3
(c)∇4F +

(
3
2
trX +

1
2
trX

)
(c)∇3F +

1
2

(
trX + trX

)
(c)∇4F

+
(

3
4
trXtrX +

1
4
trXtrX − 3P + P − 4 (F)P (F)P +

3
2

(c)D ·H
)

F

− 1
2
H⊗̂(H · F) −

(
4H +H + H

)
· (c)∇F + M2[A,X,B]

= (c)∇4
(c)∇3F +

(
3
2
trX +

1
2
trX

)
(c)∇3F +

1
2

(
trX + trX

)
(c)∇4F

+
(
2(η − η) −

(
4H +H + H

))
· (c)∇F + M2[A,X,B]

+
(

3
4
trXtrX +

1
4
trXtrX − 2 (F)P (F)P +

3
2

(c)D ·H − 3η · η + 3iη ∧ η
)

F,

where we used (A.18) to write [ (c)∇3,
(c)∇4]F = 2(η − η) · (c)∇F +

(
− P + 3P +

2 (F)P (F)P − 2η · η + 4iη ∧ η
)
F and 1

2 H⊗̂(H · F) =
(
η · η + iη ∧ η

)
F.

We therefore obtain

JF = −1
2
(trX + trX) (c)∇4

(c)∇3F + 2η · (c)∇ (c)∇3F

+ JF
4

(c)∇4F + JF
3

(c)∇3F + JF
a · (c)∇F + JF

0 F

− 1
2
(trX + trX)M2[A,X,B], (C.15)

where

JF
3 = −1

2
(
trX + trX

) (
3
2
trX +

1
2
trX

)
+ J̃F

3 ,

JF
4 = −1

4
(
trX + trX

) (
trX + trX

)
,

JF
a = −1

2
(trX + trX)

(
2(η − η) −

(
4H +H + H

))
+ J̃F

a ,

JF
0 = −1

2
(
trX + trX

) (
3
4
trXtrX +

1
4
trXtrX − 2 (F)P (F)P

+
3
2

(c)D ·H − 3η · η + 3iη ∧ η
)

+ J̃F
0 . (C.16)
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C.1.5. Expressions for KB and KF

Observe that

PC(gF ) = ( (c)∇3 + C)(gF ) = ( (c)∇3g)F + g (c)∇3F + CgF

= gPC(F ) + ( (c)∇3g)F. (C.17)

We have, for g = −3trX

KB = [PC1 , g
(c)∇3]B = g[PC1,

(c)∇3]B + ( (c)∇3g) (c)∇3B

= ( (c)∇3g) (c)∇3B − g (c)∇3C1B.

We therefore obtain

KB = KB
3

(c)∇3B +KB
0 B, (C.18)

where

KB
3 = −3 (c)∇3(trX), KB

0 = 3trX (c)∇3C1.

Similarly,

KF = KF
3

(c)∇3F +KF
0 F, (C.19)

where

KF
3 = − (c)∇3

(
3
2
trX +

1
2
trX

)
, KF

0 =
(

3
2
trX +

1
2
trX

)
(c)∇3C2.

C.1.6. Expressions for LB and LF

Using (C.17), we obtain

L = [PC , g
(c)∇4]Ψ = PC(g (c)∇4Ψ) − g (c)∇4(PCΨ)

= g[PC ,
(c)∇4]Ψ + ( (c)∇3g) (c)∇4Ψ

Using (C.7) with g = −
(

3
2 trX + 1

2 trX
)
, we obtain

LB = LB
4

(c)∇4B + LB
a · (c)∇B + LB

0 B, (C.20)

where

LB
4 = − (c)∇3

(
3
2
trX +

1
2
trX

)
,

LB
a = −

(
3trX + trX

)
(η − η),

LB
0 = −

(
3
2
trX +

1
2
trX

) (
2
(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 2i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C1

)
. (C.21)
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Similarly, using (C.10) with g = − 1
2 (trX + trX) we obtain

LF = LF
4

(c)∇4F + LF
a · (c)∇F + LF

0F, (C.22)

where

LF
4 = −1

2
(c)∇3

(
trX + trX

)
,

LF
a = −

(
trX + trX

)
(η − η),

LF
0 = −1

2
(
trX + trX

)(
2
(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 4i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C2

)
. (C.23)

C.1.7. Expressions for MB and MF

Observe that

PC1(F · U) = ( (c)∇3 + C1)(F · U) = (c)∇3F · U + F · (c)∇3U + C1F · U

= F · PC1(U) + ( (c)∇3F ) · U.

We have, for F = (6H +H + 3H), and using Lemma C.1

MB = [PC1 , F · (c)∇]B = F · [PC1 ,
(c)∇]B + ( (c)∇3F ) · (c)∇B

= −1
2
trχF · (c)∇B − 1

2
(a)trχF · ∗ (c)∇B + F · η (c)∇3B

+F · (Vs
[3,a] − (c)∇C1)B + ( (c)∇3F ) · (c)∇B.

We therefore obtain

MB = MB
3

(c)∇3B +MB
a · (c)∇B +MB

0 B, (C.24)

where

MB
3 = η ·

(
6H +H + 3H

)
,

MB
a = (c)∇3

(
6H +H + 3H

)
− 1

2
trχ

(
6H +H + 3H

)
+

1
2

(a)trχ ∗(6H +H + 3H
)
,

MB
0 =

(
6H +H + 3H

)
· (Vs

[3,a] − (c)∇C1). (C.25)

Similarly, we obtain

MF = MB
3

(c)∇3F +MF
a · (c)∇F +MF

0 F, (C.26)
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where

MF
3 = η ·

(
4H +H + H

)
,

MF
a = (c)∇3

(
4H +H + H

)
− 1

2
trχ

(
4H +H + H

)
+

1
2

(a)trχ ∗(4H +H + H
)
,

MF
0 =

(
4H +H + H

)
· (Vs

[3,a] − (c)∇C2). (C.27)

C.1.8. Expressions for NB and NF

Using (C.17) we have

N = [PC , g]Ψ = ( (c)∇3g)Ψ.

We therefore obtain

NB = NB
0 B, (C.28)

where

NB
0 = (c)∇3

(
−9

2
trXtrX − 4 (F)P (F)P + 9H ·H

)
and

NF = NF
0 F, (C.29)

where

NF
0 = (c)∇3

(
−3

4
trXtrX − 1

4
trXtrX + 3P − P + 4 (F)P (F)P

− 3
2

(c)D ·H + η · η + iη ∧ η
)
.

C.1.9. The sum

From (C.5) and (C.6), we obtain

[PC1 , T1](B) = (C.8) + (C.13) + (C.18) + (C.20) + (C.24) + (C.28)

= 2η · (c)∇ (c)∇3B − 1
2
(trX + trX) (c)∇4

(c)∇3B

+
(
IB
4 + JB

4 + LB
4

)
(c)∇4B +

(
IB
3 + JB

3 +KB
3 +MB

3

)
(c)∇3B

+
(
IB
a + JB

a + LB
a +MB

a

)
· (c)∇B

+
(
IB
0 + JB

0 +KB
0 + LB

0 +MB
0 +NB

0

)
B

− 1
2
(trX + trX)M1[F,X]



April 7, 2022 13:29 WSPC/S0219-8916 JHDE 2250001

112 E. Giorgi

and

[PC2 , T2](F) = (C.11) + (C.15) + (C.19) + (C.22) + (C.26) + (C.29)

= 2η · (c)∇ (c)∇3F − 1
2
(trX + trX) (c)∇4

(c)∇3F

+
(
IF
4 + JF

4 + LF
4

)
(c)∇4F +

(
IF
3 + JF

3 +KF
3 +MF

3

)
(c)∇3F

+
(
IF
a + JF

a + LF
a +MF

a

)
· (c)∇F +

(
IF
0 + JF

0 +KF
0 + LF

0 +MF
0

+NF
0

)
F − 1

2
(trX + trX)M2[A,X,B].

Using (7.2) and (7.3) to write
(c)∇3B = P − C1 B, (c)∇3F = Q − C2 F

and therefore
(c)∇4

(c)∇3B = (c)∇4 (P − C1 B) = (c)∇4P − C1
(c)∇4B − ( (c)∇4C1)B,

(c)∇ (c)∇3B = (c)∇ (P − C1 B) = (c)∇P − C1
(c)∇B − ( (c)∇C1)B,

(c)∇4
(c)∇3F = (c)∇4 (Q − C2 F) = (c)∇4Q − C2

(c)∇4F − ( (c)∇4C2)F,

(c)∇ (c)∇3F = (c)∇ (Q − C2 F) = (c)∇Q − C2
(c)∇F − ( (c)∇C2)F.

