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1. Introduction

The Erdés-Szekeres Theorem [10] states that any sequence of distinct integers of length at least
rs + 1 must contain a monotone increasing subsequence of length r + 1 or a monotone decreasing
subsequence of length s + 1. This fundamental result in extremal combinatorics has inspired the
study of many interesting variations (for example, see [7,11,12,17]). In many of these variations,
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Fig. 1. The circus tent graph CT(3, 4).

it is useful to observe that the Erd6és-Szekeres Theorem can be interpreted as a statement about
ordered graphs.

An ordered graph on n vertices is a simple graph whose vertices have been labeled with [n] =
{1,2,...,n}. We denote by P, the ordered graph which is a path on n + 1 vertices labeled
1,2,...,n+ 1 along the path, and by K, the ordered complete graph on n vertices.

An ordered graph G on [N] contains the ordered graph H on [n] if there is an edge-preserving
injection f : [n] — [N] such that f(i) < f(j) for all 1 <i < j < n. For ordered graphs G, Hy, H,, we
write G — (H1, H,) if any red-blue edge-coloring of G contains a red copy of H; or a blue copy of
Hs.

Given a sequence ar, ..., a1 Of distinct integers, we can color the edges of K, as follows:
color an edge ij with i < j red if a; < aj, and blue if a; > a;. Then a monotone increasing sequence
of length r + 1 becomes a red copy of P;; a monotone decreasing sequence of length s + 1 becomes
a blue copy of Ps.

Not all colorings of K51 can be obtained in this way, but the Erdés-Szekeres theorem can be
strengthened to a statement about all colorings; one of its standard proofs shows that a red copy
of P, or a blue copy of P; must exist in any red-blue coloring. In other words, Kisy1 < (P, Ps).

While rs + 1 is the minimum number of vertices needed in an ordered graph G with the
property G < (P, P;), we do no not need all the edges of K. For example, any edge ij such that
i+ (rs+ 1—j) < min{r, s} is not contained in any ordered path of length min{r, s}, and therefore
excluding all such edges still leaves a graph G such that G < (P;, Ps). But, as we shall see, some
other edges of K51 are unnecessary for less obvious reasons.

Below we define the minimal subgraph G of K5, such that G < (P;, P;). Our main result is to
prove a surprisingly simple characterization of all (rs + 1)-vertex graphs G with G — (P;, P;): any
such ordered graph must contain our minimal example as a subgraph.

Definition 1.1. Let the circus tent graph CT(r, s) be the ordered (rs + 1)-vertex graph with vertices
1,2,...,rs+ 1 which is the union of the ordered (rs + 1)-vertex graphs G; and G,, defined below:

e The graph G; contains an edge ij iff there exists k € [s] such that eitherk <i <j<kr—r+2
orrs—kr+r<i<j<rs+2-—k

e The graph G, contains an edge ij iff there exists k € [r] such that either k <i <j <ks—s+2
orrs—ks+s<i<j<rs+2—k

Fig. 1 shows the circus tent graph CT(3, 4). Note that CT(3, 4) does not include, for example, the
edge {2, 7}, even though that edge is contained in many paths of length 4.
In the case r = s, the graphs G; and G, are identical; taking k = r = s in the definition of G;

gives a clique with (r2’§'+3) edges, and the other values of k contribute 2 ZL:(kr —r+2—-k)=

r3 — 4r? + 7r — 4 edges. In total,
1 1
|[E(CT(r,1))| = 51”4 —rd + Erz +2r—1.

When r # s, both G; and G, contribute edges, and there is no exact polynomial formula for the
number of edges in CT(r, s). Since CT(r, s) contains all edges ij with s <i <j <rs—r + 2, we have

(rs —r 2— s+ 3) < [E(CT(r )] < <rs;L 1).
2
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We show that all edges not in CT(r, s) can be deleted from K5, and still leave a “good” graph
with the desired property, while removing a single edge in CT(r, s) from K5, yields a “bad” ordered
graph without this property.

Theorem 1.2. Let G be an ordered graph on rs + 1 vertices. Then G — (P, Ps) if and only if CT(r, s)
is a subgraph of G.

This is a surprisingly simple characterization of the “good” ordered graphs on rs + 1 vertices.
Indeed, this is the first setting in which we have observed the phenomenon that every “good” graph
must contain a fixed “good” subgraph.

