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Abstract. We derive the equations governing the linear stability of Kerr-Newman
spacetime to coupled electromagnetic-gravitational perturbations. The equations gen-
eralize the celebrated Teukolsky equation for curvature perturbations of Kerr, and the
Regge—Wheeler equation for metric perturbations of Reissner—Nordstrom. Because of the
“apparent indissolubility of the coupling between the spin-1 and spin-2 fields”, as put
by Chandrasekhar, the stability of Kerr—-Newman spacetime cannot be obtained through
standard decomposition in modes. Due to the impossibility to decouple the modes of the
gravitational and electromagnetic fields, the equations governing the linear stability of
Kerr—Newman have not been previously derived. Using a tensorial approach that was
applied to Kerr, we produce a set of generalized Regge—Wheeler equations for perturba-
tions of Kerr—Newman, which are suitable for the study of linearized stability by physical
space methods. The physical space analysis overcomes the issue of coupling of spin-1 and
spin-2 fields and represents the first step towards an analytical proof of the stability of
the Kerr—Newman black hole.
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1. Introduction

One of the fundamental problems in General Relativity is to understand the final
state of evolution of initial data for the Einstein equation. Through gravitational
collapse and dispersion of gravitational waves, the geometry to which solutions to
the Einstein equation are expected to relax outside the event horizon of a black
hole is the one given by the known stationary and axisymmetric explicit solutions:
the Kerr and the Kerr-Newman black hole.
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According to General Relativity, the interaction between gravitational and elec-
tromagnetic fields in a spacetime is governed by the Einstein—Mazwell equation:

. 1 «
Ric,, (9) = 2F,\F*, — 59 PFus, DyF, =0, D'F,, =0, (L1)

where Ric denotes the Ricci curvature of the metric, D its covariant derivative and
F' is an antisymmetric 2-tensor, called the electromagnetic tensor, which satisfies
the Maxwell equations.

The Kerr—Newman metric [30] is the most general known explicit black hole
solution to the Einstein-Maxwell equation (IZI]), and it is a 3-parameter family
which describes the gravitational field around an isolated rotating charged black hole
of mass M, angular momentum Ma and electric charge @, within the subextremal
range v/a? + Q2 < M. Its expression in Boyer-Lindquist coordinates (¢,r,0,¢) is
given by

sin? 0
lq|?

A ) ql?
gM.aQ = —W(dt — asin?0dy)? + %dﬁ + |q?d6* + (adt — (r* + a®)dp)?,

where
A=7r%—2Mr+ad®>+Q* |q* =1r*+a®cos’h.

The Kerr—Newman metric generalizes the Reissner—Nordstrom Solution (for a =
0), and also the Kerr (for @ = 0) and Schwarzschild metric (for Q@ = a = 0),
which are solutions to the Einstein vacuum equation. As such, the Kerr—Newman
spacetime plays a fundamental role in describing the final state of evolution in
General Relativity.

As part of the resolution of the description of the final state, we focus on the
issue of stability of the Kerr—Newman black hole, which consists in showing that
solutions to the Einstein equation which are given as small perturbations of the
initial data of such a black hole asymptotically converge in time to a member of the
Kerr—Newman family. The stability of the Kerr—-Newman family can be analyzed
at different levels:

(1) the linear stability consists in the analysis of the linearized Einstein-Maxwell
equation around the background metric gas,q,q. It can be further divided into
(a) mode stability and (b) full linear stability.

(2) the nonlinear stability consists in the analysis of the full Einstein-Maxwell equa-
tion for a perturbation of a member of the Kerr—Newman family.

The mode analysis (a) of the Einstein equation consists in analyzing only special
solutions, the so-called mode solutions. In the simplified case of the linear wave
equation

DgM,a,Qw =0, (1.2)
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where Ug,, , o is the D’Alembertian associated to the Kerr—Newman metric, mode
solutions are solutions of the separated form

U(r,t,0,¢) = e “e™PR(r)S(6), (1.3)

where w € C is the time frequency and m is the azimuthal mode. Because of the
integrability of the geodesic flow in the Kerr—Newman metric, functions of the form
([T3) are solutions to the wave equation ([L2)), as long as R(r) satisfies a radial ODE
and S(0) satisfies an angular ODE (which defines spheroidal harmonics S,,n¢). The
mode stability consists in proving that solutions of the form (3] with finite initial
energy do not have imaginary part of w which is positive, i.e. do not exponentially
grow in time. The mode stability of Schwarzschild, Reissner—Nordstrom and Kerr
black hole was obtained as a combination of many results in black hole perturbation
theory by the physics community in the 1970s and 1980s, see [3] 4, B2, B7H39].
Particularly relevant are the case of axial metric perturbations of Schwarzschild,
which are governed by the so-called Regge—Wheeler equation [32], of the form

Oewt = 5 <1 - %) b. (1.4)

Observe that the potential on the right-hand side of (IL4)) is positive in the exterior
of the black hole. Inspired by (4], we denote by Regge—Wheeler equation any
equation of the form [g1p — Vap = 0 for a positive real potential V.

In the case of gravitational perturbations of Kerr, in order to obtain an equation
decoupled from any other component, one needs to consider perturbations at the
level of curvature. The extreme null Weyl scalars then satisfy the Teukolsky equation
of spin s = £2 and s = +1 for gravitational and electromagnetic perturbations of
Kerr, respectively [37], of the form

2s 2s (a(r—M) . cosf
Tll(y) .= O 4 =2 (r — M), [S]+—< + )8 [s]
(’l/)) g]\{,a’l/) |q|2 (T ) ¢ |q|2 A Zsin20 apw

25 (M(r? —a?) , ) s
+ = (2 r—jacosh ) 8l — —_(scot?0 — 1)pl¥! =0,

= (M ST v
(1.5)

which is also a separable equation. In [32][38] (see also [33,[36]), the mode analysis of
the Regge—Wheeler and the Teukolsky equation was proved, and a transformation
theory [4] (now known as Chandrasekhar transformation) was discovered to connect
the metric perturbations approach to the curvature perturbations one. The results
in the mode analysis are collected in the monumental book by Chandrasekhar [4].

Nevertheless, mode stability for Eq. (I2) is still consistent with the unbounded-
ness of (finite initial energy) solutions as the time increases, i.e. it does not exclude
the possibility that

limsup ¥ (r, t, 0, ¢) = oc. (1.6)

t—o0
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This is because statements at the level of the single mode solutions do not imply
boundedness statements for the infinite superposition of those modes. The full linear
stability (b) consists in proving a uniform bound for a general solution ¢ of (L2,
and therefore excluding (L6l

Extensive progress has been obtained in the last 15 years which allowed to go
beyond the mode analysis in Kerr spacetime, tackling the full linear stability (b) for
the linear wave equation. A robust geometric interpretation of the redshift effect
[8], a physical space analysis of the trapping region and the superradiance [I1],
a hierarchy of r-weighted decay [9] all contributed to a complete understanding
of the boundedness of solutions to the linear wave equation, finally proving that
(CH) indeed does not happen. The complete resolution of boundedness and decay
statements for the linear wave equation ([.2]) was obtained for slowly rotating Kerr
solutions [10] and then for the full subextremal range |a| < M [12] (see also |2, [35]).
Similarly, proofs of boundedness and decay statements for the Teukolsky equation
have been obtained in Schwarzschild [6] (see also [24H27]) in Reissner—Nordstrom
[14, [16] and in Kerr, for slowly rotating [7 29] and very recently in the full subex-
tremal range [34]. These results have been used to obtain proof of the full linear
stability of Schwarzschild [6], Reissner—Nordstrom, for small charge [I7] and then
in the full subextremal range [15], and for slowly rotating Kerr [Tl 21]. Concerning
the full nonlinear stability of black hole solutions to the Einstein equation, the only
known result is the proof of nonlinear stability of Schwarzschild under the class of
symmetry of axially symmetric polarized perturbations [28]. In the presence of a
positive cosmological constant, the Kerr—de Sitter and the Kerr-Newman-—de Sitter
family with small angular momentum have also been proved to be nonlinearly stable
22, 23.

Quite strikingly, the Kerr-Newman solution stands up as genuinely different
from the similar cases of Kerr or Reissner—Nordstrom, even in the simplest possible
form of stability, i.e. the mode stability as studied by the black hole perturba-
tion theory community. As stated by Chandrasekhar in [4, Sec. 111], “the methods
that have proved to be so successful in treating the gravitational perturbations of
the Kerr spacetime do not seem to be applicable (nor susceptible to easy gener-
alizations) for treating the coupled electromagnetic-gravitational perturbations of
the Kerr—Newman spacetime.” The techniques applied in those early works, which
relied on decomposition in frequency modes of perturbations of the solutions, failed
to be extended to the case of Kerr-Newman spacetime, despite the manifest sim-
ilarity of the metric to the Kerr case. Again as pointed out by Chandrasekhar in
[4, Sec. 111], “the principal obstacle is in finding separated equation” and in the
“apparent indissolubility of the coupling between the spin-1 and spin-2 fields in
the perturbed spacetime”. Following the same procedure as in the case of Kerr
or Reissner—Nordstrom, one reaches a point where the equations cannot be decou-
pled or separated any further. In [4, p. 583], Chandrasekhar gives an explanation
of “why the system of equations proves intractable in contrast to apparently sim-
ilar system of equations encountered in the treatment of the perturbations of the
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Reissner—Nordstrom and Kerr spacetimes”. The reason has to do with the inter-
action of the spin-1 and spin-2 fields in a non-spherically symmetric background.
We summarize his argument here and describe how we intend to overcome such
difficulties towards an analytical proof of the stability of the Kerr—Newman black
hole.

1.1. Why the analytical proof of mode stability
for Kerr—Newman fails

Being the most general explicit black hole solution of the Einstein equation coupled
with matter, the Kerr—Newman spacetime has been at the center of analytical and
numerical research for decades. Numerical works strongly support the mode stability
of Kerr-Newman spacetime [I3], [31], and the Kerr—-Newman metric is expected to be
stable as a solution to the fully nonlinear Einstein—-Maxwell equation. Nevertheless,
an analytical proof of even its mode stability is missing, and the state of the art on
this problem is pretty much the same as described by Chandrasekhar [4] in 1983.
We now explain what are the main issues.

The Einstein-Maxwell equation ([T governs the interaction between the gravi-
tational radiation, encoded in the left-hand side of the equation (i.e. the curvature),
and the electromagnetic radiation, encoded in the right-hand side (i.e. the elec-
tromagnetic tensor). From the study of perturbations of Kerr, we know that the
gravitational and the electromagnetic radiation are transported by a spin-2 field
¥ and a spin-1 !, respectively. This is more precisely related to the fact that
the extreme null component of the Weyl curvature is a 2-tensor on the sphere (6, ¢),
while the extreme null component of the electromagnetic tensor is a 1-tensor on the
sphere.

When taken independently, the gravitational and electromagnetic perturbations
of Kerr satisfy the Teukolsky equation (LH) for spin s = £2 or s = +1, respec-
tively. On the other hand, when considering coupled electromagnetic-gravitational
perturbations of Kerr—Newman, one should expect a system of coupled Teukolsky
equations, as in the case of Reissner—Nordstrom [I4 [I6], of the schematic form:

TH () = div(y?),
(1.7)
TR ) = va M),

where the angular operators on the right-hand side relate 1-tensors and 2-tensors.
More precisely, if ¥[1 is a 1-tensor and 2 is a symmetric traceless 2-tensor, then
div(yP), = wal[fb] is a 1-tensor and 2V® (M), = Vv, l[,ll + Vbz/h[ll] — Sapdivept!]
is a symmetric traceless 2-tensor on the sphere.

The issue in the analysis of a coupled system like (7)) comes from the decom-
position in modes. The mode decomposition of the Teukolsky variables

VBt r, 0, ¢) = e7wteim? RIS (T)sz]é(aw, cosf)
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involves the spin s-weighted spheroidal harmonics sz]é(aw,cos 0) which are eigen-
functions of the spin s-weighted Laplacian

m?2 4 2ms cosf + s2

sin® 6

1
Al = 9 (sin 69y — + a*w? cos? § — 2aws cos .
sin 0
For a = 0, they reduce to the spherical harmonics SLSI]@(O, cosf) = Yn[f; (cos ). Spin-
weighted spherical harmonics of different spins are simply related through the angu-
lar operators div and V®, and have the same eigenvalues. Schematically:

val) = Ay

me>
. 2 1
div(y2y = av

On the other hand, in the general axisymmetric case, as in Kerr or Kerr—-Newman,
the spin-weighted spheroidal harmonics of different spins are not simply related
through those angular operators.

We are now ready to explain the “apparent indissolubility of the coupling
between the spin-1 and spin-2 fields” [] for electromagnetic-gravitational pertur-
bations of Kerr—-Newman, in contrast with Reissner—Nordstrom or Kerr. In a spher-
ically symmetric background, as in Reissner-Nordstrom, the fact that the spheri-
cal harmonics of different spins are simply related through the angular derivatives
implies that the decomposition in modes of the system of Teukolsky equations
(7)) passes through. When considering the separated versions of the equations,
one obtains

TH(YI) = div(v2) = AV

me?

TRV = vaih = -k

me?
giving two decoupled equations for the spin-1 and the spin-2 fields. For gravitational
perturbations of Kerr one only uses the spin-2 decomposition for T[Q](Yrﬂ) =0, so
the problem of the coupling does not arise.
In electromagnetic-gravitational perturbations of the axially symmetric Kerr—
Newman, the interaction between the spin-2 and spin-1 prevents the separability

in modes. In particular, when trying to derive equations for 51[711]@ and for Sﬁ]é, one
cannot separate them:

TH(S0) = div(Sy),

TSI = VE(S,0),

(1]
¢

as the right-hand side of the first equation cannot be written in terms of S, ;, and

the right-hand side of the second equation cannot be written in terms of Sr[zlg.
These are the main obstacles to separability of the equations in the case of

electromagnetic-gravitational perturbations of Kerr-Newman spacetime. As Chan-

drasekhar ends at [4, p. 583], “one might be inclined to conclude that a decoupling
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of the system of equations and a separation of the variables will be possible, if at
all, only by contemplating equations of order 4 or higher”.

1.2. Towards the full linear stability of Kerr—Newman

In treating the coupled electromagnetic-gravitational perturbations of Kerr—
Newman spacetime, the decomposition in modes of the equations, which had the
objective of simplifying the analysis of the perturbations, actually makes them
unsolvable as consequence of the discussion in the previous section. Observe that
such failure is explicitly related to the fact that the equations as analyzed in [4]
required the decomposition in spheroidal harmonics, which yields the problem of
non-separability of the decomposition. There is no reason to believe that if one does
not decompose in modes nor separate the equations using the spheroidal harmonics
such problems could not be circumvented.

Our approach to solve this issue is to abandon the decomposition in modes, and
perform a physical space analysis of the equations. Following the road map that
mathematicians have taken in the last few years in interpreting in physical space the
mode analysis done by the physics community, the Kerr—-Newman solution may be
the case where a physical space approach could succeed where the mode analysis in
physics failed. Observe that our proof of boundedness of a general solution through a
physical space analysis will in particular imply the absence of exponentially growing
modes, therefore proving mode stability.

We summarize here the four main ingredients in the analysis: the formalism
to study perturbations of the Kerr—Newman spacetime, the identification of the
gauge-invariant quantities in the linear perturbations, the derivation of the system of
coupled Teukolsky equations, and finally the derivation, through the Chandrasekhar
transformation, of a system of generalized Regge—Wheeler equations.

1.2.1. The GKS formalism

As a first step, we present the formalism which we use to treat perturbations of
axially symmetric Petrov Type D spacetimes, like Kerr or Kerr—-Newman . One
way to analyze the perturbations is to use the Newman—Penrose (NP) formalism,
which consists in decomposing all the components in null frames, obtaining complex
scalars. We instead make use of a more geometric formalism, more commonly used in
the mathematical community, and first developed in the proof of nonlinear stability
of Minkowski space [5]. Such formalism was extended in [19] for general Petrov Type
D spacetime in the context of the nonlinear stability of Kerr.

We recall that a Petrov Type D spacetime’s Weyl curvature W, is diagonaliz-
able by two linearly independent eigenvectors, the so-called principal null-directions.
We call the outgoing null direction e4 and the ingoing one e3. The tangent space
orthogonal to them is spanned by two orthonormal vectors, e,, for a = 1, 2. Observe
that in Kerr, the orthogonal structure determined by the principal null frames e, e4
is not integrable, i.e. e; and es do not span the tangent space of a 2-surface, like
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in Schwarzschild. This can be seen in the non-symmetry of the 2-tensors x and x
defined by

X(@a,eb) = g(Da€4,€b), X(eaaeb) = g(Da€3?eb)7 avb = 1327

which in the case of an integrable horizontal structure would be the null second
fundamental forms of the embedding of the sphere in the spacetime, therefore being
symmetric. In the case of Kerr or Kerr—Newman, the 2-tensor y and y are not
symmetric in a and b. B

In the GKS formalism (from the authors in [I9]), the non-integrability of the
horizontal structure is allowed, and all components are decomposed in null frames,
obtaining a range of complex 2-tensors, 1-tensors and scalars. See Sec. [ for the
description of the formalism, with particular attention to the comparison with the
NP formalism in Sec. We extend it here to the case of the Einstein-Maxwell
equation, by deriving the equations in their full generality in Sec.

We then apply this general formalism to the case of Kerr-Newman and its linear
perturbations. More precisely, the GKS quantities which vanish in Kerr-Newman,
are considered to be O(e), where € is a smallness parameter, in linear perturbations
of Kerr—-Newman, see Sec. @l The next step is to identify the O(e)-quantities which
govern the linear perturbations.

1.2.2. The identification of the gauge-invariant quantities

The first issue to specifically treat electromagnetic-gravitational perturbations of
Kerr-Newman spacetime is to identify what are the Teukolsky variables which rep-
resent the electromagnetic and gravitational radiations, respectively. Since those
variables have a physical meaning, they should be independent of the choice of coor-
dinates to a certain extent, or more precisely being (quadratically) invariant under
infinitesimal tetrad transformations. For example, the spin-2 complex Teukolsky
variable given by

Aab = W(e47€a7€4aeb) +Z *W(e47€a7€4aeb)a

where * denotes the Hodge dual, is a symmetric traceless 2-tensor on the horizontal
structure (which corresponds to ¥y in NP formalism) and is known to be invariant
under infinitesimal rotations of the frame. More precisely, if a rotation is applied
to the frame (es, ey, e1,e2) into a new frame (e}, e}, e}, e)) which is e-close to the
previous one, the variable A’ computed with respect to the primed frame is e2-close
to the original one, i.e. A’ = A + O(€?). The quantity A is precisely the Teukolsky
variable representing gravitational perturbations of Kerr, and satisfies the Teukolsky
equation of spin 2 [19, [37].

For electromagnetic-gravitational perturbations of Kerr-Newman, the Teukol-
sky variable A is not sufficient to describe the full perturbation. In particular, one
would need a quantity satisfying a spin 1 Teukolsky equation as the electromagnetic
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contribution. The Teukolsky variable of spin 1 in electromagnetic perturbations of
Kerr, i.e.

®pB, = F(eg,eq) + i "F(eq,eq),

where F is the electromagnetic tensor, is not invariant under infinitesimal rotations
of the frame, and therefore cannot represent electromagnetic radiation. This prob-
lem appears already in the perturbations of Reissner—Nordstrom spacetime, where
(F)B also fails to be gauge-invariant. In the case of Reissner-Nordstrém, two addi-
tional quantities | and B, a 2-tensor and a 1-tensor, respectively, were identified to
be gauge-invariant and satisfy a coupled system of Teukolsky equation [14] [16].

Inspired by the quantities in Reissner—Nordstrom, in Sec. Bl we define the sym-
metric traceless 2-tensor § and the 1-tensor B which are quadratically invariant
upon infinitesimal rotation of the frame (see (52) and (E3) for the precise defini-
tion). In addition to those, we have the gauge-invariant 1-tensor X which is auxiliary
in the derivation.

1.2.3. The system of coupled Teukolsky equations

As described above, we have defined four gauge-invariant quantities for linear
electromagnetic-gravitational perturbations of Kerr-Newman, given by

A? S? %7 %7

where A and § are symmetric traceless 2-tensors, and therefore good candidates to
represent gravitational radiation and B and X are 1-tensors, to represent electro-
magnetic radiation. As in the case of Reissner—Nordstrom it turns out that § and
B are the most significant quantities, while A and X can be thought of as auxiliary
quantities.

Observe that under a rotation of the frame given by a conformal rescaling of
the null vectors ez and ey, i.e. if €5 = Aeg and €} = A7'ey for a real scalar A,
the quantities A and X change as A’ = A\2A, X’ = \2X, while § and B change as
F = 2§, B’ = AB. We say that § and B are of conformal type 1 and A and X of
conformal type 2.

In Sec. [0, we derive the wave-like equations satisfied by A, § and 9B as a con-
sequence of the Einstein-Maxwell equations. We obtain the following system of
coupled Teukolsky equations, see Theorem [6.1t

T,(B) = Mu[3, X],
772(3) = M2[Av:£’%]v
T3(A) = M3, X],

where the 75 are Teukolsky operators and M, denotes the dependence on the right-
hand side of each equation.

The projection to the first component of the Teukolsky operators gives the
Teukolsky equation for complex scalars. It turns out that in Kerr—-Newman, not
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only the spin of the variable is not the only parameter appearing in the Teukolsky
equation, but so does its conformal type. We define for a complex scalar 1 of spin
s and conformal type ¢ the Teukolsky operator

2¢c 2 a(r — M) _cost
T[Svc] = |:| —_— — M r T 5
() g+ lq|? (r )0 + lq]2 (C A + Slsin2 9) Opv

2 M 2 .2\ _ N2

—l—W(c( (r Z) QT—T)—SZ'(LCOS@)@,ﬂb
1

—+ W(S — 32 COt2 9)¢

By comparing it to (ILH), one can see that for ¢ = s, the Teukolsky operator T [s:5] ()
reduces to the standard Teukolsky operator in Kerr. In Kerr—Newman, it is impor-
tant to keep the distinction since § is of spin 2 and conformal type 1.

Due to the non-separability in modes, our goal is to analyze the Teukolsky
equations in physical space. Unfortunately, this is not possible, even in the case of
Schwarzschild or Kerr. Recall that to prove boundedness of the energy for a solution
of the wave equation [J¢p = 0, one multiplies it by 0;¢) and integrate it by parts.
For example, in the case of Minkowski:

0=0¢- 0 = (— 0 + %) - O
= —07v - Opp — 0,0, - 0wt + 0 (01 - D)
- *%3t(|3t1/)|2 +102%[*) + boundary terms.

Upon integration on a causal domain, one can neglect the boundary terms obtaining
conservation of the energy. Similarly for a Regge—Wheeler equation, the term with
the potential can be written as a boundary term:

0= (0¢ Vo) 0

1 1
—§8t(|8tw|2 + 02)%) — §V8t(|w|2) + boundary terms

1
= —iat(|atw|2 + 1022 * + V|1|?) + boundary terms.

If the potential V' is positive, one obtains the conservation of a positive definite
energy. The Teukolsky equation is instead of the form Oy — Vi = 10,9 + 20,1 +
c30¢1), and so clearly one cannot obtain boundedness of the energy directly in this
way, because of the presence of the first-order terms. This motivates our search for
a more amenable system of equations, of the Regge—Wheeler type.

1.2.4. The system of generalized Regge-Wheeler equations

One would like to transform the system of Teukolsky equations, which are
intractable to physical space energy estimates, to a system of Regge—Wheeler-type
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equations. Such transformation is related to the passage from curvature perturba-
tions to metric perturbations, and was referred to as “transformation theory” in [4].
Chandrasekhar describes such transformation in the mode analysis as consisting in
taking derivatives along the null direction of the Teukolsky variables, in order to
obtain solutions to the Regge—Wheeler equation. Dafermos—Holzegel-Rodnianski
crucially extended the Chandrasekhar transformation to a physical space one,
first in Schwarzschild [6] and then in Kerr [7], see also [29]. In [I9 28], physi-
cal space nonlinear analogue of the Chandrasekhar transformation have also been
introduced.

Following this idea, in Sec. [ we define the Chandrasekhar-transformed of the
quantities B and § in the case of linear perturbations of Kerr—Newman, and obtain
the main result of the paper, see Theorem for the precise statement.

Theorem 1.1. Consider a linear electromagnetic-gravitational perturbation of
Kerr-Newman spacetime gur.q,q, with associated gauge-invariant quantities B and
§. Then there exist a 1-tensor p and a symmetric traceless 2-tensor qF, obtained
as Chandrasekhar-transformed of B and F, respectively, such that p and qF satisfy
the following coupled system of generalized Regge—Wheeler equations:

2a cosb r—iacosf)?
DgM,a,Qp - ZWVHJ - le == 4Q2(M7|5)dlvql? + lo.t. (18)
4acosb 1 (r+iacosf)® _ ~
Denrad” — ZWWF —Voq® = —§$V®p + Lot (1.9)

with real positive potentials Vi and Vo and l.o.t. denotes lower order terms with
respect to p and q¥ .

These equations represent the main system of equations governing
electromagnetic-gravitational perturbations of the Kerr—Newman spacetime. In par-
ticular observe that, in applying the Chandrasekhar transformation, the dependence
on the auxiliary quantities A and X disappears. The above equations have the same
structure as the generalized Regge—Wheeler equation in Kerr obtained in [19]. Also,
for a = 0 the above system of equations reduces to the Regge—Wheeler system of
Reissner—Nordstrom in [I5], for which boundedness of the energy was obtained in
the full subextremal range.

The above theorem is proved through a careful (and lengthy) computation which
consists in applying an ingoing null derivative to both Teukolsky equations for 8B
and §, and then choose a precise complex rescaling of the transformed quantities.
Such rescaling is applied in order to obtain the above structure of the equations, for
which boundedness of the energy can be obtained in physical space. Observe that the
above equations are not precisely of the Regge-Wheeler form, but have additional
terms, like the first-order term V; and the coupling terms on the right-hand side.
Nevertheless, in Theorem [[LT, we are careful to obtain precisely a structure which
allows for the proof of boundedness of energy in physical space. More precisely,
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upon multiplying Eq. (L) by V.p and Eq. (L9) by V.qF and taking their real
part, we obtain the following simplifications:

(1) The Regge-Wheeler pieces of the equations, i.e. (Ogaruob — Vip)Vib and
(DgM’aYQqF — ngF)thF, for real positive potentials, can be written as bound-

ary term,
(2) The first-order terms, being of the form iV;, get cancelled in the energy esti-
mates:
2a cosf 2a cosd
— PE VipVip +i——— |q| VipVip =
4 0 4 0
;dacosd V,qF v, gF 4 i 2acosd @ cos V,aF V. = 0.

laf? laf?

(3) The coupling terms, given by adjoint operators div and V& multiplied by com-
plex conjugate functions, get simplified upon summing the estimates for the
two equations:

(r —iacosf)3
lql®

(r +iacosf)?

P V&pVigF = Lo.t.

divg¥Vp —
(4) The lower order terms have a favorable structure in using transport equations
to be estimated.

As a consequence of the above theorem, the good properties of the equations
obtained in Reissner-Nordstrom and in Kerr can be generalized to the case of
Kerr—Newman. This strikingly compares with the equations in separated modes
as described at the beginning of this introduction, which could not be generalized
from the Kerr and Reissner—Nordstrom case. By avoiding the decomposition in
modes, and maintaining the above equations for the 1-tensor p and the 2-tensor
q¥, the issue of non-commutativity of the decomposition is not present and a phys-
ical space analysis of the above system is possible. In Sec. [[4] we sketch how to
prove that solutions to the generalized Regge—Wheeler equations as obtained in
Theorem [Tl have bounded energy. Such proof has to be combined with spacetime
Morawetz estimates to obtain the complete statement of boundedness and decay
for the Teukolsky system of equations. More precisely, such analysis would have
to avoid decomposition in modes for the solutions, for example in the spirit of [2]
for small angular momentum. Nevertheless, the Morawetz estimates, which will be
obtained in a future work, are much less sensitive to the structure of the equation,
and the procedure described in Sec.[[4]to obtain bounded energy is crucial to justify
the precise structure of the equations here derived.

This paper is organized as follows. In Sec. [l we recall the general formal-
ism introduced in [I9] and in Sec. Bl we derive the Einstein—-Maxwell equations
in their full generality. In Sec. @ we introduce the Kerr—Newman spacetime and
its linear perturbations. In Sec. Bl we define the main gauge-invariant quantities in
electromagnetic-gravitational perturbations of Kerr-Newman spacetime. In Sec. [G
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we derive the system of Teukolsky equations satisfied by the gauge-invariant quan-
tities. Finally, in Sec. [ we define the Chandrasekhar transformation in Kerr—
Newman and derive the Regge—Wheeler-type equations for the perturbations, prov-
ing the main theorem of the paper.

To facilitate the reading of the paper, we diverted most of the proofs (involving
lengthy computations) to the appendix. In[Appendix A] we collect the explicit com-
putations needed in the first five sections of the paper. In we derive

the system of Teukolsky equations and in we derive the system of
generalized Regge—Wheeler equations.

2. The GKS Formalism

In this section, we collect the main definitions and preliminaries to the formalism
introduced in [19]. From the authors of [19] we refer to this formalism as GKS
formalism. We refer to [I9, Sec. 2] for more details.

2.1. Null pairs and horizontal structures
Let (M, g) be a Lorentzian 4-dimensional manifold. Consider an arbitrary null pair
es=Land ey =L, i.e.
gles,es) = gleq,eq) =0, gles,eq) = —2.
We say that a vectorfield X is horizontal if
g(L, X) = g(L, X) = 0.

On the set of horizontal vectors, given a fixed orientation we define the induced
volume form by € (X,Y) :=1 € (X,Y,L,L).

Observe that the commutator [X,Y] of two horizontal vectorfields may fail to
be horizontal. We say that the pair (L, L) is integrable if the set of horizontal
vectorfields forms an integrable distribution, i.e. X, Y horizontal implies that [X,Y]
is horizontal.

Given an arbitrary vectorfield X we denote by (" X its horizontal projection,

MY =X+ %g(X, L)L + %g(X, L)L.
A k-covariant tensor-field U is said to be horizontal if for any X7, ..., X, we have
UXy,..., X)) =U(WX,, ..., WX,
Definition 2.1. For any horizontal X,Y we define*

’Y(X’ Y) :g(X’ Y) (2'1)

2In the particular case where the horizontal structure is integrable, « is the induced metric and x
and x are the null second fundamental forms.
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and
where D is the covariant derivative of g.

