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a b s t r a c t

The Erdős–Szekeres Theorem stated in terms of graphs says that
any red–blue coloring of the edges of the ordered complete graph
Krs+1 contains a red copy of the monotone increasing path with
r edges or a blue copy of the monotone increasing path with
s edges. Although rs + 1 is the minimum number of vertices
needed for this result, not all edges of Krs+1 are necessary. We
characterize the subgraphs of Krs+1 with this coloring property
as follows: they are exactly the subgraphs that contain all the
edges of a graph we call the circus tent graph CT (r, s).

Additionally, we use similar proof techniques to improve
upon the bounds on the online ordered size Ramsey number of
a path given by Pérez-Giménez, Prałat, and West.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The Erdős–Szekeres Theorem [10] states that any sequence of distinct integers of length at least
rs + 1 must contain a monotone increasing subsequence of length r + 1 or a monotone decreasing
subsequence of length s + 1. This fundamental result in extremal combinatorics has inspired the
study of many interesting variations (for example, see [7,11,12,17]). In many of these variations,
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Fig. 1. The circus tent graph CT (3, 4).

it is useful to observe that the Erdős–Szekeres Theorem can be interpreted as a statement about

ordered graphs.

An ordered graph on n vertices is a simple graph whose vertices have been labeled with [n] =
{1, 2, . . . , n}. We denote by Pn the ordered graph which is a path on n + 1 vertices labeled

1, 2, . . . , n + 1 along the path, and by Kn the ordered complete graph on n vertices.

An ordered graph G on [N] contains the ordered graph H on [n] if there is an edge-preserving

injection f : [n] → [N] such that f (i) < f (j) for all 1 ≤ i < j ≤ n. For ordered graphs G,H1,H2, we

write G ↪→ (H1,H2) if any red–blue edge-coloring of G contains a red copy of H1 or a blue copy of

H2.

Given a sequence a1, . . . , ars+1 of distinct integers, we can color the edges of Krs+1 as follows:

color an edge ij with i < j red if ai < aj, and blue if ai > aj. Then a monotone increasing sequence

of length r + 1 becomes a red copy of Pr ; a monotone decreasing sequence of length s+ 1 becomes

a blue copy of Ps.

Not all colorings of Krs+1 can be obtained in this way, but the Erdős–Szekeres theorem can be

strengthened to a statement about all colorings; one of its standard proofs shows that a red copy

of Pr or a blue copy of Ps must exist in any red–blue coloring. In other words, Krs+1 ↪→ (Pr , Ps).

While rs + 1 is the minimum number of vertices needed in an ordered graph G with the

property G ↪→ (Pr , Ps), we do no not need all the edges of Krs+1. For example, any edge ij such that

i + (rs + 1 − j) < min{r, s} is not contained in any ordered path of length min{r, s}, and therefore

excluding all such edges still leaves a graph G such that G ↪→ (Pr , Ps). But, as we shall see, some

other edges of Krs+1 are unnecessary for less obvious reasons.

Below we define the minimal subgraph G of Krs+1 such that G ↪→ (Pr , Ps). Our main result is to

prove a surprisingly simple characterization of all (rs + 1)-vertex graphs G with G ↪→ (Pr , Ps): any

such ordered graph must contain our minimal example as a subgraph.

Definition 1.1. Let the circus tent graph CT (r, s) be the ordered (rs+ 1)-vertex graph with vertices

1, 2, . . . , rs + 1 which is the union of the ordered (rs + 1)-vertex graphs G1 and G2, defined below:

• The graph G1 contains an edge ij iff there exists k ∈ [s] such that either k ≤ i < j ≤ kr − r + 2

or rs − kr + r ≤ i < j ≤ rs + 2 − k.

• The graph G2 contains an edge ij iff there exists k ∈ [r] such that either k ≤ i < j ≤ ks− s+ 2

or rs − ks + s ≤ i < j ≤ rs + 2 − k.

Fig. 1 shows the circus tent graph CT (3, 4). Note that CT (3, 4) does not include, for example, the

edge {2, 7}, even though that edge is contained in many paths of length 4.

In the case r = s, the graphs G1 and G2 are identical; taking k = r = s in the definition of G1

gives a clique with
(

r2−2r+3

2

)

edges, and the other values of k contribute 2
∑r−1

k=1(kr − r + 2 − k) =
r3 − 4r2 + 7r − 4 edges. In total,

|E(CT (r, r))| = 1

2
r4 − r3 + 1

2
r2 + 2r − 1.

When r ̸= s, both G1 and G2 contribute edges, and there is no exact polynomial formula for the

number of edges in CT (r, s). Since CT (r, s) contains all edges ij with s ≤ i < j ≤ rs− r + 2, we have
(

rs − r − s + 3

2

)

≤ |E(CT (r, s))| ≤
(

rs + 1

2

)

.
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We show that all edges not in CT (r, s) can be deleted from Krs+1 and still leave a ‘‘good’’ graph
with the desired property, while removing a single edge in CT (r, s) from Krs+1 yields a ‘‘bad’’ ordered
graph without this property.