Hence we obtain

[PC1 , T1](B) = 2η · (c)∇P − 1
2
(trX + trX) (c)∇4P

+
(
IB
4 + JB

4 + LB
4 +

1
2
(trX + trX)C1

)
(c)∇4B

+ V̂1P + ZB
a · (c)∇B + Z̃B

0 B − 1
2
(trX + trX)M1[F,X],

[PC1 , T1](B) = 2η · (c)∇Q − 1
2
(trX + trX) (c)∇4Q

+
(
IF
4 + JF

4 + LF
4 +

1
2
(trX + trX)C2

)
(c)∇4F

+V̂2P + ZF
a · (c)∇F + Z̃F

0 F − 1
2
(trX + trX)M2[A,X,B],

where

V̂1 = IB
3 + JB

3 +KB
3 +MB

3 , (C.30)

ZB
a = IB

a + JB
a + LB

a +MB
a − 2η · C1, (C.31)

Z̃B
0 = IB

0 + JB
0 +KB

0 + LB
0 +MB

0 +NB
0 +

1
2
(trX + trX) (c)∇4C1

−C1

(
IB
3 + JB

3 +KB
3 +MB

3

)
− 2η · (c)∇C1 (C.32)
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and

V̂2 = IF
3 + JF

3 +KF
3 +MF

3 , (C.33)

ZF
a = IF

a + JF
a + LF

a +MF
a − 2η · C2, (C.34)

Z̃F
0 = IF

0 + JF
0 +KF

0 + LF
0 +MF

0 +NF
0 +

1
2
(trX + trX) (c)∇4C2

−C2

(
IF
3 + JF

3 +KF
3 +MF

3

)
− 2η · (c)∇C2. (C.35)

Observe that the coefficients of (c)∇4B and (c)∇4F are given by

IB
4 + JB

4 + LB
4 +

1
2

(
trX + trX

)
C1

= (c)∇3C1 −
1
2

(
trX + trX

)(
3
2
trX +

1
2
trX

)

− (c)∇3

(
3
2
trX +

1
2
trX

)
+

1
2

(
trX + trX

)
C1

= (c)∇3C1 +
1
2

(
trX + trX

)
C1 − trXtrX

and

IF
4 + JF

4 + LF
4 +

1
2

(
trX + trX

)
C2

= (c)∇3C2 −
1
4

(
trX + trX

) (
trX + trX

)
− 1

2
(c)∇3

(
trX + trX

)
+

1
2

(
trX + trX

)
C2

= (c)∇3C2 +
1
2

(
trX + trX

)
C2 −

1
2
trXtrX,

which give conditions (7.10) and (7.11) for the vanishing of those coefficients.

C.1.10. The lower order terms

Defining

LP[B,F] := −ZB
a · (c)∇B − Z̃B

0 B,

LQ[B,F] := −ZF
a · (c)∇F − Z̃F

0 F

to complete the proof of the proposition, we need to compute the terms Z̃B
0 and Z̃F

0 .
Observe that, according to (7.16), we can write

C1 = 2trχ+O

(
|a|
r2

)
C2 = trχ+O

(
|a|
r2

)
.
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This gives

(c)∇3C1 = −trχ2 +O

(
|a|
r3

)
, (c)∇3C2 = −1

2
trχ2 +O

(
|a|
r3

)
,

(c)∇4C1 = −tr χtrχ+ 4ρ+O

(
|a|
r3

)
, (c)∇4C2 = −1

2
tr χtrχ+ 2ρ+O

(
|a|
r3

)
.

We compute

IB
3 = −2ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 − 2η · (η − 2η) + i

(
2 ∗ρ− 2η ∧ η

)
+ (c)∇4C1 (C.36)

= −tr χtrχ+ 2ρ− 2 (F)ρ2 + O

(
|a|
r3

)
,

JB
3 = −3

2
trX

(
trX + trX

)
+

1
2
( (c)D ·H) +

1
2
(H ·H)

= −3tr χtrχ+O

(
|a|
r3

)
, (C.37)

KB
3 = −3 (c)∇3(trX) =

3
2
tr χtrχ− 6ρ+O

(
|a|
r3

)
, (C.38)

MB
3 = η ·

(
6H +H + 3H

)
= O

(
|a|
r4

)
, (C.39)

which gives

IB
3 + JB

3 +KB
3 +MB

3 = −5
2
tr χtrχ− 4ρ− 2 (F)ρ2 +O

(
|a|
r3

)
.

Similarly,

IF
3 = −2ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 − 2η · (η − 2η)

+ i
(
4 ∗ρ− 4η ∧ η

)
+ (c)∇4C2 (C.40)

= −1
2
tr χtrχ− 2 (F)ρ2 +O

(
|a|
r3

)
,

JF
3 = −1

2
(
trX + trX

) (
3
2
trX +

1
2
trX

)
+

1
2
( (c)D ·H) +

1
2
(H ·H) (C.41)

= −2tr χtrχ+O

(
|a|
r3

)
,

KF
3 = − (c)∇3

(
3
2
trX +

1
2
trX

)
= tr χtrχ− 4ρ+O

(
|a|
r3

)
. (C.42)

MF
3 = η ·

(
4H +H + H

)
= O

(
|a|
r4

)
, (C.43)
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which gives

IF
3 + JF

3 +KF
3 +MF

3 = −3
2
tr χtrχ− 4ρ− 2 (F)ρ2 +O

(
|a|
r3

)
.

We also compute

IB
0 = (c)∇3

[
−2

(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 2i

( ∗ρ− η ∧ η
)

+ (c)∇4C1

]
− 2(η − η) · Vs=1

[3,a]

= −2
(
−3

2
trχρ− trχ (F)ρ2

)
+ 4trχ (F)ρ2 + (c)∇3

(
−tr χtrχ+ 4ρ

)
+O

(
|a|
r4

)

= tr χtrχ2 − 5trχρ+ 2trχ (F)ρ2 +O

(
|a|
r4

)
,

JB
0 = −1

2
(
trX + trX

) (
9
2
trXtrX + 2P + 6 (F)P (F)P − 10H ·H

)
+O

(
|a|
r4

)

= −9
2
tr χtrχ2 − 2trχρ− 6trχ (F)ρ2 +O

(
|a|
r4

)
,

KB
0 = 3trX (c)∇3C1 = −3tr χtrχ2 +O

(
|a|
r4

)
,

LB
0 = −

(
3
2
trX +

1
2
trX

) (
2
(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 2i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C1

)
= −2tr χtrχ2 + 4trχρ− 4trχ (F)ρ2 +O

(
|a|
r4

)
,

MB
0 =

(
6H +H + 3H

)
· (Vs

[3,a] − (c)∇C1) = O

(
|a|
r4

)
,

NB
0 = (c)∇3

(
−9

2
trXtrX − 4 (F)P (F)P + 9H ·H

)

=
9
2
tr χtrχ2 − 9trχρ+ 8trχ (F)ρ2 +O

(
|a|
r4

)
,

which gives

IB
0 + JB

0 +KB
0 + LB

0 +MB
0 +NB

0 = −4tr χtrχ2 − 12trχρ+O

(
|a|
r4

)
.

This finally implies

Z̃B
0 = IB

0 + JB
0 +KB

0 + LB
0 +MB

0 +NB
0 +

1
2
(trX + trX) (c)∇4C1

−C1

(
IB
3 + JB

3 +KB
3 +MB

3

)
− 2η · (c)∇C1
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= −4tr χtrχ2 − 12trχρ+ trχ(−tr χtrχ+ 4ρ)

− 2trχ
(
−5

2
tr χtrχ− 4ρ− 2 (F)ρ2

)
+O

(
|a|
r4

)

= 4trχ (F)ρ2 +O

(
|a|
r4

)
.