Observe that x and yx are symmetric if and only if the horizontal structure is
integrable, as follows from

X(Xv Y) - X(KX) = g(DxL,Y) - g(DyL,X) = 7g(L7 [Xa Y])

Given XY horizontal vectors, the covariant derivative DxY fails in general to
be horizontal. We thus define,P

1 1
VxY =" (DxY) =DxY — SX(XY)L = ox(X,Y) L

Given a general covariant, horizontal tensor-field U we define its horizontal
covariant derivative according to the formula

VU(X, ., Xe) = Z(U (X1, Xe) = U(V X1, ., Xg)
— e = U(Xy,...,VXp).

Given X horizontal, Dy, X and D ;X are in general not horizontal. We thus define

1 1
ViX = WD X)=DrX — ig(X’ D, L)L - §g(X,DLL) L,

1 1
VsX = "(DpX) =D X - cg(X, DL L)L - 5g(X,DL) L

We can extend the operators V4 and V3 to arbitrary k-covariant, horizontal tensor-
fields U as above. Therefore, with the above definitions V, V4 and V3 take hori-
zontal tensor-fields into horizontal tensor-fields. We can then extend the definition
of horizontal covariant derivative to any X in the tangent space of M and Y hori-
zontal as

DxY =" (DxY) (2.2)

and we can extend it to horizontal tensor-fields as above.

Given a horizontal structure defined by e3 = L, e4 = L, we associate a null frame
by choosing orthonormal horizontal vectorfields eq, ea such that v(eq, ep) = dap for
a,b = 1,2. For an arbitrary orthonormal horizontal frame (eq)q=1,2, we denote
V.Y = V. Y. We write VY to denote the 2-tensor whose contraction with e,
results in V, Y, i.e. VY (e,) =V, Y.

In what follows, we fix a null pair e3 = L and e4 = L and an orientation on the
horizontal tensors.

bIn the integrable case, V coincides with the Levi-Civita connection of the metric induced on the
integral surfaces of the horizontal distribution.
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Definition 2.2. Given a 2-covariant horizontal tensor-field U and an arbitrary
orthonormal horizontal frame (eq)q=1,2 we define the trace of U as

tr(U) = 6%Uyy, = 0% U,
where U, = %(Uab + Upa). We define the anti-trace of U by
Di(U) =€ Ugy =€ (DU,
where (DU, = %(Uab — Ubpa).
A general horizontal, 2-tensor U can be decomposed according to
Uab = OUap + DU = Uy, + %5@ tr(U) + % €ap Wtr(U).

Definition 2.3. We denote by 5o = s0(M) the set of pairs of real scalar functions
on M, 51 = 51(M) the set of real horizontal 1-forms on M and by 55 = 52(M) the
set of real symmetric traceless horizontal 2-tensors on M.

We define the following operators on horizontal tensors.
Definition 2.4. We define the duals of f € 51 and u € 52 by
“fa=€ab fo,  ("U)ab =E€ac Ueb-
Given &,n € 51 we denote
& = 6"8amp,
ENT =€ Eumy =€ ",
(€Bm)as = 3 (Eamn + Ema — b ).
Given £ € 51, u € s9 we denote
(€ u)a == 0" Epuac.
Given u,v € so we denote
(U AV)ap =€ UgVep.
For f € 51 and u € s we define the frame-dependent operators
divf = 6"V, fa, curlf =€* V,fi,
(V&S o = 5 (Vofa+ Vs~ Sunfciv),

(divi)y = 6% Vptieq.
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2.2. Ricci, electromagnetic and curvature components

In what follows, we define Ricci coefficients, electromagnetic and curvature compo-
nents of a general spacetime (M, g).

Definition 2.5. We define the horizontal 1-forms

W(X) = 38X, DL L), u(X)= ;8(X,DLL),

and the scalars

1 1
wi=18DLL L), w=-gDLL L)

Observe that the quantities underlined are obtained from the non-underlined
ones by interchanging the null vectors e3 = L and e4 = L.

Definition 2.6. The horizontal tensor-fields x,x,n,1,¢,§,§,w,w are called the
connection coefficients of the null pair (L, L). Given an arbitrary basis of horizontal
vectorfields ey, ea, we write using the short hand notation D, = De,,a = 1,2,

Xab = g<Da La eb)7 Xab = g(DaL,eb),

1 1

§a = §g(D£L7 €a), ga = §g(DLL7€a)7
1 1

W = Zg(DLLa L)a W = Zg(DLLa L)?
1

1
Qa - §g(DL Lv Ba), Na = §g(D£L,8a),

1
Ca = §g(DaLa L)

We easily derive the Ricci formulae

Daey = Vaep + %XabBB + %Xab%
Daes = Xaves — Cata,

Dges = x e + Caes,

Dseq = Viea +1qe3 + € €4,
Dses = —2wes + 2, es,

Dses = 2weq + 2mpey,

Dyeq = Vaiea + 1 €4+ &aes,
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Dyey = —2wey + 2&ep,
Dyes = 2wes + 2ﬂbeb'
(2.3)
Definition 2.7. We introduce the notation
try=tr(x), Diry:= Dir(y), trx = tr(x), (“)tr)_( = (“)tr(K).

The symmetric traceless part of x and x, denoted X and X, are called the (outgoing

and ingoing, respectively) shear of the horizontal distribution, while the scalars trx

and trx are the (outgoing and ingoing respectively) expansion of the distribution.

The scalars ‘D try and (Dtry measure the integrability defects of the distribution.
In particular we can write

1 1
Xab = Xab + §5ab trx + 5 Cab (a) try. (24)

Let F be an antisymmetric 2-tensor on (M, g). We define the null components
of F as the horizontal vectors 8(F), 3(F) by the formulas

®B(X) = B(F)(X) = F(X, L),
FB(X) = B(F)(X) = F(X, L),
o(F)(X,Y) = F(X,Y).

For a 2-form F, the dual *F denotes the Hodge dual on (M, g) of F, defined by
*Fop = % Cuvap FH.
It is convent to express in terms of the following two scalar quantities:

1 * * 1 *
b =p(F) = SF(L L), *“Fh="p(F) =7 "F(L,L). (2.5)

Thus, o(F)(X,Y) = — *p(F) € (X,Y) for horizontal vectors X,Y. i.e. Fg =
— € p.

Let W be a Weyl field on (M, g). We define the null components of the Weyl field
‘W, horizontal 2-tensors a(W), a(W), o(W) and horizontal 1-tensors (W), (W)
by the formulas B

a(W)(X,Y) = W(L,X,L,Y),
Q<W)<X7Y) = W(Lv X, L, Y)v

BIW)(X) = WX, L, L, L),

BIW)(X) = sW(X, L LT,

o(W)(X,Y) = W(X, L,Y, L).

Recall that if W is a Weyl field its Hodge dual *W, defined by *Wq,g,, =
%E#Vp”Wagpg, is also a Weyl field. It is convenient to express it in terms of the
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following two scalar quantities:

p(W) = TW(L L L, L), “p(W) =7 “W(L, L.L, L) (2.6)

Thus, o(X,Y) = —pv(X,Y) + *p € (X,Y) for horizontal vectors X, Y. We have
Wasba = 0ab = (—pdab + “p €ab),
Wapsa =2 €ap ",
Wabed = = €ab€ed P,
Wapes = €ab B,

Wabc4 = — Cab *ﬂo

2.3. Complex notations

Recall Definition of the set of horizontal tensors s on M. By Definition 2.4]
the duals of real horizontal tensors are real horizontal tensors of the same type. We
define the complexified version of horizontal tensors on M.

Definition 2.8. We denote by s,(C) the set of complex anti-self-dual k-tensors
on M. More precisely, a + ib € s0(C) is a complex scalar function on M with
(a,b) € s, F = f+1i*f €51(C) is a complex anti-self-dual 1-tensor on M with
f€s and U = u+1i*u € 55(C) is a complex anti-self-dual symmetric traceless
2-tensor on M with u € s5.

Observe that F € 51(C) and U € s2(C) are indeed anti-self-dual tensors, i.e.
‘B = —iF, U= —iU.

In particular, F2 = 7Z'F1 and U12 = 71:U11, U22 = 7U11, where we denote F1 =

F(e1) and Uy := U(ey, e1) the contraction of the tensors with the horizontal frame.
We extend the definitions for the Ricci, electromagnetic and curvature compo-

nents given in Sec. to the complex case by using the anti-self-dual tensors.

Definition 2.9. Let (M, g) be a Lorentzian 4-dimensional manifold. We define the
following complexified versions of the Ricci components:

X=x+i"x, X=x+i"x
H=n+i"n, H=n+i"n,
E=¢tit, E=£+i'E
Z=C(+1i"C

In particular, note that

~ ~

trX =try—i Dy, X=x+i"x, tr&ztrxfi(a)tr)_(, X=x+i"

<>
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We define the following complezified versions of the electromagnetic components:
Fp = Fq;*Fg  (Fp_— (F)g +i* (F)g
F)p = @)y 4= ®)y,
and of the curvature components
A=a+i*a, A=«
B=§+i"8, B=§
P=p+i~p.

With the above definition, the complex scalars, one-forms and symmetric trace-
less 2-tensors are, respectively, given by

trX, trX, P, P € 5,(C),
H,H,2,2,2 B, ¥B, B, B € 5/(C),

)?7271474 € 52(C)~

Definition 2.10. We define the complezified version of the V horizontal deriva-
tive as

D=V+i*V, D=V —i*V.
More precisely,
o Fora+ib € s0(C)

D(a+ ib) := (V +1i *V)(a + ib),

D(a+ib) = (V —i *V)(a +ib).
o For F=f+i*fecs(C)
D-(f+i*f):=(V—i*V) - (f+i~*f)=2(divf + icurlf),
DE(f +i°f) = (V+i " V)&(f +i"f) =2(VE&f +i *(V&])).
e ForU=u+1i*u € s2(C),

D(u+i *u):= (V=i *V)(u+i*u) =2(divu + i *(divu)).

For F € 5,(C), the operator —D& is formally adjoint to the operator D - U
applied to U € s5(C), as shown in the following lemma.
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Lemma 2.11. For F = f+i*f € §,(C) and U = u+i *u € s2(C), we have
(DRF)-U=—~F-(D-U)— ((H+ H®F)-U+Dy(F-0U). (2.7)
Proof. We have
(VBf)-u= %(vafb + Vi fa — 0apdiv f)uap = (Vafo)tab

= Va(Uapfp) — (divu) - f

Let £ € s1. Then the difference between the spacetime and the horizontal divergence
is given by

Dot — Vae' = 5 (Dsta + Dats) = (0 +1) - €,
which applied to £ = u - f gives
(VES) - u = Da(uanfs) = (14 1) - (u- ) = (div) - |
~(diva) - f = 9+ )ES) - u+ Daluar).

By complexifying the above, we obtain the stated identity. O

2.4. Frame transformations and conformal invariance

A general frame transformation of the null frame basis vectors {es,eq,e,} into
a transformed null frame {e%, e}, e} can be decomposed into the following three
elementary types:

e rotations of class I, which leave the vector e, unchanged

L= h=e3+ +1| |2 I = +l (2.8)
ex=c1, eg=eztpeat plpulles,  eq = eatSp e .
e rotations of class 11, which leave the vector es unchanged
1 1
eh=es ch=catpacatglules ¢h=eatspaes,  (29)

e rotations of class III, which leave the directions of e3 and e4 unchanged and
rotate e,

eh=Ales, e} =Nes, €, =O0ue (2.10)

where p and p are real one-forms, A is a real function, Oy is a orthogonal matrix,
and the repeated indices indicate the sum on those.

Definition 2.12. We say that a frame transformation is conformal if it is a rota-
tion of class IIT with Ogu = Iup the identity matriz, i.e. such that

ey =N les, ej=Ndes, €, =eq (2.11)

for a real function A.
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Note that under a conformal frame transformation, the Ricci, electromagnetic,
curvature components get modified in the following way:

try’ = )\_ltrX, (“)trxl =\t (“)trx, trx’ = Mry, @ty =X @try

¢=N¢ n=n n=n =X7%

(F)ﬁ/ _ )\(F),67 (F)p/ — (F)p7 * (F)p/ _ * (F)p7 (F)ﬁ/ _ )\71 (F)ﬁ

Oé/ _ )\2(1’ ,6/ _ )\6, pl =p, *pl _ *p’ ﬁ/ _ Aflg’ a/ _ A72a

and similarly for their complex counterparts, and
1 1
W =21 <g+ 563(log)\)> , W= <w — 564(log )\)) , ('=C(C—V(log)).

Definition 2.13. We say that a horizontal tensor f is conformal invariant of type
s if, under the conformal frame transformation (ZIT), it changes as f' = \°f.

Remark 2.14. Note that s is precisely what in [5] is called the signature of the
tensor.¢

Observe that if f is conformal invariant of type s, then V3 f, V4f, V,f are not
conformal invariant. In GKS formalism, we correct the lacking of being conformal
invariant by making the following definition.

Lemma 2.15. If f is conformal invariant of type s, then

(1) (Vs f :=Vsf —2swf is conformal invariant of type (s—1).
(2) OV4f == Vuf +2swf is conformal invariant of type (s +1).
3) OV,f :=Vaf +sCf is conformal invariant of type s.

3) yp

Also, ODf := OVf +i*OVf =Df+sZf is conformal invariant of type s.

2.5. Comparison with the Newman—Penrose formalism

The GKS formalism here recalled is strongly connected with the more familiar NP
formalism. In NP formalism, one chooses a basis of null vectors (n,l, m,m) with n
and [ real and m complex, scaled such that g(n,l) = —1. They are related to the
null frame (es, e4, €1, €2) here presented for example by

1 1 1
n=—es3, l=e4, m=—=(e1+iez), Mm=—(e; —iea).

2 V2 V2

In NP formalism, the connection coefficients, electromagnetic and curvature com-
ponents are all complex scalar functions obtained by contracting the tensors with

°For a horizontal tensor f defined in terms of the null frames e3 and ey, its signature is the
number of e4 = L used in its definition minus the number of e3 = L. For example, the signature
of a = W(L,eq,L,ep) is 2 — 0 = 2, while the signature of n = %g(DAL, €q)is1—1=0.
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the null frame. For example, the extreme null curvature component ¥ is the spin-2
complex scalar defined as

Vo = =W ol'm”1"m?

—W(l,m,l,m).

In GKS formalism, the extreme null curvature component is a complex horizontal
2-tensor, as in

Aab == W(647 eav 647 Bb) +Z *W(647 eav 647 Bb)

= Qgp+1 *aab-

The relation between Wy and A,y is the following: the projection of the horizontal
2-tensor A into its first component gives, up to a scalar, precisely the complex scalar
\Ifo, ie.

Aler,e1) = aler,er) +1i “aler,er) = —Py.

Such relation also explains why the complex scalar ¥, is of spin-2, as it can be
realized as a projection of a 2-tensor. Similarly, in NP formalism the extreme elec-
tromagnetic component ¢ is the spin-1 complex scalar defined as

¢o = —Fl'm" = —F(l,m).

In GKS formalism, the extreme electromagnetic component is a complex horizontal
1-tensor, as in

B, = F(L,ea) +i F(L,ea) = o+ * 3,

and the projection of the horizontal 1-tensor F)B into its first component gives, up
to a scalar, precisely the complex scalar ¢, i.e.

FB(er) = FB(er) +i * F3(e1) = —gho.

The information about the spin of the complex scalars in NP formalism is encoded
in the tensors in GKS formalism: a spin 2-scalar is substituted by a horizontal
2-tensor, and a spin 1-scalar by a horizontal 1-tensor.

For future reference, we collect here a table of conversion from NP and GKS
formalism, where it is understood that the correspondence between the curva-
ture, electromagnetic and Ricci components holds up to projection on the first
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component.

H NP formalism GKS formalism H

DA V4,V3
5,0 D®, D-
Vo, ¥y A A
Uy, Wy B,B
\112 P
b0, P2 F)p, Fp
®1 Fp
o, X, X
T, T H, H
K,V ==
a, 8 Z
Dy b trX, trX
677 w?&

The conformal derivatives in GKS formalism are the equivalent of the spin and
boost weight operators defined in GHP formalism. Just as in GHP formalism, the
derivatives absorb in their definitions the Ricci coefficients €, v, a and (3, similarly
our (9V3, OV, and 9V, absorb w, w and Z.

3. The Einstein—Maxwell Equations in Full Generality

The Einstein-Maxwell equations are given by
1
Ry, = 2F,,\F,» — igWFaﬁF(w, (3.1)

D,F,y =0, DMF,, =0. (3.2)

where R, denotes the Ricci curvature of (M,g) and F,, is an antisymmetric
2-tensor. In this section, we derive the null Einstein-Maxwell equations in full gen-
erality, for a spacetime with a non-integrable null frame, therefore paying particular
attention to the symmetric and antisymmetric part of x and x.

3.1. The Maxwell equations

The equation D, F, 5 = 0 in (82) gives three independent equations. The first one
is obtained in the following way, using ([23):

0=D,F34 +D3Fy, + D4F3
= Va(F34) — F(x_,es + Cae3,€4) — F(es, —Caa + Xaven)
+ v3(F4a) - F(2ge4 + 2mpep, ea) - F<€4a Ne€3 + §a€4)
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+ Va(Fa3) — F(n ea + Laes, e3) — F(eq, 2wes + 21, ep)

=2Va(®p) — x_, FBs + xar FB, — Vs T + 20 F)3,

2w = Fp+2n0. Fp+ Vi FB +2n Fp—2wFB +2e€mm, * Fp.

By writing
F3 = fup+ buptrx + = €y @try | T
Xab Py = Xab 2 ab X 2 ab X Py
oomg Lo g L L@, <@
= Xab By, T 5trx B, + 5 e TS,
and using the definition of Hodge duals, we obtain
1 1
Vs M8 = Va 7, = —Strx Tl + 20 Flge — 5 Dty * 8,
LN ®)g 4 L@, =@
+§trx B, — 2w §a+§ try B,
+29a(Fp) 2 (na+n,) To+2("n, — na)
— %, FBo + Xab B, (3:3)
The second equation is obtained in the following way:

1 1
= va(Fb3) - F(iXabei% + 5&017647 63) - F(ebaxacec + Cae3)
1 1
+ Vi (F3a) — F(x, ec + Ges, eq) — Fes, g Xba€s + 5&;4)

+ V3(Fap) — F(naes + € ea,ep) — Flea, mpes + &, 1)
=V "B, =V B+ (X, — X)) TP+ X, €0 T TG T,
+X,, €ca “Fp+GTB — €an Vs T T4, TP, +¢ T,
—m (F)ga -, F)3,.
Contracting the above with €%° and recalling that curl (F)ﬁ =cvy, (F)ﬁb, we have
Vs * F) — curl (F)g — _(UX *(F), _ (a)trx (F)p) +(n—¢) -~ (F)g +E- (F)3.
The third equation is obtained from symmetrization of the above:

Vy * ) — curl F)g = —(trx * F + @try (F)p) +(n+¢) - * F)B4¢. (F)g.
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The equation D*F,, = 6pcDyFe— %D4F3,,— %D3F4,, = 0 gives three additional
independent equations. The first one is obtained in the following way:

1 1
0= 6bcDcha - §D4F3a - §D3F4a

1 1 1
= 6bc (Eac vb - (FP F (2Xbce4 + 2Xbce3a ea) -F (607 Exbaeél + EXbaei%))

1 1 1
+5Va ®B + 5 F(2wes +2n ec, ea) + 5F(es, 1, e4 + Eaes)

1 1 1
+ §v3 (F)ﬁa + §F(2Ee4 + 2ncee, ea) + §F(e47 Na€3 + §a€4)

1 1 1 1
= €aqc vc * (F)p + itI‘K(F)ﬂa + §tTX(F)éa 5 Xew (F)ﬂ — _X (F)ﬁ
4 (F)Qa F)ﬁ )p €ca 11, (F )p + §V3 F)3,
- E(F)ﬁa —Ne * (F)P Cca —Ta (F)p
By writing
(F) o 41 L @y ®
Xea EC = | Xea + §5ca trx + 5 Cca try gc

N 1 1, .
= Xeca (F)ﬁc + §t7”X (F)ﬂa ) ( )tI"X (F)ﬁa
we obtain

1 1
Va "B, + Vs e = =St x Ta — 5 Dty * o + 2078,

Summing and subtracting (33]) and B4]), we obtain
1
V3B - V(F) 4 VT = ey T4 Dty *F) + 28

+2(77 (F)p — g (F)p) + - (F)g
and

1
! (F)g + V(Fp) 4+ *v = F) = _§(t7°X (F)ﬁ‘f' (@try * (F)ﬁ) + 2w (F)ﬁ
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The last equation is obtained by

1
0= 5bcDch4 - §D4F34

1
— Bbe (Vb( B.—F <2xb es+ 2Xbces,e4) — F(ec, —Grea + Xbaea))

1
-3 <2V4 (F)p —F(2wes + 2ﬂae‘“ es) — F(es, —2weq + 2§aea)>
=divFB —tryTp4+¢. T4 @iy *Fy v, Fy 4 n- Fg—¢. (F)g,
which gives

Vi ®p — div 8 = — (trx = @trx * ) 4 (¢ 1) Fp—¢. T,

Vs ®p + div ® = — (trx Fp+ @try * Fp) + (¢ — ) - FP+¢- P,

(3.5)
We summarize the Maxwell equations in the following proposition.
Proposition 3.1. We have
Vs F3 = v(Fp) + v = Fp
;(trx ® + @ry = ®) + 20 ®+2(n Fp — = = Fp) + - F,

Vi +v(Fp)+ *v - <F>p

1 * * % ~
5 (X B+ @i " ) 20 F 4 2(— g Ty~ g7 ) 4 x- Fp,

V4 ®p— div®5 = — (1 y ®p — @try = ®p) 4 (C+1)- TP —¢- g,
Vs 4 div 5 = — (brx Fp+ @ty =) 4 (¢ =) - TP+ - T,

Vay * Fp—curl ®B = —(trx * T+ @try Tp) + (n+¢) - = FB+¢- =,

Vs * )~ curl ™ = —(try * ®p— @iy ®p) 4 (- ) *®gtg. * .

In complex notations and using conformal derivatives, we have

Oy, P _ ©pEp _ —%U"X B 42 Epp %X B,
v, B+ pEPp = —%trX FB 2P H + %X (F)B,
Oy, ®p _ %—@D PR _ _gxX ®p 4

1
2
@, ®p . Lop. T - ®p _ L
3P+ 29D B = —uX "P - 2H -

&

\ 3
U:J
|»—l
&
oy ]

=
s
+
N = o
183}
=
=
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Proof. We derive the equation for (F)B. From the above equation for )3 and its
dual, we have

Vs FB = v3(F)g 4 i * Flg)
:V(F)p_ v *(F)p—l—i( *V(F)p+v *(F)p)
1 * (F 1- * (F a F
,5(“)( B+ (e tr)( ( )ﬁ) — il(trX (F)g — ( )trX( )ﬁ)
_;’_2&( (F)ﬁ 44 (F)ﬁ) T 2( (F)p — n* (F)p) + 21'( *n(F)p +n* (F)p)

X EB+i (- ),

which gives

1
Vs FB —DFp — —5tX FB + 2w FB 4+ 2®pH 4

N =

From the equations for Fp and * F)p, we obtain
v, Fp = Va( Flp 44 * (F)p)
= div ™3 + icurl F)3 — (tT x Fp — @py * (F)p)
— i(trx *(F)y 4 (@gpy (F)p) +(¢+ ﬂ) - (Fg 4 i(ﬂ +¢) - )3

—&- Fp e~ T,

which gives

— 1

D- B = _—trXx Fp 1 2(Z+ H) ¥p - 5= @)

as desired. The other equations are obtained by symmetrization. Using the fact

that (FIB is conformal invariant of type 1, F)B is conformal of type —1 and FP is

conformal of type 0, we easily deduce the equations with conformal derivatives.
O

v, ®p

<

3.2. The Ricct identities

We now compute the Ricci curvature R, of (M, g) in terms of the decomposition
in frames according to the Einstein equation (B1)):

Ra3 = 2FanF3” = 20, FupFac — FusFag =2 ®p * Fg 2 @) )
Ry = 2 *(F)y = (F)g, 4 o (F), (F)g

Ry = 20 F3)Fs, = 20,4 F3.F3, = 2F)3 - F)3,

Ry =2 ),

Ry = (Fau)? + 28 Py (= 2F)2 42 * ()2 _ 9 (F)3. (F)g)

— 2(F)p2 + 9 * (F)pQ,
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Rup = ~FusFos — FaaFis + 20F g — sou( 207 +2 O — 2. (7))
- _ (F)éa (F)ﬂb _ (F)ﬁa (F)ﬁb 49 (F)p2 CucChe
— %5@1)( —9 (F)p2 49 (F)p2 _9 (F)ﬁ . (F)@
= 72((F)é® (F)@ab + ((F)p2 4o (F)p2)5ab-

Using the decomposition of the Riemann curvature in Weyl curvature and Ricci

tensor:
1

2 (gﬁéRa'y + gavRﬁé - gﬁ’yRaé - gaéRﬁv)a (36)

Rapys = Wapys +

we compute the components of the Riemann tensor:

1
Rassy = Wasspy — §6abR33 = —ag, — (8- F)B)da,

Rasas = Wasa + Rap — %5abR34 = pdap — *p €ap —2(FBD FB) 0,
Rossa = Wagss — Rag =28, — 2 Fp ) 420 F)g |
Risuss = Waass + 2Ry = 4p+ 4 Fp? 44 % (Fp?,
Raser = Waseh + %((%CR% — dapRac)
B+ B+ g, — P F
()t P )

The Ricci identities are obtained from the definition of Riemann curvature and

are given by, see [19):

Vax,, = 2Vo€, = 20X, = X, X, +2( = 2G€, +mE, +1,8,) + Rossas
VsXba = 2Vina + 2wXba — X, Xea + 2(§,€a + 1 ) + Raase,

Vax,, = 2Ven, +2wx, — XocX,,, +2(&€, +1,1,) + Raza,

ViaXsa = 2Vi€a — 2w Xba — XbeXea + 2(2¢a + My&a + N0&) + Roada-

1

V3Ca +2Vaw = —x, (G + ) + 20(C — M)a + Xab§, + 2w — §Ra334-
1

v4Ca - 2vaw == Xab(*Cb + Qb) + 2("-)(( + Q)a - Xabé-b - 2&&1 + §Ra4437

1
Vi, = Vag, = =X, (1= n)p — 4wE, + SRazs,
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1
V477a - v3€a = _Xba<n - ﬂ)b - 4&6@ + §Ra4433

1
V3W+V4£:4w£+f'§+(ﬂfﬂ)'C*U'Q+ZR34347

vaXbc + CaXbc == vaac + CbXac + (Xab - Xba)nc + (Kab - Xba)gc + Rb4aca

vaxbc B Cazbc = vbzac B Cbxac + (Xab B Xba)ﬂc + (Xab B Xba)éc + RbSac-

29

We summarize the result of their complexification, with the above values of the

Riemann curvature in the following.

Proposition 3.2. In complex notations and using the conformal derivatives we

have the following Ricci identities:

— - — 1~ =< N
(C)V3tI'X+ (trX) —(C)D-E+E-E+E'H—§X-X—(F)ﬁ-(F)ﬁ,
_ . 1~ =

<>v4trX+2(trX) —<C>D.E+E.H+E~hh5 X - ®p. FpB,
1 — — _ 1~ =
<C>v3trx+§trgtrxz<C>D-H+H-H+2P+§-E—§1-X,
(c) 1 ) -7 -7 = - = lao =
V4tr£+§trXtrXf D-H+ H-H+2P+=- 575)('&,

= IDRZ+ER(H + H) - A,
= ODRE+EZR(H + H) — A,

OV, % 4 LrX X — ODa oH - toxx 4+ tzas - Leoga o
VsX + guX X = ODEH + HEH — JuXX + 5202 - 5 "B i,
Lix X = ©Opa om- toxx s leaz_ Loogg
ViX +strX X = DR H + HO H — StrXX + 5282 - 5 WBo VB,
1~ —
AV (V2= ——trX(H—H) — SX(H-H)+B+ F)p (FB,
1— 1o — _
©OV4H - ©OV32 = —5uX(H ~ H) - ;X (H-H)- B~ FP B,
l—— o 1y — _
5 ©D. X = 5 ODrX —iS(trX)H — iS(trX)2 — B+ ®pF)p,

O
5 ©D. X = 5 ODrX —iS(trX) H — iS(trX)2+ B — FpFp,

Also, for the non-conformal Z, w and w:

1
VsZ + §tr£(Z+H)f2g(ZfH)

le — — 1
=—2Dw— ;X (Z+H)+ nXE+2wE— B - Fp Fp 4
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1
VaZ + §trX(Z— H)—2w(Z+ H)

1 - o~
— —trXE-—2wE-B- ®pFpR_ _E. X,

=2Dw+ =X (-Z+ H)

Vaw+ Vaw —dow = €€~ (n—n) - C+n-n=p+ Tp?4 *F)p2

N =

Note that we are missing the traditional Gauss equation which, in the integrable
case, connects the Gauss curvature of a sphere to a Riemann curvature component.
We now state the non-integrable analogue of the Gauss equation, see [19].

Proposition 3.3. The following identities hold true for f € s1 and u € sa:

1 1
(vavb - vbva)fc = 5 Cab ((a) tTXV3 + (@) tr)_(v4)fc - iEcdabfd + Rcdabfd
1 (@ (@ 1 1
(VaVe = VoV )ug = 5 Cab (“trx Vs + “itryVa)us — §Esdabudt - §Etdabusd

+ Risdaptiar + Redaplisd,

where
Eedab = XacX,y + X, Xbd = XbeX,, g — Xp.Xad- (3.7)
Proof. See [I9, Proposition 2.34]. O
3.3. The Bianchi identities
The Bianchi identities for the Weyl curvature are given by
(3.8)

1
D*Wagys = 5(DyRgs — DsRgy) =: Jgys.

The null Bianchi identities are given by, see [19],

Via — 2VRp
1 ~
—5(trxa + Wiry o) + dwa +2(C+ 4B - 3(px + “p*R) +a,

Vaia +2VEp
1 ~
= f—(tr ya — @try “a) +dwa +2(¢ —4n)®B — 3(px — Tp *X) + 4,

where
1
ga,b = Jba3 + Jab3 - iaabJ343~

Aap = Jpaa + Jabs — §5ab=]4347
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We also have
V4B — diva
—2(tr x3 — Wtry *f) — 2wl + - (2¢ +n) +3Ep+ € Tp) — Jaas,
V3 + diva
=2(trx § — Wiry "B) —2wh —a - (=20+1) = 3(Ep — "€ ") + Jzas,
V33 + dive
—(trxB+ Wtrx ") +2wB+28- X+ 3(n+ “pn) + - &+ Jsaa,
Vif — divg
—(trxB+ Dtrx *B) +2wB+28- X —3(pm— *p ) — & — Juas,
where
divo=—(Vp+ *V *p), divo=—(Vp— *V *p).
Finally,

3 a * 1A 1
Vap — divB = —=(tr xp + @trx p)+(2ﬂ+<)'ﬂf2€'ﬁf55’&*?434,

Vi *p4curlf = —Z(trx *p— Dtryp) — (2n+¢)- "B-28- "8

*

1
_Cxyg
2 4345
~ a « 1.
Vsp+divg = —S(trxp— @iry “p) = (2n—¢) - B+2¢- 8- X = 533,

Vs "p+curlf = —-(trx “p+ (a)trxp) —-(2n—-¢)- "B-26- "8

_|_

Ol MW o~ NIw olw
[>=<>
Q

1. n 1 “
——x- Ta+ = .
2X aTy U3
We compute the Js terms through the Ricci curvature, and then use the Maxwell
equations to simplify them. We summarize the final Bianchi identities in the fol-

lowing, and defer the proof to the appendix.

