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A B S T R A C T   

Command shaping is a driving technique for handling the large settling time of the high-Q-MEMS actuators. The 
strong nonlinearity due to the electrostatic actuation limits the linear operation range in cantilevered or torsional 
micro-mirrors where command shaping techniques can be applied for positioning. Experimental and simulation 
results of this research demonstrate the effectiveness of using electrostatic levitation to overcome the actuation 
nonlinearities and a significant increase in the operation range. The motivation for this research is that applying 
the nonlinear command shaping causes complexity in command manipulation and requires an accurate 
knowledge of the nonlinear terms involved in the system model. The large linear operation range generated by 
the levitating force allows using the practical simple command shaping methods for open-loop control.   

1. Introduction 

Precise control of the dynamic and static state of a mechanical sys
tem is a critical mission for specific applications such as optics [1–4]. It 
is particularly important in micro electromechanical system (MEMS), i. 
e., micro-meter size devices with mechanical and electrical components. 

The gap-closing configuration is the most well-known actuation de
vice in MEMS systems where an electrical potential between a movable 
electrode and a fixed electrode results in the mechanical motion (also 
called capacitive or gap-closing mechanism). When the movable elec
trode gets close to the fixed electrode, the movable electrode becomes 
unstable and accelerates toward the fixed electrode. This phenomenon is 
called pull-in instability [1], which happens when the system state enters 
an unstable region and the system cannot find an equilibrium point to 
oscillate around or settle on. When the velocity or displacement of the 
movable electrode exceeds some thresholds, the pull-in instability occurs. 
In some MEMS applications such as MEMS RF switches, pull-in instability 
is considered as a useful feature, while in others, it is an undesirable 
feature that causes malfunctioning or permanent failure. Moreover, in
side the pull-in instability region, the input/output relationship is highly 
nonlinear, which significantly complicates the implementation of dy
namic control techniques. Such a nonlinearity impedes the application of 
MEMS as an actuator. Open-loop and closed-loop techniques have been 

suggested to drive the MEMS actuators. 
A solution for driving micro-systems is feedback control, that is, 

reaching a desired system state automatically by manipulating the sys
tem inputs using sensors that provide information about the system 
state. Minimization of the settling-time as the required period to reach 
the desired state, overshoot, and the deviation from the desired state are 
the primary goals of feedback control. The main difference between 
feedback control and other control methods is the utilization of sensors 
to measure the system state during the operation and using the mea
surement data in the control algorithm in real time. Then, the mea
surement is transferred to a processing unit where the control algorithm 
manipulates a command signal according to the mathematical criteria of 
the design. One of the most important parameters of an analog input or 
output system is the rate at which the measurement device samples an 
incoming signal or generates the output signal. The sampling rate is the 
speed at which a device acquires or generates a sample. A fast input 
sampling rate acquires more points in a given time and can form a better 
representation of the original signal than a slow sampling rate. MEMS 
resonators are considered as fast dynamical systems with the funda
mental frequencies in the order of kilo to mega Hertz. For a robust 
competent control of a MEMS oscillator, the hardware, which includes 
sensors, processing unit, and digital-to-analog and analog-to-digital data 
acquisition is required to meet the high-frequency system control 
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requirements. Therefore, compared to the macro-scale dynamic systems, 
MEMS devices need more complex circuits and electronics. To avoid the 
aforementioned complications, the open-loop control is preferred 
instead of feedback control in some applications such as optical 
actuators. 

Considering high quality factor MEMS actuators, open-loop control 
via command shaping for the purpose of static displacement is widely 
used among researchers [5–8–11,12,13]. During the switching between 
two positions, a smooth quasi-static motion is desired. Normally, for
mation of a motion using a voltage pulse takes a considerable time 
because the undesired oscillations should fade. Researchers have shown 
how command shaping techniques allow for activation and deactivation 
of a specific mode of continuous systems. In [8,11–13], they used MEMS 
oscillators for static displacement and showed a perfect ringing and 
settling-time reduction. 