We compute

IF
0 = (c)∇3

[
− 2

(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 4i

( ∗ρ− η ∧ η
)

+ (c)∇4C2

]
− 2(η − η) · Vs=1

[3,a]

= −2
(
−3

2
trχρ− trχ (F)ρ2

)
+ 4trχ (F)ρ2 + (c)∇3

(
−1

2
tr χtrχ+ 2ρ

)

+O

(
|a|
r4

)

=
1
2
tr χtrχ2 − trχρ+ 4trχ (F)ρ2 +O

(
|a|
r4

)
,

JF
0 = −1

2
(
trX + trX

) (
3
4
trXtrX +

1
4
trXtrX − 2 (F)P (F)P

+
3
2

(c)D ·H − 3η · η + 3iη ∧ η
)

+O

(
|a|
r4

)

= −tr χtrχ2 + 2trχ (F)ρ2 +O

(
|a|
r4

)
,

KF
0 =

(
3
2
trX +

1
2
trX

)
(c)∇3C2 = −tr χtrχ2 +O

(
|a|
r4

)
,

LF
0 = −1

2
(
trX + trX

) (
2
(
ρ+ (F)ρ2 + ∗ (F)ρ2 − η · η

)
+ 4i

(
− ∗ρ+ η ∧ η

)
− (c)∇4C2

)
= −1

2
tr χtrχ2 − 2trχ (F)ρ2 +O

(
|a|
r4

)
,

MF
0 =

(
4H +H + H

)
· (Vs

[3,a] − (c)∇C2) = O

(
|a|
r4

)
,

NF
0 = (c)∇3

(
−3

4
trXtrX − 1

4
trXtrX + 3P − P + 4 (F)P (F)P

− 3
2

(c)D ·H + η · η + iη ∧ η
)

= tr χtrχ− 5trχρ− 10trχ (F)ρ2 +O

(
|a|
r4

)
,
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which gives

IF
0 + JF

0 +KF
0 + LF

0 +MF
0 +NF

0 = −tr χtrχ− 6trχρ− 6trχ (F)ρ2 +O

(
|a|
r4

)
.

This finally implies

Z̃F
0 = IF

0 + JF
0 +KF

0 + LF
0 +MF

0 +NF
0 +

1
2
(trX + trX) (c)∇4C2

−C2

(
IF
3 + JF

3 +KF
3 +MF

3

)
− 2η · (c)∇C2

= −tr χtrχ− 6trχρ− 6trχ (F)ρ2 + trχ
(
−1

2
tr χtrχ+ 2ρ

)

− trχ
(
−3

2
tr χtrχ− 4ρ− 2 (F)ρ2

)
+O

(
|a|
r4

)

= −4trχ (F)ρ2 +O

(
|a|
r4

)
,

which concludes the proof of Proposition 7.4.

C.2. Proof of Proposition 7.5

Let f be given by

f = (q)n(q)m.

Recall, see [19, Proposition 8.9],

∇3(f) =
(n

2
trX +

m

2
trX

)
f,

∇4(f) =
(n

2
trX +

m

2
trX

)
f,

2∇f =
(
mH + nH + nH +mH

)
f

and for Ψ ∈ sk(C):

�̇k(fΨ) = �(f)Ψ + f�̇kΨ −∇3f∇4Ψ −∇4f∇3Ψ + 2∇f · ∇Ψ. (C.44)

We then obtain for p = f1P, using (7.17):

�̇1p = f1

[
5
2
trX∇3P +

(
2trX +

1
2
trX

)
∇4P −

(
5H + H + 4H

)
· ∇P + Ṽ1P

PC1

(
M1[F,X]

)
+

1
2
(
trX + trX

)
M1[F,X] + LP[B,F]

]
+ �(f1)P

−
(n

2
trX +

m

2
trX

)
f1∇4P −

(n
2

trX +
m

2
trX

)
f1∇3P

+
(
mH + nH + nH +mH

)
f1 · ∇P,
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which gives

�̇1p =
((

1
2
− n

2

)
trX +

(
2 − m

2

)
trX

)
f1∇4P

+
(
−n

2
trX +

(
5
2
− m

2

)
trX

)
f1∇3P

+
(
(m− 5)H + nH + (n− 1)H + (m− 4)H

)
f1 · ∇P +

(
Ṽ1 + f−1

1 �(f1)
)
p

+ f1

[
PC1

(
M1[F,X]

)
+

1
2
(
trX + trX

)
M1[F,X] + LP[B,F]

]
.

Observe that the real part of the coefficients of all the first derivatives are multiple
of m + n − 5. To cancel their real part we then take m = 5 − n, which implies
f1 = (q)n(q)5−n and gives

�̇1p = if1
[
(1 − n) (a)trχ∇4P + n (a)trχ∇3P +

(
− 2n ∗η + 2(n− 1) ∗η

)
· ∇P

]
+

(
Ṽ1 + f−1

1 �(f1)
)
p

+ f1

[
PC1

(
M1[F,X]

)
+

1
2
(
trX + trX

)
M1[F,X] + LP[B,F]

]
.

Similarly, for qF = f2Q, using (7.19), we obtain

�̇2q
F = f2

[
3
2
trX∇3Q +

(
1
2
trX + trX

)
∇4Q −

(
3H + 2H + H

)
· ∇Q + Ṽ2Q

+PC2

(
M2[A,X,B]

)
+

1
2
(
trX + trX

)
M2[A,X,B] + LQ[B,F]

]
+ �(f2)Q

−
(n

2
trX +

m

2
trX

)
f2∇4Q −

(n
2

trX +
m

2
trX

)
f2∇3Q

+
(
mH + nH + nH +mH

)
f2 · ∇Q,

which gives

�̇2q
F =

((
1 − n

2

)
trX +

(
1
2
− m

2

)
trX

)
f2∇4Q

+
(
−n

2
trX +

(
3
2
− m

2

)
trX

)
f2∇3Q +

(
(m− 3)H

+nH + (n− 2)H + (m− 1)H
)
f2 · ∇Q +

(
Ṽ2 + f−1

2 �(f2)
)
qF

+ f2

[
PC2

(
M2[A,X,B]

)
+

1
2
(
trX + trX

)
M2[A,X,B] + LQ[B,F]

]
.

Observe that the real part of the coefficients of all the first derivatives are multiple
of m + n − 3. To cancel their real part we then take m = 3 − n, which implies
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f2 = (q)n(q)3−n, and gives

�̇2q
F = if2

[
(2 − n) (a)trχ∇4Q + n (a)trχ∇3Q +

(
−2n ∗η + 2(n− 2) ∗η

)
· ∇Q

]
+

(
Ṽ2 + f−1

2 �(f2)
)
qF + f2

[
PC2

(
M2[A,X,B]

)

+
1
2

(
trX + trX

)
M2[A,X,B] + LQ[B,F]

]
.

Using the values in Kerr–Newman:

(a)trχe4 =
2aΔ cos θ

|q|4 ∇r +
2a cos θ(r2 + a2)

|q|4 ∇t +
2a2 cos θ

|q|4 ∇ϕ,

(a)trχe3 = −2aΔ cos θ
|q|4 ∇r +

2a cos θ(r2 + a2)
|q|4 ∇t +

2a2 cos θ
|q|4 ∇ϕ

∗η1 =
a sin θr
|q|3 , ∗η2 =

a2 sin θ cos θ
|q|3 ,

∗η
1

= −a sin θ(r)
|q|3 , ∗η

2
=
a2 sin θ cos θ

|q|3

we respectively obtain

(1 − n) (a)trχ∇4 + n (a)trχ∇3 +
(
− 2n ∗η + 2(n− 1) ∗η

)
· ∇

= (1 − n)
(

2aΔ cos θ
|q|4 ∇r +

2a cos θ(r2 + a2)
|q|4 ∇t +

2a2 cos θ
|q|4 ∇ϕ

)

+n

(
−2aΔ cos θ

|q|4 ∇r +
2a cos θ(r2 + a2)

|q|4 ∇t +
2a2 cos θ

|q|4 ∇ϕ

)

+
(
− 2n ∗η1 + 2(n− 1) ∗η

1

)
∇1 +

(
− 2n ∗η2 + 2(n− 1) ∗η

2

)
∇2

= (1 − 2n)
2aΔ cos θ

|q|4 ∇r +
2a cos θ(r2 + a2)

|q|4 ∇t +
2a2 cos θ

|q|4 ∇ϕ

+ 2(1 − 2n)
a sin θr
|q|3 ∇1 − 2

a2 sin θ cos θ
|q|3 ∇2

and

(2 − n) (a)trχ∇4 + n (a)trχ∇3 +
(
− 2n ∗η + 2(n− 2) ∗η

)
· ∇

= (2 − 2n)
2aΔ cos θ

|q|4 ∇r + 2
2a cosθ(r2 + a2)

|q|4 ∇t + 2
2a2 cos θ

|q|4 ∇ϕ

+ 2(2 − 2n)
a sin θr
|q|3 ∇1 − 4

a2 sin θ cos θ
|q|3 ∇2.
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Writing that ∇1 = 1
|q|∇θ and ∇2 = a sin θ

|q| ∇t + 1
|q| sin θ∇ϕ, we finally, respectively,

have

(1 − n) (a)trχ∇4 + n (a)trχ∇3 +
(
− 2n ∗η + 2(n− 1) ∗η

)
· ∇

=
2a cos θ
|q|2 ∇t + (1 − 2n)

(
2aΔ cos θ

|q|4 ∇r +
2a sin θr

|q|4 ∇θ

)

and

(2 − n) (a)trχ∇4 + n (a)trχ∇3 +
(
− 2n ∗η + 2(n− 2) ∗η

)
· ∇

=
4a cos θ
|q|2 ∇t + (1 − n)

(
4aΔ cos θ

|q|4 ∇r +
4a sin θr

|q|4 ∇θ

)
,

which completes the proof.