Proposition 3.4. In compler notations and using the conformal derivatives we
have the following Bianchi identities:

1
(C)VQ,A + itI'XA

~ —~ — — 1 ~ ~
= DEB +4HOB — 3PX — 2 (F) (5 ©pg FB + <F>PX>
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1 Fpe (F) 0 Fpe (F)
+5Va( B8 FB) + 2 OV3(FBE )

X- FB+

NN

+ (—%trX BB + % X ®p4 <F>PE> & "B,
© 1
V4A + §tI'XA

~ ~ = 1 ~ —~
= - DB - 4H®B - 3PX + 2P (—5 ()D& (F)B — <F>P1)

We also have
©V,B - é% A
= —2trXB + %A "H+ (3P —2®p Fp)= - F)p Oy, ((F)p)
n % ()p(®)p. TR),
V3B + %W A
— 92X B~ LA T~ (3P~ 2FP PP+ CP OV, (Fp)
n % ()p(®)p . FR)
and
V3B — (9DP = —trXB+B- X + 3PH + %A B
+ ®p p(Fp) — %tr_WmB —trx Fp Fp
n %(W- (F)p) (P Fpg . F)p %WX- ®)p,
OB+ )DP=—trXB+B-X -3PH — %A B

_ F)p©p(Fp) — %tr X Fp P _ X 0p F)p

) 1

+=(@p. ®B)Fp 4 Fpx . Fp 4 5 ®pX . F)p.

N =
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Finally,
1 —

3 — _
@V, P — 5 ©D.B = —XP - trX ®pFp+ H- B-Z-B

[I]I
ba
|><>
D>|

,N»—‘

" % ®)p Op. B 4+ 7. ®p Fp

1 N N — — 1
<>V3P+2<>D B= —gtriP—trz(F)P(F) 7H~§+§'B71

_Ywpp. o _ g @pER
5 H B
+ OV, (®Be FB) + (—trX Fp_lx. <F>B) & F)B.
B® B B - ;X B
Proof. See Appendix [A Tl O

4. The Kerr—Newman Spacetime and its Linear Perturbations

In this section, we introduce the Kerr—Newman spacetime and its representation
within the formalism above introduced. For a more complete description of the
Kerr-Newman spacetime see [20].

4.1. The Kerr—Newman metric

The Kerr-Newman black hole g q,q represents the most general explicit solution of
a stationary, rotating (with spin a) and charged (with charge @) black hole of mass
M. We consider the Kerr—-Newman metric in standard Boyer—Lindquist coordinates

(t7 T? 07 90):

A in’@
8M.a.Q = | E (dt — asin Gdgp) |(ﬂ dr® + lq] 2d6? + | E (adt — (r2 + a2)d<p)2,
q
where
qg=r-+iacosh, qG=r—1iacosh (4.1)
and

A =7*—2Mr +a® + Q?,
lq)*> = r? + a*(cos 0)?.

The metric g q,0 is a solution to the Einstein-Maxwell equations (B1) and
B2), with electromagnetic tensor F = dA, and vector potential A given by

A= %(dt asin® 0de).

We note that 0, and 9, are Killing vectorfields of the metric.
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The Kerr—Newman metric is of Petrov Type D, i.e. its Weyl curvature can be
diagonalized with two linearly independent eigenvectors, the so-called principal null
directions. The principal null frame is given? by

r? +a? a r2 +a? A a
= Ot + Op + —0 =——0— —0,+—90
R S-S VT A T
1 asin 6 1
€1 = —89, €y = 8t + ; 8¢.
Vgl Vil Vlg|* sind
With respect to the principal null frame, we have
X=x=¢(=£(=0, Flg = (F>g:o7 a=pf=F=a=0
or their complexified versions,®
X=X=2==2=0, ®p=FB—-0, A=B=B=A=0. (4.2)
With the above choice of principal null frame, the Ricci coefficients are given by
. 2r (@) 2acosd ; 2rA (@) 2aA cost
"X = T3 IX= 75 'X=—"7a1> IX=—7Va1
lq? lq? = e = lq/*
2 29 - M M 2 2. N2
g:a cos® O(r )+47’ a*r Qr, w=0, n=-—C
lql -
Also, we have
a®sin @ cos asin Or
m=———m3 "> M= 3
lql? lql?
. asinfr a?sinf cos
m=—73 m=——"3
lql? lql®
a®sin @ cos § asin Or
=73 > N,= "3
- lql? -2 lql?
N asin Or N a?sinf cos 6
= —""7T13 > Ny = —"—""m3
- lql® - lql?
Their complexified values are given by
2 2A
trX = ) triz_ﬁa ﬂ:_Zv
q aq
H, = ai singé’q7 H, = asingﬁq’
lql lal
7, = ai singé’ﬁ7 7, = asing@@
lql lal

dThere is an indeterminacy in the principal null frame as one may replace the pair (e3,e4) with
(A Les, Aeq) for any A > 0. The formulas in this section correspond to the choice of A such that
e4 is geodesic.

¢In NP formalism, this corresponds to the vanishing of c = A=k =v =0, &g = &; = 3 =
P4 =0 and ¢pg = ¢p2 = 0.
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The non-vanishing electromagnetic components are given by

®), - Q(r* —a’cos®d) (g _ 2aQrcosf
lal* lgl*

)

with complexified value

F)p — Q
q
The non-vanishing curvature components are given by

1
= —(=2M7r® 4+ 2Q%*r? 4+ 6 Ma® cos® Or — 2Q%a® cos? 6),
P
q

0
“p = %(6M7’2 — 4Q%r — 2Ma? cos?0),
q

with complexified value

2M 202
2M 29

P= .
?® %]

4.2. The FEinstein—Maxwell equations in Kerr—Newman

Using the vanishing of the Ricci, curvature and electromagnetic components given
by ([@2]), one can see that many of the Einstein-Maxwell equations obtained in Sec.
become trivial in Kerr—-Newman. We denote those which are not trivially satisfied
as reduced equations, and we collect them in the following proposition.

Proposition 4.1. The reduced Mazwell equations in Kerr—Newman are
©v,®p = Hux®p €y, Fp = _trx Fp, (4.3)
©Op®p = _9Epy  ©OpFEpP—=_2FpPH, (4.4)

The reduced Ricci identities in Kerr—Newman are

OVztrX + %(trg)Q =0, ©OVuirx + %(trX)Q =0, (4.5)
“K@mx+%m§nX::@DCH+HWF+QR (4.6)
OV 4trX + %trXtrg = OD."H+ H-'H+2P, (4.7)

)ODRH + H®H =0, “D&H+ HRH =0, (4.8)

1— 11—
Vs H + S X(H — H) =0, OV, H + S X(H — H) =0, (4.9)

ODX — (trX —trX)H =0, DX — (rX —twrX)H =0. (4.10)
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The reduced Bianchi identities in Kerr—Newman are

=

OpP = -(3P-2®p®P)H, ©@DP=-(3P-2FP®P)H,  (4.11)

Ov,p = —gtrXP — X ®p®Ep, (©y,p= %@P — X ®p®Ep
(4.12)

From the above we deduce (see also [I9]) the following identities for ¢ = r +
1a cos 0:

1— 1 _
Vag=5ttXq, Vig=gtrXq Dg=qH, Dq=qH. (4.13)

4.3. The wave operators in Kerr—Newman spacetime

In what follows, we will need to express the equations governing electromagnetic-
gravitational perturbations of Kerr-Newman in terms of wave operators applied
to k-horizontal tensor fields. In this section, we collect useful formulas for those
operators.

Consider the wave operator for ¥ € s;(C) defined as

Ijk\I/ab = gHVDuDV\I]aba (414)
where D is the horizontal covariant derivative as defined in 22).

Lemma 4.2. The wave operator for ¥ € s;(C) is given by

. 1
Ol = —2(VsVa¥ + VaVal) + AU + <£ 5“X> Vil

1
2

+

1
(u.) - itr X) V3V + (n+n)- VY, (4.15)

where Ay, = 6%V 4V, is the Laplacian operator for horizontal k-tensors. More pre-
cisely, for F € s1(C) we have

. 1 1
4WF = —V3V4F + A F + <2g §trX> V4F — 5157“ xXVsF +2n-VF
+i(— *p+nAn)F
1— ~ 1—
= —VsVuF + 3D - (DEF) + <2g _ itg) a
11— _
- 5t1~XV3F+ (H+H)-VF

1 1
+ (ZtrxtrKJr Z@tm(‘l)m_ﬁp— (F)p? — = Fp2 4 (— *erT]/\Q)) F
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and for U € s5(C) we have

. 1 1
O,U = —V3V4U + AU + (2&— itrx) ViU — 5157“ xV3U +2n-VU
+i(=2 *p+2pAn)U

1 1
= ~VaValU + 5D8(D -U) + <2g— §trg) ViU

1 — 1 1
- itrXV3U+ (H+H)-VU + <§trxtrz 5(‘1)157)((“)157)_(72/)

+2F)2 42 )2 4 (2 *P+277/\Q)> U.

Proof. For the proof of (A10) see [19, Lemma 5.4].

For F € 51(C) and U € s5(C), using the commutators, see [19, Lemma 5.2]:

[Vs, Va]F = —2wV3F + 2wV4F 4+ 2(n —n) - VF +2i (— *p+nAn)F,
V3, VyU = —2wV3U + 2wV,U +2(n —n) - VU +4i (= “p+nAn) U,

we obtain
W F = —V3V4F + A1 F + (w - %trx) V4F — %tr XVsF
+2n-VF+i(— *p+nAn)F,
oU = —VsV4U + AsU + <2g - %trx) ViU — %tr xVsU
+2n-VU+i (-2 *p+2nAn)U.

Using the following Gauss relations, see Lemma [A. 7}

D (D&F) = 2A:F +i(Wtrx Vs + Dty Vi) F

1 1
- <§tr xtrx + 2 @try (a)trXJr 2p—2F)p2 2~ (F)pQ) F,

(DR(D - U)) = 24U —i( (@Dtry Vs + (a)trxv4)U

+ (tr Xtrx + (@try (“)trX +4p—4F)p2 g~ (F)p2> U
we obtain

. 1— ~ 1
WF = —V3V4F + §'D . (D@F) + <2g — 5(tr&—|— 7 (a)tI'X)) V4F
! (@ 1 L@y @
- §(trx + i\ Yrx)VsF +2n- VFE + ZtT xtrx + 1 try “try

+p— Fp? = TP (- *p+TMQ))F

37
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and

: 1 1
02U = —V5VaU + 5DE(D - U) + <2g — Z(try —i (a)trx)) V.U

[\

1 1
— i(trx —1 (a)trx)V3U2n VU + | —strxtrx — 3 (@try (a)trX

2

7N\
—_

—2p4+2F)2 12 )2 4 j(—2 *p4 2y A Q)) U.

By writing tr x + 1 (“)trx =trX, try +i@try = trX and 27 = H + H, we obtain
the stated expressions. O

4.4. Linear perturbations of Kerr—Newman

In this section, we define the linear electromagnetic-gravitational perturbations of
the Kerr-Newman spacetime. Recall that as Kerr—Newman is of Petrov Type D,
the following coefficients:

X,X,5,E, ABBA Fp Fp

vanish in the background. For this reason, our definition of linear perturbations
of Kerr-Newman consists in solutions to the Einstein—-Maxwell equations where
quadratic expressions in the above terms are neglected.

Definition 4.3. A linear electromagnetic-gravitational perturbation of the Kerr—
Newman spacetime! is a solution to the FEinstein-Mazwell equations of Sec.
Bl where quadratic expressions of terms which wvanish in the background (i.e.

-~

X,X,2,2,A,B,B, A, FB, ®B) are neglected.

For example, consider the Maxwell equation:

(©y, F) _ ©p@Ep _ —%tr& ®)p 4 9o®py + L3 . PR,

DO | =

The last term, %X (F)B, is quadratic in X and (F)B, and therefore it is neglected in
linear electromagnetic-gravitational perturbations of Kerr—Newman. The linearized
version of the above Maxwell equation then reduces to

@y, Fp - ©pFp — f%tri B +2®PH,

A similar procedure can be applied to all the Einstein—Maxwell equations of Sec.
We collect them in the following proposition.

fThis same definition can also be used to define linear electromagnetic-gravitational perturbations
of any Petrov Type D spacetime.
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Proposition 4.4. A linear electromagnetic-gravitational perturbation of the Kerr—
Newman spacetime consists in a set of complex horizontal scalars, one-forms, 2-
tensors

trX, trX, P, P € 5,(C),
H,H,2,2,2 5B, ¥B, B,B € 5/(C),

X,X, A, A€ 55(C),

which satisfy the following linearized Einstein—Mazwell equations, comprised of the
linearized Mazxwell equations:

©v; Fp — ©pEp - —%trg FB +2EpH, (4.16)

@y, Fp 4 OpFEp = —%trX F)B —2FpH, (4.17)

v, Fp — %%- "B = —trX PP + %E- B, (4.18)

v, Fp 4 % ©@p. FB = —trx Fp — %H . (), (4.19)

the linearized Ricci identities:

OVstrX + %(tr&f =D.E+2- H+E-H, (4.20)
OV4trX + %(trX)Q =p.Z+=.-H+E H, (4.21)
©VstrX + %trgtrx =©OD.H+H -H+2P, (4.22)
OV,trX + %trXtrg = ©p. H+ H H+2P, (4.23)
OV, X + R(trX)X = VDRZ+ER(H + H) — A, (4.24)
OV, X +R(trX)X = ODRZ+ER(H + H) — A, (4.25)
VX + %tr& X = “)DEH + HRH — éﬁz (4.26)
©Ov,X + %trXX = ODRH + HO H — %@)? (4.27)

1— ls — —
Vs H — OViE=—SuX(H - H) - 5X - (H-H)+ B+ "PTE

=

(4.28)
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1— 1o — _
OV, H - V38 = —UX(H — H) = 5X - (H—"H) - B- P F)B,

(4.29)

l— o 1, — _
5 ©D. X = 5 ODrX —iS(trX)H — iS(trX)2 — B+ ®pF)p, (4.30)

Il o 1,
5 OD. X = 5 ODrX — iS(trX) H — iS(trX)Z+ B — ®pFp (4.31)

Vaw + Vaw —dww — (n—n) - C+n-n=p+ Fp? 4 * F)p? (4.32)
and the linearized Bianchi identities:

1
(OV5A + 5 XA

~ ~ — 1 ~ ~
— D&B + 4H®B — 3PX —2(F)p (5 ©pg FB + <F>PX> (4.33)
(e) 1
V4A + §U“XA
~ ~ ~ 1 ~ —_—
=-DEB-4H®B - 3PX +2F)P (—5 ©pg FB — (F)P&) (4.34)
(e) 1o
- 1 _ _ - ___
= - XB+ A H+ (3P —2®PpEPp)= 4 ®p Oy, (FB),  (4.35)
(e) 1o
VsB+ 5D A

S 1 — —
= —2XB- ;A -H-(3P-20PFP) 2+ ®POVy(TB)  (4.36)
V3B — (9DP

= —trXB 4 3PH + ®p ©p(Fp) _ %ug@ FB —trx ®p F)p,
(4.37)
©V,B + ©DP
= —trXB—3PH — Fpp(®p) - %trX F)p Fg _trx ®p (FB
(4.38)
V4P — % ©p.B

FpEp. ®B4+H. ®pFp,
(4.39)

= —gtrXP ~trX PPEP 4+ H.- B+

N =
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11—
V5P + 5D B

_ %ﬁp _RXEPEp_H.p- L®p@p. ®p_ g. ®pFER

1
5 H B.
(4.40)

Remark 4.5. Observe that the above definition of linear perturbations does not
rely on a linear expansion of the metric of the form

g =8maote g(l) +62 g(2) .

for a smallness parameter €. If one performs the above decomposition, applied to
the Ricci, curvature and electromagnetic components, and selects the e-expansion
of the Einstein—Maxwell equations, then a choice of gauge would be needed in order
to evaluate the values of the background metric g, q,q. Definition instead is
more general, and has the only effect of discarding the €2 terms, without choosing
a gauge in doing so.

5. Gauge-Invariant Quantities in Perturbations of Kerr—Newman

In this section, we identify the gauge-invariant quantities in linear gravitational-
electromagnetic perturbations of Kerr-Newman spacetime. Those quantities play
a fundamental role in the resolution of the stability of Kerr—Newman, as, being
affected only quadratically by a change of coordinates, they are good candidate to
represent gravitational and electromagnetic radiation.

5.1. Linear frame transformations

Recall the rotations of class I, class II and class III which transform the basis vectors
{e3,e4,e,} into {e}, €}, e} as introduced in Sec. 24 Those rotations depend on
the one-forms p and p, on the scalar function A and on the orthogonal matrix
Ogp. Observe that the dependence of the equations and the coefficients on A has
already been taken into account in the definitions of conformal derivatives, and the
dependence on the matrix O, is accounted for in the use of horizontal tensors as
opposed to scalars. In this way, all the equations we have are already invariant to
a rotation of class III. We now consider the change in the coefficients caused by
rotations of class I and class II.

In the context of linear perturbations of a spacetime, we consider linear
frame transformations, i.e. those where quadratic expressions in the p and p are
neglected. Combining the transformations given by (Z8)) and (23]), and neglecting
the quadratic terms |u|? and |u|?, we obtain the general linear frame transformations
as defined here. a
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Definition 5.1. A linear frame transformation of the basis vectors {es, eq, €4} into
{e5, ¢}, el } is a transformation of the form

/
€y = e4 + UgCq,

€3 = €3+ |1, a; (5.1)
) 1 1
€a = €a + §Eae4 + 5#@637

where 1 and p are real one-forms.

When a linear frame transformation is applied to the frame, the Ricci, curvature
and electromagnetic components change accordingly. For example, the electromag-
netic component F)3 is modified in the following way:

1 1
(F)3! = F(e,, ey) = Fleq + FH,ea T Gliats, eat Hen)

1 1
= F(eav 64) + iuaF(e& 64) + MbF(eav eb) + iﬂaubF(eﬁlv eb)

1
+ §MaMbF(€3,eb)-

By neglecting the quadratic terms in p and g, we then obtain
® = FBa + pta Fo— €ap " Fp = o+ p1a o = *pa * Fp.

By considering the complexification of the )3, i.e. (FIB, and by defining M :=
w414 *p, we deduce

(F)B/ _ (F)ﬁ/JrZ- * (F)ﬂ/ _ (F)ﬂJr,u(F)p* *N * (F)p
+i (B Fp— )
= W)y ) (F)y e (B) e (B, 4 = (F),
— (F)ﬁ+z * (F)ﬁ+ ((F)p+l * (F)p)(quz *M) — (F)B+ (F)PM

In the same way, we can compute how all the Ricci, curvature and electromag-
netic components get transformed by a linear frame transformation of the form
(EI0). We collect those transformations in the following lemma.

Lemma 5.2. The linear frame transformation (51I) modifies the Ricci, curvature
and electromagnetic components in the following way:

1 . 1 1
trX’:trX+§(c)D-M+§H-M, tr&’ztri+§<c)D-M+§ﬂ-M,
S _ v Yopa los Y -x+tops Lus
X :X+5 D®M+§H®M, X :X+§ DM + 5£®M-

1 1— 1 1
H =H+ 5 (O3 M + ZtrXM, H' = H + 5 OV, M + ZtrgM.

1 I (XM
= =245 OVaM 4 J0XM, ' =E+ 5 OVaM + 1 XM

1
2
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and

Fp' = Fpy FEppy Ep = Fp Fp — Fp_(Fp),

==

3— 3
A=A, B'=B+§PM, P =P, §’=§—§PM, A=A
where M == p +1i *p and M := p+1 .

Proof. See [28]. O

5.2. Gauge-invariant quantities and their relations

The linear frame transformations of the form (&) can be used to pick a gauge in the
perturbations. In particular, the quantities which are not modified by such a linear
frame transformation may have a physical meaning, since they do not depend at the
linear level on the choice of coordinates. We call such quantities gauge-invariant, and
they are good candidates to represent electromagnetic or gravitational radiation.

Definition 5.3. A horizontal tensor ¥ € s(C) is said to be gauge-invariant if it is
not modified by a linear frame transformations of the form (&), i.e. if V' = U.

One of the main steps in analyzing electromagnetic-gravitational perturbations
of Kerr-Newman is then to identify the gauge-invariant quantities. We identify in
the following lemma four gauge-invariant quantities and their symmetric version.

Lemma 5.4. For a linear electromagnetic-gravitational perturbation of the Kerr—
Newman spacetime, the following symmetric traceless 2-tensors:

A A
and
§= -~ @ppp_ 3z @R, Fpg,
: 2 (5.2)
§= 3 “DB"B - g™ - TPX
and the following 1-tensors:
B=2Fpp_3PFpR B=20pp_3PFR (5.3)

and

¥=0v,FB 4 SHWB —2®pz x= ©y;FpB 4 g@W)ﬁ +2®pz
(5.4)

are gauge-invariant.
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Proof. The invariance of A and A is straightforward from Lemma We check

the invariance of §:

S/ _ 71 (C)DI(/X\) (F)B/ - §H’(§) (F)B/ + (F)Pl)?/
2 2
1 ~ 3~
= —5 @8 (®B+ ©par) - 216 (B + TPM)

PO 1
+ ®p (X +3 ©DOM + §H®M)

=F— 1 ©p Eppr — 1 ®)p DM — 3 ®pgoM
2 2 2
(F) L ona 1~
+ P 3 DM + §H®M
1 ~ ~
=5 - 5(-2 EPHYOM — PPHRM = §,

where we used® (£4). Similarly for §. We check the invariance of 9B:

_ 3_ _
B =2Ep'p 3P Fp = 9F)p (B + 5PF) —3P(F)B + FpF)

3_ _
=% +2Fp (§PF) —3P(")PF) =%
and similarly for 8. Finally, we check the invariance of X:

X' = Oy (FB+ FpF) 4+ gﬁ( FpB + EpF)
®p (=L@ l—
—20P (245 OVaF + S0 XF

= Oy, ¢ gH(F)B —2Fpg

_ __ 1 1
—trX ®pF 4 ®p @Oy, (F) + gtrX( ®pF) —2®p <5 OV, F + ZtrXF>

3—
= v, Fp ¢ S0 X FB —2Fpz = x
and similarly for X.
g0bserve that by using the linearized Maxwell equation (@IG]), one obtains
(OpEP)EM = <<C>v3 B + %trng -2 (F)PH) M

= 2FPHIM+ quadratic terms

since the terms in F)B and M are quadratic for linear perturbations of Kerr-Newman, and are
therefore neglected. From now on, when multiplied by a quantity which vanishes on the back-
ground, we can then use the reduced equations of Proposition E1]
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Remark 5.5. The identification of the above gauge-invariant quantities for lin-
ear perturbations of Kerr-Newman is a crucial new part of this work. In order to
compare them in NP formalism, we collect here their equivalent, where the corre-
spondence has to be understood through the projection to the first component, as
explained in Sec.

H NP formalism GKS formalism H
U A
fi=—=0po+ (26 + 37)o — 2001 S
b = 3(;50‘1’2 — 2(}51@1 %
r:= Doy — (3p+ 2€)do + 2k X

We point out that in [4 p. 240], Eq. (213), in the context of perturbations of
Reissner—Nordstrom, Chandrasekhar notes “parenthetically, that while a gauge, in
which ¥ and ¢; vanish simultaneously, cannot be chosen, the combination 2¥ ¢, —
3¢9V, is invariant to first order for infinitesimal rotations”.

The complex scalar b identified in [4] corresponds precisely to the projection to
the first component of our gauge-invariant quantity 8. Nevertheless, such quantity
was not used in the subsequent analysis in [4]. Indeed, it was used to show that a
gauge where ¥; and ¢; vanish identically cannot be chosen, while a gauge where
¢o = ¢2 = 0, the so-called phantom gauge, can be chosen. In [4], the equations
governing the perturbations in the NP formalism were written in the phantom
gauge, and all the analysis was performed in such a gauge. In particular, by choosing
the phantom gauge, the above quantity was being reduced to a rescaled version of
the curvature component ¥y.

No previous mention of f nor ¢ in the context of perturbations of Kerr—-Newman
is known to the author.

Remark 5.6. In the case of linear electromagnetic-gravitational perturbations of
Reissner—Nordstrom, the gauge-invariant quantities A, §, % and X, respectively
reduce to the quantities «, §, 3 and t, first appearing in [14] [16]. More precisely, in
Reissner-Nordstrom the Ricci coefficients H, H, (Dtry, (a)trX, *(F)y, *p vanish in
the background, and therefore the terms H® FB, H® FB, * (F)p)A(, * (F)pX in
the definition of §, 8 and X become quadratic for linear perturbations of Reissner—
Nordstréom. The real parts of A, §, B and X reduce to

R(F) = —V& FB + Fhpy+ quadratic terms = f,
R(B) =2 (F)pﬂ —3p (F)ﬂ+ quadratic terms = B,

3
R(X) =V, ()3 + Etrx F)g — 2 et quadratic terms = 1,

with §, 3 and , as defined in [14, [16].
In the case of gravitational perturbations of Kerr, the only gauge-invariant quan-
tity which has relevance is ¥, U4 or A, A, the well-known Teukolsky variables. The
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quantities §, B and X, since contain electromagnetic components, only make sense
for solutions to the Einstein—Maxwell equations.

Observe that by adding and subtracting 3 ®PH® FB and 3 FP H® (FIB to
the linearized Bianchi identities (£33) and ([£34), respectively, using the definition
of § and § (5.2)), those Bianchi identity become

1 N - _
VA + StrXA = DB + HE(4B — 3P )
—3PX —2®)pg, (5.5)
1 . _
OViA+ XA = - IDEB ~ H(4B - 3P FD)

—3PX +2Fpg (5.6)

We summarize here some fundamental relations between the above gauge invari-
ant quantities A, §, B and X obtained as consequence of the linearized Einstein—
Maxwell equation. The relations between A, §, B and X can be obtained by sym-
metrization.

Proposition 5.7. In a linear electromagnetic-gravitational perturbation of the
Kerr—Newman spacetime, the following relations among the gauge invariant quan-
tities A, §, B and X hold true™:

o The following relation between the (V3 derivative of A, the (VD derivative of
B and §:
1 1 ~ ~ — —
Ep (V34 + S XA) = (DEB + 3HEB — (3P +2FP FPp)§
(5.7)
e The following relation between the OV, derivative of §, the (OD derivative of
X and A:
(c) L ST Lopgx - L Sx_ (@
Vi + | X + 5t X ) § = -5 DX — 5(3H+ H)®x — Y)PA

(5.8)

"In NP formalism, the above relations have the following form:
201 (— AWg + (4y — p)Tg) = b —2(8+ 37)b+ (32 + 2¢161)f
Df— (3p+p+3e—e)f=—dr+ (38+3r—7+a)r—2¢1¥g
Db —2(e+3p)b = —2¢1 (6¥0 — 4aTo + 7Tq) + (32 — 2¢161)r
Ar+ (37 —7)r = —0f + (7 + 3a — B) f + 20, [4pt]

where f, b, r are defined as in Remark
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o The following relation between the (N, derivative of B, the (D derivative of
A and X:

VB +30XB = FP(OD.- A+ H - A) — (3P -2Fp®pP)x. (5.9)

o The following relation between the (9)V3 derivative of X, the (0D derivative of
T and *B:

1— _
©OVs% + S X X = —©D.F-H -F—2B. (5.10)

Proof. See Appendix [A2] O

6. The System of Teukolsky Equations

In this section, we state the first theorem of the paper, which contains the coupled
system of Teukolsky equations for the gauge-invariant quantities A, § and 8. These
equations govern the linear electromagnetic-gravitational perturbations of Kerr—
Newman spacetime, and generalize the Teukolsky equation for A in the case of Kerr.
The system of Teukolsky equations for B, § and A can be obtained by symmetry.

Theorem 6.1. Consider a linear electromagnetic-gravitational perturbation of
Kerr-Newman spacetime gnr,q,q as in Definition 3l Then its associated complex
tensors and gauge-invariant quantities A, §, B and X, satisfy the following coupled
system of Teukolsky equations:

T() = My 5. ], 61)
T3(A) = Mg, X], (6.3)

where

e on the left-hand side of the equations, T denotes the Teukolsky differential oper-
ators, respectively, given by

1—— _ _
T,(B) := — V3 OV, B + 5 D ()DRB) — 3trX (IV3B
3 l=%) © T 3. ©
— (X + 50X ) OViB 4 (6H + H +3H) - VB
- (—gtrgﬁ —4®pFEpP 4+ 9H - H) B, (6.4)
@y, (© L opa@p S~ ! ()
T(3) =~V OVF + 5 ODE(OD - §) — ( FuX + 7 X ) OV,F

—%(thJr@) OV, + (4H+H+ H) - OVF
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- 1— _ [ -
+ <%tr1trx - I XtrX + 3P — P +4 F)p ®)p — g D H) k3

1 ~—
(6.5)
PP 1 _
T(A) = - v, v,A4 4 5 ©DR(OD - A) — (§trx + 2trX) ©v;4
— %trg@vm +(4H+ H+ H) - OVA+ (- trXtrX
+2P - 2FPEP)A+ 2HE(H - A) (6.6)

e on the right-hand side of the equations, M denotes the coupling terms, where the
terms in squared parenthesis indicate the quantities involved in the expressions,
respectively, given by

Mi[§. %] =2 PP TP (20D §+ 41§ - (20X - &X) X),  (6.7)

M;[A, x,98] .= — Fp <<C)V3A + % (3trX — trX) A) + <g (C)V3H> %
+(2H — H) ®%, (6.8)
M;[F, X] == 2 FP(2()V,F + 20X § + (H + H)BX). (6.9)

Proof. The derivation of the above Teukolsky equations relies on Proposition 5.7

and is obtained in O

We collect here few remarks about Theorem [6.11

(1) The Teukolsky operators 7;, 7o and 73 are wave-like operators, as it can be
seen by comparing the expressions for J; and [y given in Lemma More
precisely, their highest order terms are given by a wave operator, with the
additional presence of first-order terms.