Theorem 1.2 can be interpreted as a size Ramsey number problem with a fixed number of
vertices. The (ordinary) size Ramsey number of a graph G, denoted 7(G), is the minimum integer m for
which there is a graph H with m edges such that every 2-coloring of E(H) contains a monochromatic
copy of G.

In 1983, Beck [3] proved that #(P,) is linear in n, settling a question of Erdés [9]. The current best
upper bound, given by Dudek and Pratat [8], is #(P,) < 74n, while the current best lower bound,
given by Bal and DeBiasio [1], is F(P;) = (3.75 — o(1))n.

Recently, this size Ramsey question has been studied in several different ordered/directed
settings, including [2,5,6,15]. Let 7(P;, P;) denote the minimum number of edges in an ordered graph
G such that G < (P;, Ps). This is the ordered size Ramsey number of P, versus Ps.

Theorem 1.3 ([2]). For some absolute constant C > O and forall2 <r <,
1 -
grzs < 7P, Ps) < Cr?s(logs)?.

Note that the construction yielding this upper bound requires more than rs + 1 vertices; it uses
4rs.

Another interesting variant of the size Ramsey number is the online version introduced by
Beck [4] and by Kurek and Rucinski [14]. In the online setting, we study a game between two
players, Builder and Painter. In each turn, Builder presents an edge and Painter colors it red or
blue. Builder wins if Painter is forced to create a monochromatic copy of the desired graph. The
minimum number of edges necessary for Builder to win is the online size Ramsey number. Simple
arguments show that the online size Ramsey number of the path P, is at least 2n — 3 and at most
4n —7 [13].

This game can also be played on ordered graphs and with t > 2 colors. We denote by
To(Pay, Pny, - .., Py, ) the online ordered size Ramsey number, which is the minimum number of edges
that Builder must play in order to force Painter to create a monochromatic ordered copy of Py, in
some color i. In this definition, the game is played on vertex set N. If we restrict the game to a fixed
set of 1+ ]_[f:1 n; vertices, then we write r;(Py,, Py,, ..., Py,). For the diagonal t-color case when
ny = n; for all i, we write 1,(Py; t) and 1 (Py; t). In [16], Pérez-Giménez, Pratfat, and West gave the
following bounds on r,(Py; t).

Theorem 1.4 ([16]). For n > 2, always ”3:_/; < 1o(Py; t) < 1,

Note that Theorem 1.4 is a special case of their general result on k-uniform hypergraphs. Below,
we give a new upper bound on r,(Py; t).

Theorem 1.5. 1,(Pny, Pny, ..., Poy) < 13(Pngs Py, ooy Poy) < g ]_[f:] n;(log, ni] + 1).
In particular, ro(Py; t) = O(nt(logn)—1).

This asymptotic bound is an improvement on Theorem 1.4 when t = o( Iog’f”o”n). In the 2-color

case, we also improve the lower bound from Theorem 1.4, showing that r,(P;, P;) is superlinear in r.

Theorem 1.6. 1,(P;, P;) > log,(r + 1)! = £2(r logr).

The organization of the paper is the following. In Section 2, we prove Theorems 1.5 and 1.6
about the ordered online size Ramsey number. In Section 3, we use similar techniques to prove
Theorem 1.2, proving the two parts of the statement in different subsections.

3
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2. Online ordered size Ramsey number of paths
2.1. Two-color case

Before proving Theorem 1.5, we will prove a 2-color version of the result in order to give insight
into our proof technique.

Theorem 2.1. 1,(P;, P) < rs(|log, | + 1).

Proof. We show that if Builder plays according to the following strategy, then at most rs(|log, r]+1)
edges are needed to win the game. In order to determine which edges to present in each turn,
Builder maintains a list of active vertices v, v1, ..., vk for some k < r, satisfying the invariant that
v; (if it exists) is the last vertex of a red P;. Moreover, each v; will be the last vertex of a blue path
of some length b;. Note that over the course of the game, v; and b; will change. (We set b; = —1 if
v; does not yet exist.)