C.3. Proof of Proposition 7.6

We compute here the right-hand sides of the main equations.

C.3.1. The right-hand side of the equation for p

Using the definition (6.7) of M1[F,X], we can write

M1[F,X] = (2 (F)P (F)P )M̃1[F,X],

M̃1[F,X] = 2 (c)D · F + 4H · F −
(
2trX − trX

)
X.

Using (C.17), we can therefore compute

PC1

(
M1[F,X]

)
+

1
2
(
trX + trX

)
M1[F,X]

= PC1

(
2 (F)P (F)PM̃1[F,X]

)
+

1
2

(
trX + trX

)
(2 (F)P (F)P )M̃1[F,X]

= (2 (F)P (F)P )PC1

(
M̃1[F,X]

)
+ 2 (c)∇3( (F)P (F)P )M̃1[F,X]

+
1
2

(
trX + trX

)
(2 (F)P (F)P )M̃1[F,X]

= 2 (F)P (F)P

[
PC1

(
M̃1[F,X]

)
− 1

2
(trX + trX)

(
M̃1[F,X]

)]
,

where we used that (c)∇3( (F)P (F)P ) = −(trX + trX) (F)P (F)P . We then compute
PC1

(
M̃1[F,X]

)
, using Lemma C.1:

PC1

(
M̃1[F,X]

)
= PC1

(
2 (c)D · F + 4H · F −

(
2trX − trX

)
X

)
= 2 (c)D · (PC1F) + 2[PC1,

(c)D·]F + 4H · PC1(F) + 4 (c)∇3H · F
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−
(
2trX − trX

)
PC1(X) − (c)∇3

(
2trX − trX

)
X

= 2 (c)D · (PC1F) − trX (c)D · F + 4H · PC1(F) + 2H · (c)∇3F

+
(
− 2 (c)DC1 + 4 (c)∇3H + trXH

)
· F

−
(
2trX − trX

)
PC1(X) − (c)∇3

(
2trX − trX

)
X.

We now write:

PC1F = (c)∇3F + C1F = ( (c)∇3F + C2F) + (C1 − C2)F = Q + (C1 − C2)F

(c)D · (PC1F) = (c)D · (Q + (C1 − C2)F)

= (c)D · Q + (C1 − C2) (c)D · F + ( (c)DC1 − (c)DC2) · F
(c)∇3F = Q − C2F.

Using (5.10) we can write

PC1(X) = (c)∇3X + C1X =
(
−1

2
trX + C1

)
X − (c)D · F −H · F − 2B.

By substituting in the above expression we obtain

PC1

(
M̃1[F,X]

)
= 2 (c)D · Q +

(
4H + 2H

)
· Q + (2C1 − 2C2 + 2trX − 2trX) (c)D · F

+
(
− 2 (c)DC2 + 4 (c)∇3H + 4(C1 − C2)H + (2trX − 2C2)H

)
· F

+
(
4trX − 2trX

)
B

−
(

(c)∇3

(
2trX − trX

)
+

(
2trX − trX

) (
−1

2
trX + C1

))
X.

This gives

PC1

(
M̃1[F,X]

)
− 1

2
(trX + trX)

(
M̃1[F,X]

)
= 2 (c)D · Q +

(
4H + 2H

)
· Q + (2C1 − 2C2 + trX − 3trX) (c)D · F

+
(
− 2 (c)DC2 + 4 (c)∇3H + (4C1 − 4C2 − 2trX − 2trX)H

+ (2trX − 2C2)H
)
· F +

(
4trX − 2trX

)
B

−
(

(c)∇3

(
2trX − trX

)
+

(
2trX − trX

) (
−1

2
trX − trX + C1

))
X.
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Using (4.5) and (4.9) we simplify the above to

PC1

(
M̃1[F,X]

)
− 1

2
(trX + trX)

(
M̃1[F,X]

)
= 2

(
(c)D · Q +

(
2H +H

)
· Q

)
+

(
4trX − 2trX

)
B

+Y F
a

(c)D · F + Y F
0 · F + Y X

0 X,

where

Y F
a = 2C1 − 2C2 + trX − 3trX, (C.45)

Y F
0 = −2 (c)DC2 + (4C1 − 4C2 − 4trX − 2trX)H + (4trX − 2C2)H, (C.46)

Y X
0 = 2(trX)2 − 3

2
trX

2
+

3
2
trXtrX −

(
2trX − trX

)
C1. (C.47)

To complete the proof of the first part of the proposition, we need to compute the
terms Y F

a and Y X
0 . Recall that, according to (7.16), we can write

C1 = 2trχ+O

(
|a|
r2

)
C2 = trχ+O

(
|a|
r2

)
.

We then have

Y F
a = 2C1 − 2C2 + trX − 3trX = 4trχ− 2trχ+ trχ− 3trχ+O

(
|a|
r2

)

= O

(
|a|
r2

)
,

Y X
0 = 2(trX)2 − 3

2
trX

2
+

3
2
trXtrX −

(
2trX − trX

)
C1

= 2trχ2 − 3
2
trχ2 +

3
2
trχ2 −

(
2trχ− trχ

)
2trχ+O

(
|a|
r3

)
= O

(
|a|
r3

)
.

Finally by writing 4 (F)P (F)P
(
2trX − trX

)
B = 4trχ (F)ρ2B + (2 (F)P (F)P )Y B

0 B,
for Y B

0 = O
( |a|

r2

)
, we obtain the stated relation.

C.3.2. The right-hand side of the equation for qF

We have

PC2

(
M2[A,X,B]

)
+

1
2
(
trX + trX

)
M2[A,X,B]

= (c)∇3

(
M2[A,X,B]

)
+

(
C2 +

1
2
(
trX + trX

))
M2[A,X,B].
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Using the definition (6.8) of M2[A,X,B], we compute

(c)∇3

(
M2[A,X,B]

)
= (c)∇3

(
− (F)P

(
(c)∇3A+

1
2
(
3trX − trX

)
A

)

+
(

3
2

(c)∇3H

)
⊗̂X +

(
2H − H

)
⊗̂B

)

= − (F)P

(
(c)∇3

(c)∇3A+
1
2
(
3trX − trX

)
(c)∇3A+

1
2

(c)∇3

(
3trX − trX

)
A

)

+ trX (F)P

(
(c)∇3A+

1
2
(
3trX − trX

)
A

)
+

(
3
2

(c)∇3H

)
⊗̂ (c)∇3X

+
(

3
2

(c)∇3
(c)∇3H

)
⊗̂X +

(
2H − H

)
⊗̂ (c)∇3B + (c)∇3

(
2H − H

)
⊗̂B.

Using (5.10) to express (c)∇3X, and writing (c)∇3B = P − C1B, we obtain

(c)∇3

(
M2[A,X,B]

)
= − (F)P

(
(c)∇3

(c)∇3A+
1
2
(
trX − trX

)
(c)∇3A

+
(
−9

4
trX2 +

1
2
trXtrX +

1
4
trX

2
)
A

)

− 3 (c)∇3H · (c)∇F −
(

3
2

(c)∇3H ·H
)

F

+
(

3
2

(c)∇3
(c)∇3H − 3

4
trX (c)∇3H

)
⊗̂X

+
(
2H − H

)
⊗̂P +

(
− (c)∇3 (H + H) − C1 (2H − H)

)
⊗̂B.