Theorem 1.2. Let G be an ordered graph on rs + 1 vertices. Then G ↪→ (Pr , Ps) if and only if CT (r, s)
is a subgraph of G.

This is a surprisingly simple characterization of the ‘‘good’’ ordered graphs on rs + 1 vertices.
Indeed, this is the first setting in which we have observed the phenomenon that every ‘‘good’’ graph
must contain a fixed ‘‘good’’ subgraph.

Theorem 1.2 can be interpreted as a size Ramsey number problem with a fixed number of
vertices. The (ordinary) size Ramsey number of a graph G, denoted r̂(G), is the minimum integerm for
which there is a graph H with m edges such that every 2-coloring of E(H) contains a monochromatic
copy of G.

In 1983, Beck [3] proved that r̂(Pn) is linear in n, settling a question of Erdős [9]. The current best
upper bound, given by Dudek and Prałat [8], is r̂(Pn) ≤ 74n, while the current best lower bound,
given by Bal and DeBiasio [1], is r̂(Pn) ≥ (3.75 − o(1))n.

Recently, this size Ramsey question has been studied in several different ordered/directed
settings, including [2,5,6,15]. Let r̃(Pr , Ps) denote the minimum number of edges in an ordered graph
G such that G ↪→ (Pr , Ps). This is the ordered size Ramsey number of Pr versus Ps.

Theorem 1.3 ([2]). For some absolute constant C > 0 and for all 2 ≤ r ≤ s,

1

8
r2s ≤ r̃(Pr , Ps) ≤ Cr2s(log s)3.

Note that the construction yielding this upper bound requires more than rs+ 1 vertices; it uses
4rs.

Another interesting variant of the size Ramsey number is the online version introduced by
Beck [4] and by Kurek and Ruciński [14]. In the online setting, we study a game between two
players, Builder and Painter. In each turn, Builder presents an edge and Painter colors it red or
blue. Builder wins if Painter is forced to create a monochromatic copy of the desired graph. The
minimum number of edges necessary for Builder to win is the online size Ramsey number. Simple
arguments show that the online size Ramsey number of the path Pn is at least 2n − 3 and at most
4n − 7 [13].

This game can also be played on ordered graphs and with t ≥ 2 colors. We denote by
ro(Pn1 , Pn2 , . . . , Pnt ) the online ordered size Ramsey number, which is the minimum number of edges
that Builder must play in order to force Painter to create a monochromatic ordered copy of Pni in
some color i. In this definition, the game is played on vertex set N. If we restrict the game to a fixed
set of 1 +

∏t

i=1 ni vertices, then we write r∗
o (Pn1 , Pn2 , . . . , Pnt ). For the diagonal t-color case when

n1 = ni for all i, we write ro(Pn; t) and r∗
o (Pn; t). In [16], Pérez-Giménez, Prałat, and West gave the

following bounds on ro(Pn; t).

Theorem 1.4 ([16]). For n ≥ 2, always nt−1

3
√
t

≤ ro(Pn; t) ≤ tnt+1.

Note that Theorem 1.4 is a special case of their general result on k-uniform hypergraphs. Below,
we give a new upper bound on ro(Pn; t).

Theorem 1.5. ro(Pn0 , Pn1 , . . . , Pnt ) ≤ r∗
o (Pn0 , Pn1 , . . . , Pnt ) ≤ n0

∏t

i=1 ni(⌊log2 ni⌋ + 1).

In particular, ro(Pn; t) = O(nt (log n)t−1).

This asymptotic bound is an improvement on Theorem 1.4 when t = o( log n

log log n
). In the 2-color

case, we also improve the lower bound from Theorem 1.4, showing that ro(Pr , Pr ) is superlinear in r .

Theorem 1.6. ro(Pr , Pr ) ≥ log2(r + 1)! = Ω(r log r).

The organization of the paper is the following. In Section 2, we prove Theorems 1.5 and 1.6
about the ordered online size Ramsey number. In Section 3, we use similar techniques to prove
Theorem 1.2, proving the two parts of the statement in different subsections.
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2. Online ordered size Ramsey number of paths

2.1. Two-color case

Before proving Theorem 1.5, we will prove a 2-color version of the result in order to give insight
into our proof technique.

Theorem 2.1. ro(Pr , Ps) ≤ rs(⌊log2 r⌋ + 1).

Proof. We show that if Builder plays according to the following strategy, then at most rs(⌊log2 r⌋+1)
edges are needed to win the game. In order to determine which edges to present in each turn,
Builder maintains a list of active vertices v0, v1, . . . , vk for some k < r , satisfying the invariant that
vi (if it exists) is the last vertex of a red Pi. Moreover, each vi will be the last vertex of a blue path
of some length bi. Note that over the course of the game, vi and bi will change. (We set bi = −1 if
vi does not yet exist.)