(2) Observe that the system of Egs. (GI)—(E3) for B, § and A also involve the
gauge-invariant quantity X. Nevertheless, X is considered here an auxiliary
quantity which only appears on the right-hand side My, My and M3 at the first
order. More precisely, the system of Teukolsky equations (GI)—([63), combined
with the transport equation ([BI0) for X, gives a complete system of equations.

(3) In the case of linear gravitational perturbations of Kerr spacetimes (which cor-
responds to Kerr-Newman for F)P = 0), Eq. [3) for A reduces to T3(A) = 0,
i.e. the Teukolsky equation of spin 42 in Kerr, as obtained in [19].

(4) In the case of linear electromagnetic-gravitational perturbations of Reissner—
Nordstrém (which corresponds to Kerr-Newman for H = H = @try =
(“)trX = 0), the real parts of the Teukolsky system (GI)—(G3]) reduces to the
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following Teukolsky equations for 3, f and «
Ti(5) = 2T (4divf — tr x 1),
() = - Fp(IVs0 + trxa),
T3(@) = 4 Fp(OVaf +tr xj),

where

T1(B) == — V3 (V45 — 2div P33 — 3tr x V3 — 2tr x IV,
+ (—gtr xtrx —4 (F)p2) 8,

To(f) == — V5 OV — 2 Dsdivi — tr x (I Vuf
—2tr x OVsf + (—tr xtr x + 2p + 4 Fp?)f,

T3() = — OV, V30 — 2 Psdiva — %tr& ©V4a — gtrx ©V3a
+ (—tr xtrx +2p—2 (F)p2> Q.

The quantities (3, f and « (as recalled in Remark [5.6]) and the above quantities
were obtained in [14], [16].

Finally, we relate the above system of Teukolsky equations for the horizontal ten-
sors B, § and A to the equations verified by their projection to the first component,
as one would have obtained using the NP formalism.

Using that for F € §1(C) and U € s9(C) with f = Fy = F(e1) and u = uy; =
u(eq, e1) their scalar projections, we have, see [19, Appendix D]

. 2 cosd r? + a?)? 2a?% cos? A
(b = O iggs et + (2ol 04 22 5

- 4 cosd (r? + a?)? 4a? cos? GA)
(U1 = Ogu i me < g g (—al T8 29 4 207905 P20
(O2U0)11 gl Z|q|2 sinZ g U ( lq[6 lq[6 u

we can deduce the scalar Teukolsky equations satisfied by the projections of B, §
and A.

An interesting aspect of the system of Teukolsky equations in Kerr—Newman
is that we have to differentiate between the spin and the conformal type of the
quantities B, § and A. As B is a horizontal 1-tensor and § and A are horizontal
2-tensors, their projections B and §11, A11 will respectively be scalars of spin 1
and spin 2. On the other hand, % and § are of conformal type 1, while A is of
conformal type 2. We define the relevant rescaling of those projections up to some
functions of ¢ and g so that we can relate them to the standard Teukolsky equation
in the literature [37].
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We define the following rescaled projected quantities:

77/

_ q
bzm%h f=q81, CY:gAn

and we collect in the following table their respective spin and conformal type:

| Spin type s | Conformal type ¢

b 1 1
f 2 1
o 2 2

We define the following Teukolsky operator of spin type s and conformal type ¢
in Kerr—Newman, applied to a scalar 1 of spin type s and conformal type ¢ to be
given by

2c 2 a(r — M) . cost
[s,c] = —(r— Ty
T () - Dglw,a,Qw + lq|? (r = M), + lq|? (C A * SzSiIlQ 9) Op¥

+ % <c (M(TQ 722) — @ — r) - sia6089> O
+ #(s — s%cot? 0). (6.10)

In particular notice that the conformal type c is relevant in the real parts of the
coefficients of the first derivative, while the spin type s is relevant in the imaginary
parts. Observe that the above Teukolsky operator reduces to the standard one [37]
in Kerr for spin s applied to ¥g, Wy, ¢, ¢2 by using ¢ = s, since these quantities
have the same spin and conformal type.

One can then show that the projections to the first components of the Teukolsky
differential operators 77, 7o, 73 given by (64)—(G4) can be written in terms of the
scalar Teukolsky operator (GI0). More precisely:

=7/2 _
Zm(ﬂ(%))l =7M(0), A%@)n =T, 3(73(,4))11 = T2 (a).

Just like in Schwarzschild, Kerr and Reissner—Nordstrom, boundedness and
decay for solutions to the Teukolsky equations cannot be obtained directly. Since
in Kerr—Newman is crucial to avoid the decomposition in modes as recalled in the
introduction, we proceed in deriving a system of generalized Regge—Wheeler equa-
tions from the Teukolsky ones.

7. The System of Generalized Regge—Wheeler Equations

In this section, we derive the Regge-Wheeler system of equations governing the
electromagnetic-gravitational perturbations of Kerr—Newman spacetime, therefore
proving the main result of the paper.
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7.1. The invariant quantities P, Q and p, q

We introduce here the crucial invariant quantities satisfying the Regge—Wheeler
equations. Those quantities are derived from the gauge-invariant quantities B and
§, through the following conformal operator.

Definition 7.1. Let ¥ € s,(C) be a gauge-invariant quantity of conformal type s.
We define the Chandrasekhar operator Pc : $5,(C) — s5(C) to be

Po(0) == V30 + OF € 54(C) (7.1)
for a scalar function C of conformal type —1.

We immediately observe that Pco(¥) € s5(C) is gauge-invariant of conformal
type s — 1.

We define the invariant quantities 8 and Q as the Chandrasekhar-transformed
of the gauge-invariant quantities B and §, respectively. In addition we allow for a
rescaling of those quantities.

Definition 7.2. We define the invariant quantities P € s1(C) and Q € s2(C) as
P i=Pc,(B) = V3B + 1B € 5,(C), (7.2)

Q 1= Pc, (F) = V35 + 03 € 55(C) (7.3)

for scalar functions C1 and Cs to be determined. We also define their rescaled
version p € 51(C) and qF € 55(C) as

p=fi(a. )P = fi(g,D(DVsB + C1B) € 51(C), (7.4)

0¥ = f2(q,D)Q = f2(q. D (VVsF + CoF) € 55(C), (7.5)

where f1 and fo are functions of ¢ = r+iacos® and § = r—iacos@ to be determined.

The quantities p and q can be seen as first-order differential operators applied
to the gauge-invariant quantities 8 and §, which satisfy the Teukolsky system of
equations. Observe that 93, 9 and p, q¥ are all of conformal type 0.

7.2. Statement of the main theorem and remarks

We now state the main result regarding the wave equations satisfied by p and q¥.

Theorem 7.3. Consider a linear electromagnetic-gravitational perturbation of
Kerr-Newman spacetime gara,q as in Definition B3, with associated gauge-
invariant quantities B and §.
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Then there exist choices of complex scalar functions C1, Cy f1, fa, in the defi-
nitions of p and q¥ , explicitly:

1 9 5
p=q3q2 <(C)V3% + (2‘51"&_ 52 (a)tm_() %) €5(0),

qF = q§2((c)V38 + (trx —3i (a)t@)S) € 59(C),

such that the invariant 1-tensor p € s1(C) and the symmetric traceless 2-tensor
qF € so(C) satisfy the following coupled system of wave equations:

2acos€
Oip — 1= Vb — Vip = 4Q2|q|5 (D q%) + Ly[B, 3, (7.6)
4acos€ 1 ¢ ~ 3 ~
Dag” FE — 5 Vi = Vag” = e <D®p — 5 (H— H) ®p) + Lye [B,F]
(7.7)
where

e [y and Oy denote the wave operators for horizontal 1-tensors and 2-tensors,
respectively, as defined in (EI4),

e the potentials Vi and Vo are real positive scalar functions (whose precise expres-
sion is given by ([C39)), which for a = 0 coincide with the potentials of the
Regge—Wheeler system of equations in Reissner—Nordstrom [15], i.e.

Vi = fitrxtrKJrE\(F)pQwLO ('7%') Vo = —trxtrx +2Fp? + 0 <| |>
o Lp[B,3] and Ly [B, 3] are linear first-order operators in B and §, respectively,
given by
Lo[%B,3] = ¢'/?7°?[ - 22 - OV +2Fp®P Y5 (D . §)
+2FPEP YE - Zz2)B +2FP FP(YS - §+ Y %))
and
Lye[8,3] = q@?[W§ OVig + (WS — 25) - OV + WX ©ODex + W2 ID&B
+ (WS — Z§)5 + WREB + WEax],
where

— Wf and WX are real functions,

— Z% and (W3 — Z3) are real one-forms,

— W2 and Y are imaginary functions given by W2 = %i(a) trx and Y3 =
—3i (a)tr)_<

and Y&, Z, Y§*, (VVO3 — Zg) are complex functions, and YOS, W, Wst are

complex one-forms, all of which vanish for zero angular momentum.



Electromagnetic-gravitational perturbations of Kerr—Newman spacetime 53

We call the system of Eqs. (LO)—([T1) a system of generalized Regge—Wheeler

equations.

We now remark what are the crucial structures of the system of generalized

Regge—Wheeler equations (.6)—(70) which make them analyzable in physical space.

(1)

The only first-order terms present in both equations is of the form iV, as
in the generalized Regge-Wheeler equation obtained in Kerr [7, [19, 29]. Such
first-order term has good divergence properties in the derivation of the energy
estimates. Schematically, when multiplying Eq. (Z.6)) by V:p and taking the real
part, one obtains a cancellation from the first-order term:

tVip - Vb +iVip - Vip = iVip - Vi —iVip - Vip = 0.

This allows to derive the energy estimates without loss of derivatives. Similarly
for Eq. (T1).

The reality of the potentials Vi and V5 is also crucial in the derivation of the
estimates. When deriving the energy estimates and multiplying Eq. (Z6) by
V:p and taking the real part, one obtains

Vip-Vip+Vip-Vip = RV (p- VB + 5 Viep) +iS(Vi)(p - VP —iB - Vip)
1 _
= SROD)Vellpl*) +iS(V)(p - Vib — b - Vip).

If the imaginary part of the potential is not zero, then the last term cannot be
written as a boundary term, and the energy estimates cannot be closed. In addi-
tion, the positivity of the real part of the potentials give positive contribution
to the energy in the boundary terms. Similarly for Eq. (Z1).
The highest order coupling terms on the right-hand side of the equations are
of the form %(5 -q¥) and —%(’D@p), up to a multiplication by the positive
constant 8Q?. In particular observe that the functions multiplying the operators
D- and D& are complex conjugate. Such structure is crucial in the cancellation
of those coupling terms once the estimates for the two equations are summed,
since D- and D& are adjoint operators up to lower order terms, as obtained in
Lemma 2171
Such lower order terms, together with the derivatives falling to the func-
¢ 7}

tions % and TqFF > are crucial in treating the coupling terms %(5- g¥) and

,%(D@p - %(H — ﬂ)@p), precisely to cancel the term f%(H — ﬂ)@p in the
estimates.

The first-order operators Ly[%B, §] and Ly [B, §] contain terms which are \ order
in differentiability with respect to p and g¥. In particular, in the derivation of
the energy estimates it is crucial that the highest order terms relative to the
corresponding equations have real coefficients. More precisely, in the equation
for p, the operator L,[%B, §] should have real coefficients for the quantities which
are lower order with respect to p, i.e. (9VB, while in the equation for qF, the
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operator LE[%, 5] should have real coefficients for the quantities which are lower
order with respect to q¥, i.e. OV, and (IVF.

On the other hand, the lower order terms which are coupled should can-
cel, similarly to the coupling terms above. It is therefore crucial to obtain a
cancellation in the terms W.2 = %i (“)trx and Y3 = —3i (“)trx

It is remarkable that a choice of complex functions C7, Cs, fi and fo which

realizes all the above exists and can be found. In particular, the freedom in the

choice of these functions is not enough to impose each one of the above conditions.
We instead will prove the theorem by imposing condition 1 (i.e. the only first-order
term is of the form iV;) and condition 2 (i.e. the potentials are real), and this will
uniquely determine the functions C, Co, f; and fo. We then show that with those
choices, conditions 3 and 4 are also satisfied.

(a)

We summarize here the main steps of the proof.

We compute the commutator between the Chandrasekhar operator Pc and the
Teukolsky operators 7; and 75. In order to cancel the lower order terms in the
commutator, we impose conditions on the real part of the functions C'; and Cs,
and obtain

%(Cl) = 21]1“&, %(02) =try.

This is done in Sec. [.3.11 With such choice we can compute the wave equations
for the Chandrasekhar-transformed 8 and £ quantities, in Sec.

We compute the effect on the wave equations of the rescaling of % and Q
through functions f; and f. In order to get only first-order terms of the form
1V, (condition 1), we impose conditions on functions f; and fs, and obtain

fi=(@)"*@"2 f.=q3"

This is done in Sec.

We compute the right-hand side of the respective equations, and show that the
above choice of f; and fy implies the structure of the higher coupling terms
(condition 3). This is done in Sec. [[34

We compute the potentials of the two equations, and impose the vanishing
of their imaginary parts. This uniquely determines the imaginary parts of the
functions C7 and CYy, giving

5
3(Cy) = —3 (a)trx, (Cy) = —3i (a)trz.

This is done in Sec.

Finally, we compute the lower order terms in L,[%5, ] and Lyr[B, §] and show
that the above choices for Cy and Cs imply the reality or the cancellation of
the relevant coefficients. This is done in Sec.
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7.3. Proof of Theorem [T.3]

In this section, we derive the proof of Theorem[Z.3] while relying on the computations
in the appendix. Recall the Teukolsky equations ([G]) and (62]) in Theorem [GT], i.e.

T:(B) = My 3, X],
T2(T) = Ma[A, X, B].

We apply the Chandrasekhar operators Pc, and Pc,, for C1 and Cy to be deter-
mined, to the above equations, respectively. Recalling that P := Pc, (B) and
Q :=Pe, (F), we obtain

T.(P) + [Pey, T1](B) = Pe, (M1[F, X)), (7.8)
T2(Q) + [Pe,, Tl(F) = Po, (Ma[A, X, B)). (7.9)

7.3.1. The commutators [Pc, T|

We compute the commutators between the Teukolsky operators 7; and 75 and the
first-order differential operator Pc as defined in (ZI]) for any scalar function C. In
order to eliminate the highest order terms which cannot be expressed in terms of
P or Q (ie. VB and (V,F), we need to impose conditions on the real part of
the functions C and Cs. We obtain the following proposition.

Proposition 7.4. Let P = Pc, (B) = OV3B+C1B and Q = Pe, (F) = IVsF+
C55, such that Cy and Cy satisfy, respectively,

1 — __

V30, + 5 (X +0X) O — XX =0, (7.10)
(c) 1 —_— 1 [

VaCa+ 5 (trX + trX) Cy — XX =0. (7.11)

Then the commutators between the Chandrasekhar operators Pc, and Pc, and the
Teukolsky operators Ty and Ty are, respectively, given by

[Pey, T)(B) = 20 VB — o (X + 5X) Vs + Vi
- %(triJr@)Ml[Sy X] - Lm[%,%],

(Pe, Tol(8) = 20 VA — L (10X + TX) Va2 + 159 — & (irX + TrX)

x Ma[A, X, 8] — Lq[B, 5],
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where
e the potentials Vi and Vs are given by

Vi=IF +JP + KP + M
5
= f§trxtrx —4p—2Fp2 40 (@) , (7.12)
= r

Vo =I§ + J§ + K§ + M§

la]

= f;trxtrzf4pf2(F)p2+O (T—3), (7.13)
where the precise coefficients are given in[Appendix (]
o Ly[B,§] and Lo[B,§| are linear first-order operators in B and §, given by
Lp[8,§) = —Z2 - VB — (4trx Fp? + Z3°) B, (7.14)
La[®B,§] = —Z5 - OVF + (4tr x Fp? — Z§)3, (7.15)

where Z2 and Z3 are complex one-forms and Z§ and Z are complex functions
of (r,0), all of which vanish for zero angular momentum, having the following

fall-off in r:
% 5 _ ol % 5 _ o[l
Za,ZaO<T—3), ZO,ZOO<T—4 .
Proof. See Appendix [Cl O

Observe that the transport equations ((I0) and (ZII)) only impose conditions
on the real parts of C; and Cs. Indeed, for any real constants pi,ps2, the scalar
functions C; and C5 given by

Cr =2trx +ip1 (a)trx, Co = trx +ip2 (a)trX (7.16)

are of conformal type —1 and satisfy (ZI0) and (ZI1)), respectively.
7.3.2. The wave equations for P and Q

Recall the Teukolsky operators 773 and 73, see ([6.4) and (63). We then obtain for
T and 9, respectively,

1— — 3 1—
Ti(F) = —VaVaP + 5D - (DIP) — 3 X VaP — <5trg + 50X - 2g> VP
+(6H+H+3H) VP + (gtrgﬁ —4FEpFEP L 9H - H) B,

1~ = |
T2(Q) = —VsVaQ + §D®(D Q) — (gtrX + 5trX> ViQ
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(trX 4+ trX —dw) VaQ + (4H + H+ H) - VQ

DO | =

3 - 11— _ ___
+ (—ZtrXtrX — Ztr&trX +3P—-P+4FpEp

3—= .
5(6)D~H+T}~Q+m/\ﬂ> 2,
where recall that P8 and Q are both of conformal type 0.

From the commuted equations (7.8)) and (C9) and using the formulas for the
commutators given by Proposition [, we obtain, respectively, by writing 2n =
H+ H:

1— ~ S N
~V3V4P + 5D (DEP) — 3trX VP — (2trX + trX — 2w) V4P
+(6H+H+ H+4H)-VP

+ (gtrgﬁ —4FpFpP+9H - H + m) B
1 _
= Pc, (M1[3, X]) + 3 (trX + trX) My [, X] + Ly [B, 3]
and
1~ 3 1
—V3V4Q + §'D®('D -9) — (?ch + 51:1"X> VsQ
—(trX + X —2w)VyQ+ @AH+H+2H + H)-VQ

3 - 1— _ ___
+ (—Ztr&trX — Ztr&trX +3P-P4+4Fp®Ep
3—— , .
—i(C)D-H-l—n-Q-i-m/\ﬂ—i—Vz Q

= Pc, (M2[4, X, B]) + % (trX + trX) Ma[A, X, B] + Lo [B, §].
Using the formulas for the wave operator according to Lemma
WP = —VsVaP + %73- (DRR) + (2g — é@) Vi
- %Wvgq:% +(H+H) VP
+ @tr Xtrx + i @try @ty +p— Fp? — = Ep2 i (= *p+nA Q)) PB,

. 1 ~ — 1
0,0 = —V3V4Q + §D®(D . Q) + <2£ - §tri) Vi
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1 — 1 1
- itrXV3Q +(H+H)-VaQ+ <§t7’ Xtrx — 5 @try (“)trX —2p

+2F)p2 Lo F)2 L (2 *p+2mA Q)) 9,
we can rewrite the above as
4P = SXVaP + (260X + 30 X) VP — 5H + H+4H) - VP + VP

Po, (M1 [F, X]) + & (trX + trX) My [§, X] + Ly [B, §,
(7.17)

where

i o _ 1
vV, = gtrgtrXJrzl(F)P(F)P —9H-H-Vi+ trxtry

1
+7 @try @try +p— Fp? — = Ep2 i (= *p+nAn) (7.18)
and

. 3___ 1 - _ -
.0 = §trXV3D+ <§tr§+tr1) ViQ - (BH+2H+ H)-VQ+129

1 -
+ Pe, (Ma[A, X,B]) + 3 (trX + trX) Ma[A, X,B] + La[B,§], (7.19)
where

~ 3 — 11— — - 3
Vo = XX + S0 XtrX — 3P+ P — 4P EP 4+ @D H -7

~ 1 1
—imAn—Va— 5“" Xtrx — 3 (@ try (“)trX —2p+2F)p2 4o (F)2

+i(=2 "p+2nAn). (7.20)

7.3.3. The rescaling from B to p and from Q to qF

Observe that the wave equations (TI7) and (Z.I9) satisfied by B and Q present
first-order derivatives V3, V4 and V on their right-hand side. In order to have only
a first-order term of the form ¢V, we need to define rescaled versions of 3 and Q.
The rescaling is obtained through functions of ¢ = r + tacosf and § = r — ia cos 0,
ie.

p= (g, )P €51(C), " = f2(q,7)Q € 52(C).

Proposition 7.5. Let fi and f3 be of the respective forms
fi = (@)™ (@)° ™, for any real ni,

fo=(9)" (@)% ", for any real na,
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Then
2 0 2aA cosf 2 0
o [t (Bt )
+(Va+ 700w
1 I
11 [ Pou (M5 %) + 5 (1 + ) M5, X] + L[, 5]
and
. 4 4
CaqF = ifs [ a|C|02S0th (1= ( airfsﬁvrﬂ N 4a|s1|ri€rveﬂ)}

+ (Vo + f5'0(f2))q"

+ f2 {Pcz (M3[4, X, B]) + % (trX + trX) My[A, X,B] + La[B, 3]] .

1
2

fi=@"*@2, f2=q7, (7.21)

the dependence on the V, and Vg derivatives cancels out and we obtain

In particular, observe that for ny = 5 and ny =1, i.e.

. 2 0
Tup =i Vep - (Va+ £7'00) ) b

+f1 [Pcl (M4[§, X]) + % (trX + trX) My [, X] + Ly [%,g]} (7.22)

and

. 4a cos 0
Ooq" = i——— IE Viq" +(V2+f2 (fz))CIF

+ f2 [Pcz (M3[A, X,98]) + % (trX + trX) My[A, X,B] + La[B, s]] .
(7.23)

Proof. See Appendix [C2] O

7.3.4. The right-hand side of the equations

Proposition 7.6. Let M;[F,X] and Ms[A, X,B] be the right-hand sides of the
Teukolsky equations, as defined in ([G.1)) and ([G.8]). Let Pc, and Pc, be the operators
defined in () with Cy and Co given by (TI6l). Then the following relations hold
true:

Pe, (M, X)) + 3 (X + TX)Mu[3, %)

=4®pEP(D-Q+ (2H+ H) - Q) + L, [B, 3, X,
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Po, (ML[A, 2,B]) + o (trX + TX) Mo[4, X, )

= (3P +2Fp®P)Q — %(D@‘B + (3H + 2 H)®P) + Lm, [B, §. X],

where Ly, [§, X] and L, [B,§, X] are linear first-order operator in B, § and X,
given by

L, [B, 5, %] := (4trx Tp?) B+ 2EpEP(yFOD -5+ V5 -5
+YPB + Y5 X) (7.24)
and
L, [B, 8, %] = —(4tr x Fp?) §+ W OV, + WS- OVF + WiE
+WBEODRB + WPEB + WX ODRx + WERX,  (7.25)

where Y.3, Y& and Y& are complex functions of (r,0) and Y is a complex one-
form, all of which vanish for zero angular momentum, having the following fall-off

mr:
YS Y% -0 |a| y& v¥ =0 |a|
a0 (Tz)v 0770 — (Ts

and Wf, Wg, W2 and W2 are complex functions of (r,0) and W2, WE and Wt
are complex one-forms, all of which vanish for zero angular momentum, having the

following fall-off in r:

B _ |a| 5 S S Tk |al § X _ |al
W, O(T‘_2>7 Wy, W Wy, W =0 03 ) WO,WO—O 1)

Proof. See Appendix O

Using (T22) and (Z23) and the above proposition, we deduce

. 2a cos
Chp = i “|C|°28 Vep+ (Vi + f7'0(f1))p

+AA®PEP(D.Q+ (2H+H) - Q) + L, [B, 3, X] + Ly[B, 3]
(7.26)

4acost

——— V¥ + (Vz + £, '0(f2) + 3P +2F)p (F)P> qF

s {% (DEP + (3H + 2 H)®P) + L, [B, . X] + La [%»S]} :
(7.27)



Electromagnetic-gravitational perturbations of Kerr—Newman spacetime

61
We are now left to express the right-hand side in terms of p = f1B and q* = f2Q.
We write
OD. O = f—l( ©D . g¥) + (c)D(fz—l)
ODEP = fi

[ (OD-q") = ;2 OD(f2) - qF
H(9DBp) + OD(fEP = fi
This implies

)

Y DD&p) — f2 OD(f1)Bp.
2a cosf
lq|?

|j1 =7—

Vip + Vip +4EP®P(f, 71

and

(D-qF + (2H+H — f; " ©D(f,))

CIF) + Ly[B, 3]

(7.28)
F 4a cost -1 >
DQq =l | |2 vtq +‘/2q (f2f1 )(D®p
+(BH+2H — f; " “ID(f1))®p) + Ler [B, ), (7.29)
where we define
Vi=Vi+ fi'0(f) (7.30)
Vo= Vot f3'0(f2) + 3P + 2P ®P (7.31)
and
Lae[%8,3] == fo|La[B,5.X] + La[®B, 3]
#13), we deduce

. (7.33)
We now simplify the coupling terms on the right-hand sides of the above. From

D(¢"q") = ng" (Dg)q"

q" +mq"q" " (Dg) = (n H + mH)q"q",

. . o (7.34)
D(¢"q™) = (mH +nH)q"

We therefore have, for f; = (¢)*/?(q)%/? and fo = qg
2H+H — f; ' ©D(f,) = 2H

2H+H-(2H
3H+2H — f7*9D(f;) =3H +2H (

We also write

H.
_1/2 2
EPER( ) =12 2000 @) = 107D = 19,
q q |Q|
1/2 3
(fofiY) = q32(q) /2(@) 2 = £

= — = q—
65/2 |q|5
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We therefore finally obtain

. 2a cosf T
O — i o Vb~ Vip = 4@2# (D-q%) + Ly[B, 3, (7.35)
. A4acos 1 ¢ ~ 3 ~
|:|2C|F — ZWVtCIF - quF = _§W <D®p 3 (H — ﬂ) ®P)
+ Ly [B,5). (7.36)

7.3.5. The potentials of the equations

In this section, we compute the potentials V7 and V4 as obtained in (Z30) and (Z3T]).
We determine the imaginary parts of the complex functions Cy = 2tr y + ip; (YDtry
and Cy = try + ips @try given in (ZI0) such that the imaginary part of the
potentials vanish. B

Proposition 7.7. Choosing p1 = —% and pay = —3 in the definition of Cy and Cs

[@I49), i.e. for
5
Cr =2y — i @try, (7.37)
Co =try —3i @ry (7.38)

the potentials Vi and Va in Eqs. [(38)) and [30) are real, i.e. S(V1) = (Vo) =0,

and are given by
1 1 1
Vi= —trxtrx + divi + 5+ §|Q|2 +5F)p? 45 * Fp2

Vo = —tr xtrx + 4divy + 2 -5 + 2|p|* + 2 Fp? + 2 * F)p2,

In particular, modulo O(|a|) terms, we have

1
Vi=—-trxtrx+5%Fp?4+0 la] ,
4 = r3

Vo= —trxtry +2Fp2 +0 (@)
= T

Proof. See Appendix O
Using the values in Kerr-Newman given in Sec. A1l we obtain
Lir vty + div 4+~ + 1| B
_ = r . -
g XX AW g 5l

r* —2M7r® + (2 — 3cos? 0)a’r? + Q*r? — 2a* cos? 0
l/°
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and therefore, explicitly,
r* —2M7r® + (2 — 3cos? 0)a®r? + Q*r? — 2a* cos? 0 N 5Q?
lql® la*”
4 —2M7r® + (2 — 3cos? 0)a?r? + Q*r? — 2a*cos? 0 2Q?
49 R

Vi =
(7.39)

Vo=4

7.3.6. The lower order terms

We finally simplify the lower order terms Ly [B, §] and Lyr [B, §] as defined in (Z.32))
and (Z.33).
Using (ZI4) and (24, we obtain

Ly[B,3] = fi[Lm,[B, T, X] + Lyp[B,F]]
ek [(4trX(F)p2)% Lo ®pFp
X (VIOD-F+YF - F+YPB+ Y %)
— 22 vB — (4trx Fp? + Z7)B]
= ¢/?g°/? [- z3 . (OyB 42 F)p®p YGK(W %)
+2PPEP YE - Zz2)B + 2P PP (YF - 5+ Y x)].
Using (ZI3) and (Z25), we obtain
Lqr[B, 8] = f2[Ln,[B, 5, X] + La[B, 5]
= g7°[ — (4tr x Fp*)F + W OViF + W - OVF+ WFF
+WBODRB + WPRB + WX ODRx + Wex — 25 - OvF
+ (4tr x F? = Z5)3]
= q7* (W5 VG + (WS — 23) - OVvg+ WrODex + W2 DB
+ (WS = Z5)T + WEes + Wiax].
We now summarize in the following the structure of the above terms.

Lemma 7.8. With the above choices of C1 and Cs, we have that the highest order
terms in Ly[B,§] and Lyr[B,§] satisfies the following:

° Wf and WX are real functions,
o 7% and W3 — Z3 are real one-forms,
o« W2 = %i(a)tq and Y5 = —3i (a)tr)_g.

Proof. See Appendix [C.Al O
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7.4. Sketch of boundedness of the energy

We here sketch how to prove boundedness of the energy for the system of equations
([C8) and ([7) as obtained in Theorem [73t

. .2a cosf 7
S VP T = 46’22| 5(P -q%) + Ly[B, 3],
. 4acost 1 ~ 3 ~
Oaq® — zwvth —Voq® = 75% (D@p -3 (H— H) ®p> + Ly [B,F).

To fully close energy estimates, we need to combine them with spacetime local
integrated Morawetz estimates, which will be done in a future work [I8] by making
use of the hidden symmetry in Kerr—Newman to avoid decomposition in modes.
Nevertheless, in this section, we show that all the crucial structures obtained in
Theorem are precisely what one needs to perform energy estimates, once the
Morawetz estimate, which is less sensitive to the structure of the lower order terms,
are achieved.

As a general rule,! in order to obtain energy estimates for the wave equation
Y = 0, we multiply the equation by V¢, and integrate by parts. Since we are
dealing with complex tensors, we then multiply the equation Dlp by V.p and the
equation DQqF by th_F, respectively, and then add the conjugate of each one to
take the real part.

Doing so, we obtain from each one of the above equations the following:

Ohip - Vip +0hp- Vip

2 0 2a cos 6
:ZﬂVp Vip+1——— ||2 Vip-Vip+ Vip - th—f—le Vip

Iql2
+ Lp[B, 3] - Vib + Ly[B,F] - Vep (7.40)
and

Oaq® - ViqF + TagF - Vig¥

4a cos

=i Ved Vial T g Vid” - VigT 4 Veq” - Vigt 4207 - Vig”
1 — 17 ==
-3 |q|5 (D&p) - ViqF — 5ﬁ(m@p) ViqF

iIn the case of Kerr—-Newman, in the ergoregion we need to multiply by the timelike 9 + 2+ 5 04p.
The analysis is identical since the term involving the 0, can be absorbed for small a by the
non-degenerate Morawetz estimates away from the trapping region.
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3¢ ~ 37 & o an F
17gF (H ) - Vua® + 105 (H — H) 8p) - Vi
+ Ly [%B,5] - Vea¥ + Lor[B, 5] - Vi~

(7.41)
We now analyze each term on the left-hand side.