We therefore obtain

PC2

(
M2[A,X,B]

)
+

1
2

(
trX + trX

)
M2[A,X,B]

= − (F)P
(

(c)∇3
(c)∇3A+ (C2 + trX) (c)∇3A

+
(
−3

2
trX2 + trXtrX +

1
2
(
3trX − trX

)
C2

)
A

)

− 3 (c)∇3H · (c)∇F −
(

3
2

(c)∇3H ·H
)

F

+
(

3
2

(c)∇3
(c)∇3H +

3
2

(
C2 +

1
2
trX

)
(c)∇3H

)
⊗̂X
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+
(
2H − H

)
⊗̂P

+
(
− (c)∇3

(
H + H

)
+

(
C2 − C1 +

1
2
(
trX + trX

))
(2H − H)

)
⊗̂B.

We now want to relate the first line of the above to the relation (5.7). Observe that

(c)∇3

(
(F)P

(
(c)∇3A+

1
2
trXA

))

= (F)P

(
(c)∇3

(c)∇3A+
1
2
trX (c)∇3A− 1

4
trX2A

)

− trX (F)P

(
(c)∇3A+

1
2
trXA

)

= (F)P

(
(c)∇3

(c)∇3A− 1
2
trX (c)∇3A− 3

4
trX2A

)
.

The first line of the above can then be written as

− (F)P

(
(c)∇3

(c)∇3A+ (C2 + trX) (c)∇3A

+
(
−3

2
trX2 + trXtrX +

1
2

(
3trX − trX

)
C2

)
A

)

= − (F)P

(
(c)∇3

(c)∇3A− 1
2
trX (c)∇3A− 3

4
trX2A

)

−
(
C2 +

3
2
trX

)
(F)P

(
(c)∇3A+

1
2
trXA

)

− (F)P

(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

)
A

= − (c)∇3

(
(F)P

(
(c)∇3A+

1
2
trXA

))

−
(
C2 +

3
2
trX

)
(F)P

(
(c)∇3A+

1
2
trXA

)

− (F)P

(
−3

2
trX2 + trXtrX +

1
2
(
2trX − trX

)
C2

)
A.

Using (5.7), we obtain

− (c)∇3

(
(F)P

(
(c)∇3A+

1
2
trXA

))

= − (c)∇3

(
1
2

(c)D⊗̂B + 3H⊗̂B −
(
3P + 2 (F)P (F)P

)
F

)
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= −1
2

(c)∇3
(c)D⊗̂B − 3H⊗̂ (c)∇3B − 3 (c)∇3H⊗̂B

+
(
3P + 2 (F)P (F)P

)
(c)∇3F + (c)∇3

(
3P + 2 (F)P (F)P

)
F.

Using now (B.2) applied to B, we obtain

− (c)∇3

(
(F)P

(
(c)∇3A+

1
2
trXA

))

= −1
2

(c)D⊗̂ (c)∇3B +
1
4
trX (c)D⊗̂B − 7

2
H⊗̂ (c)∇3B

+
(
−3 (c)∇3H +

1
2
trXH

)
⊗̂B +

(
3P + 2 (F)P (F)P

)
(c)∇3F

+ (c)∇3

(
3P + 2 (F)P (F)P

)
F.

We therefore obtain, using once again (5.7):

− (c)∇3

(
(F)P

(
(c)∇3A+

1
2
trXA

))
−

(
C2 +

3
2
trX

)
(F)P

(
(c)∇3A+

1
2
trXA

)

= −1
2

(c)D⊗̂ (c)∇3B − 1
2

(C2 + trX) (c)D⊗̂B − 7
2
H⊗̂ (c)∇3B

+
(
− 3 (c)∇3H + (−3C2 − 4trX)H

)
⊗̂B +

(
3P + 2 (F)P (F)P

)
(c)∇3F

+
(

(c)∇3

(
3P + 2 (F)P (F)P

)
+

(
C2 +

3
2
trX

) (
3P + 2 (F)P (F)P

))
F.

Writing (c)∇3B = P − C1B and (c)∇3F = Q − C2F, we obtain

− (c)∇3

(
(F)P

(
(c)∇3A+

1
2
trXA

))
−

(
C2 +

3
2
trX

)
(F)P

(
(c)∇3A+

1
2
trXA

)

= −1
2

(c)D⊗̂P − 7
2
H⊗̂P +

1
2

(C1 − C2 − trX) (c)D⊗̂B

+
(
−3 (c)∇3H +

1
2

(c)DC1 + (
7
2
C1 − 3C2 − 4trX)H

)
⊗̂B

+
(
3P + 2 (F)P (F)P

)
Q − 2 (F)P (F)P

(
trX + trX

)
F,

where we used that (c)∇3

(
3P + 2 (F)P (F)P

)
+

(
3
2 trX

)(
3P + 2 (F)P (F)P

)
=

−2 (F)P (F)P
(
trX + trX

)
.
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Finally, to express the last line we recall (5.8) and then write

− (F)P

(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

)
A

=
(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

)
(c)∇4F

×
(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

) (
3
2
trX +

1
2
trX

)
F

×
(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

)
1
2

(c)D⊗̂X

×
(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

)
1
2

(3H + H) ⊗̂X.

By putting everything together we finally obtain

PC2

(
M2[A,X,B]

)
+

1
2

(
trX + trX

)
M2[A,X,B]

=
(
3P + 2 (F)P (F)P

)
Q − 1

2
(

(c)D⊗̂P + (3H + 2H)⊗̂P
)

− 2 (F)P (F)P
(
trX + trX

)
F

+WF
4

(c)∇4F +WF
a · (c)∇F +WF

0 F +WB
a

(c)D⊗̂B +WB
0 ⊗̂B

+WX
a

(c)D⊗̂X +WX
0 ⊗̂X,

where

WF
4 = −3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2, (C.48)

WF
a = −3 (c)∇3H, (C.49)

WF
0 =

(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

) (
3
2
trX +

1
2
trX

)

− 3
2

(c)∇3H ·H, (C.50)

WB
a =

1
2

(C1 − C2 − trX), (C.51)

WB
0 = −3 (c)∇3H +

1
2

(c)DC1 +
(

7
2
C1 − 3C2 − 4trX

)
H (C.52)

− (c)∇3 (H + H) + (C2 − C1 +
1
2

(
trX + trX

)
) (2H − H), (C.53)
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WX
a =

1
2

(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

)
, (C.54)

WX
0 =

(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

)
1
2

(3H + H) (C.55)

+
3
2

(c)∇3
(c)∇3H +

3
2

(
C2 +

1
2
trX

)
(c)∇3H. (C.56)

To complete the proof of the second part of the proposition, we need to compute
the terms WF

4 , WF
0 , WB

a , WX
a and WX

0 . Recall that, according to (7.16), we can
write

C1 = 2trχ+O

(
|a|
r2

)
C2 = trχ+O

(
|a|
r2

)
.

We then have

WF
4 = −3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

= −3
2
trχ2 + trχ2 +

1
2
trχ2 +O

(
|a|
r3

)
= O

(
|a|
r3

)
,

WB
a =

1
2

(C1 − C2 − trX) =
1
2

(
2trχ− trχ− trχ

)
+O

(
|a|
r2

)
= O

(
|a|
r2

)
.

Finally observe that WF
0 , WX

a and WX
0 are O(|a|) because they are multiplied by

WF
4 = O

(
|a|
r3

)
.

C.4. Proof of Proposition 7.7

Recall that

V1 := Ṽ1 + f−1
1 �(f1),

V2 := Ṽ2 + f−1
2 �(f2) + 3P + 2 (F)P (F)P .

We start by computing the real and imaginary part of f−1�(f).

Lemma C.2. For f = qnqm, we have

�(f−1�f) = − (m+ n)(m+ n+ 1)
4

tr χtrχ− (n−m)2 +m+ n

4
(a)trχ (a)trχ

− (n+m)ρ+ 2nm|η|2 + (m2 + n2 +m+ n)η · η

and

	(f−1�f) = (m− n)
(
−1

2
(n+m+ 1)trχ (a)trχ+ ∗ρ− (m+ n+ 1)η ∧ η

)
.