For nonlinear input/output micro-systems, such as micro-mirrors 
and cantilevered parallel-plate actuators, zero-velocity and zero- 
velocity-and-derivative fail to function properly. To address this issue, 
a nonlinear command shaping scheme was presented for electromag
netic actuators [14,15]; however, neglecting the damping effect un
dermines the effectiveness of this method. Another nonlinear scheme 
was offered for command shaping in an electrostatic torsional 
micro-mirror [16]. The results are worthwhile in the matter of the 
settling-time and handling the nonlinearities. Nonlinear schemes are 
complicated compared to linear schemes and require an accurate 
knowledge of the nonlinear input/output relationship, which itself de
mands a perplexing experimental and simulation process. 

Beside the powerful features of MEMS parallel-plate configuration 
such as low energy requirement, there are some shortcomings that cast a 
shadow over their popularity. The parallel-plate configuration suffers 
mostly from the small range of motion as there is only a small gap be
tween the electrodes and only one-third of the initial gap is usable due to 
the pull-in instability. One may plan to increase the initial gap to solve 
this problem. Unfortunately, the initial gap cannot be large because the 
parallel-plate capacitive force is reduced with the gap. 

As a replacement for the gap-closing actuation, some researchers 
studied the electrostatic fringe field [17–20,21] for actuation. This effect 
was implemented as a mechanism for generating attractive force [22] by 
surrounding the movable electrode by two electrodes, while the center 
electrode was removed in this research. Adding a center electrode cre
ates asymmetry in the electrostatic field and changes the attractive force 
to the repulsive one [20,23–25]. In the latter mechanism, the movable 
electrode is made of polysilicon. The simulation results show that the 
movable electrode should be a conductor, and any dielectric layer on the 
movable electrode limits the electric field lines and produces an 
attractive force. Compared to the gap-closing mechanism, the depen
dence of the fringe field force on the movable electrode position is 
significantly smaller. In a wide region of motion, the fringe field force 
can be considered as a constant force, while in the gap-closing actuation, 
the electrostatic force becomes unmanageable when the movable elec
trode is situated in the proximity of the driving electrode. As mentioned, 
adding the center electrode and the surrounding electrodes results in the 
electrostatic force to be applied in the opposite direction of the sub
strate. Therefore, use of the side electrodes no longer restricts the beam 
motion. The generated repulsive force is called levitating force or 
fringing electrostatic force in the literature. As reported in [26], a 500 
μm cantilever can be raised more than 30 μm which is 27 times larger 
than the maximum amplitude enabled by the parallel-plate mechanism. 
Compared to conventional parallel plates, this method requires a larger 
voltage to consume ( ~ one order of magnitude). However, imple
mentation of the levitation actuators enables high-amplitude motion, 
smaller nonlinearities, pull-in free operation, tunability and high 

scanning speeds, which are desirable for optical scanning and filtering 
applications. The features of tunability and high speed originate from 
the fact that the electrostatic levitation causes a stiffening effect on the 
resonator and therefore, increases the frequency up to 10% with the 
increase of the side voltage [19]. 

Despite the merits of the levitation-based MEMS for long range 
operation, the command shaping has never been applied to it. In this 
study, we characterize the behavior of an electrostatic levitation MEMS 
actuator response to a command shaping technique, which can have a 
wide range of applications in optical switches and filters. A micro- 
cantilever is actuated simultaneously by the gap-closing mechanism 
and levitating force mechanism. By using a micro-cantilever as the 
actuator movable electrode, we intended to simulate a picture of how 
the levitation mechanism can improve the actuation of the micro- 
mirrors for applications in confocal microscopy, projection displays 
and optical coherence tomography. The introduction is followed by a 
mechanical description (Section 2). A model that is consistent with the 
static and dynamic experiments is provided in the mathematical 
modeling (Section 3). Then, in the experimental setup section (Section 
4) we describe the necessary procedures and the apparatus for con
ducting the tests. The results are then summarized in Conclusions 
(Section 6). 

2. Mechanism description 

A micro-cantilever as the movable electrode is anchored above a 
fixed center electrode in parallel with the gap of d (Fig. 1). At the same 
height with the center electrode, two side electrodes are fabricated for 
inducing levitating force. As a result of the side electrodes, a strong 
electrostatic fringe field surrounds the movable electrode and pulls it 
away from the substrate. The side electrodes are inputted using a DC 
voltage named levitating voltage VL in this paper. The center electrode is 
charged using the driving voltage VD which applies an attractive force 
between the parallel plates and controls the movable electrode motion. 
The characterization of the levitation MEMS has been investigated in 
[19,20]. 