(1) The structure of the first-order terms V; in the equations of the form i f(r, 8)Vy,
for a real function f(r,#) is crucial for the cancellation of these terms. Indeed,

2acost 2a cos 6

i——5— Vip - Vip+i———5—Vip - Vip
lq| Iql
2acosb 2acos€
:27|Q|2 Vip - Vip — I ——— V- Vip =
4 0 4 0 —
i alglc;S Vg™ - VigF +i a|clc;S Via® - Vig®
4acosb 4dacosb —
:27|q|2 V¥ - ViqF 7| B Viq¥ - ViqF =

(2) The reality of the potentials V4 and V5 allows to write the terms involving the
potential as boundary terms in the usual way:

Vip - Ve +Vip- Vep = Vi(p - Vib + 8- Vip) = Vidi([pl*) = 0:(Vaol*),
Voq® - Vg + V2qF - Vg = Va(q¥ - VigF +qF - Viq¥)
=120:(19"*) = 0 (Vala™ ).
Being Vi and V; positive for |a|/M < 1, they give a coercive contribution to
the energies.
(3) In order to obtain cancellation for the terms involving coupling, we need to sum
the estimates for the two equations. Observe that the complex functions which
=3 3
multiply the coupling terms, i.e. # and #, are conjugate complex functions,
and such structure is crucial for the cancellation. Since the coupling terms differ
by a constant factor 8Q?, we multiply the second identity (Z4I)) by 8Q? and
sum to (Z40) and obtain
Dip - Vib +0ip - Vep — 0 (Valp[)

+8Q7 (D2q" - VeqF + 0aqF - Vg™ — 3, (V2|q" )

74Q2| |5( qF) - Vib + 4Q? | |5( F)'th

_4Q2q
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+6Q2|q|5 ((H — H)®p) - ViqF +6Q2|q|5 ((H —"H)®p) - Viq©

+ Ly[B,3] - Vib + Ly [B,§] - Vip
+8Q*(Lgr [B, 5] - ViaF + Lyr[B,3] - VigF).
We now consider the first two lines on the right-hand side of the above. We

put together the terms which are multiplied by the function % and those
multiplied by %. We first integrate by parts in ¢ in the first term, and obtain

7 3 7
2Q2< 19I5 (D-q ) Vip —2 |q|5 (D@p) Vig® +3| E (- H) @)ﬁ)'vth)

3 _ 3 _
+2Q? <2IZ?(D qF) - Vip — | E (D&p) - ViqF

q3

430 (- 1) B) 'vtq—F)

—3 —3
_2Q2< e (D-Vig™) - p— 2| |5(D®p)'vth

3 _ PR _
+2Q? <22—|5(D -Viq¥) -p— 2W (D&p) - Viq¥

Recall Lemma [ZIT] that relates the operator D& and D-. Applying it to F = p,
U = Vq¥, we obtain

(D&@p) - ViqF = —p - (D - Viq¥) — (H + H)@p) - Viq¥ + Da(p - ViqF).

Using the above we write, modulo spacetime divergence terms:

3
2| |5(D ViqF) - p

3 P — N 3 R .
_zp<|q|5)vth P+ 2V - (DBD) + 25 (1 + H)Ep) - ViaF
3

=2D(q"*(7)"/*)Viq® P2 |5vtq_F-<D®p)

3

+20 |5((H+ H)®p) - V.qF
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e P
:(H_5H)WVMF P+2| |5thF'(D®P)
e R _
+2W<<H+ H)®p) - Viq¥
3 o~
=(3H - 3H) qF p+2| E th - (D®p)

Y

since from (Z34) we have D(¢q'/?g /%) = (3 H — %H)%. Similarly,

2|q|5 (D-V.d") - E:(3£—3H)|ZT 2 |5th . (Dy).

We finally obtain

7 7
2Q2< o (D-Viq") - P—2w(D®P) v

_3 3

+3|q|5 (H - "H)&p) - vth)+2Q2< WP (D-ViqF) - p

3 3 -
_2W (D&p) - ViqF +3| E ((H— H)&p) -thF)

-3 I .
= 2@1% ((3H — 3H)V4q¥ - p+2VqF - (DRp) — 2(D&p) - Viq©

+3((H - H)&F) - Viq )+2Q2|"|5((3ﬁ73H>vtq_F-p

+2V,qF - (D&p) — 2(D&p) - ViqF + 3((H — H)®p) - ViqF)
=0.

Observe that upon a spacetime integration, the coupling terms cancel out,
and therefore they only give contributions to boundary terms. Even though
those terms do not have a definite sign, the modified energy terms are positive
in the case of Reissner—Nordstrom for |Q| < M, as proved in [15]. In particular,
for small angular momentum |a| < M they remain positive in Kerr-Newman.

By putting the above together we have

‘jlp : vtﬁ‘i’ Dlﬁ : th - 3t(V1|]J|2) + 8@2(D2qF . th_F + qu_F . thF

— 0:(Vala®[?)) — (T%q (D-q%)- p+%q (D q ) p)

= Lp[B,F] - Vib + Lp[B, 3] - Vep + 8Q* (Lo [B, 5] - Veg¥
+Lyr[B, ] Vig").



68 E. Giorgi

(4) In order to absorb the lower order terms on the right of the above estimates,
one needs to combine the above energy estimates with boundedness of trapped
spacetime energies, as given by Morawetz estimates. Moreover, through trans-
port estimates one can show to bound all first derivatives of B, § and X by a
degenerate Morawetz bulk for p and .

Assuming such estimates, we briefly explain how to absorb the lower order
terms above. Recall that

Ly[B,3] = ¢'/*q"[ = 2 - IVB + 2P EP YF (D - 5)
+2EPEP YE — 22)B +2FPEP(YS - §+ YiF X)]
and
Lye[8,§] = q7*[W§ OVag + (WS — 25) - OV + Wr ODax
+WE DB + (W — Z§)F + WP EB + W RX]

The terms on the second line of the above expressions (i.e. the lowest order
terms) can be absorbed for small |a| < M, by integration by parts in ¢ and
then bounding by Cauchy—Schwarz. For example,

q1/2§9/2(2 (F)p (F)p Y(;B — ZO%)% -Vip
_ *q1/269/2(2 (F)p (F)p Y(;B — Z?)Vt% p
< O(ar)(|VeB[* + [p[?).

Both terms on the right-hand side appear without degeneracy at the trapping
region in the Morawetz bulks, and therefore they can be absorbed by that for
small |a| < M. The same will be true for the other terms of lower order, which
contains only one derivative of B, § or X.

In what follows, we therefore only look at the terms which highest number
of derivatives, since the lower order terms can be treated as above. We now
consider

WS VT - ViaF + g Wi ©OVF - Via".
Since W is real, we have
= W5 (q@* VT - VidF + ¢*7 V4T - Viq")
= Wi (q@° VS - Vaa¥ + ¢*GViT - Vaq")
= Wi (4@° Vs - Vaa® + ¢*qVsF - Vag®) + -
Writing ¢7°Vsg = q¥ + lo.t., we obtain
=W (" - VadF +qF - Vag") + - = WSV4(a" ),

which gives a boundary term. The same happens for the terms W ODRX, Z 5.
(V9B and (VVa3 — Zag) - (OVF, which because of the reality of the coefficients,

can be written as boundary terms.
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We now look at the coupling terms in the lower order terms, i.e.

(q1/2q9/22 (F)p (F)p YS(©OD-F)) Vip+ (q1/2§9/22 (F)p (F)p Yf( ©D.F))
Vb 4 8Q% (¢ W2 ODEB - Vi qF + g7 W2 (ODRB - V,qF).

Writing that F)P F)p = ﬁli and W2 = 3i(@try and Y;§ = —3i @Dtry, we

have
q1/2—9/2 9/25 1/

4q - (a 4q

+ 6Q2q621' (a)tI‘X (c)’D®% . th_F _ 6Q2q26i (a)trx (c)'Dég)% . vth

= —6Q? (“)trx((c)D T)-Vip

1/2-9/2
= —6Q% (a)trx[%
9/2 1/2

+ 6Q2Z (a)trK[T

Now by recalling that ¢7°Vs§ = qF + Lo.t. and ¢*/27”/?VsB = p + lo.t., we
obtain, only looking at the highest order terms:

(D -F) - Vb + ¢*7 ©DEB - V,qF]

(9D -F) - Vip + qg° IDEB - V,qF].

q\/2g%/ - -

1/2-9/2 _

=~ (0D Vi§) 5 - 7 ODEVE "
1/279/2 _

= |q(|14 (9D V33) b — ¢*gODIV5B - g7
1/229/2 1 1

. q9q OD . dF) -5 — 023 ©) P& F

= —5 q) P =75, Db - q

|q|4 qq2( ) ql/qu/z
72

= 7W[((C)D . qF) P+ ©OD&p - qF] =0.

The remaining terms are therefore only of lower order, and can be absorbed as
shown before for small |a] < M by Cauchy—Schwarz.
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Appendix A. Explicit Computations

We collect here some explicit computations needed in Secs. 2HE
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A.1. Derivation of the Bianchi identities

Lemma A.1. We have the following for the decomposition in frames of Jg 5 in

E3):

Tuss = —Va(F)p2 4 * )2y 4 2(77 —ag) - (* ) F)g 4 (), ()

+26- (7 ®p T — Fp ) 4+ Va(Fg- ) — (T ), (A1)

Jaba = Vi * Fp = F, 4 ®p gy 4 (¢, +n,)(* Fp * Fg, + F)p Fg,)

—a

* * 1 *
+,( " Fp 5, + Fp gy — oVa(Fp? 4+ Fp)d

) ~ 1 _
- Xba( (F)p2 + (F)p2) + V4( (F)ﬁ® (F)g)ab + 5Xbc( (F)ﬁ® (F)ﬁ)ca

1 *
_ §Xba F)ﬂ F)ﬁ+§ (* F) (F)ﬁb _ (F)p (F)gb)

+&(FprFg — (F)pF)g ), (A2)

Tras = — O, (* F)yx (Flg 4 (FY(Flg v o (= (F)) = (F)g 4 (F), (F)g )

+ (a) tT’X( * (F)p (F)ﬁa _ (F)p * (F)ﬁa) + 2( (F)p2 4 * (F)p2)€a
+Va(FB- FB) + (26 +1n,) FB- TP —26,(FBE FB)as, (A.3)

* 1 * *
304 = Va( (F)p? + (F)p2) — 5157“ x( ) (F)ga — F) (F)éa)

1 * * 1 a [k
_ §trX( (F)p (F)ga + (F)p (F)ﬁa) _ 5( )trx ( (F F)ﬁ (F) (F)ﬁ )

—a

1 * (% * c * *
-3 (“)tr)_( ( (F)p (F)ﬂa + (F)p (F)ﬁa) _ )V4( (F)p (F)éa _ (F)p (F)ga)

12 <<F>p2 4o <F>p2) 1, + & B T = Ra( * T P, — F)p )5

_X(w F>gb+<F %) (F’B®<Fﬁ)ab» (A4)

72(a)t7,x((F)p2+ *(F)p2)Jr (a)tr)_((F)ﬂ. F)ﬂ. (A.5)

The other quantities are obtained by symmetrization, where in interchanging the 3
with the 4, one interchanges F)g (F)é, Fly s —Fhy = F)y o = (F)y ¢ s —(,
nen, X o x and try < try, w e w.

Proof. We compute Jy34:

2J434 = D3Rys — D4Ry3

= V3(Rus) — 2R(Dgzey, e4) — V4(Raa) + R(Duey, e3) + R(es, Daes)
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= 2V;3( )3 (F)ﬁ) —Va4(2 Fp2 42+ (F)p2) — 2R (2weq + 2ngeq, e4)
+ R(—2weyq + 28,64, €3) + R(eq, 2wes + 2ﬂae‘1)
= —2V,(Fp? + " Fp?) — 4wRus + 2(n, — 272)Raa
+26Raz +2V5( 3 )
= —2V4( (F)p2 4 o* (F)p2) 44 (F)p (ﬂ _ 277) ¥ (F)ﬂ 44 (F)p (ﬂ _ 27’) . (F)ﬂ
+4* Fhpe. +Fg_ g F)ye (F)g 4 IV F)3.. (F)ﬁ) — 8w( F)3.. (F)g).
This proves [A). We compute Jgpq:
2Japs = DyRuq — D4Ry
= Vi(Raa) — R(Dpey,eq) — R(es, Dpes) — Va(Rap)
+ R(Dyeq, ) + R(eq, Daey)
= V(2" ®p = g, +2Fp ) — Va(=2(F6 Ty

* 1
+ ( (F)p2 + (F)p2)5ab) — R(*Cb&l + Xbc€e, ea — (64, Xb e4 + 2Xba€3>

+R(n,e4 + &aes, ) + Rea, 1, €4 + &pe3)

=V, (2 * ®p T, + 2 Fg ) — v, (—2(FB& F)B) 0

1
+ ( (F)p2 + * (F)p2)6ab) + CbRaA - XbcRC(l - 5&baR44

1
— 5X0aRas + 1, Rap + R + 7, Ras + G Ras.

Using the Ricci decomposition, this proves (A.2). We compute Jyq4:
2J4a4 = DaRas — D4Ry,
= Va(Ras) — 2R(Dgeq,e4) — V4(Ryy) + R(Dyey, eq) + Req, Daey)
=2V, (8- F)5) —2Va(* Fp = g, + FpF3,) — 2R(—Caea + Xaves, 1)
+R(—2weq + 285ep, €a) + Riea, 1, €4 + Eaes)
— oy, (* B (B ), (F)g ) gy o (F), = (Fg | o (F), (F)g, )
—2w(2 *(F)y = (Fg 4 o (F), (F)g )+4((F)p + * @) )&1
+2Va (3 FB) + (4¢q +2n,) F3 - F)8 — 48, (FBD FB)as
which proves (A3). We compute J3q4:

2J344 = D,R43 — D4R3,
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= Va(Rss) — R(Dgey, e3) — R(es,Dyes) — Vi(Raa) + R(Dyes, eq)
+R(es, Dyey)
= Va2 125 FR2) _ R(xapen — Caca, €3) — R(ea, x €0 + Caes)
— V(2 Fp (F)Qa —2F) (F)ﬁa) + R(2wes + 21,5, €4)
+R(es,n es + Eaes)
=2V (Fp? + =) — xap(2 " Fp = Fg, —2F)p (Fg )
=X, (2" T 5, 42 (F) (P,
oV, () Flg ()3 ) | gy(ax (P * (F)g _ 9 (F), (F)g
+2n, (=2 FBE FB)ap + (Fp? + * Fp?)dap) + 1, (2 Fp? +2* F)p?)
+2¢, ®p - ),
which proves (A4). We compute *.Jy34 using (A2):
*Jaza = —2Jabs €ab
= 2curl( * ®)p * F)g 4 F)y(F)g) 4 o¢. *(*F)y = (F)g 4 (F), (F)g)
Lo @y (P2 4+ (F)p2) 4 @iy (F)g. (F)g
which proves (AJH]). O

Lemma A.2. Using Mazwell equations as in Proposition 3.1l we obtain

Juss = —2div( * Fp * Flg 4 F), F)g) _ 2(¢ +4n) - ((F (Flg 4 * (F)y = F)ﬁ)

oty (2 4~ )2 4o <2 7, P + %tr By <F>é> w0,
(A.6)
Proof. We compute
V(P2 4 = (F)2)

_ 9 )y, (F), 4 9 = (F)y, = (F),

— 2 ®)(div P — (try Fp— Oty = Fp) 1 (¢ 41) - P — ¢ Pg)
+ 2% ®peurl B — (trx * Fp+ Oty ®p) 4 (n+¢) - * P
re. r7

=2 Fpdiv )3 4+ 2 * Fpeurl T3 — 2t y(Fp? + = Fp2)
12(C ) (Fp®p 4 = F) =) L og. (=)= (F)g _ F),®)g),
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We now compute div( * F)p * ¥z 4 F)y (F)3) Tt is given by
div( * Fy * Flg 4 (1), (F)g)

=v*EF)y. *EFgy = Fgiv * Fg 4 vF). Fg Fgiy (F)g
= Phpdiv FB 4+ * Fheurl Fg 4+ (v (Fy— *v * (F)p) . (F)g,

Using the Maxwell equation
V(Fp)— *v *F) = v3 Fg 4 %(trK(F)ﬁ + (a)trK * (F)ﬁ) — 2w F)p
— 2(77 (Fly— (F)p) —x- (F)ﬁ
we obtain

div( * () * (Fl3 4 (F), (F)g)
= iy ®) 4 * Fpeurl F)g — 2. (F) F)g 4 = @), = F)g)

<<c>v3 5+ Ly @5 - <F)g) L) (A7)

This therefore gives

Va(Fp? + = Fp?)
= 2div( * ®p = Fg + Fp F)g) — 2tr x(Fp® + = Fp?)
+2(C+n+2n) - (Fp@p 4 =), = @)

+2¢- (" (F)y * (F)ﬁ — F)y (F)é)
<<c>v3 )34 2trx(F)ﬁ (F)g) g,
Using (A.J)) and the above, we deduce (AG). O
The complexified Bianchi identity for A is given by
V3A - DB = f%triA +4wA+ (Z +4H)@B —3PX 4 a+i *a. (A.8)

We compute a, using (AJ) and (A2):
a=2Ve( " Fp = ®p+ @p ) 1 o(¢+2m)®( * Fp * Fg 4 T F)5,)
—2(p% + " p?)x + 2V, (78 F) + OVs(FBE ) + x - (752 Tp)

+268( * Flp * (F)g — 2 (F), (F)gy, (A.9)
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Using (A9)), we have
atita— D@(( * (F),  (F)g | (F)p(F)ﬁ) 4 *( * (F)y * (F)g 4 (F)p(F)ﬁ))
(¢ H20) +i (¢ +2m)B((* T FB 4 T )
i 5 Fp g 4 F)p Flgy) — o Flp2 4+ (Fp2) (5 4 *y)

£V(FBE FB) + L Ovy(FBE FB)

Observe that
P (B = (= (F)y * (F)g 4 (F),(F)g) 4 +(*(F), = (F)g . (F), (F)g)
and FP(F)P = F)2 1 = (F)y2 We can therefore write
a+i*a=D(FPFB) 1 (Z+2H)&(®PFR)—2FpFpx
~ 1 ~
+Va(TBE ) + 5 Vs (FB8 TB)
1o ~ N
+5X FB& ) + Fp(= FB)
= ®pDg(FB) + D®PE B + (Z + 2 H)&(®P FB) — 2®p Fpx
~ 1 ~
+Va(BETB) + 5 V(T8 TB)
1o N
§X ((F)B®(F)§) (F)p( ®(F)B)
Using the Maxwell equation for (VD (F)P we write
a+i*a= EPDR(FB) + (—2®P H)® FB + (Z + 2 H)&(®P FB)
—2@®pFEpX 4 %m( FB& FB) 4 % ©v4( FIBE FIB)
+ (%trX B + %X FB + %)A( B + ®) E) ®®pB
—— (1 _ S\ 1 ~
= —2@®p <§(D +2)2 B + (F)PX) + 5 Va( Fpe FB)

©vs(FBg FB)

[\J|>—‘

1 1
X ®Fp L X,
+ < g =Ty 2
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From ([AZg)), we obtain

N 1 . S
V3A—DB = —§trgA +4wA+ (Z +4H)®B — 3PX —2(F)P

1 ~ ~
x (—E(D +2)2 "B + <F>PX)

1 . 1 R

1 1o ——
+ <§trX B + 5 X+ )

Ll e ep ) 5®)p
2 )

which proves the first equation.
The complexified Bianchi identity for B is given by

1— E— 1 - _
V4B — §D A= —-2trXB —2wB + §A (2Z+4+ H)+3PZ — (Jyqa + 1 " Jaa4).
Using (AZ3), we have
“Jaar = =V "(F T F 1+ Fp ) —trx (= Ep T, + T ®5,)

+ (a)trx( * (F) * (F)@a + (F) (F)ﬁa) — 2w *(* (F)p * (F)ﬂa + (F)p (F)ﬁa)
+2((F)p2 + * (F) 2) § + *V ( F)ﬂ (F)ﬂ) + *(2Ca +Qa) (F)ﬂ (F)ﬂ
—276( (F)@g@ (F)é)ab

and therefore

Jias + i *Jias = —Va(EPFB,) —trx ®pFp, 9y, ®)pFR 4 oFp Fpz,

1 — 1 — 1 .
+ ZD(<F>B. ®B) + 5 (27 + H) F)B. FB — 52 ("B FB).

Using the Maxwell equation for (V¥ F)P we obtain
Jias + 1 *Jaas = — FPV4(FB,) — 20 P FB, 4 2®)p Flpz,
Lp(®p. B + 7z PB. TR
+5D(®B - FB) + 2 ). B,

which proves the second equation. The other complexified Bianchi identity for (3 is
given by

— — -~ — 1 —
ViB - DP = ~trXB+2wB + B+ X +3PH + 5 A-E+ (Jsar +1 "Jaas).
Using (AA), we have

S 1 1 [
J3as + i *Jzqs = D(FP FP) 4 5 X F)p EB _ 9, ®pFpR _ St X ®p Fp

+V(FpFER) 4o PP P 4 L5(Fp. TR) - ®px. Fp

| =

~ ®pX .- "B - H- ("B "B).
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Using the Maxwell equations, we obtain
Jsas 4 i *Jzqs = D(FP)F)p 1 Fpp(E)P) 4 —trx FpFB _ 9, F)p F)p

- %trg ®pEp —x ®pEp 4 Ep(_pFEp — %trX B
(@D . Fg) PR

[

[\

+20FB - 2®PH)+2FPpFPH +
_mpg. ®g_ LFpy. vy
B -5 FPX

= Fpp(Fp) — ltrg F)p F)p _trx FpFpR

_ 1~ —
E B--X-A

+ L@p. ey - mpg. e LEpx . e
2 = - 2 - ’
which gives the desired formula. The complexified Bianchi identity for P is given by
4

1 — 1
ViP - D B = —gtrXPJr JCH+7) B~
1 -k
- §(J434 +1i *Jiza).

We compute using (A6) and (A5):
Tass + 1 *Jags = —2div( * ®p = F3 4 ) F)g) L gjeqrl * P, Pz 1 (F), (F)g)
— 2(C +1i*C+ 4,7) . ((F)p (Flg 4 = (F), « (F)ﬁ)

+2(trx — i Wtrx) (Fp® + * Fp?)
Lo (2 @9 T+ Ty - 3 <F>g) )4 @y 3. ()

Observe that
Jisa+i *Jyzs = —D - (FPFR) - z. FpFR 4 otrx Flp Fp

(PP = (* )y x (F)g 4 F)(F)g) _»( =(F) «(F)g | (F),(F)g)
—2(H+H) - (FP®EB 4+ ®pFR) 4 2@y,(Fpg Fp)

and therefore

+ <—1trg FB_ X . <F>§> & FB.

Using the Maxwell equations for (9D (F)P we obtain
Jusa+i *Jyza = 20X FpEp — Epp. FB — 7. EpER _9F . ®)pF)R
L ©Oy,(Pps R + <_tr x®p_Lg. <F>B) 50
== 2 == )

which gives the desired formula.
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A.2. Proof of Proposition 5.7
Here we derive (B10)—(E10).

A.2.1. Derivation of (B0
Multiply the Bianchi identity (5.5) by FP:

F)p (V5 A 4 %tr& FpA
= ®pEODEB + HE (4 FPB —3®p FpFp) _3pFpx o ®p Fpg,
Multiply the definition of § (5-2)) by 3P:
3PF = fgﬁ ©p& B — gH&@F(F)B +3PFpX.
Summing the above we obtain the cancellation of 3P FpX:

— — 1
(3P +2FPEP)g + ©P VA + - FPuxA

(2®PODSB - 3P @pa Fp)

N =

+H® (4 F)pp —3@®p FpFp _ g?(F)B)
On the other hand
©pg® = “IDe(2FPB - 3P FB)
= (2®pP DB — 3P D& FIB) + 2D Fpgp — 3 DPg Fp
= (2®PDEB — 3P D8 FB) —4H® FPB
+(9P - 6 PP FP)HE FB.
Therefore

_ — 1
(3P +2®FPp®P)g + Fp©vy,a 4 5 F)ptrx A
1 - ~ _ .
=3 (9D&B +4HE FPB — (9P — 6 PP ®P)H& F)B)

~ — 9— ~ ~
+H®(4FPB - 3®PpPFEpFEpR 5P F)B) = - DEB + 3HEB,

N —

which proves (B7)).

A.2.2. Derivation of (B3)
Using the definition of § (5.2)), we compute

Ov,5 = OV, (% (©pg P _ g He ®p 1 F)p g)
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_ _% (©y, ©pg Fp _ g ©v,HE Fp _ g HE©v, ®p
+ Oy, Fpx 4 Fplyg, X,

Recall the following commutator formula, for F = f +i *f € 51(C) of conformal
type s, see [19, Lemma 5.3]:

~ 1 ~ ~ ~
[V, ODRF = —trX( ODRF 4 (1 — s) HOF) + H® OV,F. (A.10)
Applying (AI0) to F = F)B and s = 1, using @3), @3) and @ZF), we obtain

1o 1/ 1 R R
OV =L DB OV, B - | (—5“ X ©pe B 4 g ©v, <F>B)

3/ 1— ~ 3. (Y &
-5 <—§trX(H —~ ﬂ)) ®®B — SHE ©v, B - trx Fpx

1 A - ~
+ ®p <—§(trX + X)X + OODRE + (H + H)BE — A)

1 n 1 . 1 .
=-3 ©pg v, Fp + X ©pg Fp — 5(3H + H)® v, ¥Fp
3ox SR _3ax®Epy _ Lux ®py
+ ZtrX(H - H)o"'B - 5trX PX — 5trX PX
+ ®p(ODRE+ (H + H)RE - A).

On the other hand, using the definition of X (B4 we compute using ([@I0) and
E2):

©Opax = DR ((C)V4 B + %HWB -2 <F>PE)

_ ©pg @y, ®p 4 ; ©PIrXs FB 4+ gm«:)p@ )
—2@pEpgz — 2 Fp IpRE
= pg v, FB 1 ;(trX ~tX)H® FB + SW(C)D@ F)B
+4FPHRE — 2 Fp IDRE.
This implies
_% ©ps Oy, Fp = _% ©ODPEX + %UX _BX)HS ®)B + %ﬁ«:)p@ P

+2FPHE — Fp D=,
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By plugging in to the above expression for ()V,§, we obtain
3
OV,§=—=DRx + = (X — trX)H® B + trX ©p& ®p 42 FpPHE=E

- ®pEpgE + ZtrX ©pg Fp — (3H + H)®v,®B

3% 5Pp _ 3oxEpy F)p %
+ ZtrX(H - HeWB - —trX PX — §trX 'PX
+ Ep(IDYE + (H + H)RE - A)

1 N 1 N 1 -
= -©Opax + Gtrx + ZtrX) ©)pg Fp — <gtrX + 5trX> Fpx

()

3 - 3 1 _
+ e XHE B - SaX HE "B — S (3H + H)® V. T8

+ ®P(BH + H)RE — A).

Using again the definition of § (5.2) to write —3 (/D@ F)B+ FpX = §+3H® P,
we finally obtain

1 1 —~
OV,5=— (;trX + 5trX> F—=Opex — <;trX + 5trX> ;H® F)p

3 - 3 1 -
+ X HE ®B - ZtrX H®"B - 2 (3H + H)® 9V, "B
+ ®P((3H + H)RE —

1
= ( trX + trX) <C>D®3e - —(3H + H)

® ((C)V4 (P 1 35X Fp — <F>PE) — (Fpy,
2

Using again the definition of X (&4]), this proves (5.8]).

A.2.3. Derivation of ([&9)
Using the definition of B (5.3]), we compute

©OV,% + 3t X8 =20v, Fpp +2Ep©y,B -3y, PER 3P0y, ¥R
+3tX (2®PB - 3PF)B).
Using (£38), (@3), (£12), we obtain
V% + 3trXB

_ 1—— S 1 — _
= 2trX ®pp +2Fp <5 (OD.A—2t0XB + 5A - H+3P=
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+EP(v,®p 2 <F>PE)> -3 <;H P-tX <F>PW> )
—3P v, B+ 3tX (2FPB — 3P F)B),
which gives
OV, B +30XB = FP(OD. A4+ H- A) — (3P —2FPFP)

X <<C> v, FB + gHWB ) <F>PE>,

which, using the definition of X (&4), proves (&.9)).

A.2.4. Derivation of (EI0)
Using the definition of X (54]), we compute

©V;x = v, <<C>v4 B 4 SH@)B ) <F>PE>
— @y, Oy, PR 4 [©y, ©y,]FB 4 gH(C)V3 F)p

+ 2Oy, X FB — 2@y, Fpz _ 2 E)ply,=,

N

We compute each term. Using ([@I6]) and ([@1), we obtain
Oy, Oy, ©p = Oy, (ltr X Eg 4 (©pE)p | o F)p H)
StrX
~ lux©@y,®p_Loygux®p 1 ©y,©p@Ep
9= 2 =

+2Ep vy, H+20v, pH

H-

=

p)

x Fp 4 (plaoyg, Fp [(C)v47 (C)D] Fp 4 oFplyg, g

1 1 1 — 1
=XV, FB 4 (-trXtrX —=D. H - =
2r_ V4 + 41" rX 5 H-3
+20@v, ®pg
=L+ Lo+ Ls+ Ls+ Ls.