Initially, Builder sets k = 0 and lets v0 be the first (leftmost) vertex. In each round of this
strategy, Builder sets w to be the first vertex following all of the active vertices and plays some of
the edges v0w, v1w, . . . , vkw. During the round, either a new active vertex will be defined or one
of the defined active vertices will be updated. The round ends when one of the following outcomes
occurs. Note that in each case, Builder either increases some bi or creates a winning red path.

• Painter colors the edge v0w blue. Then Builder updates the active vertex v0, setting v0 = w,
and increases b0 by 1.

• There is an i such that Painter colors the edge vi−1w red and the edge viw blue. Then Builder
updates the active vertex vi by setting vi = w and increasing bi by 1.

• Painter colors the edge vkw red, and k + 1 < r . Then Builder defines a new active vertex by
setting vk+1 = w and bk+1 = 0.

• Painter colors the edge vkw red, and k + 1 = r . Then the red path Pr−1 ending at vk together
with the red edge vkw forms a red Pr , and Builder wins the game.

To minimize the number of edges Builder must play in this round, Builder performs a procedure
similar to binary search on the set of edges {v0w, v1w, . . . , vkw}. Builder begins by playing the
middle edge v⌊k/2⌋w. If Painter colors this edge red, then Builder cuts the set of edges in half and
continues this process on the second half of the edges, {v⌊k/2⌋+1w, . . . , vkw}. If Painter colors v⌊k/2⌋w
blue, then Builder cuts the set of edges in half and instead continues this process on the first half
of the edges, {v0w, . . . , v⌊k/2−1⌋w}.

After at most ⌊log2(k + 1)⌋ turns, the set of edges remaining is a single edge {viw}. Moreover:

• If i > 0, then at some point in this round, viw was the first edge in the second half of a subset,
and vi−1w was colored red.

• If i < k, then at some point, viw was the last edge in the first half of a subset, and vi+1w was
colored blue.

Under these conditions, no matter how Painter colors the edge viw, one of Builder’s goals is satisfied:
Builder either increases bi or bi+1, or obtains a red Pr . Thus, each round can be completed in
⌊log2(k + 1)⌋ + 1 ≤ ⌊log2 r⌋ + 1 turns.

We can track the progress of this strategy by considering the ordered r-tuple (b0, b1, . . . , br−1),

which starts at (0, −1, −1, . . . ,−1). After rs rounds, we have
∑r−1

i=0 bi = r(s − 1) + 1, so bi ≥ s

for some i, and Builder wins. Therefore, Builder needs at most rs rounds to win according to this
strategy, for a total of rs(⌊log2 r⌋ + 1) turns. □

2.2. Proof of Theorem 1.5

In order to prove our upper bound in the multicolor case, we replace the binary search procedure
used by Builder in the proof of Theorem 2.1 with a multidimensional search procedure.
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Proof. Builder’s strategy, played on vertices 1, 2, . . . , 1 +
∏t

i=0 ni, is as follows. Throughout the
game, Builder maintains a t-dimensional array of active vertices, labeled by integer points x =
(x1, . . . , xt ) ∈ [0, n1)× · · ·× [0, nt ). Let v(x) be the active vertex labeled by x. An active vertex may
be undefined; however, if v(x) is defined, then for each i = 1, . . . , t , there is an ordered path in
color i of length xi ending at v(x). Initially, v(0) = 1, and no other active vertices are defined.

Let ℓ(x) denote the length of the longest ordered path in color 0 ending at v(x). If this vertex is
undefined, then we say ℓ(x) = −1.

Builder plays in rounds of length at most
∏t

i=1⌊log2 ni⌋ + 1. In each round, Builder plays edges
from some of the defined active vertices to w, the first vertex following all of the active vertices.
At the conclusion of a round, Builder either wins the game, or updates some active vertex v(x) by
setting v(x) = w, which increases ℓ(x) by 1.

Throughout the game, Builder uses the following d-dimensional search procedure to choose which
edges to play.

Let S(yd+1, yd+2, . . . , yt ) denote the set

S(yd+1, yd+2, . . . , yt ) = [0, n1) × · · · × [0, nd) × {yd+1} × · · · × {yt}.
Builder applies the d-dimensional search procedure to the set S(y) for some y ∈ Z

t−d in order
to obtain one of the following outcomes:

1. A point x ∈ S(y) such that the edge v(x)w has some color i > d, or

2. A point x ∈ S(y) such that either the active vertex v(x) is undefined or the edge v(x)w has
color 0. Moreover, for each j = 1, . . . , d, either xj = 0 or there is an assistant point x(j) ∈ S(y)

such that x
(j)
j = xj − 1 and the edge v(x(j))w has color j.