Initially, Builder sets k = 0 and lets vy be the first (leftmost) vertex. In each round of this
strategy, Builder sets w to be the first vertex following all of the active vertices and plays some of
the edges vow, v{w, ..., vyw. During the round, either a new active vertex will be defined or one
of the defined active vertices will be updated. The round ends when one of the following outcomes
occurs. Note that in each case, Builder either increases some b; or creates a winning red path.

e Painter colors the edge vow blue. Then Builder updates the active vertex vy, setting vg = w,
and increases by by 1.

e There is an i such that Painter colors the edge v;_jw red and the edge v;w blue. Then Builder
updates the active vertex v; by setting v; = w and increasing b; by 1.

e Painter colors the edge v,w red, and k + 1 < r. Then Builder defines a new active vertex by
setting vy+; = w and by = 0.

e Painter colors the edge vyw red, and k + 1 = r. Then the red path P,_; ending at v together
with the red edge v,w forms a red P,, and Builder wins the game.

To minimize the number of edges Builder must play in this round, Builder performs a procedure
similar to binary search on the set of edges {vow, viw, ..., vyw}. Builder begins by playing the
middle edge v, w. If Painter colors this edge red, then Builder cuts the set of edges in half and
continues this process on the second half of the edges, {v|x/2j+1w, ..., vew}. If Painter colors v /2w
blue, then Builder cuts the set of edges in half and instead continues this process on the first half
of the edges, {vow, ..., Vjk2—1jw}.

After at most [log,(k + 1)] turns, the set of edges remaining is a single edge {v;w}. Moreover:

e If i > 0, then at some point in this round, v;w was the first edge in the second half of a subset,
and v;_;w was colored red.

e If i < k, then at some point, v;w was the last edge in the first half of a subset, and v;;w was
colored blue.

Under these conditions, no matter how Painter colors the edge v;w, one of Builder’s goals is satisfied:
Builder either increases b; or b;,q, or obtains a red P.. Thus, each round can be completed in
llog,(k+ 1)] +1 < [log, r] + 1 turns.

We can track the progress of this strategy by considering the ordered r-tuple (bg, by, ..., by_1),
which starts at (0, —1, —1, ..., —1). After rs rounds, we have ZL_()] bi=r(s—1)+1,s0b; > s
for some i, and Builder wins. Therefore, Builder needs at most rs rounds to win according to this
strategy, for a total of rs(|log, r] + 1) turns. O

2.2. Proof of Theorem 1.5

In order to prove our upper bound in the multicolor case, we replace the binary search procedure
used by Builder in the proof of Theorem 2.1 with a multidimensional search procedure.

4
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Proof. Builder’s strategy, played on vertices 1,2,...,1 + ]_[f:O n;, is as follows. Throughout the
game, Builder maintains a t-dimensional array of active vertices, labeled by integer points X =
(%1, ...,%) €[0,n1) x---x [0, n;). Let v(x) be the active vertex labeled by x. An active vertex may
be undefined; however, if v(x) is defined, then for eachi = 1,...,t, there is an ordered path in
color i of length x; ending at v(x). Initially, v(0) = 1, and no other active vertices are defined.

Let £(x) denote the length of the longest ordered path in color 0 ending at v(x). If this vertex is
undefined, then we say £(x) = —1.

Builder plays in rounds of length at most H§=1 Llog, ni| + 1. In each round, Builder plays edges
from some of the defined active vertices to w, the first vertex following all of the active vertices.
At the conclusion of a round, Builder either wins the game, or updates some active vertex v(x) by
setting v(x) = w, which increases £(x) by 1.

Throughout the game, Builder uses the following d-dimensional search procedure to choose which
edges to play.

Let S(¥4+1, Yd+2, - - - » ) denote the set

SWdt+1> Yas2s - - Ye) = [0, 1) x -+ - x [0, ng) X {Yag1} x -+ x ¥}

Builder applies the d-dimensional search procedure to the set S(y) for some y € Z'~¢ in order
to obtain one of the following outcomes:

1. A point x € S(y) such that the edge v(x)w has some color i > d, or

2. A point x € S(y) such that either the active vertex v(x) is undefined or the edge v(x)w has
color 0. Moreover, for each j =1, ..., d, either x; = 0 or there is an assistant point x9 e S(y)
such that x}’) = x; — 1 and the edge v(x¥)w has color j.

This procedure is defined recursively. In the 0-dimensional search procedure on S(y), Builder draws
the edge from v(y) to w, if the active vertex v(y) is defined. If Painter colors this edge with color 0,
or if v(y) is undefined, then Builder obtains outcome 2 by setting x = y. If Painter colors this edge
with some color i > 1, then Builder obtains outcome 1 by setting x =y.