April 7, 2022 13:29 WSPC/S0219-8916 JHDE 2250001

128 E. Giorgi

In particular, for f1 = (q)1/2(q)9/2 and f2 = qq2, we obtain

�(f−1
1 �f1) = −15

2
tr χtrχ− 21

4
(a)trχ (a)trχ− 5ρ+

9
2
|η|2 +

51
2
η · η,

	(f−1
1 �f1) = −12trχ (a)trχ+ 4 ∗ρ− 24η ∧ η

and

�(f−1
2 �f2) = −3tr χtrχ− (a)trχ (a)trχ− 3ρ+ 4|η|2 + 8η · η,

	(f−1
2 �f2) = −2trχ (a)trχ+ ∗ρ− 4η ∧ η.

Proof. Recall that for a scalar

f−1�f = −f−1e4e3f − 1
2
trχf−1e4f − 1

2
tr χf−1e3f + f−1Δf + 2η · f−1∇f.

(C.57)

Using

f−1∇3(f) =
(n

2
trX +

m

2
trX

)
,

f−1∇4(f) =
(n

2
trX +

m

2
trX

)
,

2f−1∇f =
(
mH + nH + nH +mH

)
.

we have

∇4∇3f =
(n

2
∇4trX +

m

2
∇4trX

)
f +

(n
2

trX +
m

2
trX

)
∇4f

=
(
n

2

(
−1

2
trXtrX + D · H + H · H + 2P

)

+
m

2

(
−1

2
trXtrX + D · H + H · H + 2P

))
f

+
(n

2
trX +

m

2
trX

)(n
2

trX +
m

2
trX

)
f,

which gives

f−1∇4∇3f =
nm− n

4
trXtrX +

nm−m

4
trXtrX +

n2

4
trXtrX +

m2

4
trXtrX

+
n

2
D · H +

m

2
D · H +

n+m

2
H · H + nP +mP.

Observe that �(trXtrX) = tr χtrχ − (a)trχ (a)trχ, while �(trXtrX) = tr χtrχ +
(a)trχ (a)trχ. In particular

�(f−1∇4∇3f) =
2nm−m− n

4
(tr χtrχ− (a)trχ (a)trχ)

+
n2 +m2

4
(tr χtrχ+ (a)trχ (a)trχ)
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+ (n+m)divη + (n+m)|η|2 + (n+m)ρ

=
(m+ n)(m+ n− 1)

4
tr χtrχ+

(n−m)2 +m+ n

4
(a)trχ (a)trχ

+ (n+m)divη + (n+m)|η|2 + (n+m)ρ.

Observe that 	(trXtrX) = tr χ (a)trχ + trχ (a)trχ = 0 and 	(trXtrX) =
−tr χ (a)trχ− trχ (a)trχ = 0, while 	(trXtrX) = −2trχ (a)trχ. In particular

	(f−1∇4∇3f) = −n
2

2
trχ (a)trχ+

m2

2
trχ (a)trχ+ (n−m)

( ∗ρ+ curlη
)

= (n−m)
(
−1

2
(n+m)trχ (a)trχ+ ∗ρ+ curlη

)
.

Also

Δf =
1
2
∇ ·

((
mH + nH + nH +mH

)
f
)

=
1
2
∇ ·

(
mH + nH + nH +mH

)
f +

1
4
(
mH + nH + nH +mH

)
·
(
mH + nH + nH +mH

)
f.

In particular

�(f−1Δf) =
1
2
∇ ·

(
(m+ n)η + (m+ n)η

)
+

1
4
(
(m+ n)η + (m+ n)η

)
·
(
(m+ n)η + (m+ n)η

)
− 1

4
((m− n) ∗η + (n−m) ∗η)

· ((m− n) ∗η + (n−m) ∗η)

=
1
2
(m+ n)

(
divη + divη

)
+

1
4
(m+ n)2

(
η + η

)
·
(
η + η

)
− 1

4
(m− n)2(η − η) · (η − η)

= (m+ n)
(
divη

)
+ 2nm|η|2 + (m2 + n2)η · η

since divη = divη and |η|2 = |η|2, and

	(f−1Δf) =
1
2
∇ ·

(
(m− n) ∗η + (n−m) ∗η

)
+

1
2
((m+ n)η + (m+ n)η)

·
(
(m− n) ∗η + (n−m) ∗η

)
=

1
2
(m− n)

(
curlη − curlη + (m+ n)(−2η · ∗η)

)
= (m− n)

(
− curlη − (m+ n)η ∧ η

)
since curlη = −curlη.
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We therefore have

�(f−1�f) = −�(f−1e4e3f) − 1
2
trχ�(f−1e4f) − 1

2
tr χ�(f−1e3f) + �(f−1Δf)

+ 2η · �(f−1∇f)

= − (m+ n)(m+ n− 1)
4

tr χtrχ− (n−m)2 +m+ n

4
(a)trχ (a)trχ

− (n+m)divη − (n+m)|η|2 − (n+m)ρ

− 1
2
trχ

n+m

2
tr χ− 1

2
tr χ

n+m

2
trχ+ (m+ n)

(
divη

)
+ 2nm|η|2

+ (m2 + n2)η · η + η · ((m+ n)η + (m+ n)η),

which finally gives

�(f−1�f) = − (m+ n)(m+ n+ 1)
4

tr χtrχ− (n−m)2 +m+ n

4
(a)trχ (a)trχ

− (n+m)ρ+ 2nm|η|2 + (m2 + n2 +m+ n)η · η.
Also,

	(f−1�f) = −	(f−1e4e3f) − 1
2
trχ	(f−1e4f) − 1

2
tr χ	(f−1e3f)

+	(f−1Δf) + 2η · 	(f−1∇f)

= (m− n)
(
−1

2
(n+m)trχ (a)trχ+ ∗ρ+ curlη − 1

4
trχ (a)trχ

+
1
4
tr χ (a)trχ− curlη − (m+ n)η ∧ η + η · ( ∗η − ∗η)

)

= (m− n)
(
−1

2
(n+m+ 1)trχ (a)trχ+ ∗ρ− (m+ n+ 1)η ∧ η

)
as stated.

We now compute Ṽ1. Using (7.18), we have

�(Ṽ1) = �
(

9
2
trXtrX − 9H ·H

)
+ 4 (F)ρ2 + 4 ∗ (F)ρ2 −�(V̂1)

+
1
4
tr χtrχ+

1
4

(a)trχ (a)trχ+ ρ− (F)ρ2 − ∗ (F)ρ2

=
19
4

tr χtrχ+
19
4

(a)trχ (a)trχ+ ρ+ 3 (F)ρ2 + 3 ∗ (F)ρ2 − 18η · η −�(V̂1)

and

	(Ṽ1) = 	
(

9
2
trXtrX − 9H ·H

)
−	(V̂1) − ∗ρ+ η ∧ η

= 9trχ (a)trχ− ∗ρ+ 19η ∧ η −	(V̂1).



April 7, 2022 13:29 WSPC/S0219-8916 JHDE 2250001

Electromagnetic-gravitational perturbations of Kerr–Newman spacetime 131

Using (7.12), we have

�(V̂1) = �(IB
3 ) + �(JB

3 ) + �(KB
3 ) + �(MB

3 ),

	(V̂1) = 	(IB
3 ) + 	(JB

3 ) + 	(KB
3 ) + 	(MB

3 ).

Using (C.36), and writing C1 = 2trχ+ ip1
(a)trχ, we obtain

�(IB
3 ) = −2ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 − 2η · (η − 2η) + 2 (c)∇4trχ

= −2ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 − 2η · (η − 2η)

+ 2
(
−1

2
tr χtrχ+

1
2

(a)trχ (a)trχ+ 2divη + 2|η|2 + 2ρ
)

= −tr χtrχ+ (a)trχ (a)trχ+ 2ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 + 4divη + 4η · η + 2|η|2

and using that trχ (a)trχ+ tr χ (a)trχ = 0,

	(IB
3 ) = 2 ∗ρ− 2η ∧ η + p1

(c)∇4
(a)trχ

= 2 ∗ρ− 2η ∧ η + p1

(
−1

2
( (a)trχtrχ+ tr χ (a)trχ) + 2curlη + 2 ∗ρ

)
= (2 + 2p1) ∗ρ+ 2p1curlη − 2η ∧ η.