This procedure is defined recursively. In the 0-dimensional search procedure on S(y), Builder draws
the edge from v(y) to w, if the active vertex v(y) is defined. If Painter colors this edge with color 0,
or if v(y) is undefined, then Builder obtains outcome 2 by setting x = y. If Painter colors this edge
with some color i ≥ 1, then Builder obtains outcome 1 by setting x = y.

For d ≥ 1, the d-dimensional search procedure on S(y) is similar to a binary search. It uses an
interval [a, b) initially set to [0, nd). To cut the interval in half, it performs the (d − 1)-dimensional
search procedure on S(⌊ a+b

2
⌋, y) ⊂ S(y).

When this subprocedure is done, there are three possibilities:

• If the subprocedure yields outcome 1 and the edge v(x)w has color d, then the procedure
continues with interval [⌊ a+b

2
⌋ + 1, b).

• If the subprocedure yields outcome 1 and the edge v(x)w has color i > d, then the procedure
terminates, having also obtained outcome 1 with the same x.

• If the subprocedure yields outcome 2, then the procedure continues with interval [a, ⌊ a+b
2

⌋).
After at most ⌊log2 nd⌋ + 1 steps of the (d − 1)-dimensional search procedure, Builder is left with
the empty interval [a, a).

• If a = 0, then the (d− 1)-dimensional search procedure was performed on S(0, y) and yielded
outcome 2 with some point x ∈ S(0, y). Then the d-dimensional search procedure will yield
outcome 2 with the same x and the same assistant points; since xd = 0, no assistant point x(d)

is necessary.

• If a = nd, then the (d − 1)-dimensional search procedure was performed on S(nd − 1, y) and
yielded outcome 1 with some point x ∈ S(nd−1, y) such that the edge v(x)w has color d. Then
there is an ordered path of length nd in color d ending at w: the path of length nd − 1 ending
at v(x) followed by the edge v(x)w, and Builder wins.

• If 0 < a < nd, then the (d − 1)-dimensional search procedure was performed on S(a, y) and
yielded outcome 2 with some point x ∈ S(a, y); it was also performed with S(a − 1, y) and
yielded outcome 1 with some point x′ ∈ S(a − 1, y) such that the edge v(x′)w has color d.
In this case, the d-dimensional search procedure will yield outcome 2 with x, taking the same
assistant points and adding the new assistant point x(d) = x′, which satisfies the conditions
required.

5
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By induction, Builder’s d-dimensional search procedure will take at most
∏d

i=1(⌊log2 ni⌋ + 1)
moves.

A round of Builder’s strategy consists of performing the t-dimensional search procedure on the
entire set [0, n1) × · · · × [0, nt ). This search procedure never yields outcome 1, since no color i > t

is available. Therefore, Builder obtains outcome 2 with some point x.
We claim that there is an ordered path of length xi in color i ending at w for each i = 1, . . . , t ,

and therefore w satisfies the prerequisites for replacing v(x) as an active vertex. This is automatic

if xi = 0. If xi > 0, then there is an assistant point x(i) such that x
(i)
i = xi − 1 and the edge v(x(i))w

has color i. Then the ordered path of length xi − 1 in color i ending at v(x(i)) can be followed by the
edge v(x(i))w to get the path of length xi Builder wants.

If v(x) is undefined, Builder defines the active vertex v(x) = w and increases ℓ(x) from −1 to
0. Otherwise, the edge v(x)w has color 0, and there is an ordered path of length ℓ(x) + 1 in color
0 ending at w: the path of length ℓ(x) ending at v(x), followed by the edge v(x)w. Then Builder
updates v(x) by setting v(x) = w, which increases ℓ(x) by 1.

After n0n1 · . . . · nt rounds, either ℓ(0) has been increased n0 times (from 0 to n0) or one of the
other n1 · . . . · nt − 1 values ℓ(x) has been increased n0 + 1 times (from −1 to n0). In either case,
there is an ordered path of length n0 in color 0, and Builder wins. This strategy requires at most
n0

∏t

i=1 ni(⌊log2 ni⌋ + 1) moves, as desired. □

2.3. Proof of Theorem 1.6

Our proof of Theorem 1.6 uses the following lemma, which gives a general strategy for finding
lower bounds on ro(Pr , Ps).

Lemma 2.2. Let C = {C1, C2, . . . , CN} be a set of edge-colorings of Krs+1. Let p > 0 be such that for

every Pr in Krs+1, there are at most pN colorings in C in which the path is completely red, and for every

Ps in Krs+1, there are at most pN colorings in C in which the path is completely blue.

Then r∗
o (Pr , Ps) ≥ log2

1
p
.

Moreover, if we can find a set of colorings of Kn with the same ratio p for sufficiently large n, then

ro(Pr , Ps) ≥ log2
1
p
as well.