3. Mathematical modeling 

3.1. Levitation-based MEMS model 

The movable electrode is a fixed-free beam and is modeled using 
Euler-Bernoulli beam theory [27]. 

ρA
∂2w
∂t2 + c

∂w
∂t

+ EI
∂4w
∂x4 = f (w, x, t) (1) 

where A = b3h1 and f(w, x, t) denote the beam cross-sectional area 
and the electrostatic forces, respectively. The micro-cantilever is a 
continuous system with four boundary conditions. Therefore, the ab
solute transverse displacement can be modeled as a summation of 
distinct components named as modes. Each mode has a mode shape with 
respect to the system boundary conditions. Because each component 
satisfies the equation of motion and the boundary conditions, they can 
be analyzed separately. Galerkin’s method is a discretization method 
that simplifies the system’s partial differential equation by approxi
mating it as a set of ordinary differential equations. The results show 
that the contribution of the first mode in the absolute displacement is 
significantly larger than the other modes. Therefore, the micro- 
cantilever is approximated using the first mode as follows Table 1. 

w(x, t) ≈ ϕ(x)q(t) (2) 

where ϕ(x) and q(t) are the first shape function and the separated 
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time function, respectively. Then, Eq. 2 is substituted into Eq. 1 to obtain 
the set of ODE’s as, 

ϕ
d2q
dt2 + cϕ

dq
dt

+
d4ϕ
dx4 q = +f (ϕq, x, t) (3)  

Considering the orthogonality of the mode shapes, Eq. 3 is multiplied by 
ϕ(x) and then integrated over the length of the beam. 
∫ L

0
ϕ2dx

d2q
dt2 + c

∫ L

0
ϕ2dx

dq
dt

+ q
∫ L

0

d4ϕ
dx4 ϕdx =

∫ L

0
ϕf (ϕq, t)dx (4) 

One shape function is used to discretize the system equation Eq. 1 as 
in Eq. 2. 

m
d2q
dt2 + cm

dq
dt

+ kq = F(q, VD, VL) (5)  

where, 

m =

∫ L

0
ϕ2dx (6)  

k =

∫ L

0

d4ϕ
dx4 ϕdx (7) 

Using the experimental data and logarithmic decrements method, 
the quality factor was obtained Q = 200. As verified in [19], the 
Galerkin’s reduced order method is used to obtain the discrete form of 
the nondimensional beam partial differential equation that satisfies 
ϕ(0) = 0, ϕ′(0) = 0 , ϕ′′(L) = 0, ϕ′′′(L) = 0: 

ϕ(x) = cosh θx − cos θx + 0.7341(sinh θx − sin θx) (8) 

According to the COMSOL results [19] the electrostatic force of the 
center and levitation electrodes is made up of three parts as in the Eq. 1. 
Considering the first cantilever mode shape, θ is equal to 1.875∕L in Eq. 
8. Substituting Eq. 8 into the right side of Eq. 4 gives, 

F(q, VD, VL) = FL(q, VL) + FLD(q, VD, VL) + FD(q, VD) (9) 

The pure levitating part is estimated as a polynomial as: 

FL(q, VL) = V2
L

∑9

j=0
ajqj (10) 

The interaction between the levitation and driving electrodes is 
estimated as: 

FLD(q, VL, VD) = VLVD

∑9

j=0
bjqj (11) 

The attractive force of the driving voltage is represented as: 

FD(q, VD) = V2
D

a
(q + d)

2.15 (12) 

The coefficients aj and bj and a are shown in Table. 2.Table. 3. 

3.2. Double-step command shaping 

As in Eq. 5, the reduced-order system dynamics is a second-order 

Fig. 1. Levitation MEMS actuator. The cantilever is grounded, electronically connected to the anchor. The geometric parameters are addressed in Table 1.  

Table 1 
Micro-actuator properties and geometry.  

Parameter Symbol Value 

Beam Length L 505μm 
Beam Width b3 20.5μm 
Beam Thickness h3 2μm 
Module of Elasticity E 160GPa 
Density ρ 2330kg∕m3 

Initial Gap d 2μm 
Bottom Electrode Width b2 32μm 
Side Electrode Width b1 28μm 
Electrode Thickness h1 0.5μm 
Dimple Height hd 0.75μm  

Table 2 
The electrostatic force coefficients of a cantilevered levitation MEMS actuator 
obtained from COMSOL simulations.  