For d > 1, the d-dimensional search procedure on S(y) is similar to a binary search. It uses an
interval [a, b) initially set to [0, ng). To cut the interval in half, it performs the (d — 1)-dimensional
search procedure on S(L“zibj ,y) C S(y).

When this subprocedure is done, there are three possibilities:

o If the subprocedure yields outcome 1 and the edge v(x)w has color d, then the procedure
continues with interval [L%J + 1, b).

o If the subprocedure yields outcome 1 and the edge v(x)w has color i > d, then the procedure
terminates, having also obtained outcome 1 with the same x.

o If the subprocedure yields outcome 2, then the procedure continues with interval [a, L“zibj).

After at most |log, nq] + 1 steps of the (d — 1)-dimensional search procedure, Builder is left with
the empty interval [a, a).

e If a = 0, then the (d — 1)-dimensional search procedure was performed on S(0, y) and yielded
outcome 2 with some point x € S(0,y). Then the d-dimensional search procedure will yield
outcome 2 with the same x and the same assistant points; since x; = 0, no assistant point x(¥
is necessary.

e If a = ny, then the (d — 1)-dimensional search procedure was performed on S(ny — 1,y) and
yielded outcome 1 with some point x € S(ny — 1, y) such that the edge v(x)w has color d. Then
there is an ordered path of length ny in color d ending at w: the path of length ny — 1 ending
at v(x) followed by the edge v(x)w, and Builder wins.

e If 0 < a < ny, then the (d — 1)-dimensional search procedure was performed on S(a, y) and
yielded outcome 2 with some point X € S(a, y); it was also performed with S(a — 1,y) and
yielded outcome 1 with some point X' € S(a — 1, y) such that the edge v(x')w has color d.

In this case, the d-dimensional search procedure will yield outcome 2 with x, taking the same
assistant points and adding the new assistant point XY = x/, which satisfies the conditions
required.
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By induction, Builder’s d-dimensional search procedure will take at most H;;(Llogz n| + 1)
moves.

A round of Builder’s strategy consists of performing the t-dimensional search procedure on the
entire set [0, ny) x - - - x [0, n;). This search procedure never yields outcome 1, since no colori > t
is available. Therefore, Builder obtains outcome 2 with some point x.

We claim that there is an ordered path of length x; in color i ending at w for eachi=1,...,¢,
and therefore w satisfies the prerequisites for replacing v(x) as an active vertex. This is automatic
if x; = 0. If ; > 0, then there is an assistant point x” such that x” = x; — 1 and the edge v(x?)w
has color i. Then the ordered path of length x; — 1 in color i ending at v(x{) can be followed by the
edge v(xP)w to get the path of length x; Builder wants.

If v(x) is undefined, Builder defines the active vertex v(X) = w and increases ¢(x) from —1 to
0. Otherwise, the edge v(Xx)w has color 0, and there is an ordered path of length £(x) + 1 in color
0 ending at w: the path of length ¢(x) ending at v(x), followed by the edge v(x)w. Then Builder
updates v(x) by setting v(x) = w, which increases £(x) by 1.

After ngny - ... - n; rounds, either £(0) has been increased ng times (from 0 to ng) or one of the
other nq - ... - n; — 1 values £(x) has been increased ny + 1 times (from —1 to ng). In either case,
there is an ordered path of length ng in color 0, and Builder wins. This strategy requires at most
no ]_[;:1 n;(|log, n;] 4+ 1) moves, as desired. O

2.3. Proof of Theorem 1.6

Our proof of Theorem 1.6 uses the following lemma, which gives a general strategy for finding
lower bounds on r,(P;, Ps).

Lemma 2.2. Let C = {Cq, Gy, ..., Cy} be a set of edge-colorings of Kis.1. Let p > 0 be such that for
every P, in Kis.q, there are at most pN colorings in C in which the path is completely red, and for every
P in K511, there are at most pN colorings in C in which the path is completely blue.

Then (P, Ps) > log, %.

Moreover, if we can find a set of colorings of K, with the same ratio p for sufficiently large n, then
ro(P;, Ps) > log, % as well.

Proof. Painter’s strategy for playing on rs+ 1 vertices is as follows. After k edges have been played
and colored, Painter computes C, C C, consisting of all colorings in ¢ which agree with the partial
coloring of K5, built so far.