Proof. Painter’s strategy for playing on rs+1 vertices is as follows. After k edges have been played
and colored, Painter computes Ck ⊆ C, consisting of all colorings in C which agree with the partial
coloring of Krs+1 built so far.

When Builder plays an edge vw, Painter splits Ck into two sets: Cr
k , consisting of all colorings in

which vw is red, and C
b
k , in which vw is blue. Painter colors the edge vw red (so that Ck+1 = C

r
k) if

|Cr
k| ≥ |Cb

k |, and colors the edge vw blue (so that Ck+1 = C
b
k ) otherwise. Thus, at each step, Painter

ensures that |Ck+1| ≥ 1
2
|Ck|; by induction, |Ck| ≥ 2−kN .

If Painter loses the game because a red Pr or a blue Ps has been created, then by definition of p,
|Ck| ≤ pN . Therefore p ≥ 2−k, or k ≥ log2

1
p
.

This argument bounds r∗
o (Pr , Ps); to prove a bound of ro(Pr , Ps) ≥ k using this lemma, Painter

simulates Builder’s moves on a graph with n ≥ 8k vertices. For every edge Builder plays, Painter
plays an edge in the simulation so that the graphs in the actual graph and in Painter’s simulation are
order-isomorphic except possibly for isolated vertices. Moreover, Painter makes sure that after the
ith move, there are at least 8k−i isolated vertices between any two vertices with positive degree in
Painter’s simulation. This will always be possible and guarantees that Painter can always simulate
Builder’s future moves for at least k steps.

Then, Painter determines a color for the edge in the simulated graph, using a collection C of
colorings of Kn. Painter uses that color to play in the actual graph. □

As a corollary, we obtain Theorem 1.6, which gives an improved lower bound in the diagonal
case. Note that applying Lemma 2.2 with C consisting of all possible red–blue edge-colorings of
Kr2+1 will give a weaker bound on ro(Pr , Pr ) than we want. Our improvement comes from selecting
an appropriate subfamily of colorings.

6
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Proof. Choosing n to be as large as necessary, apply Lemma 2.2 with the following set of colorings

of Kn: for every permutation σ of {1, 2, . . . , n}, take the coloring in which edge ij is red if σ (i) < σ (j)

and blue if σ (i) > σ (j).

Then p = 1
(r+1)! , because asking for a specific path Pr to be monochromatic requires r + 1 values

of σ to be in a specific relative order. Therefore, we have ro(Pr , Pr ) ≥ log2
1
p

= log2(r + 1)!. □

3. The circus tent theorem

In this section, we prove our main result, Theorem 1.2. In Section 3.1, we show that every

subgraph G of Krs+1 such that G ↪→ (Pr , Ps) must contain CT (r, s). Then, in Section 3.2, we show

that CT (r, s) ↪→ (Pr , Ps).

3.1. A circus tent is necessary

Lemma 3.1. For every edge e ∈ E(CT (r, s)), Krs+1−e has a red–blue edge-coloring without any ordered

red path of length r or blue path of length s.

Proof. Let e = ij ∈ E(CT (r, s)) with i < j. Then e ∈ E(G1) or e ∈ E(G2). Without loss of generality,

assume e ∈ E(G1). (For e ∈ E(G2), just switch the roles of r and s throughout the proof.) Then there

exists some k ∈ [s] such that k ≤ i < j ≤ kr − r + 2 or rs − kr + r ≤ i < j ≤ rs + 2 − k.

Note that by symmetry, it suffices to prove the result for edges of the first type. Indeed, if Krs+1−ij

has an edge-coloring with no red Pr or blue Ps, then its mirror image is such an edge-coloring for

Krs+1 − i′j′, where i′ = (rs + 2) − j and j′ = (rs + 2) − i. So, let us assume that e = ij where

k ≤ i < j ≤ kr − r + 2 for some fixed k ∈ [s].
First, we will provide a vertex-labeling of Krs+1 − e which will be used to construct the desired

edge-coloring. Our definitions will require some additional notation. Given a set S of ordered pairs,

let S∗ be the sequence formed by taking the elements of S in lexicographic order. Let S∗ ⊕T ∗ denote

the sequence formed by concatenating S∗ and T ∗.
Define the following (possibly empty) sets of labels:

X = {(0, y) : 0 ≤ y ≤ k − 2},
Y = {(x, y) : 1 ≤ x ≤ r − 1, 0 ≤ y ≤ k − 2},
Z = {(x, y) : 0 ≤ x ≤ r − 1, k − 1 ≤ y ≤ s − 1} \ {(0, k − 1)}.

Assign the labels from the sequence X∗ ⊕ Y ∗ ⊕ Z∗ to the vertices [rs+ 1] \ {i, j} in order; assign the

label (0, k − 1) to the vertices i and j. Note that all vertices between i and j receive a label from Y .