We simplify L; by making use of the definition of ¥ and writing OV, FB =
X — 3trX B + 2 FPE. We obtain

=
=

1 1 1 .
Ly = —5trX ©v, B+ <ZtrXtr1 -5 ©p. H - H— P) F)B
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1 __
= —5trX <3e — gtrX B + 2 <F>PE>

1 1 _ .
+ (Ztrxuﬁ— 5 p. H-—-H-H- P) B,

1
2

which gives

1 1 __ 1 1
Ly = —trX X+ | ~trXtrX + §trXtrXf —eOp. H--H-H-P)¥B
2 4 4 2 2
+ ®p(—trX=). (A.11)

We compute Ly using ([@I8):

Ly = ©@p@y, ®p— (p <W<F>P + % ©D. FB 4 %

yig <F>B>

= _Ophrx®Fp _x@OpEp % (C)D(W. (F)B) + % (C)D(E' (F)B).
Using (@30) to write

ODEX = OD- X + (trX — rX)H + (rX — wX)E+ 2B —2Fp FpB

and using the Leibniz rules to write ()D(H- FB) = (9D H) FB4+ H- (D F)pB,
we obtain

- - 1 — I
Ly = —trX ODEP — (rX — X )H TP + 5 ©p(@p. )+ ZH- ©DpFB

N —

—2FppB 4 (2 E)pEp 4 % ©p. E) (F)p
+ ®p(— @D X — (rX — 1 X)Z).
Using the definition of B to write 2 FPB = B + 3P FIB, we finally obtain
Ly=—B-trX 9D®P _ (rX — o X)H TP + % ©Op(@D. F)B)
+ %E- ©pFp 4 ( —3P+2Fp@Ep 4 % ©p. E) "B
+ ®p(— @D X - (X — tX)Z). (A.12)

To compute L3 we first have the following lemma.
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Lemma A.3. Let G = g1 +ig2 € 50(C) be a 0-conformal invariant scalar function.
Then
1 ls —==
[V, ©DD|G = —5trX ©ODG + HOVLG +EOVG - ;X (DG
(A.13)

Proof. From the commutators, see [19, Lemma 2.39]

1
V4, ValG = —5 (tr XVaG + @Otry *VG) + (0, +Ca)VaG — £ VoG + £.V5G,

1
Vi, *Va|G = —3 (tTX *V,.G — (a)trva) + *<ﬂa + () VuG

- *XabeG-i- *§aV3G,
we obtain

V4, DIG = — = (tr x\VaG + Wtrx *VG) + (H + Z)ViG — % VG + EV3G

(trx V.G — (“)trxVG) —1 "X Vb G.

[\DI»—l l\3|’—‘

Writing V = %D + %5, we obtain the desired formula with non-conformal deriva-
tives. Using conformal derivatives we have

[V, ©ODIG = v, DG - ODOV,G = VDG — DV,LG — ZV,4G,

which gives the desired formula. O

We compute Lz by applying (AI3) to F)P (which is of conformal type 0) and
using (LI8), [@3) and @3]), we obtain
Ly = [V, @D E)p

_ %trX OpE)p 4 [ Oy, ®p =@y, Op _ %g oD ®)p

_ —;t x ©pFE)p ( "X (F)PJr 5 ©p . (PB4 %E (F)B>

—trX P2 - ZX . (—2HF)p),

[\JI>—~

which gives
1 -
Ly = —5trX ©pEp 75X ®pH +
+ ®p(X - H- trXE). (A.14)
We compute Ly using (29)
Ly=2®pv,H

1—
=2®p <§trX(H — H)+ ©Ovz= -

N =
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which can be written as

Ly=—B— ®PuX(H - g) + (- 3P - 2®EpEp)Fp

+ (F)p P(2 200V, 2 - X - (H — o). (A.15)
We compute Ls using ([AIS)
Ls =2V, FpH =2 ( trx ®p +3 LoD, ®p 4 %E- <F>B) H,
which can be written as
Ly = —2tX ®PH + H- ©OD®B 4 (H-'H) "B. (A.16)

Putting together (ATI), (AT2), (AIA)-(AI6), we obtain
0y, @y, Fp

1 1 S
= - X X - 2B - <§trX + trx> (D Fp +2H Fp)
1 on. (F 1+ F 1 onF
+§(C)'D((c)'D. ( )B)+§ﬂ- (p®@Ep 4 H+§ﬂ . (op (F)B

1 3___ _ _
+ (Ztrxuﬁ + ZtrXtrg —7P+H- g) B

+ ®p(—©OD.- X + X - (—H +2H) +2©V,;2 - (3trX — trX)E).
Using (I0) to substitute (9D Fp +2EpH = (v, FB 4+ Lir X FB we obtain
Oy, v, Fp

1 1 _
= —5trX X —2% - (§trX + trX) ©v;FB 4 = (C)D( ©p. Fp)

+-H-“DFB ¢ <H+ %g) . @p®p

/\ RO

ZtrXtrX 7P + H~E) FB 4+ ®p(—OD.X+X-(-H

+27H) +29V;E - (3trX — 1 X)=). (A.17)

In order to compute [(IV3, (IV,] FIB, we first have the following lemma.
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Lemma A.4. Let = f+i*f € s1(C) be of conformal type s. Then

[V, OV, F

1 — 1
= 5(H = H)- ©'DF + -(H - H)- ©pF

+ <(s1)P+(s+1)F+2s<F>P<F>P 5;1(H~E)+ 1;S(F ﬂ)) F.
(A.18)

Proof. From, see [19, Lemma 2.39]
[V, Vs fa = 2wV3 fa — 2wVa fo +2(0, — )V fa + 210 f)Na
—2(n-fn, =2"p " fa
V4, V3] " fo = 20wV3 " fo = 20V4 “fo +2(n, —n6)Ve “fa+2(n- *f)Na
—=2(n- "f)n, +2 pfa
we derive for F'= f+1i *f,
V4, V3|F, = 2wV3F, — 2wV, F, + 2(Qb — ) VpFy

+(H-F)na = (H-F)y, + (P~ P)F,

1 —
= 2V3F, — 2VaF, + 2, —m)VeFu + 5 (H - H)F,

—_

— ~(H- H)F, + (P~ P)F,.

()

We have
[V, OOVF = [V3, V4]F — 2wV4F 4 20V3F + 25(Vaw + Viw — dww)F

and using (£32]), we obtain

1 —
[(OV3, OV4|F = —2wV3F + 2wV F —2(n — ) - VF — S (H - H)F,

(H- H)F, — (P — P)F — 2wV,F + 20wV3F

N =

+
1 o -
+2s <§(P+P)+ (F)P(F)P+(nﬂ)~<n-Q>F
—2n—n) ©OVF+ ((s —1)P+ (s +1)P + 25 Fp <F>P) F

1 — 1 — .
~5(H-H)F, +(H- H)F, - 5(H-H+H- H)F.

[\

Finally observe that 2(n —n) - (YVF = 1(H — H)- (®DF + +(H — H) - (“DF.

O
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Specializing (A1) to F = (F)B and s = 1, we compute
[(IV3, OV, FB = %(H — H)- ©D®B 4 = (H H)- “pFp
+(2P+2®p®p — H . H)®B. (A.19)

We also compute using ([@22])

3 — 3———  37==< 3 - =
5 ©v;trX FB = (—Ztrg X + 5 D H + SH - H + SP) FB  (A.20)
and using [@3)
— 20y, Ppz = 2trx Flpz, (A.21)
Using (A7), (A19)-(A21)), we obtain
CAv% S

— @y, @y, ®p 4 [©y,, ©v,] ®B 4 gm@vg ®p 4 g OV,5X P

) (C)v3 F)p= _ o (F)p (C)VSE

|

= f%tri X — 2B — (%trX + H) ©vs FB + % Op(OD. FB) 4+ %
L Op @R 4 (H + %ﬂ) - ODFpB 4 (iﬁtrg ~ 7P+ H- E) B
+ P)p (—W X+ X-(-H+2H) +29V,3E - 3trX — @)5)
(H- H)- ©DEp + = (H H)  “p®B
+2®p®p - . H)®B + ‘;’trX v, Fp
3<% 3
— Xt rX+—<c>D H+SH- H+3P) Fp
trX Fpz — 2 Fp g,z
which gives
V3% + %tr& X +2%

@ p(@D. ®p) 4 %ﬁ ©pEp 4 g 7. @D ®p

- % (trX — X)) OV, ©)B
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N W

1 S 33
+ <ZtrXtr1 %trX trX —2P+2Fp®Ep 4+ Z(D. H + SH - H) F)p

+ ®p(—©OD. X + X - (-H+2H) — (trX — trX)E).
(A.22)

We now write the right-hand side of the equation in terms of §. We have the
following lemma.

Lemma A.5. The following formula for the divergence of § holds:
OD.F+H-F

1 1 — —
= —5 (B X - trX)x - o ©p(p. FB) - gH ©pFp

1— 1 —
- H ©pEpR 5 (X —trX) ©v,; Fp

1 — - 1 — - 1 — 1=
+ ZtrXterL %tritrX - itritrX —w(trX —trX) + §D -z — §D -z

+P+F2(F)P(F>Pg(C>D~H§F~H} B

+®p(OD. X + (H-2H) - X — (0X — trX) FPE).

Proof. Using the definition of § (5.2 we compute

OD. 34+ H 3= OD. (% (©pg B _ gH@) ®)p 4 <F>pf()

+H- (1 ©pg P 3 s Ep 4 <F>P)?)
2 2

_ _%—(cm. (©pg Pp) — g—@p. (HEPB) + Pp@D. X

+ @DFp. X — %F ©pg Fp — gﬁ (H® FB)
+ FpxX . H.
Using Leibniz rules, the above simplifies to
©OD 3+ H-5— —%W. (©pg Fp) _ gH'%(F)B* %ﬁ (©p (P

+ (; ©D. H — %HH) ®B + ®p(OD. X

+(@-2H)  X).
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Since F)B is of conformal type 1, we have

©D.(Wpg¥B)=D.- (D& FB)+2-D¥B+Z.-DFp
+D-z+Z-2)¥B,
Op(p. FBY=DD- B)+2-DFB+Z.-DFB+(D-Z+7Z-2)FB.

Using the relation (A30) of Lemma [A7 which we prove below, applied to F)B:
D (DR FB) =D(D- FB) + (rX — trX)V3 FB + (rX — trX)V, FB

1T -1 _ -
— <§trXtr1 + StrXtrX +2P 2P — 4 Fp <F>P) F)p

we obtain

D . ((C)D(§) (F)B)
=DD-"B)+z-D¥B+Z.-DFB+(D-2+7Z-2)FB
+ (X —trX)V; FB + (X — trX)V4 FB

1 1 _ .
- (EtrXtrX + §tr&trX +2P +2P —4F)p (F)P)

= Op(@D. FB) + (&rX — trX) (V3 FB + 20 FB)

+ (X — trX)V, B
1 - 1 _ — _
— <5trXtr1+ XX +2P+2P — 4FpFPLD.Z-D- Z).
This finally gives
© H Lop@n. ®py_ 2. op®p_ 17, 0p®
ID-F+H-§=— ID((D. B) - SH - ©D B - H-“DTB
1 1
— 5 (X — trX) v, B — 5 (X — trX) ©v,®pB
| I _ _
+ ZtrXtrXJr ZtritrX —wtrX —trX)+P+P—2 (F)p (F)p

3
2

— 3 1~ 1
(C>D-H75H~H+§D~Z75D»Z B

+ ®p(©OD. X + (H-2H) - X).

Using the definition of X to write (v, B = X — 2trX FIB + 2 FIPE we obtain
the final expression. O
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We can therefore write the right-hand side of (A.22]) as

1 —= — 1,
©OVs% + X X +2%B = — ©D.-F—H §— 5 (X — trX)x
1 1 — 1.
+ ZtrXtrXf ZtritrX —w(trX —trX) + §D -7

1— —
5D.Z+PP> F)B.

Observe that the coefficient of (F)B vanishes. We therefore obtain (G10).
We are now left to prove Lemma We first recall the following Gauss
equation.

Proposition A.6. We have
(1) For ¢ € 51(C):

1
(ViVs — VoV = 5 @ty Vs + Dty Vi)

1 1
+1 <Ztrxtrz+ 1 (@ ry (“)tr)_(Jr p— T2 = (F)p2> P
(A.23)

or also:

1
(ViVa = VaVi) = o (Wt Vs + Dty Vi)

1./1 —— 1 _ -
+5i (ZtrXtrng FrXuX + P4 P -2 Fp <F>P) .
(A.24)

(2) For ¥ € 55(C):

1
(V1V2 — ngl)‘lf = 5( (a) trxVs + (a)tTXV4)\If

1 1
+2i (Ztr xtrx + 1 @y (“)t79_< +p— Fp2 (F)p2) 1\
(A.25)

or also

1
(V1V2 — ngl)\l/ = 5( (a)tTXV3 + (a)tTXV4)\I/

1 1 _ .
+i (ZtrXtrX + Ztr&trX +P+P—2®FpP (F>P) v,
(A.26)
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Proof. See [19, Proposition 5.5]. |

We are now left to prove the following lemma.

Lemma A.7. Let ¢ € 51(C) and U € s2(C). The following relations hold true:
D(D-4) = 2819 — i WirxVs + X Va)y

+ GUX@ - itr&ﬁ +P+P-2 mp@) ¥, (A.27)
D (D&¢) = 2A1¢ + i(Dtrx Vs + @ tryVa)y

—~ (%ux@ + itr&ﬁ +P+P-2 mp@) ¥, (A.28)
DE(D - W) = 2850 — i( D iry Vs + Dty Va) W

+ <%mx@ + %trgﬁ +2P+2P 4 <F>PW> 0. (A.29)

In particular,

D-(D&¢) = D(D-¢) + (X — trX)Va¢p + (X — t1X)Var)

N

1 - 1 _ -
S XX + St XX + 2P + 2P — 4 ®p (F>P) . (A.30)

Proof. Define Z, := (D(D - )))a = DoD 1 and evaluate it in the frame. We have
Z1 = D1D1¢y + D1 Doty
= (Vi4i*V1) (Vi —i Vi) + (Vi +i V1) (Vo =i *Va)ihy
= (V14iV2) (V1 —iVa)th1 + (V1 +iV2) (V2 + V1)1
= (V1Vi + VaVs = i(V1Va2 — Vo V1))
+(V1Va — VaVi +i(V1Vi + Va2 Va)) .
Using that ¢» = —ith, we obtain Z; = 2A1¢1 — 2i(V1Va — VoV )ih;. Also,
Zy = DyD1¢p1 + DaDarpo
= (Vo +i*Va) (Vi —i “Vi)ihy + (Vo +1i *Vy) (V2 — i *Va)ihy
= (V2 —iV1) (V1 —iVa)1 + (V2 —iV1) (Ve +iV1) 1
= (VaVi = ViVa —i(V1 V1 + VaVa))thy
+ (V1V1+ VaVa +i(VaVi — ViV3)) b,
= (2V1V1 +2V2 Vs + 2i(VaVy — V1 V2)) s,
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which gives
(D(D - 4))a = 28190 — 2i(V1Va — Vo Vi)t
Using the Gauss equation (A24) we obtain (AZ2T). Define Y, := 2(D - (D®w))a,
and evaluate it in coordinates, i.e. Yy = D Dathp + D Dytha — 6upD Dby We have
Yy = D Dithy + D Doty — 615D Dby
= (D1Dy + D2D3) 91 + (D2D1 — D1 D)1y
= ((Vi—i*"Vi)(Vi+i Vi) + (V2 —i *V2) (Va2 +i “V2))
+ (V2 =i *V2) (Vi+i*Vi) = (V1 —i *V1) (V2 +1i *V2)) e
= (V1 —iV2) (V14 iV2) + (V2 +iV1) (V2 —iV1))
+ (V2 +iV1) (Vi +iVs) — (Vi —iV3) (V2 — iV1))
= (2V1V1 4+ 2VaVa + 2i(V1Va — Vo Vi)
+ (2V2Vy — 2V1 V3 4 2i(V1 V1 + V2 Va))te.
Using that 15 = —it);, we obtain Y7 = 4A14); + 4i(V1Va — VaV1)1hy. Also,
Yo = D Doty + D Dythy — 62D Dy = (D1Dy — DyD1 )91 + (D1D1 + D2 Da) s,
which gives
2(D- (D&Y)), = 481¢a + 4i(V1 V3 — Vo V1),

Using the Gauss equation ([(A24) we obtain (A28). Finally, (A29)) is proved in
[19, Proposition 5.6]. |

Appendix B. Derivation of the Teukolsky Equations

In this section, we derive the system of Teukolsky equations for B, §, A.

B.1. The Teukolsky equation for B
Recall the relation ([G3):

(VB + 3t:XB = FP(D- A+ H- A) + (2P FP - 3P)x.
We apply (9V3 to the above, and using [#22) we obtain

OV, V8B = —3trX V4B + @@ trX —3D.-H-3H -H - 6?) B

+ I + Ir + I,
where

L= OV (FP(OD-A+H-A)), L= v;2FPFEP_3P)x,

I; = (2®PEP — 3P) IV, X,
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We compute I;. Using ([@3]), we obtain
L= ©OvV;®Ep(OD. A+ H-A) + POV (D A+ H- A)
_ ,trX(F)p((c)p A +E'A) + (F)p((c)D. (c)ng + [(C)V3, (DA
+H- OV;A+ ©OViH- A).

Recall the following commutator formula, for U = u + i *u € s9(C), see [19]
Lemma 5.3]:

[V, DU = —%@(%-U—l—(s—@F-U)—i—F-VgU. (B.1)
Applying (B) to A with s = 2 we obtain
L=t X®P(OD. A+ H-A) - 2trX ®pOD- A+ FpVH- A
+®p(@D. OVA+ (H+H) - 9V;34).
We write the last term of the above using (@A) as
Ep(OD. OV;A+ (H+H) - ©DV;34)
= OD. (FPpyz4) — @DFPp. )yg,4 + (H+H) - ®p vy, A
= OD . (PP OV3A) + (H+3H) - TP V34
Using (B.7) to write
Fp©Oy4 == FpyrxA +5 Lepas 1+ smam - (3P +2®pP ®P)F
we compute
©D . (Fpyz4)

1 1 gy ——
= FptrX OD. A — 2trX( (ODFp. A 5 FpODrX - A

11— —~
+3 D . DB +3H ©OD . B + 30D . HB

~ (3P +2®Pp®EP)©D. 5~ ©@D(3P +2FPpFP) . 3.

Using (44), [@I0), (£11]), the above becomes
@D - ( F)p (C)V3A)

1 —= 3 11—\ — 1—— ~
=3 FptrX ©D. A+ Fp (itrg — §uﬁ) H-A+; ©D. DB

+3H©OD-B+3(()D-H)B — (3P +2FpEP)©D.F

+((9P —2®p®P)H + 4 ®p®PH) - 5.
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We therefore obtain

3 11— S T 1
__(3 1 ®p (0D . ®p (1 1 .
I (2trg+ 2tr&) P( D A) + ®p (2trgﬂ 2tr£ﬂ> A

11— N [ [
+5 ©D. DB 4+ 3H D - B +3(OD . H)B

. (3? 2 <F>PW) ©D -3+ ((9F _9 <F>PW) H4 <F>PWH) §

o 1 1 (o)n o - 5
+(H+3H)- (5 FptrX A + 5 (DB + 3HZB — (3P +2F)P (F)P)S> :

which finally gives

1— — — 1—— .
I = — (;trXJr itri) Ep(OD- A+ H-A)+ 5 D . DB

+3H @D B+ (H+3H)- (%(C)D@%) +3(OD-H+H-H)B

+9H- (H®B) — (3P +2FP®P) (D . §
+((-8®P®PYH + (~ 3P +2FPFP)H) - §.
We compute Ir. Using [@3]) and @I2)) we have
I = (20v; ®p®EPp 4 2®py, Ep 30y, P)x

9 — _ __
= <§tr£P + (tri - 2tr£) F)p (F)P> X

_ S 3 _
= (trX - 2uX) TP EP X + (?cr&) (3PX).
We use (59) again to write
3PX = —IV,B - 3aXB+ FP(OD.- A+ H- A) +2FpEpx
and substituting in the above we obtain
I, = fgtri CAVID . gtrgﬁ% + gtrgmp( ©D- A+ H-A)
+ (4trX - 2trX) Fp (PP .
We compute I3. Using (BI0), we obtain

I3

(2 F)pEp — 3?) (V3%
= —JiX(2©PEP - 3P)x - (2P TP — 3P) 0D -

~(2®P®EP —3P)H -5+ (- 4®P®P 4 6P)B.
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Putting the above together we obtain

_ 3
Oy, 7,8 = —3trX VB — S X (CAVD:]
T e S vy e G VS v
+ —§tr1trX + §trg trX —4Wp®E)p |5
1—— . — — 1 ~
+3 ©D. DB +3H ©OD-B + (H+3H) - <5 (C)D®%)

+9H - (H®B) — %@(F)P( ©D- A+ H - A)
—(4®pPEP)EOD . F+ ((-8sTPEP)H) -5

+ (4trX - 3trX) ®PEP x + g@ Px.
Finally using (&9) to write
BP(©OD- A+ 'H-A) = OV +3tXB — (2FPFP - 3P)x
we obtain

_ 3 1—
Oy, ©v,m = —3trX VB — (itrg + 5‘51"&) 7,8
S S 1—— N
+ <§tr1 trx —4Fp <F>P> B+ 5 O©D. DB

+3H©OD- B+ (H+3H) - <% <C>D®%) +9H - (H®DB)

~ (A®PTEPYED. §+ (-8 TP PP)H) - §
+ (4trX — 26eX) F)p PP %,

which gives the operator 77 as in (G.4]). This completes the derivation of the Teukol-
sky equation for B.

B.2. The Teukolsky equation for §
Recall the relation (G.8)):

__ 1 1y~ 1\ ~
OV,F + (gtrX + 5trX> §=—3 ©ODpx — <gH+ 5@) @x — FlpA.

We apply (9V3 to the above, and using @22 we obtain
3— 1 1 3 — _
OV, OV,F = - (Etrx + §trX) OV35F + (Ztrgux + X X - 3P - P

3

- 1 — —
5<c>1>.H§<C>D-H2H.H>S+K1+K2+K3,
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where
L g, @ps © Syl
K1=—§ V3('9De%), K;=-'9V; §H+§ﬂ X,
Ks3 = —©vs(FpAa).

We compute K7. Recall the following commutator formula, for F' = f+1i *f €
51(C), see [I9, Lemma 5.3]:

_ 1 _ N N
[V, ODRIF = — 5t X ( ODRF + (1+ s)HBF) + H® OV3F.  (B.2)
Using (5.10) and (B2) for s = 2, we have
Leypa(© Loy, ©pg
K1 = = 9DE(V5X) - o[V;, ODEx

|
= = ODPF(OVsx) + trX <(C)D®3€ + 3H®3€) — —HE V3%

=N

1

2

1 1— . — . N
= 7§< D <§tr£3€ OD.-F—H-F— 2%) + Zt1r£(<C>D<§<>3E+3H®3€)

1

2

1 _
—H® <§trgx <c>D-3H.3223>,
which gives using (L10)
L Ops(@p. 34T 'ye@p. 541
K, = 5 DR(OD-F+H-F)+ 5H(§@(<C>D~3+H-g)
~ ~ 1 — ~
+ ODEB + HOB + 7 (trX + &rX) DEX
1 — 3 1—— 1\ ~
+ (Z(tri— trX) H + Ztr&H—i— ZUXH) ®RX.
Using (.8 to write
©ODPxX = —2V,F - (30X + X)) — (3H + H)®x —2FPA
we obtain
1oy e 1o ~ _
Ki=39DE(OD -F+H 3)+ HS(D - §+H-§) + DEB + HIB
(trX + 8 X) (- 2@V4F — (30X + 0X)F — (3H + H)®X — 2FPA)

1
4

1 3 ~
<Z trXftrX H + 4trXH+ 4trXH) RX
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—= (X + 6 X) Vg - - (trXtrX + 3trXtrX + 3trX X + trXtrX)F

_ 1 _ N .
©ODR(OD-F+H-F)+ SHE(OD - §+H-3) + DB + HZB

1\:>|>—x [\3|>—A l\JIH

— —(rX + trX) FPA - —trX(H + H)®X.
Using (B.7) to write
©DgB =2FP©OvA + FpurXA - 6HOB + 2(3P + 2 Fp ®P)§
we obtain
K, = —% (trX + 0 X) OV,F - i(tr&trX + 3trXtrX + 3trXtrX + X trX)F
2(3P +2 (F)PW)S% ©ODE(OD-F+H-3) + %H@(W §+H-3)
+2EPpEyA4 4 é(trg —tX) FPA-5HED — %@( H+ H)®X.
We compute K. Using ([@3) and (EI0)
Ky =—V; (gH + %ﬂ) ®X — (gH + %ﬂ) ® V%

3 1— _ 3 1
= (-2©VsH+ -uX(H—-H —(2H+-H
( 5 Vsl + JuX(H - H) ) &x— (SH+ 5 H

@(%@x (C>D~SF~S2%>

3 1 ~ 3 1 ~ =
—(2H+-H)30D. °H+-H)&(H-
<2 +2_>® S+<2 +2_>®( 3)
3 (o) 1 _ _
+ (=5 VsH + SuX(H + H) ) ©X + (3H + H)®%.
We compute K3. Using (£3), we obtain

K3 =—©v3(FpP)A - ®p g4 = - Fp g4+ trx FpA,

‘We therefore obtain

3 1 1 _
©V; OV,F = - <§trX + §trX) ©V3F — 5(trg +1X) OV,F
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3. viw _ lex ol F)pFEp
+ —ZtritrX - ZtrgtrX +3P-P+4FpEpP
3—— Ly - —
—§<0>D-H—50D-H—2H-H g

1 yan == — 1o\~ ——= —
+§<C>D®(<C>D-§+H-§)+ <2H+ 5@) (@D -F+H-3F)

N W

1 — ~
+ TP OV5A + - (30X — 0 X) FPA+ (— (C)VgH) ®X
+(—2H + H)®B,

which gives the operator 73 as in (6.0]) and this ends the derivation of the Teukolsky
equation for §.

B.3. The Teukolsky equation for A
This derivation is similar to the one obtained in [19]. Recall (5.0):

1 _ A _ .
CAvAY itrXA = 9D@B + H® (4B — 3 )P FIB) — 3PX — 2(F)Pg.

We apply (9V, to the above, and using [23) we obtain

[~

OV, V34 = —%trg (V44 + Gtrxug - % ©p. H - %ﬂ CH— F) A
+Ji+Jo+ I3+ Jy,
where
Ji= OV, ©ODEB, J,= v, (H@ (43 - 3@@3)) ,

Jz = =30V (PX), Jy=-20v,(FPF).

We compute J;. Using (AI0) for s = 1 we obtain
J1 = ODR(IVB) + [V, DDR)B
= D& (IV,B) - %trX( DEB) + H® YV, B.
Observe that the Bianchi identity ([@33]) can be written in terms of X as

- I _ 1—— 1 o
(V,B+ 2trXB + gtrX FpFB_3P= = 5 OD- A+ 5A -H+ Fpx.
(B.3)
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This gives
©ODR(V,B) = —2trX DRB — 2 IDrX®B — §< DX e FPp FB
- gH@DW@ FpB — §W@<C>D<§> (F)B 4+ 3P IDRE
+3ODPRE + ®P DX + VD FPRx
(C)D® @D A+ 5 (C)D®(A H).

We therefore obtain using again (B.3):

1 . - .
Ji=— (?ch + 2trX) ODEB + (- 29D X - 2 X H)®B
- SEXTP D3 P - 2 (TP DX + X DT + X TP H)
® BB + 3P “)DRE + 3(WDP + HP)R=E+ FIP IDgx

+(©OD®EP + HEP)RX + 5 L@pa@p. 4

[\3|;_A —

DG(A - H)+;H®((C>D A)+2H®(A o).

We compute Jo. Using ([E9), (B3) and ([@3), we obtain

Jo = ( 3 (Fp (F)B ) +H® (4 (C)V4B _3m®p (C)V4 FB
-3 (C)V4 (Fp (F)B)

1 . ___
= —5tX(H - H)®(4B - 3P F)B)
~ S 33— — —
+H® [4(—2&){3 — SuX®P Fp +3P=)
1—— -
+4 (2 DA+ A H+ F>P3E) —3®EPp Oy, R _ 3(—trX FPp)Fp|
Writing (9V, FB = % — %W(F)B +2F)PZE, the above becomes

b _~ 3
Ty = (= 20X (5H — H))®B + (- X ®P H +2trX ®PH)® FB

+(12P - 6 TP EP)HGE + ®PHRX + 2H® (D - A) + 2HS(A - H).
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We compute J3. Using ([@.12) and ([{25]), we obtain
Js = =3V, (P)X — 3P IV,(X)
~ 3 (_gm 7 H@)PW) b
—3P <%(trX + X)X + ODRE +ER(H + H) — A)
=3PA+ (( trX + 6trX ) + 3trx ®p W) X
—3P (<C>D<§>E +ER(H + H)).
We compute Jy. Using ([3]) we obtain
Ji= 20V, (FP)F - 20pOy,5=2FP( - OVF+trXF).
Summing the expressions obtained for Ji, Js, J3 and Jy we obtain

(C)V4 (C)VgA

1 1 1 1
= —§tr£(c)V4A+ (Ztrxuﬁ— 5 ©Op. H - 5@- H+ 2P) A

L | R 1~ —
+-ODEEOD - A+ §<C>D®(A~ H)+ ;HE(D - A) + S HE(A - H)

1
2

+2H(OD - A) +2HB(A- H) — (%trX + 2H> peB

S o~ 33— ~
— 29Dt X — 106X H)&B - St X ®P De T

g(< P ODX + trX @D ®P 4 260X PP H — 2trX PPH)& B

+3(DP 4 (3P — 2P FP)H)®= + TP )DRx

+(OD®P 4 HEP + FPH)&X

3 NN
+ ((§trx + 6trX) P+ 3trx ®p (F>P> X +2F)p (— OV, + trXS) .
Using (&3] to write

~ 1 ~ - o~ N
ODRB = V44 + itrXA — H®(4B - 3®PpF)B) 4 3PX + 2 FPpg
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the above becomes

Oy, ©v4 =

1 1
St X + 2trX) (CAvAY: St X ©v,A

3
+< trXtrX — —(C)D- H-— %ﬂ ﬂ+2F)A

L Lopa@D. At lopsa T+ 1@@(W.A)

T3 2 2

% (A H) +2H(OD- A) +2H&(A - H) + (- 2D X
+2trXH — 20X H)®B — gWW@D@ Fp — S(W@DW
+tX ODEP 4 26X PP H + 4trX H — trX FPH)® FB

+3(VDP + (3P —2FP FP)H)®= + TP )DRX

+(©ODEP 4+ HEP 4 ®PH)EX + (3trX TP FP)X
___ 1 .
+2@)p (— OV,F + <§trX — 2trX> g)

Observe that using (ZI0) and @II)), the coefficients of B and = vanish. Finally
writing (9D® FB = —2§ — 3H® B + 2 FPX | we obtain

1 _ 1
OV, ©v,4 = — <§trX + 2trX> CAvAY itrX(C)V4A
__ 1 __
+ <trXtr1 5 ©p. H -

A~ 1 ~ — 1 =
DD A+ S ODE(AH) + ;HE(C)D- A)

— N =

+-HR(A-H)+2H3()D- A) +2HR(A- H)

[\

—~ g( ®P DX + trX 9D FP 4 2trX FIP H + trX FIPH

—trX ®PH)® FB + ®PpODRx + (D FP 4+ HEP
SN A | oTES 1 1—

+ FPH)®X + 2 F)P ( OV,F + <§trX — 5trx> s)

Observe that using (@I0) and @), the coefficient of (F)B vanishes. Finally, we can
make use of (B8] to write

ODRxX = —2OV,F - (3rX + trX)§ — (3H + H)©X —2FPA
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and obtain
(CAVRCAVAY.|

1 E— 1
=— (Etrx + 2trX) CAvAYy §tr£ v, A

— 1 — . _
+ (—trXtrX— 5(0)2)- H—--H-H+2P— 2(F)p(F)P) A

L

2
1 AT 1 ~ — 1 == 1~ —

+35 ©DG (OD - A+ 5 ©DS(A-H) + 5g@@((cm A) + SHE(A- H)

+2H(OD - A) + 2HE(A - 'H) — 2P (2V,F + 200X F

+ (H + H)®X),

which gives the operator 73(A), as in [19]. This completes the derivation of the
Teukolsky equation for A.