Parameter Value Parameter Value 

a0 2.48 × 10−7 b0 2.16 × 10−7 

a1 9.3 × 10−3 b1 − 9.78 × 10−2 

a2 − 3.44 × 103 b2 1.64 × 104 

a3 3.13 × 108 b3 2.15 × 109 

a4 − 1.06 × 1013 b4 2.28 × 1014 

a5 − 5.79 × 1017 b5 − 1.79 × 1019 

a6 7.78 × 1022 b6 9.43 × 1023 

a7 − 3.47 × 1027 b7 − 3.09 × 1028 

a8 7.29 × 1031 b8 5.64 × 1032 

a9 6.08 × 1035 b9 − 4.38 × 1036 

a − 1.57 × 10−8    
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linear system with nonlinear actuation Fe(q, t). The linear double-step 
command shaping procedure is illustrated in Fig. 4. First, the opera
tion range R is defined by the user. Using the static displacement graph, 
the movable electrode must be levitated at q = q0 where the distance 
from the center electrode is g = d + q0. As will be shown in Fig. 8, the 
side voltage VL is the required voltage to levitate the movable electrode 
at q = q0. In other words, q0 is the initial position of the movable elec
trode that considers the required operation range R. q0 is selected in a 
way that it allows the gap-closing mechanism to sweep in the range of R. 
The displacement with respect to the levitated position is denoted by δ 
that is considered as the distance driven by the user that uses the gap- 
closing mechanism. 

δ(t) = q(t) − q0 (13) 

Expansion of the electrostatic force Eq. 5 around the levitated posi
tion q0 using the Taylor series gives: 

F(q, VD, VL) = F(q0, VL,R, VD) +
∂F(q0, VL,R, VD)

∂q
δ + ... ≈ Fe − keδ (14)  

where the only first two terms are considered. The levitating voltage, VL, 

R is the voltage that lifts the beam and q0 is the corresponding equilib
rium position. We then keep the levitating voltage constant and change 
the driving voltage, VD for the double step operation. The linear force 
approximation is denoted by Fe, which becomes a function of VD only. 
Using Eqs. 10,11,12), Fe and ke are calculated as: 

Fe(VD) ≈ F(q0, VL,R, VD) = V2
L,R

∑9

j=0
ajqj

0 + VL,RVD

∑9

j=0
bjqj

0 + V2
D

a
(q0 + d)

2.15

(15)   

ke ≈ −
∂F(q0,VL,R,VD)

∂q
= −(V2

L,R

∑9

j=1
jajqj−1

0 +VL,RVD

∑9

j=1
jbjqj−1

0 −V2
D

2.15a
(q0 +d)

3.15)

(16)  

Rewriting Eq. 5 with δ(t) as the variable gives: 

m
d2(δ + q0)

dt2 + cm
d(δ + q0)

dt
+ k(δ + q0) = Fe − keδ (17)  

As previously mentioned, q0 is a constant value defined by the user. Eq. 
17 is simplified to: 

m
d2δ
dt2 + cm

dδ
dt

+ (k + ke)δ = Fe − kq0 (18)  

As in Eq. 17, Fe is considered as a driving force that is independent from 
the cantilever position and varies with only VL and VD. ke is the nonlinear 
effect of the electrostatic force that results in a shift in the fundamental 
frequency. 

For control purposes, the movable electrode is initially levitated by 
VL while no driving voltage is applied. As a result, the beam is raised to 

q = q0. Therefore, the static force balance Eq. 5 at the initial state is 
FL(q0, VL) = kq0. 