Observe that the resulting vertex-labeling has the property that whenever (a, b) comes before

(c, d), either a < c or b < d (or both), with one exception: the two copies of (0, k−1), which appear

on the vertices i and j. For pairs of labels other than (0, k− 1), this holds by construction. For pairs

of labels involving (0, k − 1), this holds because the labels from X all appear on vertices to the left

of i, while the labels from Z all appear on vertices to the right of j.

Now color G = Krs+1 − e as follows. For any edge of G, consider the two corresponding labels

(a, b) and (c, d) in the sequence; if a < c , color the edge red, and if a ≥ c but b < d, color the edge

blue. This provides a red–blue edge-coloring of G without creating a red Pr or blue Ps, since the first

coordinate can only increase from 0 to r − 1 and the second can only increase from 0 to s − 1. □

Lemma 3.1 implies half of the statement of Theorem 1.2; if G is an ordered graph on rs + 1

vertices and G ↪→ (Pr , Ps), then CT (r, s) ⊆ G.

3.2. A circus tent is sufficient

Lemma 3.2. We have CT (r, s) ↪→ (Pr , Ps).

7
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In order to prove this result, we give a strategy for Builder in the online game on rs+ 1 vertices
which is a slight modification of the strategy used to prove Theorem 2.1. Then, we argue that Builder
will win by applying this strategy without ever playing an edge outside the circus tent graph CT (r, s).
This implies that Painter cannot have an offline strategy for coloring CT (r, s) without a red Pr or blue
Ps, or else Painter could have used that strategy for the online game as well.

As in the earlier strategy, Builder maintains a list of vertices v0, v1, . . . , vr−1 and a corresponding
tuple (b0, b1, . . . , br−1) throughout the game with the property that vi is the rightmost vertex of a
red path of length i and a blue path of length bi. Builder’s strategy will proceed in rs + 1 stages
labeled 1, . . . , rs+ 1; we will write vi(t) and bi(t) for the values of vi and bi respectively after stage
t is completed. Some of these vertices vi(t) may be undefined (in which case we set bi(t) = −1),
and some of these vertices may be the same. At the beginning of the strategy, which we represent
by t = 0, vi(0) will be undefined for all i.

In stage t of the strategy, Builder asks Painter to color the edges vi(t − 1)t for every defined
vertex vi(t − 1). Recall that the strategy used to prove Theorem 2.1 requires Builder to use a binary
search procedure to minimize the number of edges played in the game. Since we are not interested
in minimizing the number edges played in the current proof, our new strategy allows Builder to
draw all of the edges vi(t − 1)t in stage t .

As before, the vertices v0, v1, . . . , vr−1 and the tuple (b0, b1, . . . , br−1) are updated at the end of
stage t , according to the colors Painter assigns to the edges vi(t − 1)t .

• If i < r is the least nonnegative integer such that either the edge vi(t − 1)t is blue or the
vertex vi(t − 1) is undefined, then Builder updates the vertex vi(t) by setting vi(t) = t and
bi(t) = bi(t − 1) + 1.

• If the vertex vi(t − 1) is defined and the edge vi(t − 1)t is red for all i < r , then there is a red
path of length r ending at t: the path of length r −1 ending at the vertex vr−1(t −1), followed
by the red edge vr−1(t − 1)t . In this case, Builder wins.

• Our new addition to Builder’s strategy is the following post-processing step: For any j < i such
that bj(t − 1) ≤ bi(t), we set the vertex vj(t) = t as well, and set bj(t) = bi(t).
These updates preserve Builder’s invariant because t is the rightmost vertex both of a red path
of length j (it is actually the rightmost vertex of a red path of length i, and i > j) and a blue
path of length bi(t), so we can set bj(t) = bi(t).
In all other cases, we keep the vertex vj(t) = vj(t − 1) and bj(t) = bj(t − 1).

The proof that Builder’s strategy always works is the same as before, so we now show that
Builder’s strategy never uses edges outside CT (r, s) in three steps. We will assume without loss of
generality that r ≤ s.

In the first step, we consider edges starting at vertices 1, 2, . . . , r . For each positive k ≤ r , vertex
k has an edge to vertices k + 1, k + 2, . . . , ks − s + 2 in G2 and therefore in CT (r, s). The following
claim shows that no other edges starting at vertices 1, 2, . . . , r are used in Builder’s strategy:

Claim 3.3. For positive k ≤ r, if vi(t) ≤ k for any i and t, then t ≤ ks − s + 1.

We postpone the proof of this claim, and the subsequent technical claims, to the next section.
In the second step, we consider edges starting at vertices r + 1, r + 2, . . . , s. Setting k = s

in Definition 1.1 shows that G1 contains all of the edges ij for r ≤ i < j ≤ (r − 1)s + 2. The
following claim shows that this set contains all edges used in Builder’s strategy which start at
vertices r + 1, r + 2, . . . , s:

Claim 3.4. For r + 1 ≤ k ≤ s, if vi(t) ≤ k for any i and t, then t ≤ (r − 1)s + 1.