When Builder plays an edge vw, Painter splits Cy into two sets: Cy, consisting of all colorings in
which vw is red, and C,lj, in which vw is blue. Painter colors the edge vw red (so that Cyq = C}) if
ICpl = |C,’j|, and colors the edge vw blue (so that Cyy1 = C,lj) otherwise. Thus, at each step, Painter
ensures that |[Cy1] > %|Ck|; by induction, |C| > 27*N.

If Painter loses the game because a red P, or a blue P; has been created, then by definition of p,
Ick| < pN. Therefore p > 27X, or k > log, %.

This argument bounds r}(P;, Ps); to prove a bound of r,(P;, Ps) > k using this lemma, Painter
simulates Builder's moves on a graph with n > 8k vertices. For every edge Builder plays, Painter
plays an edge in the simulation so that the graphs in the actual graph and in Painter’s simulation are
order-isomorphic except possibly for isolated vertices. Moreover, Painter makes sure that after the
ith move, there are at least 8~ isolated vertices between any two vertices with positive degree in
Painter’s simulation. This will always be possible and guarantees that Painter can always simulate
Builder’s future moves for at least k steps.

Then, Painter determines a color for the edge in the simulated graph, using a collection C of
colorings of K,. Painter uses that color to play in the actual graph. O

As a corollary, we obtain Theorem 1.6, which gives an improved lower bound in the diagonal
case. Note that applying Lemma 2.2 with C consisting of all possible red-blue edge-colorings of
K>, will give a weaker bound on ro(P;, P;) than we want. Our improvement comes from selecting
an appropriate subfamily of colorings.
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Proof. Choosing n to be as large as necessary, apply Lemma 2.2 with the following set of colorings

of K;,: for every permutation o of {1, 2, ..., n}, take the coloring in which edge ij is red if o (i) < o (j)
and blue if o (i) > o(j).
Then p = (rTln' because asking for a specific path P, to be monochromatic requires r + 1 values

of o to be in a specific relative order. Therefore, we have r,(P;, P;) > log, 113 =log,(r+1).. O

3. The circus tent theorem

In this section, we prove our main result, Theorem 1.2. In Section 3.1, we show that every
subgraph G of K51 such that G < (P, P;) must contain CT(r, s). Then, in Section 3.2, we show
that CT(r,s) < (P, P;).

3.1. A circus tent is necessary

Lemma 3.1. For every edge e € E(CT(r, s)), K;s-.1 —e has a red-blue edge-coloring without any ordered
red path of length r or blue path of length s.

Proof. Let e = ij € E(CT(r,s)) with i < j. Then e € E(Gy) or e € E(G,). Without loss of generality,
assume e € E(G,). (For e € E(G), just switch the roles of r and s throughout the proof.) Then there
exists some k € [s]suchthatk <i<j<kr—r+2orrs—kr+r<i<j<rs+2—k.

Note that by symmetry, it suffices to prove the result for edges of the first type. Indeed, if K51 —1ij
has an edge-coloring with no red P, or blue Ps, then its mirror image is such an edge-coloring for
Kisy1 — 1'j, where i’ = (rs 4+ 2) —j and j/ = (rs + 2) — i. So, let us assume that e = ij where
k <i<j<kr—r+2 for some fixed k € [s].

First, we will provide a vertex-labeling of K;s;1 — e which will be used to construct the desired
edge-coloring. Our definitions will require some additional notation. Given a set S of ordered pairs,
let S* be the sequence formed by taking the elements of S in lexicographic order. Let S* & T* denote
the sequence formed by concatenating S* and T*.

Define the following (possibly empty) sets of labels:

X={0,y):0=<y=<k-2},
Y={(xy):1<x=<r—-1,0<y=<k-2},
Z={xy):0<x<r—1,k—1<y<s—1}\ {0, k- 1)}.

Assign the labels from the sequence X* @ Y* & Z* to the vertices [rs+ 1]\ {i, j} in order; assign the
label (0, k — 1) to the vertices i and j. Note that all vertices between i and j receive a label from Y.

Observe that the resulting vertex-labeling has the property that whenever (a, b) comes before
(c, d), either a < c or b < d (or both), with one exception: the two copies of (0, k— 1), which appear
on the vertices i and j. For pairs of labels other than (0, k — 1), this holds by construction. For pairs
of labels involving (0, k — 1), this holds because the labels from X all appear on vertices to the left
of i, while the labels from Z all appear on vertices to the right of j.