Using (C.37), we have

�(JB
3 ) = �

(
−3trXtrχ+

1
2
( (c)D ·H) +

1
2
(H ·H)

)
= −3tr χtrχ+ divη + |η|2,

	(JB
3 ) = 	

(
−3trXtrχ+

1
2
( (c)D ·H)

)
= −3trχ (a)trχ− curlη.

Using (C.38), we have

�(KB
3 ) = −3 (c)∇3(tr χ) =

3
2
trχtr χ− 3

2
(a)trχ (a)trχ− 6ρ− 6divη − 6|η|2,

	(KB
3 ) = −3 (c)∇3( (a)trχ) = 6 ∗ρ+ 6curlη.

Using (C.39), we have

�(MB
3 ) = �

(
η ·

(
6(η + i ∗η) + η − i ∗η + 3(η − i ∗η)

))
= 7|η|2 + 3η · η,

	(MB
3 ) = 	

(
η ·

(
6(η + i ∗η) + η − i ∗η + 3(η − i ∗η)

))
= −3η · ∗η = −3η ∧ η.

This gives

�(V̂1) = −5
2
tr χtrχ− 1

2
(a)trχ (a)trχ− 4ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 − divη

+ 7η · η + 4|η|2,

	(V̂1) = −3trχ (a)trχ+ (8 + 2p1) ∗ρ+ (2p1 + 5)curlη − 5η ∧ η
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and therefore

�(Ṽ1) =
29
4

tr χtrχ+
21
4

(a)trχ (a)trχ+ 5ρ+ 5 (F)ρ2 + 5 ∗ (F)ρ2 + divη

− 25η · η − 4|η|2,

	(Ṽ1) = 12trχ (a)trχ− (9 + 2p1) ∗ρ− (2p1 + 5)curlη + 24η ∧ η.

Finally this gives:

�(V1) = �(Ṽ1) + �(f−1
1 �(f1))

=
29
4

tr χtrχ+
21
4

(a)trχ (a)trχ+ 5ρ+ 5 (F)ρ2 + 5 ∗ (F)ρ2 + divη − 25η · η

− 4|η|2 − 15
2

tr χtrχ− 21
4

(a)trχ (a)trχ− 5ρ+
9
2
|η|2 +

51
2
η · η

= −1
4
tr χtrχ+ 5 (F)ρ2 + 5 ∗ (F)ρ2 + divη +

1
2
η · η +

1
2
|η|2

and

	(V1) = 	(Ṽ1) + 	(f−1
1 �(f1))

= 12trχ (a)trχ− (9 + 2p1) ∗ρ− (2p1 + 5)curlη + 24η ∧ η − 12trχ (a)trχ

+ 4 ∗ρ− 24η ∧ η

= −(2p1 + 5) ∗ρ− (2p1 + 5)curlη.

Observe that for p1 = − 5
2 , we obtain 	(V1) = 0, as desired.

We now compute Ṽ2. Using (7.20), we have

�(Ṽ2) = �
(

3
4
trXtrX +

1
4
trXtrX − 3P + P − 4 (F)P (F)P +

3
2

(c)D ·H
)

− η · η −�(V̂2) −
1
2
tr χtrχ− 1

2
(a)trχ (a)trχ− 2ρ+ 2 (F)ρ2 + 2 ∗ (F)ρ2

=
1
2
tr χtrχ+

1
2

(a)trχ (a)trχ− 4ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2

+ 3divη − η · η −�(V̂2)

and

	(Ṽ2) = 	
(

3
4
trXtrX +

1
4
trXtrX − 3P + P +

3
2

(c)D ·H
)

− η ∧ η −	(V̂2) − 2 ∗ρ+ 2η ∧ η

= trχ (a)trχ+ 2 ∗ρ− 3curlη + η ∧ η −	(V̂2),
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where

�(V̂2) = �(IF
3 ) + �(JF

3 ) + �(KF
3 ) + �(MF

3 ),

	(V̂2) = 	(IF
3 ) + 	(JF

3 ) + 	(KF
3 ) + 	(MF

3 ).

Using (C.40), and writing C2 = trχ+ ip2
(a)trχ we obtain

�(IF
3 ) = −2ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 − 2η · (η − 2η) + (c)∇4trχ

= −1
2
tr χtrχ+

1
2

(a)trχ (a)trχ− 2 (F)ρ2 − 2 ∗ (F)ρ2 + 2divη + 4η · η,

	(IF
3 ) = 4 ∗ρ− 4η ∧ η + p2

(c)∇4
(a)trχ

= (4 + 2p2) ∗ρ+ 2p2curlη − 4η ∧ η.

Using (C.41), we have

�(JF
3 ) = �(−trχ

(
3
2
trX +

1
2
trX

)
+

1
2
( (c)D ·H) +

1
2
(H ·H))

= −2tr χtrχ+ divη + |η|2,

	(JF
3 ) = 	

(
−1

2
(
trX + trX

) (
3
2
trX +

1
2
trX

)
+

1
2
( (c)D ·H)

)

= −trχ (a)trχ+ curlη.

Using (C.42), we have

�(KF
3 ) = −2 (c)∇3(tr χ) = trχtr χ− (a)trχ (a)trχ− 4ρ− 4divη − 4|η|2

	(KF
3 ) = − (c)∇3

(a)trχ = 2 ∗ρ+ 2curlη.

Using (C.43), we have

�(MF
3 ) = �

(
η ·

(
4(η + i ∗η) + (η − i ∗η) + η + i ∗η

))
= 5|η|2 + η · η,

	(MF
3 ) = 	

(
η ·

(
4(η + i ∗η) + (η − i ∗η) + η + i ∗η

))
= η ∧ η.

This gives

�(V̂2) = −3
2
tr χtrχ− 1

2
(a)trχ (a)trχ− 4ρ− 2 (F)ρ2 − 2 ∗ (F)ρ2 − 2divη + 5η · η

+ divη + 2|η|2,

	(V̂2) = −trχ (a)trχ+ (2p2 + 6) ∗ρ+ (2p2 + 3)curlη − 3η ∧ η

and therefore

�(Ṽ2) = 2tr χtrχ+ (a)trχ (a)trχ+ 4divη − 6η · η − 2|η|2,

	(Ṽ2) = 2trχ (a)trχ− (2p2 + 4) ∗ρ− (2p2 + 6)curlη + 4η ∧ η.
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Finally, this gives

�(V2) = �(Ṽ2) + �(f−1
2 �(f2)) + �(3P + 2 (F)P (F)P )

= 2tr χtrχ+ (a)trχ (a)trχ+ 4divη − 6η · η − 2|η|2

−3tr χtrχ− (a)trχ (a)trχ− 3ρ+ 4|η|2 + 8η · η + 3ρ+ 2 (F)ρ2 + 2 ∗ (F)ρ2

= −tr χtrχ+ 2 (F)ρ2 + 2 ∗ (F)ρ2 + 4divη + 2η · η + 2|η|2

and

	(V2) = 	(Ṽ2) + 	(f−1
2 �(f2)) + 	(3P )

= 2trχ (a)trχ− (2p2 + 4) ∗ρ− (2p2 + 6)curlη + 4η ∧ η − 2trχ (a)trχ

+ ∗ρ− 4η ∧ η − 3 ∗ρ

= −(2p2 + 6) ∗ρ− (2p2 + 6)curlη.

Observe that for p2 = −3, we obtain 	(V2) = 0, as desired. This completes the
proof of the proposition.

C.5. Proof of Lemma 7.8

From (C.48) and C2 = trχ− 3i (a)trχ as in (7.38), we compute

	(WF
4 ) = 	

(
−3

2
trX2 + trXtrX +

1
2

(
2trX − trX

)
C2

)

= 3trχ (a)trχ+ 	
(

1
2
(
trχ− 3i (a)trχ

)
(trχ− 3i (a)trχ)

)
= 0

and similarly, from (C.54)

	(WX
a ) =

1
2
	

(
−3

2
trX2 + trXtrX +

1
2
(
2trX − trX

)
C2

)
= 0.

From (C.51), we obtain

WB
a =

1
2
(
C1 − C2 − trX

)
=

1
2

(
2trχ− 5

2
i (a)trχ− trχ+ 3i (a)trχ− trχ+ i (a)trχ

)

=
3
4
i (a)trχ.