In the third step, we consider edges starting at all other vertices. In Definition 1.1, taking k = r ,
we see that G2 has edge ij for s ≤ i < j ≤ rs − r + 2. This shows that if Builder draws an edge ij
with i > s, then that edge certainly exists in CT (r, s) unless j ≥ rs − r + 3.

To handle edges that do end at a vertex j ≥ rs − r + 3, we use the other cliques in G2; taking
k = 1, . . . , r−1 in Definition 1.1, we see that G2 has edges from each i ≥ rs−ks+s to j = rs−k+2.
No other edges ending at j will be used if, after stage t = rs − k + 1, we have vi(t) ≥ rs − ks + s.
This is guaranteed by the following claim:

8
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Claim 3.5. For positive k ≤ r−1, if Builder has not won by stage tk = rs−k+1, then vi(tk) ≥ rs−ks+s

for all i.

Since these three claims prove that Builder will win the game using only edges from CT (r, s),

we conclude that there is no coloring of CT (r, s) avoiding both a red Pr and blue Ps. That is,

CT (r, s) ↪→ (Pr , Ps), as desired.

3.3. Proofs of technical claims

We begin with the following lemma:

Lemma 3.6. Suppose that in stage t∗, Builder sets vi(t
∗) = t∗ and bi(t

∗) = b∗. If we still have vi(t) = t∗

after stage t > t∗, then we must have

t ≤ t∗ + i(s − 1 − b∗) + (r − 1 − i)b∗.

Proof. For each j < i, we have bj(t
∗) ≥ b∗. There can be at most s − 1 − b∗ stages at which bj

increases before Builder’s victory, because bj(t) ≤ s − 1. Altogether, there are at most i(s − 1 − b∗)
stages in the interval (t∗, t] at which any bj for j < i is increased.

For each j > i, we have bj(t
∗) ≤ b∗, and in order to have vi(t) = t∗, one of two possibilities must

hold:

• bj(t) = bj(t
∗) = b∗, and bj is never increased.

• bj(t) < b∗, and bj can be increased at most b∗ times: starting from −1 to at most b∗ − 1.

Altogether, there are at most (r − 1 − i)b∗ stages in the interval (t∗, t] at which any bj for j > i is

increased.

However, at least one bj must increase at each stage in the interval (t∗, t]. Therefore the number

of stages, t − t∗, is at most i(s − 1 − b∗) + (r − 1 − i)b∗, proving the lemma. □

Proof of Claim 3.3. We begin by showing that at each stage t , for every i such that vi(t) is defined,

we have i + bi(t) ≤ t − 1.

To show this, we induct on t . When t = 0, the claim holds trivially: none of the vertices vi(0)

are defined.

At stage t , we either define a new vertex vi(t) and set bi(t) = 0, or set bi(t) = bi(t − 1) + 1 for

some i. In the first case, we must have i ≤ t − 1, since only t vertices are considered in step t , so

no red path of length t or greater can be found. In the second case, we have i + bi(t − 1) ≤ t − 2

by the inductive hypothesis, so i + bi(t) ≤ t − 1.

Finally, bj(t) may change for some values of j < i in the ‘‘post-processing" step, when we set

bj(t) = bi(t) if j < i and bj(t − 1) ≤ bi(t). However, this step cannot cause j + bj(t) to violate the

inequality, because

j + bj(t) < i + bj(t) = i + bi(t) ≤ t − 1.

Now we are ready to proceed to the main proof. Take a positive k ≤ r , and suppose t∗ = vi(t) ≤
k; our goal is to show t ≤ ks−s+1. Let b∗ = bi(t

∗); by our observation earlier, i+b∗ ≤ t∗−1 ≤ k−1.

By Lemma 3.6, if vi(t) = t∗, then

t ≤ t∗ + i(s − 1 − b∗) + (r − 1 − i)b∗.

Because r ≤ s and b∗ ≥ 0, we have (r − 1 − i)b∗ ≤ (s − 1 − i)b∗. Therefore

t ≤ t∗ + i(s − 1 − b∗) + (s − 1 − i)b∗ = t∗ + (i + b∗)(s − 1) − 2ib∗

≤ k + (k − 1)(s − 1) − 0 = (k − 1)s + 1.

This completes the proof. □

9
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Proof of Claim 3.4. Take any k ∈ (r, s], and suppose that t∗ = vi(t) ≤ k; let b∗ = bi(t
∗). Our goal

is to show that t ≤ (r − 1)s + 1.
By Lemma 3.6,

t ≤ t∗ + i(s − 1 − b∗) + (r − 1e − i)b∗.