Appendix C. Derivation of the Generalized Regge—Wheeler
System

C.1. Proof of Proposition [T.4]
C.1.1. The commutators for Po

Lemma C.1. Let U € 5,(C) of conformal type s. Recall the definition of Pc(¥),
see (1)),

Pe(¥) = V30 4 CU € 5,(C).
Let F € 51(C) of conformal type s. Then the following commutators hold:
[P, OVs]F = —(19V50)F,
[Po, OVF =2(n—1)- OVF + (2s(p+ ®p2+ = Fp> —p. )
+2i(— *p+nAn) — OVLO)F,
[Pe, OV, ]F = f%trX OV, F — % @try *OV,F +n, OV3F
+ (Vi — “V.O)F,

~ 1 ~ ~
[Pe. ODRIF = X DEF + HE IV, F

1 ~
+ ( ©po — 5(5 + 1)trXH> ®F.
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Let U € 59(C) of conformal type s. The following commutators hold:
[Pc, ©OV5)U = —(Iv;0)U,
[Pe, VAU =20 —n) - OVU+ (2s(p+ Fp* + = Fp? —n - n)

+4i(— *p+nnn) - OV,O)U

1 1
[Pc, OV, U = —5trx ©v,U - 5 @iry *OVU +n, DV5U

+ (Vi — VOV,

1 —— — — 1 _
[Pe, DU = 50X (9D-U + H - ©OV,U + < DC — (s - 2)tr1H) UL

Proof. We compute
[Po, Vs|F = (19V5 + C) (V3 F) = OV5(OVsF + CF) = —(9V30)F
and similarly for U. We compute
[Po, OVLF = (V3 + C)(IV4F) — OV4((IV3F + C F)
= [V, OVIF - (OVLO)F.

Recall from (A18) and from [19]:
[V, OV4F =2(n—n)- OVF+ (2s(p+ Fp* + *Fp* —n.n)
+2i(— *p+nAn)),F (C.1)
[(C)v37 (C)V4]U =2(n—n) . Ogr 4+ (2s(p+ (Fp2 4 = (F)2 . ﬂ)

+4i(— *p+nAn))U (C.2)

Using (CJ) and (C2)), we obtain the stated expressions.
We compute

[Po, OV F = (Vs + C)(IVaF) = OV, (OVsF +C F)
= [(C)v& (C)Va]F _ ((C)VQC)F.
Using that, see [I9] Lemma 5.3]
[V, OV, F, = —%trK IV, F, - % Wtry * OV, F, + 10 I V3F,
+ V.o (F), (C.3)
(O3, OVJUh = —5trx ©OValie — 5 trx * OVl + 10 O VsUse

+ V.0 (0), (C.4)
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where

1
Vis,o)(F) = *itrz(snan + mUa — Sap - U)

1
- 5 (a)tI‘K(S *77an + i *Ua_ Cab 1 - U)a

1
V[S?;,a](U) = 7§trz(s(na)ch + nbUac + ncUab — 5ab(77 . U)C — 5ac(7] . U)b)

1
_5 (a)tI‘K(S( *na)ch + Ty *Uac + Tle *Uab_ Cab (77 : U)c_ Cac (77 . U)b)v

we obtain the stated expressions.
We compute

[P, ODRF = (9V3 + C)(IDRF) — ODR(OV3F + CF)
= [OV3, ODZ|F — (IODC)RF.

Using (B2), we obtain the stated expression. We compute

[Pc, ©ODJU = (V3 +C)(OD-U) — ©OD - (IV3U + CU)
=[V;, @ODJU — (ODC) - U.

Using (B.), we obtain the stated expression. O

C.1.2. The commutators for [Pc,,T1]| and [Pc,, T3]

Using ([64) and (6.5), we separate the computations of [P¢,, 71| and [Pc,, 73] into
the following terms:

[Poy, T =12 +J2 + K® + L® + M® + N®, (C.5)
[Py, To) = IS + JS + K¥ + L% + MS + NS, (C.6)
where
I® = ~[Pc,, V3 OVAB, 17 = —[Pc,, V5 IV,

1 — ~ 1 AT
JB = 5[730“ ©D. DB, JS = 5[73027 ©D& (D|F,

K‘B

o 3 1
[Po,, —3trX OV3]B, K3 =[Pg,,— <§trX + itrX) RAVAKS

3 11— 1 _
L® = [Pc,, — (Etrgqt §tr£) (c>v4]£B, LS = [Pe,, -5 (trithri) <c>v4]3,

M® = [Pc,, (6H+H+3H) - OV|B, M3 =[Pc, (4H+H+ H) - V|3,
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C.1.3. Ezpressions for I® and IS
We have

I® = —[Pc,, V3 OVIB = —[Pc,, V3] VB — OV;([Pc,, DV4B)
= ((9V501) V4B — OVs([Pe,, IV4]B).
Using Lemma [C.J] applied to F' = 9B of conformal type s = 1,
[Poy, OVIB =20 —1)- OVB+ (2(p+ Fp® + *Fp? — - 1)
+2i(— “ptnan) - DVCH)DB (C.7)
we deduce
©V3([Pey, (9Va]B)
=2(n—n)- OV; OVB +2V,(n — n) - (OMD:)
+ 200+ T2+ *Ep2 o) +2i(— Tp+nAn) — OV.C) OVsB
+ OVs2(p+ T2+ *Fp? —nn) +2i(— *p+nAn) — DVC)B.
Using (C3) we write the above as
V5([Pey, “V4]B)
=2(n—n)- OVEOVB+ (29Vs(n—n) —trx(n—n) + Vorx “(1—n)
COVB 4 (204 T2+ R gy (- 1)
+2i(— *ptnAn) — OVC) OVB + [OV5(2(p + F?
+*Ep2 ) +2i( = *ptnAn) — OViCh) +2(n—n)- V[sfal]]%
We therefore obtain

I® =2 —n) OVEVB+ I OVDB+ I OVB + 17 - OV, B + I8,
(C.8)
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where
12 = v,
IP = —2p—2Fp? —2 -2 _9p. (n—2n) +i(2 *p—2nAn) + OV4Cy,
I = =2 9%3(n =) + trx(n —n) — Py (g - ),
IP = (C)v3[ —2(p+ (F)p2 4 = ()2 . 1)
+2i( *p—nAn)+ OViC1] -2 —n)- Vi (C.9)
We have
% = (9V3C) V4§ — IVs([Pey, VAIF).
Using Lemma applied to U = § of conformal type s = 1,
[Poy, OVAE =20 —1)- OVE+ (2(p+ Fp*+ = =)
+4i(f *ern/\Q) — (C)V4C’2)8. (C.10)
We similarly obtain

IS =—2tn—n) OVOVE+IFOVFE+I5OVE+IT - OV T+ 53,
(C.11)

I$ = V50,
I$ = —2p—2F)p2 —2+E)2 _op. (np—2) +i(d *p—4dnAn) + Vs,
15 = —2V5(n —n) + trx(n —n) — Wtry *(n —n),
IS = OVs[=2(p+ Fp? + *Fp2 — ) +4i( *p—nAn)+ Vo]
—2(n—n) V[sé,:al] (C.12)
C.1.4. Ezpressions for J® and JS
We have
JB = %[Pcl,%-](@m@%) + %W~ ([Pe,, )D&R]B).
Using Lemma [C.1] applied to U = (9D&B of conformal type s = 1, we have
[Pey, D)(“IDEB)

1 ——— ~ — ~
= —5tX D (ODB) + H - V3(ODEB)
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©ODC, + SGaXH)  (©D8
+ —(C)DC’lJritrXH -(“D&B)
X ©OD. (Opem) + H. ©D5
= 50X ©D - (“DB)+ H - “DoVsB

— (1 - - ~
+H -~ X (DEB + 2HEB) + HE <C>V3£B>

7N

+

( ©DCy + %@H) (ODEB)

= —%@W- (OD&B) +2H - OV Iv;B
+(=200DC) + (X — trX)H) - OVB + (H-H)OV;B
—trX(H - H)B.
We also have
D ([P, ID&]B)
= @D. (—%tri(c)D@)% +H® V3B + (- 9DC, — trXH)@B)
= —%tr&%- (ODEB) 4+ 2H - OV (VB
+(-29DC) - 20X H — (X — t1X)H) - VDB

+(OD-H) V3B + OD. (— DOy — trXH)B,

where we used (9DtrX — (trX — trX) H = 0.
Putting the above together we obtain

105

1 S p— _ N
JB = —5 (X + 0 X) (5 ©D. (<C>D®%)) + 21 OV T8+ P OV,;8

+JE . OB 4+ JP3,

where
- 1 1 —
J3 = 5((C)D'H)+ 5 (H - H),
7 11— — 1 _
JB = 20v0, —trXH - 50X — e X)H + o (X — txX) H,

~ 1—— 1 7
J® = 5 ©OD . (— DOy — trXH) — S X (H - H).
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Using the Teukolsky equation for 8 given by 73 (B) = M, [§, X] and the expres-
sion for the Teukolsky operator (G.4) we can write

%W. ©D&B
= OV; VB + 300X V3B + <gtrg+ %@) v,
~(6H+H+3H) - VDB + (gtrgﬁ +4FpEP _9x . H) B
+M;[3, X]
= (v, OV + 3t X IV;3B + (gtrg + %@) SAVD:
+(2(m—n) - (6H+H+3H)) - “vs

9 - _ _— I
+ <§tr1trx +2P+6Fp®EP _10H - H) B + M, [, X,

where we used (AI8) to write [ ()V3, (IV4]B = 2(n—n)- OVB+(2P+2 Fp F)p—
(H - H))B. We therefore obtain

1 -
JB = —5 (1 X + frX) SAVRCAVA e I RCAVARAVED 3

1 __
+JEOVB 4+ J2 OVB 4+ JP . VB 4+ JEB — 5 (trX + B X)M [§, X,
(C.13)

where
» 3— ¥ 7B
I3 = =S X (X + 0 X) + JF,
1 —— l—
JE = —§(tr£+tri) (gtriJr §tri>,

a

J3B = —%(trg+@)(2(n—ﬂ) — (6H +H +3H)) +J;°

<~
=2
—

___ /9 - - _ -
= —-(trX + trX) (y@u){ +2P+6®pPEP 10@-1{) +Jg.

o
|
2o

(C.14)

We have

1 o~y 1 ~
J3 = 3IPe,, @DEI@D - §) + ; ODE(Pe,, TDIF).
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Using Lemma applied to F' = (D - § of conformal type s = 1, we have
[Pczv (C)D®]( @D 8)
1 P R _
=~ X ODE((D - §) + HE OV5((D - §)

+ (= 9DCy, — e XH)B(OD - §)

= X D@D - §) + HE(OD - IV — X (9D -5~ H-§)
+H-V3F) + (- ODC, — trXH)&(OD - F)

= f%tri ODR(OD-F) +2H - OV IV + (H - H)VsF
+(-29DCy — 21X + T X)H) - OVF + %@(H -H)3F.

We also have

(C)D@)([PCQ’ (c)p.]g)

SR — 1
= D& (§trX ©OD.F+H- V35 + ( ©DC, + §tr1H) 3)

1 - _
= —;uXODE(D - §) +2H - OV IV;F

XH - (rX - tuX) H) - OVF

_ 1o
+(OD - H)OV;5+ @D < ()DCy + itrXH> 3,

where we used ()DtrX — (trX — trX) H = 0.
Putting the above together we obtain

1 A N — .
J¥ = =5 (X + 0 X) (5 (C)D®((C)D-§)) +2n- OVEOVE + IS V3T

+J§ - OVE+ I5E,
where

1o = 1,
5 =3(9D )+ 5(H ),

(2trX + trX)H,

N =

1— _
=—20vC, + S X H — (trX —tX) H—

N =

1 — T\ 1—
JS = 5 ©p. ( ©DCy + 5trgﬂ) + U X (H - H).
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Using the Teukolsky equation for § given by 75(F) = Ma[A, X, B] and the expres-
sion for the Teukolsky operator (G.5) we can write

1 " —
5 (C)'D®< (c)’D . 3’)

3— 1 1 .
= OV OV,F+ (§trX - §trX) V35 + 5 (X +uX) OV,F

__ 11— _ -
+ (%trgtrx + i XteX — 3P+ P —4 FpFEp 4+ g D H) 3

1~ —
~ G UE(H -3) ~ (4H +H + H) - OVF 4+ Ma[A4, X, B]
)y, () Sy L ©) 1 wx) ©
= OV OV +  SEX 4 X ) OVaF 4 5 (X + i X) (VaF
+ (20 —n) — (4H +H+ H)) - OVF + Ma[A, X, B]
+ ZtritrX + Ztr&trX —2WpE)p 4 3 (D . H — 3n-n+3inAn)T,
where we used [AIR) to write [(IV3, (OV4F =2(n—1n)- OVF+ (- P+ 3P+

2 (F)p (F)p _ 2n-n+4inAn)§ and 1 HO(H -§) = (n-n+inAn)g.
We therefore obtain

1 S
J¥ = = (X + &X) OV, OVsF + 29 OV OVsE

+ I3 OVF+ IS OVF 4+ IS OVE + IS

1 N
— (X + FX)M[4, X, B), (C.15)
where
5 1 3— 1 73
J§ = =5 (X 4+ 0 X) ( S0X + SteX )+ I,
1 PR
Jf = =7 (X + X)) (X + 0 X),
) _ .
J§ = —5 (X +TX)(2n—n) — (4H + T + H)) +J5,
N 1 3 —— 11— F)p F)p
JS = 5(trX + trX) 7 XX 4 e Xr X — 275 ®p

3 ~
+§_(C)D-H—377-Q+3i77/\g) +J5. (C.16)
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C.1.5. Ezpressions for KT and K3
Observe that

Po(gF) = (OV3 4 C)(gF) = (OV39)F + g ©OV3F + CgF
= gPc(F) 4 ((9V3g)F. (C.17)
We have, for g = —3trX
K® =[Pc,, g 9V3]B = g[Pc,, “V3]B + ((9V39) V3B
= ((IV39) V3B — g V501,

‘We therefore obtain

K® = K ©V3%B + KPB, (C.18)
where
KP = -30V,(0rX), Kp =3tX ©V30,.
Similarly,
K% = K3 OV35 + K55, (C.19)
where

1 __ 1
K$ = -0y, (gtrX + §trX), K§ = (gtrX + 5trx) CAvNeS

C.1.6. Ezpressions for L® and LS
Using (CI7), we obtain
L =[Pc,gOV4¥ =Pco(gOVy0) — g OV, (PoD)
= g[Pe, OV + (IV39) OV, 0
Using (C7) with g = — (3trX + 1trX), we obtain
LB =17V, B+ L3 VB 4 LPB, (C.20)
where

3 11—
LP = -y, <§trg+ §trg>,

Ly = - (3trX + trX) (n — 1),

~
°oR
I

3 1
- (5‘51"&—1— §trg) 2(p+ Fp*+ =T —n.n)

+2i(f *p+77/\ﬂ) — (C)V4Cl). (C.21)
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Similarly, using (CI0) with g = —%(tr&—i— trX) we obtain
LS =13V g+ LS OVF+ LT3, (C.22)
where
1§ = 3 OVs(X + X)),
LY = — (X + & X) (n — ),
L§ = *%(tri+@) (2(p+ ) + = Fp? =51

+4i(— *p+nAn) — (C)V4CQ). (C.23)

C.1.7. Ezpressions for M® and M3
Observe that

Po,(F-U)= (Vs +C)(F-U)= OVsF-U+F- ©OV3U+CF-U
=F Pc,(U) + (V3F) - U.
We have, for F = (6H + H + 3 H), and using Lemma [C]
M?® = [Pc,,F- OV|B =F-[Pcg,, OV|B + (©OVzF)- VB
= f%trXF' vy — % (a)trXF' VB +F.nOv;B
+F- (Vi — OVC)B + (VsF) - OVB,
We therefore obtain
M® = MP VB + M2 - VB + MPB, (C.24)
where
MP =n-(6H+H+3H),
M = OVy(6H + H +5H) — strx(6H + H + 3H)
+ % @try *(6H +H + 3H),
M@ = (6H+H+3H) -V, — “VC1). (C.25)
Similarly, we obtain

MS = MP OV + MS - OVF+ MJF, (C.26)
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where

M3$ =n-(4H + H + H),
M$ = IV3(4H +H+ H) — %trx(4H+F+ H)
M§ = (4H +H+ H) - (V. — V). (C.27)

C.1.8. Ezxpressions for N® and NS

Using (CI7) we have
N =[Pe,g]¥ = (IV39)0.

We therefore obtain

N® = NP3, (C.28)
where
NE = v, (gtrgﬁ —4®pFEp 4+ 9H - H)
and
N¥ = N§3, (C.29)
where
3 —— 1 _ _
N = v, (—Ztrgtrx — (Xt X +3P = P+4 F)p ®)p
3—— :
—§(C)D-H+n-g+m/\g).
C.1.9. The sum

From (CH) and (C.6]), we obtain
[Py, Th](%B) = (CF) + (CI3) + [CI8) + [C20) + (C29) + [C23)

1 -
ERRAARAYSD 5 (trX + 8 X) v, v,

[\

+(IP+ TP +LE) OB + (IF + TP + KF + M) OV
+(IE+ T2+ L2+ MP) - vB
+ (I8 + I + K + Ly + My + Ny )B

- %M + XM [F, X]
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and
[Pc,, 2] (§) = (C1I) + ([CI5) + ([C19) + (C22) + ([C26) + ([C.29)
=2 OVOV %<tr&+ 7X) OV, ©OV,3
+(I§ + JF + L) OVE + (IS + J5 + KS§ + M$) V3§
+(IS + IS + LS + MJ) - OVF + (I§ + J§ + K§ + L§ + M§
+N§) - 3 (X + TEX)M; (4, %, 8]
Using (T.2) and (Z3) to write
OVsB=P-C1 B, OVs5=9-CF
and therefore
OV, (V38 = OV (P -1 B) = OVP - CL VB — (DV,C1)B,
OV ©Ev;s = ©Ov(p -0 B)= Ovp -, OB - (©ve,)s,
(C)v4 (C)v3g — (C)v4 Q-0 F) = (C)V4D — Oy (C)V4S _ ((C)v402)g7
Oy (C)v3g = Oy Q-0 F) = (Olvio Co (C)VS _ ((C)VCQ)S.
Hence we obtain

[Pey, T(B) = 20 VTF - S(0X +5X) VP

+ (If +JP+ LY+ %(tr1+@)01) ©v,B

+ VB +2ZE . OUB + 228 — %(tr&Jr rX)M; [§, X],
[Peu, T(%B) = 20 OV - 3(0X +X) 9,0

+ (If + U5+ LY + %(trx + @)02) V4§

N - 1 N
+‘/2q3 + Zag : (C)VS + Z()SS - i(tri+ trX)MQ[Avxv %]7
where
Vi=IP +J2 + KP + MP, (C.30)
ZP =12 +JP+L2+MP—2n-Ci, (C.31)
- 1 -
78 = I3 + I3 + K3 + L + Mg + NG + 5 (X + 0 X) OV,0

~C (I + TP + KP + MP) -2y IV, (C.32)
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and

Vo =I5 + J§ + K§ + M3, (C.33)

Z8 =I5 + JS + LS + MJ — 21 - Cs, (C.34)

- 1 N
ZS = IS + JS + KS + LY + MJ + N§ + 5 (trX + trX) SAVTe

—Co(I5 + J§ + K$ + M$) — 21+ OVCs. (C.35)

Observe that the coefficients of (VB and (9V,F are given by

1 _
IP+IP+ LY+ 5 (trX +trX) ¢4
© 1 — (3 1
= Vs - 5 (trX + trX) FirX +SrX
oo (3 1—\ 1 —
= IV | X 45X ) + 5 (trX + trX) Cy

1 - _
= v,y + 3 (trXqL tr&) Cp —trXtrX
and

IS+ T8+ LS + % (trX + trX) Oy
= V40 — ¢ (X + BX) (00X + BX) — 5 OV (X +BrX)

+ = (trX + trX) Co

1
2
1 N 1 [

= OV,0y + 3 (tr& + tr&) Cy — §tr&tri,

which give conditions (TI0) and (ZIT)) for the vanishing of those coefficients.

C.1.10. The lower order terms

Defining
Lp[B,5) = —2Z2 . OvB — 223,
La[®B,3] =25 OVF— 283

to complete the proof of the proposition, we need to compute the terms Zo% and Zg .

Observe that, according to (ZI6), we can write

la|

Ch :2trx+0(—2) Cy :trx—l—O(@).
= r = r
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This gives

1
©OV30 = —trx? +0(| |) <C>v302:_§trx +0(| |)

1
(C)V401=—trxtrx+4p+0<| |) <C>V402=—§trxtrx+2p+o<@).
- T

We compute
I;,B — 72p72(F)p272 *(F)p2*2?7'(77*2ﬂ)+i(2 *prT]/\Q)

+ v, (C.36)

= —trxtrx +2p — F)2+O<|a|)

3 S 1
JP = —5tX (trX +trX) + (D -H) + 5 (H - H)

2
= =3trxtrx + 0O <| |) (C.37)
K2 = 30v,@X) = gm« xtry —6p+ 0 (@) (C.38)
- T
M?n.(6H+F+3E)O<|7%|), (C.39)

which gives
I+ IR+ K3+ M5 = —gtrxtrx—4p 2 )2 4 0 (|a|)
Similarly,
I =20 22 2+ )2 oy (52

+i(d *p—dnAn) + OVLCy (C.40)

1
= —strxtry — 2 (F))2 +O<|a|>,
2 73

1 — — 1 1 — 1 —
JS = -3 (trX + trX) (gtrX + §trX) +5( ©D.H)+ S H)  (C41)

—2trxtrx+0(| |)
K§ = —Ov, (35X + 26X ) = trytry —4p+ 0 la] (C.42)
v = s 5t 5t = trxtrx —4p 3 ) .

M§ =n-(4H+H + ﬂ)O(L%'), (C.43)
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which gives
I§+J§+K§+M§:fgtrxtrXf4p F>2+O<|:|>
We also compute
I = O [2 (p+ ®p2 4 Ep2 o) 420 (“p-nAn) + OVICY]
—2(n—1) - Vi

= -2 <gtrXp - trX(F)p2> + 4trX(F)p2 + @y, (—trxtrx +4p) + O (%)

:tTXtrX2_5tI'Xp—|—2trx(F)2+O<|a|)7
B N - rt
- 9 _ . B
JP = — (trX + trX) <§tr&trX+2P+6(F)P—(F)P—10@.}[) Lo (@)
r

1

2

9

§rxtrx —2trxp — 6trx p +O<|a|),
ra

KP = 3trX V50 = 73trxtrx +0 (';d),

1—
Ly = — <;tr£+ 5tr§> (2(p+ Tp? 4 *Fp2 n-n)
+2i(— *p—f—?’]/\ﬂ) — (C)V401)

:—2trxtrx + dtr xp — 4trx p +O<|a|),
ra

M@ = (6H+H+3H) -V, — “VC1) =0 ('7%')

NE = vy, (gtrgﬁ —4®pFEp 4+ 9H - H)

9
= §trxtrx2 — 9tr xp + 8tr xy Fp? + O <|Cl|>
= = = T

which gives
I+ JP + K + LY + M + N = —4tr xtrx* — 12tr xp + O (%)
This finally implies
I =IP +JE + K + LY + ME + NP + %(tr&+@) SAve

—C (I +JE + K + M) — 21 OV
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= —4tr XtrX2 — 12tr xp + tr x(—tr xtr x +4p)
_ 2trx <_gtTXUX —4p—2 (F)pQ) +0 <|?%|)
We compute

I8 = OVs[—2(p+ Fp?+ T2 — o) +4i( *p—nAn)+ Vo]
=200 = m) - Vi)

1
= -2 <gtrXp - trX(F)p2> + 4trX(F)p2 + v, <§tr Xtrx + 2p)
|al
= l 2 _ (F) 2 M
—2thtrx trxp+4trx "+ O ),
= = = r
1 E— 1 -
JS = = (trX +trX) Gtr&tr}( + XX — 2 F)p ®)p

33—
+§<C>D.H3n-g+3inAg)+O<|a|)

o]
_ 2 (F) 2 |al
= —trxtrx” +2trx " p°+ 0 )

la]

3— 1
K§ = <§trX + itrX) (IV3Cy = —tr xtrx* + O <r_4) '

1 N
L§ = —5 (X + 0X) 2(p+ Tp?+ =T —n-n)

+4i(7 *p+’f]/\ﬂ) — (C)V402)

1
——trytry? =2ty Fp? + O M ,
2 = = ré
M§ = (AH+H+ H) - (Vi — IVC) =0 <M>

rd

__ 11— . -
NS = v, (%trgtrx — XX 43P — P44 Fp F)p

3—
—E(C)D-Hﬁ—n-gﬁ—im\g)

= tr xtr x — 5trxp — 1OtrX(F)p2 +0 (@),
B o - r
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which gives
|al
B+ IS+ K+ L+ M +N§ = —tr xtr x — 6tr xp — 6trX(F)p2 +0 (T—4 .
This finally implies
- 1 -
Z8 = IS+ J§ + KS + LT + M + N§ + 5 (trX + trX) SAVTe

e (I§ US4+ KS +M§) — 2. ©VC,
(F) 2 1

= —tr xtr x — 6tr xp — 6tr x " p” +tr x —§trxtrx+2p
t 3 iyt sp—2®2) 4ol
—trx b rxtrx —4p — p° |+ vy

= —dtry Fp2 4+ 0 (@),
= r

which concludes the proof of Proposition [(.4]

C.2. Proof of Proposition [T.5]
Let f be given by
f=@" @
Recall, see [19, Proposition 8.9],
n——. m
Vs(f) = (5“&4' E‘“&) /s
n m——
Va(f) = <§trX + 5trX> f,
2Vf = (mH—i—nF—l—nﬂ—l—mE)f
and for ¥ € 54(C):
Ce(fT) = O(F)T + LT — Vs V4T — VafVal + 2Vf - V. (C.44)
We then obtain for p = 198, using (I7):

. 5___ 1 _ -
Cip = f1 [itrXV;),‘B + (2m~g + itrg) VB - (5H + H+4H) VB + ViR

—_

Pe, (M1 [3, X]) + 3 (trX + trX)M; [§, X] + Ly [B, 3]] +0(f)PB

_ (g@Jr %trg) FVLB — (gtrX + %H) 1V B

+(mH+nH+nH+mH)f VB,



118 E. Giorgt

which gives

Chp = ((% - 5) X + (2 . 5) trX) AV

+ <gtrX + (g - 5) trX) AVST
+((m—-5H+nH+(n—-1)H+(m—4)H) f - V‘B+(V1+fl O(f1))p
+ 11 | Pou (M5 X) + 5 (1 + TV, 2]+ L[5

Observe that the real part of the coefficients of all the first derivatives are multiple
of m +n — 5. To cancel their real part we then take m = 5 — n, which implies

f1=(¢)"(@)° ™ and gives
Oip = ifi[(1 = n) @DtrxVaP +n DtrxVsP + (=20 *n+2(n — 1) ) - V]

+(Vi+ f7'000)p
1 -
+ f1 {PCI (M3, X]) + 5 (trX + trX)M, [, X] + Lo [%,S]} .
Similarly, for q¥ = 29, using (ZI9)), we obtain

[ag® = fo { trXvsQ + (%trg+ @) ViQ — (3H +2H + H) - VQ+1,Q
+ Pe, (Ma[A, X,B]) + %(trg+ trX)Ms[A, X,B] + Lq [%,S]} +0(f2)Q

n—s m n m_———
_ (§tri+ Etr&) fQV4Q — (§tI'X + EtrX) f2V3Q
+(mH +nH+nH+mH)f; V1,

which gives

[Toq® = <(1 . 5) X + (% - 5) trX) £2V40

+ (gtrX + <; - 5) trX) f2VsQ + ((m —-3)H
AnH + (n—2)H+ (m—1)H) fo- VQ+ (Va+ f3 '0(f2))q"
+ fo [PCZ (Ma[A, X,B]) + %(tr&Jr@)Mz[A,%, B+ La[®B,3]|.

Observe that the real part of the coefficients of all the first derivatives are multiple
of m + n — 3. To cancel their real part we then take m = 3 — n, which implies
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f2=(9)"()°"", and gives

ngF =ify [(2 —n) (a)trKVALQ +n (a)trxvgﬂ + (7271 *n+2(n—2) *Q) . VD]
+ (Vo + f10(f2))a¥ + fo [7302 (M4, X, B])

3 (0 4 TX) MalA, X, + La[,3].

N~

Using the values in Kerr—Newman:

2aA cos 6 2a cos O(r? + a?) 2a? cos
(a)trX€4 = r+ \% )
- Jal* lal* ol
2aA cosd 2a cosf(r? + a?) 2a? cos 0
@tryey = - —V, $ —————— < —FV
Jal* Jal* ol
. a sin Or . a?sinf cos
m= -3 > m=——""3
T ’ lql®
. asin 6(r) . a®sinf cos
m=""753 =3
lql [
we respectively obtain
(1—n) <a>trxv4 +n Dtry Vs + (=2n*n+2(n—1)*n) -V
(1-n) <2aA cosf 2a cos O(r? + a?) 2a° cost9v )
= — N _— r _— —
Jal* Jal* ol
2aA cosf 2a cos O(r? + a* 2a? cos 0
+n (_ 4 T <4 ) t 4 vtp)
lql lql lql
+ (=20 *n+2(n—1) *n)Vi+ (— 20 "2 +2(n — 1) *,) Vs
—(1—2m) 2aA 04080 ) 2a cos 9(7;2 + a?) t 2a? CZSQV@
[ [ [
ind 2sin 6 cos
L0 — 2n)as|1r|13 'y, 9% su|rl |3cos v,
q q

and

(2= n) @DtrxVy+nOtry Vs + (—2n "0 +2(n—2) *n) - V

2aA cos 2a cosf(r? + a?) 2a? cos
=(2—-2n)————V, Vi+2 \Y
=2 TR Ve
to— 2n)asin9rvl B 4a2 sinﬁcosﬁv}

lq|3 lql®
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Writing that V; = ﬁvg and V, = asinfy, 4 ] V,, we finally, respectively,

lq| sln@
have
(I-n) (“)trxV4 +n @DtryVs + (=2n"n+2(n—-1)"y) -V
2aC0289V,5 (1= 2m) <2aAC4059vr N 2asiri€rv0)
lq] lq| lq]
and

(2—n) (“)trXV4 +n @ty Vs + (=2n"n+2(n—-2)"n) -V

4 0 4aA cos 6 4asinf
S RIC e !

which completes the proof.