From (C.45)

Y F
a = 2C1 − 2C2 + trX − 3trX

= 2
(

2trχ− 5
2
i (a)trχ

)
− 2(trχ− 3i (a)trχ) + trχ− i (a)trχ− 3(trχ+ i (a)trχ)

= −3i (a)trχ.
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We now compute the imaginary parts of ZB
a and WF

a − ZF
a . From (C.31) and

(C.34), we have

	(ZB
a ) = 	(IB

a ) + 	(JB
a ) + 	(LB

a ) + 	(MB
a ) − 2η · 	(C1),

	(ZF
a ) = 	(IF

a ) + 	(JF
a ) + 	(LF

a ) + 	(MF
a ) − 2η · 	(C2).

Using (C.9) and (C.12), we have

	(IB
a ) = 	(IF

a ) = 	
(
− 2 (c)∇3(η − η) + trχ(η − η) − (a)trχ ∗(η − η)

)
= 0.

Using (C.14) and (C.16), we write

JB
a = −1

2
(trX + trX)

(
2(η − η) −

(
6H +H + 3H

))
−2 (c)∇C1 − trXH − 1

2
(trX − trX)H +

1
2
(trX − trX)H

and

JF
a = −1

2
(trX + trX)

(
2(η − η) −

(
4H +H + H

))
− 2 (c)∇C2 +

1
2
trXH − 1

2
(
trX − trX

)
H − 1

2
(2trX + trX)H.

By writing (c)∇C1 = ∇C1 − ζC1 and (c)∇C2 = ∇C2 − ζC2, we obtain

	(JB
a ) = trχ	

(
6H +H + 3H

)
− 2∇	(C1) + 2ζ	(C1)

− (a)trχη + (a)trχη − (trχ ∗η − (a)trχη)

= trχ
(
5 ∗η − 3 ∗η

)
− 2∇	(C1) + 2ζ	(C1) − (a)trχη + 2 (a)trχη − trχ ∗η

= −2∇	(C1) + 2ζ	(C1) − (a)trχη + 2 (a)trχη + 4trχ ∗η − 3trχ ∗η

and

	(JF
a ) = trχ	

(
4H +H + H

)
− 2∇	(C2) + 2ζ	(C2)

− trχ ∗η + (a)trχη − (trχ ∗η − (a)trχη)

= trχ
(
3 ∗η + ∗η

)
− 2∇	(C2) + 2ζ	(C2) − 2trχ ∗η + (a)trχη + (a)trχη

= −2∇	(C2) + 2ζ	(C2) + (a)trχη + (a)trχη + trχ ∗η + trχ ∗η.

Using (C.21) and (C.23), we have

	(LB
a ) = 	(−(3trX + trX)(η − η)) = 2 (a)trχ(η − η),

	(LF
a) = 	(−(trX + trX)(η − η)) = 0.
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Using (C.25) and (C.27), we have

	(MB
a ) = (c)∇3	

(
6H +H + 3H

)
− 1

2
trχ	

(
6H +H + 3H

)
+

1
2

(a)trχ ∗	
(
6H +H + 3H

)
= ∇3

(
5 ∗η − 3 ∗η

)
− 1

2
trχ

(
5 ∗η − 3 ∗η

)
+

1
2

(a)trχ
(
− 5η + 3η

)
and

	(MF
a ) = (c)∇3	

(
4H +H + H

)
− 1

2
trχ	

(
4H +H + H

)
+

1
2

(a)trχ ∗	
(
4H +H + H

)
= ∇3

(
3 ∗η + ∗η

)
− 1

2
trχ

(
3 ∗η + ∗η

)
+

1
2

(a)trχ
(
− 3η − η).

We therefore obtain

	(ZB
a ) = −2∇	(C1) + 2ζ	(C1) − (a)trχη + 2 (a)trχη + 4trχ ∗η − 3trχ ∗η

+ 2 (a)trχ(η − η) + ∇3

(
5 ∗η − 3 ∗η

)
− 1

2
trχ

(
5 ∗η − 3 ∗η

)
+

1
2

(a)trχ
(
− 5η + 3η

)
− 2η · 	(C1)

= −2∇	(C1) + 2(ζ − η)	(C1) +
3
2

(a)trχ(η − η) +
3
2
trχ( ∗η − ∗η)

+∇3

(
5 ∗η − 3 ∗η

)
and, also using (C.49)

	(ZF
a −WF

a ) = −2∇	(C2) + 2ζ	(C2) + (a)trχη + (a)trχη + trχ ∗η + trχ ∗η

+∇3

(
3 ∗η + ∗η

)
− 1

2
trχ

(
3 ∗η + ∗η

)
+

1
2

(a)trχ
(
− 3η − η

)
− 2η · 	(C2) + 3∇3

∗η

= −2∇	(C2) + 2(ζ − η)	(C2) +
1
2

(a)trχ(η − η) +
1
2
trχ( ∗η − ∗η)

+∇3

(
6 ∗η + ∗η

)
.

We now evaluate in the outgoing frame. Since ζ = −η, and by writing 	(C1) =
p1

(a)trχ and 	(C1) = p2
(a)trχ we have

	(ZB
a ) = −2p1∇ (a)trχ− 4p1

(a)trχη +
3
2

(a)trχ(η − η) +
3
2
trχ( ∗η − ∗η)

+∇3

(
5 ∗η − 3 ∗η

)
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and

	(ZF
a −WF

a ) = −2p2∇ (a)trχ− 4p2
(a)trχη +

1
2

(a)trχ(η − η) +
1
2
trχ( ∗η − ∗η)

+∇3

(
6 ∗η + ∗η

)
.

We start by evaluating at 2. Then since η2 = −η
2

and ∗η2 = ∗η
2
, we have

	(ZB
2 ) = −4p1

(a)trχη
2
− 3 (a)trχη

2
+ ∇3

(
5 ∗η − 3 ∗η

)
2
.

Also using that (c)∇3
∗η2 = −2 (a)trχη

2
and ( (c)∇3

∗η)2 = − (a)trχη
2
, see [19], we

have

	(ZB
2 ) = −4p1

(a)trχη
2
− 3 (a)trχη

2
− 10 (a)trχη

2
+ 3 (a)trχη

2

= −2(2p1 + 5) (a)trχη
2
,

which indeed vanish for p1 = − 5
2 . We now also evaluate at 1. We have, using that

∇1( (a)trχ) = −3 (a)trχη
1
− trχ ∗η

1
and η1 = η

1
and ∗η1 = − ∗η

1
,

	(ZB
1 ) = −2p1(−3 (a)trχη

1
− trχ ∗η

1
) − 4p1

(a)trχη
1
− 3trχ ∗η

1

+∇3

(
5 ∗η − 3 ∗η

)
1

= 2p1
(a)trχη

1
+ (2p1 − 3)trχ ∗η

1
+ ∇3

(
5 ∗η − 3 ∗η

)
1
.

Also using that (c)∇3
∗η1 = trχ ∗η

1
+ (a)trχη

1
and ( (c)∇3

∗η)1 = −trχ ∗η
1
, we

have

	(ZB
1 ) = 2p1

(a)trχη
1

+ (2p1 − 3)trχ ∗η
1

+ 5trχ ∗η
1

+ 5 (a)trχη
1

+ 3trχ ∗η
1

= (2p1 + 5)( (a)trχη
1
+ trχ ∗η

1
),

which vanishes for p1 = − 5
2 .

Similarly, we have

	(ZF
2 −WF

2 ) = −4p2
(a)trχη

2
+ (a)trχη

2
+ ∇3

(
6 ∗η + ∗η

)
2

= −4p2
(a)trχη

2
+ (a)trχη

2
− 12 (a)trχη

2
− (a)trχη

2

= −(4p2 + 12) (a)trχη
2

and

	(ZF
1 −WF

1 ) = −2p2∇1
(a)trχ− 4p2

(a)trχη
1

+ trχ ∗η
1
+ ∇3

(
6 ∗η + ∗η

)
1

= 2p2
(a)trχη

1
+ (2p2 + 1)trχ ∗η

1
+ ∇3

(
6 ∗η + ∗η

)
1

= 2p2
(a)trχη

1
+ (2p2 + 1)trχ ∗η

1
+ 6trχ ∗η

1
+ 6 (a)trχη

1
− trχ ∗η

1

= (2p2 + 6)( (a)trχη
1
+ trχ ∗η

1
),

which vanishes for p2 = −3. This completes the proof of the lemma.



April 7, 2022 13:29 WSPC/S0219-8916 JHDE 2250001

138 E. Giorgi

References
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