Now color G = K51 — e as follows. For any edge of G, consider the two corresponding labels
(a, b) and (c, d) in the sequence; if a < c, color the edge red, and if a > ¢ but b < d, color the edge
blue. This provides a red-blue edge-coloring of G without creating a red P, or blue P;, since the first
coordinate can only increase from 0 to r — 1 and the second can only increase from0tos— 1. O

Lemma 3.1 implies half of the statement of Theorem 1.2; if G is an ordered graph on rs + 1
vertices and G — (P, P), then CT(r,s) C G.

3.2. A circus tent is sufficient

Lemma 3.2. We have CT(r,s) < (P, Ps).
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In order to prove this result, we give a strategy for Builder in the online game on rs + 1 vertices
which is a slight modification of the strategy used to prove Theorem 2.1. Then, we argue that Builder
will win by applying this strategy without ever playing an edge outside the circus tent graph CT(r, s).
This implies that Painter cannot have an offline strategy for coloring CT(r, s) without a red P, or blue
Pg, or else Painter could have used that strategy for the online game as well.

As in the earlier strategy, Builder maintains a list of vertices vg, v1, ..., v,_1 and a corresponding
tuple (by, by, ..., by_1) throughout the game with the property that v; is the rightmost vertex of a
red path of length i and a blue path of length b;. Builder’s strategy will proceed in rs 4+ 1 stages
labeled 1, ..., rs+ 1; we will write v;(t) and b;(t) for the values of v; and b; respectively after stage
t is completed. Some of these vertices v;(t) may be undefined (in which case we set b;(t) = —1),
and some of these vertices may be the same. At the beginning of the strategy, which we represent
by t = 0, v;(0) will be undefined for all i.

In stage t of the strategy, Builder asks Painter to color the edges v;i(t — 1)t for every defined
vertex v;(t — 1). Recall that the strategy used to prove Theorem 2.1 requires Builder to use a binary
search procedure to minimize the number of edges played in the game. Since we are not interested
in minimizing the number edges played in the current proof, our new strategy allows Builder to
draw all of the edges v;(t — 1)t in stage t.

As before, the vertices vg, v, ..., v,_1 and the tuple (bg, by, ..., b,_1) are updated at the end of
stage t, according to the colors Painter assigns to the edges v;(t — 1)t.

e If i < r is the least nonnegative integer such that either the edge v;(t — 1)t is blue or the
vertex vi(t — 1) is undefined, then Builder updates the vertex v;(t) by setting v;(t) = t and
bi(t) = bi(t — 1) + 1.

o If the vertex v;(t — 1) is defined and the edge v;(t — 1)t is red for all i < r, then there is a red
path of length r ending at t: the path of length r — 1 ending at the vertex v,_;(t — 1), followed
by the red edge v,_1(t — 1)t. In this case, Builder wins.

e Our new addition to Builder’s strategy is the following post-processing step: For any j < i such
that b;(t — 1) < b;(t), we set the vertex vj(t) = t as well, and set b;(t) = b;(t).

These updates preserve Builder’s invariant because t is the rightmost vertex both of a red path
of length j (it is actually the rightmost vertex of a red path of length i, and i > j) and a blue
path of length b;(t), so we can set b;(t) = b;(t).

In all other cases, we keep the vertex v;(t) = vj(t — 1) and b;(t) = b;(t — 1).

The proof that Builder’s strategy always works is the same as before, so we now show that
Builder’s strategy never uses edges outside CT(r, s) in three steps. We will assume without loss of
generality that r <s.

In the first step, we consider edges starting at vertices 1, 2, ..., r. For each positive k < r, vertex
k has an edge to vertices k + 1,k + 2, ..., ks — s+ 2 in G, and therefore in CT(r, s). The following
claim shows that no other edges starting at vertices 1, 2, ..., r are used in Builder’s strategy:

Claim 3.3. For positive k <, if vi(t) < k foranyiandt, thent < ks —s+ 1.

We postpone the proof of this claim, and the subsequent technical claims, to the next section.