We must have 0 ≤ b∗ ≤ s − 1. For any fixed b∗, the right-hand side of this inequality is linear in
i, and we have 0 ≤ i ≤ r − 1. Therefore the expression is maximized either when i = 0 and it is
t∗+(r−1)b∗ ≤ t∗+(r−1)(s−1), or when i = r−1 and it is t∗+(r−1)(s−1−b∗) ≤ t∗+(r−1)(s−1).

In both cases,

t ≤ t∗ + (r − 1)(s − 1) ≤ s + (r − 1)(s − 1) ≤ (r − 1)s + 1,

proving the claim. □

Proof of Claim 3.5. Let tk = rs − k + 1. Let t∗ = vi(tk) and b∗ = bi(t
∗). Note that at every stage t

when vi or bi change, we set vi(t) = t; therefore we also have b∗ = bi(t) for all t ∈ [t∗, tk]. Our goal
is to show that t∗ ≥ rs − ks + s = tk − (k − 1)(s − 1) or, equivalently,

tk ≤ t∗ + (k − 1)(s − 1). (1)

The sum
∑r−1

j=0 bj(t) starts at −r when t = 0; at each stage, it increases by at least 1. Therefore at
stage tk, it must satisfy

r−1
∑

j=0

bj(tk) ≥ tk − r = r(s − 1) − k + 1.

Because s − 1 ≥ b0(tk) ≥ · · · ≥ br−1(tk), we also have

j(s − 1) + (r − j)bj(tk) ≥ r(s − 1) − k + 1

for any j, which can be rewritten as

(r − j)(s − 1 − bj(tk)) ≤ k − 1. (2)

We complete the proof by considering two cases.
Case 1: i ≤ r − k.
In relation (2), when j ≤ r − k, the first factor on the left-hand side exceeds k, and therefore the

second factor must be 0. Therefore bj(tk) = s − 1 for all j ≤ r − k. In particular, b∗ = s − 1.
We must have bj(t

∗) = s−1 for j < i by monotonicity. However, we must also have bj(t
∗) = s−1

for i < j ≤ r − k, since bj(tk) = s − 1 for such j, and if bj(t) was updated to s − 1 at some stage
t ∈ (t∗, tk], then vi(t) would also be updated in the post-processing step. In that case, we would
have vi(tk) = t > t∗, contrary to our assumption.

Therefore at each stage t ∈ (t∗, tk], only bj(t) for t = r − k + 1, . . . , r − 1 can be updated. Each
of these can be updated at most s − 1 times: none of them can reach s − 1, or else vi(t) will be
updated, which is again a contradiction.

However, at each stage t ∈ (t∗, tk], at least one update occurs. Therefore

tk − t∗ ≤ (r − 1 − (r − k))(s − 1) = (k − 1)(s − 1)

and hence, tk ≤ t∗ + (k − 1)(s − 1), proving (1).
Case 2: i ≥ r − k + 1.
We make the substitution h = r − 1 − i and c∗ = s − 1 − b∗; note that h ≥ 0 and c∗ ≥ 0. Since

i ≥ r − k + 1, we have h ≤ k − 2.
Setting j = i in (2), we get (r − i)(s − 1 − b∗) ≤ k − 1, or

(h + 1)c∗ ≤ k − 1.

If c∗ = 0, we have h + c∗ ≤ k − 2 < k − 1; if c∗ ≥ 1, then h + c∗ ≤ hc∗ + c∗ ≤ k − 1. Therefore we
always have h + c∗ ≤ k − 1.

10
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By Lemma 3.6,

tk ≤ t∗ + i(s − 1 − b∗) + (r − 1 − i)b∗ = t∗ + (r − 1 − h)c∗ + h(s − 1 − c∗)

≤ t∗ + (s − 1 − h)c∗ + h(s − 1 − c∗) = t∗ + (c∗ + h)(s − 1) − 2hc∗

≤ t∗ + (k − 1)(s − 1) − 0

and we have shown (1) again. □

4. Conclusion

The results of Theorems 1.5 and 1.6 reduce the gap between the bounds on ro(Pn, Pn), but there
is still a considerable gap here; the lower bound is Ω(n log n) while the upper bound is O(n2 log n).
The most natural direction for further study is to ask: which of these bounds is closer to the truth?

Additionally, when the Erdős–Szekeres Theorem is interpreted as a statement about monotone
subsequences, there is a corresponding online version of the question: how many comparisons need
to be done on a sequence to find a monotone increasing subsequence of length r+1 or a monotone
decreasing subsequence of length s+ 1? The worst-case analysis of this problem is a variant of the
online size Ramsey number ro(Pr , Ps) that puts an additional limitation on Painter: the results of
comparisons must obey transitivity.

In principle, there could be a gap between the number of comparisons in this problem, ro(Pr , Ps),
and our variant r∗

o (Pr , Ps) in which the number of vertices is fixed. However, all of our bounds apply
to these problems equally. It would be interesting to determine if these problems do in fact have
the same answer for all r and s.
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