C.3. Proof of Proposition

We compute here the right-hand sides of the main equations.

C.3.1. The right-hand side of the equation for p
Using the definition (67) of M, [§, X], we can write

M (3, X] = (2P ®P)M, [§, X],

M [3,%] =20D-F+4H-3 - (20X - X)X,

Using (CI1), we can therefore compute
Pey (M1 [3, X)) + % (trX + X)) M, [3, X]
= Pe, (2 VPPN, [§, X)) + 5 (X + X)) (2 PP TOP)N 3, ]
— @PPTP)Pe, (My[3, X]) +2 V(PP FP)M, [5, %)

(trX + & X) (2FP EP)M, [F, X]

[\:Jlr—l

=2FPEP | Po, (Mu[F, X)) — %(tr&+@)(ml[&%]) ,

where we used that (IV3( FP FP) = —(trX + trX) FIP F)P. We then compute
Pe, (Ml[g7 %]), using Lemma

Pe, (My[§,X]) = P, (20D - F+4H - § — (21X — trX)X)

=92 (C)D . (77013) + 2[PC17 (C)D]S + 4E : PCI (S) +4 (C)VBE ! S
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— (20X — rX) Pe, (%) — Vs (200X ~ X)X

= 200D (Pe,§) — X OD-§+4H - P, (§) + 2H - Vs
+(-2@DC; +4OV,H + X H) - §
— (21X — trX) Pe, (X) — V3 (2trX — trX) X,

‘We now write:

Pe,F = Vs + C1F = (OVsF+ CoF) + (C1 — C2)F = Q + (C1 — C2)F
@D (Pe,F) = OD-(Q+ (C — C2)F)
= OD-Q+(Cy — Co)OD-F+ (ODC, — ODCy) - F
(V3§ = Q- 5.

Using (&.I0) we can write
1 .
Poy(X) = VX + C1X = <§trz+ cl) X—©OD.F-H -F-2B.

By substituting in the above expression we obtain
Pe, (M1[3, X])
=20©D -0+ (4H+2H) - Q + (20, — 2Cs + 261X — 26X) DD - §
+(—2@DC, + 4OV H +4(Cy — Co)H + (21X — 2C2)H) - §
+ (4trX — 2trX)B
- N 1—

- <<C>V3 (2trX — trX) + (2trX — trX) <§tr1+ Cl>> X.

This gives

1 _ ~
— §(tri+ trX) (Ml[g7 %])
=20D.-Q+ (4H+2H)-Q+ (2C; —2C; + trX — 3trX) D - §

Pe, (ML[3, X))

+ (= 20DCy + 4OV H + (4C; — 40, — 2trX — 20 X) H
+(2trX — 2C5)H) - § + (4trX — 2trX)B

— <<C>v3(2tr1 —trX) + (2trX — trX) (%trg —trX + Cl)> X.



122 E. Giorgi
Using (4.3 and (£9) we simplify the above to
P, (Mi[§, 3]) — 5(rX + 0X) (M 3, 3]
=2(UD -2+ (QE+H) Q) + (46X - 26X) B
+YSEOD-F+YS -+ Y R,

where

YS =2C; — 20, + trX — 3trX, (C.45)
Y = —2(0DCy + (4C) — 4Cs — 4trX — 2trX) H + (4trX — 202)H,  (C.46)

Y& = 2(trX)? — 2@2 + ;t@@ — (2trX — 1 X)C). (C.47)

To complete the proof of the first part of the proposition, we need to compute the
terms Y5 and Y*. Recall that, according to (ZIG), we can write

la]

012trx+0<—2) C’QterLO(@).
= r = r
We then have

Yag =2C; — 20y +trX — 3trX = Atry = 2trx + try = 3trx + 0 <M>

r2

|al

= O (,’,_2 s

% 9 S9—=2 3 — —
Y5t = 2(trX)? — 5trg + itritrif (2trX — rX)Cy
3 3 |a| la]

2 2 2

=2trx° — §trx + itrx — (2trX7trX)2trX+O <r_3> =0 (T—3 .

Finally by writing 4 ®P ()P (2trX — trX) B = 4tr x Fp?B + (2FP FP)y 3,
for Y® = O(‘T‘I—Q‘), we obtain the stated relation.

C.3.2. The right-hand side of the equation for q¥
We have

Pe, (Ma[A, X, B]) + %(trg + trX) M [A, X, B]

= OV;(M2[4, X, B]) + (02 + %(terL @)) M,[4, X, B].
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Using the definition (6.8) of M2[A, X, B], we compute
(C)V3 (MQ[A7 %7 %])

= (c)v3 ( (F)p <(C)V3A + %(3&"& _ @)A)
3 . _
+ (5 (C)VgH) X+ (2H - g)@w)
1 _— 1 _
=-®p <(C)V3 VA + (30X — 1rX) Vs + 2 OV (30X — trX )A)
1 — ~
+trX Fp <<C>V3A + 5(:mg —~ trX)A) + (g (C)VgH) ® V3%
3 - _ _
- (5 AV (C)VgH) X+ (2H — H)2V3%B + V3 (2H — H)&SB.

Using (G.10) to express (OV3X, and writing (9V3B =P — C1B, we obtain
(C)VL’) (M2 [A7 %7 %])

1 I
=-Fp <<C>v3 ©V3A + 5 (trX — trX) UVs4
9 o 1— 1 —2
3 —
—30y;H . OVg — (5 OV3H - H) 5
3 @y, (© 3ax© 5
+ 3 V3 ' “V3H — ZU"X VsH | %

+(2H — H)@P+ (- Vs (H + H) - Cy (2H — H)) &%.
‘We therefore obtain

Pe, (Ma[A, X, B]) + % (trX + trX) My[A, X, B]

= Fp ((C)V3 (C)V3A + (02 + tr&) (C)V;J,A
3 g —— 1 _
+ —itrg +rXtrX + 5(3tr1 —trX)Cy | A
3OV,H. OvE <g OV, . ﬁ) 3

3 3 1 -
+ (5 vy OV H + 3 (C’2 + itri) (C)V3H> ®X
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+ (2H — H)®p
+ ( ©OVs(H+ H) + (C2 — C1 + %(trg+@)) (2H — g)) ®B.
We now want to relate the first line of the above to the relation (&7). Observe that
(C)v3 ((F)p ((C)V3A + %tr&A))
_ ®p <(C>v3 Ov,A + %trgc)%A _ %t@m)

1
—trx (Fp <(C)V3A + §tr§A)

1
= Fp <<C>v3 CAvAY: EtrEC)ng - %trfA).
The first line of the above can then be written as

— (F)P <(C)V3 (C)V3A + (02 + tr&) (C)V;J,A
P — 1 _
+ —§tr1 +irXtrX + 5 (BtrX —trX)Cy | A
®p [ (g, © L v 3 o2
= — 'P Vg VgA - §tI‘X V3A - Ztri A
3 ®)p [ (© 1
3 _ 1 _
- ®Ep (—Etrf + XX + o (2trX — B X) 02) A
1
=y, <<F>P <<C>v3A + EUXA»
ey + 3ux <F>P( ©V,A + ltr)(,al)
2 = 2
—Fp fitri FtrXtrX + 5(2tr1 —trX)C, ) A

Using (&), we obtain

AV <<F>P <(C)V3A + %t@A))

1 (yon _ _ _
= -9V, <§ DEB + 3HEB — (3P +2FP (F)P)S)
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1 ~ ~ —~
=3 Oy, DB — 3HR V4B — 3OV, HOB

+(3P +2Fp ®P) (Iy;5 + (Iv;3(3P + 2 Fp FP)g.

Using now (B.2)) applied to B, we obtain

— @y, <<F>P <(C)V3A + %t@A))

D (V.98 + trX DB — —H® V4B

1
2
( IV4H + trXH) &% + (3P + 2P FPp) Ov,5

+ OV;3(3P +2F)p F)P)g.

We therefore obtain, using once again (5.1)):

1 1
— Oy, (<F>P ((C)V3A + §tr§A)) - <c2 + gtrg) F)p ((C)Vg,A + §tr1A)
L ©ps 1 OPER _ LS ©
+ (= 3©V3H + (—3C — 41 X)H)®B + (3P + 2 Fp F)p) Oy 5

— — 3 _ -
+ (<C>v3 (3P +2Fp®p) 4 (Cz + 5t ) (3P +2®Fp <F>P)) 5.
Writing (OV3B =P — C1B and (IV3F = Q — CoF, we obtain

1 1
— @y, <<F>P <(C)V3A + Etr&l» — (02 + gtrg) F)p ((C)V3A + §tr§A)

Loy T~ 1 -
=5 ©DOp — SHEOP + 5 (C1 = C — 1 X) ©D&B

1 7 ~
+ <3 (C)V3H + 5 (C)DC’l + (501 — 305 — 4tr£)H) QB

+(3P +2®P®P)Q — 2 TP P (trX + trX)3,

where we used that (C)V3(3ﬁ + 2F)p ®P) + (3t X)(3P + 2(F)P(F)P) =
—2EP EP(trX + trX).
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Finally, to express the last line we recall (5.8) and then write
®p (3ux? 1+ wx ! 154
—F)p f§tri +trXtrX + 5 (2trX —trX) Cy | A
= <2trX2 + trXtrX + = 5 (2trX —trX) Cy ) V.5

X (;trXQ + trXtrX + = (2trX —trX) CQ> < trX + trX) 5

N | = N |

1
(2trX — trX) Cg) ©Op@x

N |

3 __
X (—5‘51"&2 + trXtrX +

(3H + H)®X.

N)I»—l

3 — 1
X (—itrf + XX + o (2trX — trX) Cg)

By putting everything together we finally obtain

| =

Pe, (Ma[A, X, B]) + = (trX + trX) Ma[A, X, B]

2
= (3P +2®p®EP)q - %((C)D@B + (3H + 2 H)®9P)

2P ®p(trX + 0 X)F
W OVE+ WS OV +WEF+ W2 ODRB + WEB
+WEODRX + WTRX,

where

__ 1 __
Wi = fgtri2 FtrXtrX + 5 (2trX — trX) Co, (C.48)

WS = -30©V;H, (C.49)

3 — 1 — 3— 1
W = <—§tr12 + XX + 5 (2trX — trX) Cg) <§trX + 5trX)

_ 2 OV, H - T, (C.50)
s 1
Wa = 5 (Cl — Cg — tr&), (051)
W (e) 0! 7
o =—3'YVsH + B DCy + 501 —3Cy —4tr X | H (0.52)

— OV (H+ H)+ (Cy — Cy + % (trX + X)) (2H — H), (C.53)
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__ 1 __
wr =2 <gtrx“ + X trX + 5 (2trX — trX) 02) , (C.54)

3 — 1 S 1
Wt = (—Etrg +trXtrX + 3 (2trX — trX) 02) 3 (3H + H) (C.55)

3 3 1
+5 Vs OVsH + (Cz + Etr&) (IV3H. (C.56)

To complete the proof of the second part of the proposition, we need to compute
the terms W5, WS, W2, WX and WF. Recall that, according to (ZI6), we can

write
Ci=2trx+0 (@) Co=trxy+0O (@)
= r = r
‘We then have

3 — 1 S
Wi = 7§tri2 +irXtrX + 5 (2trX — trX) Cy
3. o 2 1 2 |a| |a|
:fitrx +tryx Jritrx + O = =0 3 )

1 1 a a
Wa%:5(6&—02—&&):5(2trx—trx—trx)+O(L—2|) :O(%).

r
Finally observe that W, WX and W¥ are O(Ja|) because they are multiplied
wi-o(4).

C.4. Proof of Proposition [T
Recall that

V= Vit f 1000,
Vo := Vo + f5 '0O(f2) + 3P + 2P ®)p.
We start by computing the real and imaginary part of f~0(f).

Lemma C.2. For f = q"q™", we have

1 _ 2
R(FI0f) = 7(m+n)(n41+n+ ) ey — B2 4+m+n @y, @ gy
f(n+m)p+2nm|ﬂ|2+(m2+n2+m+n)n'ﬂ
and

S(fF'af) = (m —n) (%(nerJrl)trX(a)trer *p(m+n+1)nAQ>.

by
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In particular, for fi = (¢)*/?(@)%? and fo = qG°, we obtain

o1

B 15 21 (. 9
R(f'Of) = —?trxtrx— Z( Vry ( )t@—5p+ §|ﬂ|2 + 5,

S(f10f) = —12trx Diry +4 *p—24nAn
and
R(fy 'Of2) = —3tr xtrx — Diry @try — 3p+4n* +8n - 1,
%(f{lng) = —2trx(a)trx + Tp—4Annn.
Proof. Recall that for a scalar

F0f =~ eaesf — gtraf T eaf — strxfesf + fAf 4200 STV,

(C.57)
Using
-1 (P ™
FVs(f) = (FEX+ Fux),
-1 _(r mex
7 Va(f) = (2trX+ 5 trX),
2f'Vf=(mH+nH+nH+mH).
we have

ViVsf = (gwﬁ + %vm&) Fr (g@+ %tr&) Vaf

g

1 _ _ _
+% (—§trXtrz+D- H+ H- ﬂ+2P))f

VS

1—— = —
<—§tI'XtI'X+'D- H+ H- ﬂ+2P>

N—- m n m ——
+ (§tr£+ Etri) (§tI‘X + EtrX) f,

which gives
2 2

nm = ntrXtrX + WtrXtr&—i— %trX@—i— %tr&ﬁ

4

[IVaVsf =

n-+m

+—5'ﬂ+%D'E+ H- H-+nP+mP.

2
Observe that R(trXtrX) = tr xtr x — (@try (“)trx, while R(trXtrX) = tr ytrx +
(@try (“)trx In particular

2nm —m —n (a)
f(trxtrx -

2+m2

+ nT (tr xtrx + @try (“)trx)

R(f'VaVsf) = try (a)trX)
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+ (n +m)divy + (n+m)n|* + (n+m)p

-1 —m)?
_ (erTl)(TZJrTL )trxtquL (n—m) 4+m+n (a)tI"X (a)trx

+ (n+m)divy + (n+m)n|* + (n + m)p.

Observe that S(trXtrX) = trx@try + trx @try = 0 and S(trXtrX) =
—try (“)trx - trx(“)trx =0, while J(trXtrX) = —2tr5(“)trx. In particular

2 2
S(fIVLVsf) = f%trX(a)trX + mTtrK(a)trx + (n—m)( *p+ curly)

1
= (n—m) <§(n + m)trz(a)trx + Tp+ curlg).
Also

Af = %v. ((mHJranLnﬂerE)f)

= %V- (mH—i—nF—l—nﬂ—i—mE)f—l—i(mH—i—nﬁ—l—nﬂ—i—mE)
-(mH+nH+nH+mH)f.

In particular

R(FIAf) = ;V ((ern)nJr m+n)n (ern n+(m+n)n)

((m+n)n+ (m +n)n) — 2((m —n) "0+ (n—m) ")

((m—=n) "n+ (n—m) "n)

= %(m+n)(divn+divg) + i(m+n)2(n+g) “(n+n)

—m =) ()

= (m+n) (divn) + 2nm|ﬂ|2 + (m2 + n2)77 -n
since divy = divy and [n|* = |n|*, a
S(fIAf) = %V “((m=n) *n+(n—m) 1) + %((m +n)n+ (m+n)n)
~((m =n) *n+ (n—m) *n)

(m —n) (curln —curlp + (m +n)(—27n- *Q))

N =

= (m —n)( —curly — (m +n)n An)

since curly = —curly.
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We therefore have
R(FOF) = R eaesf) — 3r xR eaf) — straR(fesf) + R(FAS)

+2n-R(F'VS)

2
UL LIS NN R S SE Ly

—(n+ m)divg —(n+ m)|ﬂ|2 —(n+m)p

trx

1t n+mt 1t n+m
— Ztr _Z
g AT AT X

+(m® +n*)n-n+n-((m+n)n+ (m+n)n),

trx + (m + n)(divy) + 2nm|n|?

which finally gives

1 _ 2
R(FIOS) = *(m+n)(T+n+ ir ey — 2= 4+m+n @y @try
— (n+m)p+ 2nm|n*> + (m* +n* +m+n)n 1.
Also,

S(f0f) = =S(fteaesf) — %trK%(fflmf) - %tr XS(ftesf)
+S(fIAf) + 21 S(fFIVS)

1 1
=(m—n) (5(71 + m)trz(a)trx + *p+curly — Ztrx(“)trx
1 (a) * *
+Zt7’x trXfcurlﬂf(qun)n/\QqLﬂ'( n— Q)

1
=(m—n) <§(n+m+1)trX(a)trx+ p—(m+n-+ 1)77/\Q>
as stated.

We now compute V;. Using (ZI8), we have

R(VL) =R <gtrgﬁ — 9E.H> +4F)p2 g = F)p2 (1)

1

"1

1
tr xtr x + 1 (“)trx (a)trX +p— (F)p2 _x (F)p2

19 19 ~
= Itr Xtrx + vy (@try (a)tI‘X+ p+3F)p2 43+ F)p2 _18y. n—R(W)

and

(V) = s@trzﬁ@ﬂ) ~S(h) - "pnAn

= 9trx(“)trx — Tp+19nAn— S(Vh).
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Using (C.12), we have
R(V1) = RUF) + R(J) + R(KT) + R(M),
S(V1) = SUP) + S(J3) + S(K3) + S(M3P).
Using (C.36), and writing C = 2tr x + ip; (“)trz, we obtain
RUIF) = —2p—2Fp2 —2 T2 _2p. (n—2n) +2)Vytrx

= —2p—2F)p? — 2 F)p 29 (n — 27))

! L (@) 1y (@ ~ 2
+2 —§trxtrx+§ try Wtry + 2divy + 2|n|* + 2p

= —trxtry + Dtry @try +2p — 2 Fp? — 27 Fp? 4 ddivy + 4y - + 2[n[?
and using that trz(a)trx +trx (a)trx =0,
SUIP)=2"p—2nAn+m ©v, (“)trX
1
=2 p-2nAn+p <§( (“)tr)(trX + trx (a)trX) + 2curly + 2 *p>
= (2+2p1) "p+ 2picurly — 2n A 7.
Using (C31), we have

— 1 —— 1 —
RJIZ) =R <3trXtrK+ 5((C)D'H) + §(HH)) = —3tr xtr x + divy + [n[?,

- e
IJP)=9 (—3trXtrK + 5( D H)) = —3try “Wtry — curly.

Using (C38), we have
%(K;)B) = -3 (C)Vg(tr X) = gtr xtrx — ; (a)tr)( (a)trx — 6p — 6divy — 6|Q|2,
J(KP) = —3IV;3(Dtry) =6 *p + 6eurly.
Using (C39), we have
R(M) = R(n- (6(n+1i*n) +n—i n+3(n—i*n)) =T +3nn,
(M) =S (n- (6(n+i*n)+n—i*n+3n—i*n))=-3n "n=-3nAn.
This gives
R(V1) = —gtr Xtrx — % (@try (“)trx —dp—2F)2 o+ (F)2 divy
+7n-n+ 4l

(V1) = 73trz(a)trx + (8 +2p1) "p+ (2p1 + 5)curly —5n An
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and therefore
7y - 29 21 @)y (@ (F)2 5« (F)2 | g
%(%):ItrxtrXJrI trx “trx +5p+ 5 p" +5 p” + divny
—25n-n —4[n?,

(V) = 12trz(a)trx —(9+2p1) "p— (2p1 + 5)curly + 24n A 7.

Finally this gives:
R(V1) = R(V) + %(fflm(fm

29
= —trxtry + (“)trx (“)trx +5p+5F)? 45 F)2 4 divny — 257 -

1 n
15 21 51
—4ln* - 7tr Xtrx — T (@try (a)trX —5p+ §|Q|2 + 5
1 (F), 2 « (F) 2 | 1 L L2
= —gbtrxtrx +557 +5 " +d1vg+§n-g+§lgl

S(V1) = S(V) + (7 10(H)
= 12trx(a)trx —(9+2p1) "p— (2p1 + 5)curly + 24n A n — 12trx(a)trx
+4 "p—24nnn
= —(2p1 +5) "p— (2p1 + 5)curly.

Observe that for p; = —2, we obtain $(V1) = 0, as desired.
We now compute V. USlng [T20), we have

R(Va) = R ( trXtrX + trXtrX 3P+P—4®pEp 42 5 3D H)

. 1 1
—n-n—R(Va) — §tr Xtrx — 3 (@try (a)trX —2p+2F)2 o ()2

1
= 5‘57“ Xtrx + = 5 (a)trx (@try —4p — 2 F)p? — 2 = (F)2
+3divy —n -1 — R(Va)

and
3 — 1— — 3——=
J(Va) =S Ztr&trX + ZtrgtrX —3P+ P+ 3 OD.-H

—nAn—S(Va) =2 *p+2nAn

= trx(a)trx +2%p—3curlp +nAn— S(Va),
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where

R(V2) = RUT) + R(IF) + ROET) + R(M),
S(Va) = SUF) + S(JF) + S(KF) + (M),
Using (C.40), and writing Co = tr x + ipo (“)trx we obtain

RIS) = —2p—2Fp2 —2xE)2 _op. (5 — 2n) + (C)V4trx

1 1
f§tr Xtrx + 3 (@try (“)trz —2F)p2 g+ (F)y2 4 2divny +4n - n,
S(IS) =4 *p—4nA 1N+ p2 ©v, (a)trx
= (44 2p2) "p+ 2pacurly — 4n A 7.
Using (CA41)), we have
5 3 1 Loy o Lo —
R(JF) = R(—trx 5trXJr 5trX + 5( D-H)+ §(H~H))
= —2tr xtr x + divy + |n?,
I(J5) =9 fl(terLm) SEX 4 tux) + L@ )
s 20 T2 2 2

= —trx(“)trx + curly.
Using (C42), we have
R(KS) = —2@V3(tr x) = tr xtrx — @try (a)trx — 4p — Adivy — 4|n|?
S(KS) = - V3 Wiry = 2 *p + 2curly.
Using (C43), we have
RMF) = R(n- (409 +i *n) + (9 —i *n) +n+i"n)) =50 +1-n,
S(MF) =S(n- (40 +i*n) + (=i *n) +n+i"n)) =nAn.

This gives

+ divny + 2|n/?,
3(Va) = ftrx(a)trx + (2p2 +6) *p+ (2p2 + 3)curly —3n A7
and therefore
R(Va) = 2tr xtrx + (@try (“)trx + 4divy — 61 -1 — 2|Q|2,

(Vo) = 2tr x @try — (2pa +4) *p— (2p2 + 6)curly + 4n A .

133

3 1
R(Va) = —5‘57“ Xtrx — 3 @try (“)trK —4p—2F)p2 g x ()2 _ 2divy +5n -1
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Finally, this gives
R(V2) = R(Va) + R(f5 '0(f2)) + R(3P + 2 FP EP)
= 2tr xtrx + (a)trx (“)trz +4divy — 6n -1 — 2|Q|2
—3tr xtr x — (@iry (“)trx —3p+ 4|Q|2 +8n-n+3p+2 (F)p? 4 o * (F)y2
= —trxtrx + 2 Fp? + 2 Fp? 4 4divy + 21 - 7 + 2|n|?
and
$(Va) = S(Ve) + S(f2 '0(f2)) + S(B3P)
= 2trx(“)trx — (2p2 +4) "p— (2p2 + 6)curly +4n Ay — 2tr5(“)trx
+ "p—4AnAn—3Tp
= —(2p2 +6) "p — (2p2 + 6)curly.

Observe that for po» = —3, we obtain §(V2) = 0, as desired. This completes the
proof of the proposition.

C.5. Proof of Lemma [T.8]
From (CA8) and Cy = tr y — 3i @try as in (Z38), we compute

3 _ 1 _
W) =9 <—§uﬁ2 + XX + o (2trX — trX) 02)

= 3trx(a)trx +9 (%(trz —3i (a)trx) (trx — 31 (a)trx)) =0
and similarly, from (C.54))
S(WE) = é% (—gtrf +trXtrX + %(mg — @)02) =0.
From (C.51)), we obtain

W;B == %(01 *OQ*U‘K)

1
= <2trx — gz (a)trX —trx +3i (a)trz —trx+i (“)trz)

3
= ZZ (a)trx.

From (C.45)

Y =20, — 205 4+ trX — 3trX
)
=2 (2‘51"& — 52 (“)trx) —2(tr x — 3¢ @try) + trx — i Dtry — 3(tr x + i @try)

= -3 (a)trx.
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We now compute the imaginary parts of Z2 and W3 — Z5 . From (C3]) a
(C34)), we have

(Z2) =SUD)+S(I2) +S(LT) + (ML) — 21 - S(Ch),
I(Z3) =SUS) +S(JIF) + (L) + (M) — 21 I(Cy).

Using (C9) and ([CI2), we have

S(UP) =S(IF) = (= 29V 07— 1) +trx(n —n) = @tex “(n—m) =0.
Using (CI4) and (CIG), we write

JE = —%(tr&+@)(2(n—ﬂ) ~ (6H + H +3H))

[ — 1, _
—20VC, —trXH — 5 (X = nX)H + o (X — 0 X) H
and

JS —%(tr&—l—@)@(n—ﬂ) - (4H + H + H))

—— 1 _ 1 _
—20©yC, + S X H — o (trX — X)) H — 5(Qtrg + trX)H.

()

By writing (IVC; = VC; — ¢Cy and (IVCy = VCy — (Cy, we obtain

R}

(JB) = trxS(6H + H + 3H) — 2VS(Ch) + 2¢3(Ch)
— (“)trer (a)trzn - (trX n— (“)trzn)

=trx(5 *n—3 *n) —2VS(C1) + 2¢S(Cy) — (“)trm +2 (“)trxn —trx "n

2VS(Ch) + 2¢3(Cy) — (a)trm +2 (a)trzr] +4trx n—3trx *n

tr xS(4H + H + H) — 2VS(Ca) + 2¢S(C)

—trx "n+ (a)trm — (trx "n— (“)trxn)

trx(3 *n+ *n) —2VS(Ca) 4 2¢S(C2) — 2trx *n + (“)trﬁ + (a)trxn
—2VS(Cs) + 2¢3(Cs) + (a)trm + (a)trxn +trx "n4trx *n.
Using (C2I) and (C23]), we have

(L) = I(~(BtrX + X)) (n — ) = 2@try(n —n)
S(LE) = S(— (X + FE)(1 — ) = 0.
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Using (C28) and (C27)), we have

S(MP) = VS (6H + H + 3H) — %trx%(GH +H+3H)

@try *S(6H +H + 3H)

N =

+

1 1
= V(5" =3 "n) — 5trx(5 "0 =3 "n) + 5 “tax (- 50+ 3n)
and

S(MT) = IVsS(UH +H+ H) — %trx%@}[—i—ﬁ—i— H)
+%(a)trz “S(4H+H + H)

1 1
= V(3 "+ ") = Strx(3 0+ ") + 5 Ptex(—3n—1n).
We therefore obtain

I(ZB) = —2VI(Ch) + 2¢S(Ch) — (“)trﬁ +2 (“)trxn +4trx "n—3trx "n
* 1 * *
+2(a)trz(n ) +V3(5 n—3 Q) — §trz(5 n—3 Q)
1
+3 @trx (= 57+ 3n) — 21 (C1)

3 3
= —2VS3(C1) +2(¢ —n)S(Cy) + 3 (a)trx(n —n) + itrx( n— *n)

+V3(5 *n—3 *Q)
and, also using (C.49)
(25 —WF) = —2VI(Cy) + 2¢S(Ca) + (“)trﬁ + (“)trxn +trx "n+trx n
* * 1 * * 1 a
+V3(3*n+ *n) — §trz(3 n+ *n)+ 5( Jtrx(—3n—n)
—2n-3(C2) +3V3

1 1
= —2VS(C2) +2(¢ = m)S(Ca) + 5 @trx(n —m) + Ftrx( " — )

+V3(6 *T]+ *Q)

We now evaluate in the outgoing frame. Since ¢ = —, and by writing 3(C1) =
1 (“)trx and S(C1) = pa (“)trx we have

*

1)

3 3
S(Z;B) = —2mV (a)trx —4py (a)trﬁJr 2 (a)trx(n —n) + itrx( *n—

+V3(5 n—3 *Q)
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and
(78 3 (a) (a) 1 (a) 1 * *
S(Z5 —WP) = —2p2V Wtry — 4pe Wtrxn + 3 trx(n —n) + §tr5( n—"n)
+V3(6 n+ *ﬂ)
We start by evaluating at 2. Then since 7y = —1, and *ny = *QQ, we have
3(23°) = —4pr Dtrxn, — 3 Wtuxn, + Vs (50— 3 "),

Also using that (V3 *ny = —2 (a)trﬁ2 and ((9V3 )2 = — (a)trﬁy see [19], we
have

3(2P) = —4m (a)trﬁ2 -3 (a)trm2 —10 (a)trm2 +3 (a)trﬁ2
_ (a)
= —2(2p1 +5) “trxm,,
which indeed vanish for p; = —%. We now also evaluate at 1. We have, using that
Vl((a)trx) = 73(a)trﬁ1 —try "n, and g = n, and *n; = — ",
I(ZE) = —2p1(—3(“)trﬁ1 —trx "n,) —4p: (")trﬁ1 —3trx "n,
+V3(5 n—3 *ﬂ)l
= 2p; (a)trﬁl + (2p1 — 3)tr x *Ql + V3 (5 n—3 *ﬂ)l'

Also using that (Vg *n; = tr x *ﬂl + (")trﬁ1 and ((C)V3 *Q)l = —trx *ﬂlv we
have

ZE) =2p (")trm1 +(2p1 —3)trx "n, +5trx "n, + 5(“)‘51"&1 +3trx n,

= (2p1 +5)(Wtrxn, +trx *n,),

which vanishes for p; = f%.
Similarly, we have

S(Z5 —WS) = —4ps Wirxn, + Wtryn, + Vs (6 “n+ ),

= —4p> (a)

trm2 + (a)trﬁ2 —12 (a)trﬁ2 — (a)trﬁ2
= —(4p2 + 12) (a)trﬁ2
and
(25— WF) = =2p2 V1 Wtry — dpo Ptrxn, +trx *n, + Va(6 *n+ n),
= 2po (“)trﬁl + (2p2 + 1)tr x *Ql + V3 (6 n+ *Q)l
= 2py (“)trﬁl + (2p2 + Dtrx "n, +6trx 'n, +6 (“)trﬁ1 —trx "n,
= (2p2 + 6)( (a)trml +trx *Ql),

which vanishes for p; = —3. This completes the proof of the lemma.
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