In the second step, we consider edges starting at vertices r + 1,r 4+ 2,...,s. Setting k = s
in Definition 1.1 shows that G; contains all of the edges ij forr < i < j < (r — 1)s + 2. The
following claim shows that this set contains all edges used in Builder’s strategy which start at
verticesr +1,r+2,...,s:

Claim 34. Forr+ 1<k <s, ifv(t) <kforanyiandt, thent <(r —1)s+ 1.

In the third step, we consider edges starting at all other vertices. In Definition 1.1, taking k = r,
we see that G, has edge ij for s < i < j < rs — r + 2. This shows that if Builder draws an edge ij
with i > s, then that edge certainly exists in CT(r, s) unless j > rs —r + 3.

To handle edges that do end at a vertex j > rs — r + 3, we use the other cliques in G,; taking
k=1,...,r—1in Definition 1.1, we see that G, has edges from eachi > rs—ks+stoj =rs—k+2.
No other edges ending at j will be used if, after stage t = rs — k + 1, we have v;(t) > rs — ks + s.
This is guaranteed by the following claim:
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Claim 3.5. For positive k < r—1, if Builder has not won by stage t, = rs—k+1, then vi(ty) > rs—ks+s
for all i.

Since these three claims prove that Builder will win the game using only edges from CT(r, s),
we conclude that there is no coloring of CT(r,s) avoiding both a red P, and blue P;. That is,
CI(r,s) — (P, P), as desired.

3.3. Proofs of technical claims

We begin with the following lemma:

Lemma 3.6. Suppose that in stage t*, Builder sets v;(t*) = t* and b;(t*) = b*. If we still have v;(t) = t*
after stage t > t*, then we must have

t<tr+is—1—-Db")+(r—1—1i)b*.

Proof. For each j < i, we have b;(t*) > b*. There can be at most s — 1 — b* stages at which b;
increases before Builder’s victory, because bj(t) < s — 1. Altogether, there are at most i(s — 1 — b*)
stages in the interval (t*, t] at which any b; for j < i is increased.

For each j > i, we have b;(t*) < b*, and in order to have v;(t) = t*, one of two possibilities must
hold:

e bj(t) = bj(t*) = b*, and b; is never increased.
e bj(t) < b*, and bj can be increased at most b* times: starting from —1 to at most b* — 1.

Altogether, there are at most (r — 1 — i)b* stages in the interval (¢*, ] at which any b; for j > i is
increased.

However, at least one b; must increase at each stage in the interval (t*, t]. Therefore the number
of stages, t — t*, is at most i(s — 1 — b*) + (r — 1 — i)b*, proving the lemma. O

Proof of Claim 3.3. We begin by showing that at each stage t, for every i such that v;(t) is defined,
we have i+ bi(t) <t — 1.

To show this, we induct on t. When t = 0, the claim holds trivially: none of the vertices v;(0)
are defined.

At stage t, we either define a new vertex v;(t) and set b;(t) = 0, or set b;(t) = by(t — 1)+ 1 for
some i. In the first case, we must have i < t — 1, since only t vertices are considered in step t, so
no red path of length t or greater can be found. In the second case, we have i + b;(t — 1) <t — 2
by the inductive hypothesis, so i + b;(t) <t — 1.

Finally, b;j(t) may change for some values of j < i in the “post-processing” step, when we set
bj(t) = bi(t) if j < i and bj(t — 1) < b;(t). However, this step cannot cause j 4 bj(t) to violate the
inequality, because

JHbit) <i+b(t)=i+bi(t)<t—1.

Now we are ready to proceed to the main proof. Take a positive k < r, and suppose t* = v;(t) <
k; our goal is to show t < ks—s+1. Let b* = b;(t*); by our observation earlier, i+b* < t*—1 < k—1.
By Lemma 3.6, if v;(t) = t*, then

t<t'+is—1-b")+(r—1—1i)b".
Because r < s and b* > 0, we have (r — 1 —i)b* < (s — 1 — i)b*. Therefore

t<t'+is—1=b")+(s—1—0b" =t"+(i+b*)(s — 1) — 2ib*
<k+(k—-1)(s—1)—0=(k—1)s+ 1.

This completes the proof. O
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Proof of Claim 3.4. Take any k € (r, s], and suppose that t* = v;(t) < k; let b* = b;(t*). Our goal
is to show that t < (r — 1)s + 1.
By Lemma 3.6,

t<t*+is—1—Db")+(r— le—i)b*.

We must have 0 < b* < s — 1. For any fixed b*, the right-hand side of this inequality is linear in

i, and we have 0 < i < r — 1. Therefore the expression is maximized either when i = 0 and it is

t*+(r—1)b* < t*+(r—1)(s—1),orwheni=r—1anditist*+(r—1)(s—1—b*) < t*+(r—1)(s—1).
In both cases,

t<t'4+0-1)s—-1)<s+T-1)(s=1)<(r—1)s+1,

proving the claim. O

Proof of Claim 3.5. Let ty = rs — k + 1. Let t* = v;(tx) and b* = b;(t*). Note that at every stage t
when v; or b; change, we set vj(t) = t; therefore we also have b* = b;(t) for all t € [t*, t;]. Our goal
is to show that t* > rs — ks +s =ty — (k — 1)(s — 1) or, equivalently,

te <t 4+ (k—1)(s —1). (1)

The sum Z]:Ol bj(t) starts at —r when t = 0; at each stage, it increases by at least 1. Therefore at
stage ty, it must satisfy

r—1

D obi(t) = te—r=r(s—1)—k+1.
j=0

Because s — 1 > bg(ty) > --- > b,_1(t), we also have
Js =D+ —jbj(t) = r(s — 1) —k+1
for any j, which can be rewritten as
(r=js—1—=hi(ti)) <k —1. (2)

We complete the proof by considering two cases.

Case1:i<r—k

In relation (2), when j < r — k, the first factor on the left-hand side exceeds k, and therefore the
second factor must be 0. Therefore bj(ty) = s — 1 for all j < r — k. In particular, b* =s — 1.

We must have bj(t*) = s—1 for j < i by monotonicity. However, we must also have b;(t*) = s—1
fori < j <r —k, since bj(ty) = s — 1 for such j, and if b;(t) was updated to s — 1 at some stage
t € (t*, t;], then vi(t) would also be updated in the post-processing step. In that case, we would
have vj(ty) =t > t*, contrary to our assumption.

Therefore at each stage t € (t*, ], only bj(t) fort =r —k+1,...,r — 1 can be updated. Each
of these can be updated at most s — 1 times: none of them can reach s — 1, or else v;(t) will be
updated, which is again a contradiction.

However, at each stage t € (t*, t;], at least one update occurs. Therefore

te—t"<(r—1—-(—-k)s—1)=(k-—-1)(s—1)

and hence, t; < t* 4 (k — 1)(s — 1), proving (1).

Case2:i>r—k+1.

We make the substitution h =r — 1 —iand c* =s — 1 — b*; note that h > 0 and c* > 0. Since
i>r—k+1,we have h < k — 2.

Setting j =iin (2), we get (r —i)s—1—-b*) <k—1,0r

(h+1)c* <k-1.

Ifc*=0,wehave h+c* <k—2 <k—1;ifc* > 1, then h+c* < hc* + ¢* < k — 1. Therefore we
always have h+c* <k — 1.

10
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By Lemma 3.6,
<t +ils—1-=b )+ —1—-ib*=t"+@r —-1—=h)c*"+h(s—1-c")
<t‘*+(—1—hc*+h(s—1—c*)=t"+(c*+h)(s—1)— 2hc*
<t'+(k-1)(s—1)—0

and we have shown (1) again. O
4. Conclusion

The results of Theorems 1.5 and 1.6 reduce the gap between the bounds on r,(Py, P,), but there
is still a considerable gap here; the lower bound is £2(n log n) while the upper bound is O(n? log n).
The most natural direction for further study is to ask: which of these bounds is closer to the truth?

Additionally, when the Erdés-Szekeres Theorem is interpreted as a statement about monotone
subsequences, there is a corresponding online version of the question: how many comparisons need
to be done on a sequence to find a monotone increasing subsequence of length r + 1 or a monotone
decreasing subsequence of length s + 1? The worst-case analysis of this problem is a variant of the
online size Ramsey number r,(P;, Ps) that puts an additional limitation on Painter: the results of
comparisons must obey transitivity.

In principle, there could be a gap between the number of comparisons in this problem, r,(P;, P;),
and our variant r(P;, Ps) in which the number of vertices is fixed. However, all of our bounds apply
to these problems equally. It would be interesting to determine if these problems do in fact have
the same answer for all r and s.
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