Using the mentioned equation and substituting Eqs. (15,16) in Eq. 
18, the linear governing dynamics Eq. 5 are reduced to: 

m
d2δ
dt2 + cm

dδ
dt

+ (k + ke)δ = B1V2
D + B2VD = F̃(VD) (19)  

where B1 and B2 are the driving force constants defined in the following: 

B1 =
a

(q0 + d)
2.15 (20)  

B2 = VL

∑9

j=0
bjqj

0 (21) 

and F̃(VD) is the driving force as a function of the driving voltage VD 
only which makes Eq. 19 a linear system with linear force response. The 
frequency shift due to the nonlinear force is important information for 
the command shaping process as the command timing depends on the 
step response of the system. Using the Jacobian matrix of the second- 
order system Eq. 19, the free-oscillation frequency of the system is 
calculated in the following. Representing Eq. 19 in state-space form 
gives: 
⎛

⎜
⎜
⎝

dδ
dt

d2δ
dt2

⎞

⎟
⎟
⎠ =

(
0 1

−(k + ke)∕m −c

)
⎛

⎝
δ

dδ
dt

⎞

⎠ (22) 

The eigen-values (λ) of the system matrix are calculated as: 

λ = − c ± i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
−mc2 + 4k + 4ke

4m

√

(23)  

The damping coefficient c in Eq. 19 is obtained using the device quality 
factor Q as: 

c =

̅̅̅̅̅̅̅̅̅
k∕m

√

Q
(24)  

Substituting c and ke from Eqs. 16,24) the free-oscillation frequency 
(also called damped frequency) is simplified to: 

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m

[]k(1 −
1

4Q2) − V2
L

∑9

j=1
jajqj−1

0 − VLVD

∑9

j=1
jbjqj−1

0 + V2
D

2.15a
(q0 + d)

3.15 ]

√
√
√
√

(25) 

while the natural frequency ω0 is the oscillation frequency without 
considering the damping effect which becomes: 

ω0 =
1

2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m

[]k − V2
L

∑9

j=1
jajqj−1

0 − VLVD

∑9

j=1
jbjqj−1

0 + V2
D

2.15a
(q0 + d)

3.15 ]

√
√
√
√ (26) 

Using Eq. 25, the oscillation period T is then calculated as: 

T =
2π
ω (27) 

As calculated in [7,11], for a linear system, the double-step com
mand shaping consists of two-step functions in a way that at the end of 
the first step, the movable electrode experiences a desired displacement 
(δ) without any residual fluctuations. As shown in Fig. 2, the command 
parameters are the timing part t1 and the amplitude part VD1 which are 
defined as the final driving voltage for maintenance at the desired po
sition, the first pulse width, and the first pulse amplitude, respectively. 
The desired displacement is defined by the user and the required VD2 is 
determined from the experimental data in the characterization process 
[20]. For the linear system of Eq. 19t1 and F̃1 are calculated as: 

Table 3 
Levitation-based MEMS parameters and properties.  

Parameter value Symbol 

Beam Length 505 μm 
Beam Width 20.5 μm 
Beam Thickness 2 μm 
Module of Elasticity 160 GPa 
Density 2330 kg∕m3 

Initial Gap 2 μm 
Driving electrode width 32 μm 
Levitating electrode width 28 μm 
Fixed Electrode Thickness 0.5 μm  
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t1 = T∕2 (28)  

F̃(VD1) = (1 −
1

1 + e
ω0 t1
2Q

)F̃(VD2) (29) 

Substituting F̃(VD) from Eq. 19 into Eq. 29 gives: 

B1V2
D1 + B2VD1 = (B1V2

D2 + B2VD2)(1 −
1

1 + e
ω0 t1
2Q

) (30)  

As a result, VD1 is calculated by solving the quadratic algebraic equation 
in Eq. 30 

VD1 =
1

2B1

(

− B2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B2
2 + 2B1F̃(VD2)

√ )

(31)  

4. Experimental setup 

A levitation-based MEMS oscillator that includes a micro-cantilever, 
two fixed side electrodes and a fixed center electrode was fabricated by 
MEMSCAP using the PolyMUMPS process [28]. Using an optical profiler 
machine the dimensions fabrication quality and dimensions were 
checked. The material properties and the design geometry can be found 
in Table. 1. 

The levitation-based MEMS system consists of a micro-cantilever as a 
movable electrode fabricated at 2 μm above the substrate. Parallel to the 
movable electrode, a driving electrode was fabricated on the substrate. 

Fig. 2. Simulation of open-loop control using double and single-step command 
shaping. t1 and VD1 refer to the double-step parameters. The double-step com
mand-shaping is applied for cancelling the residual vibration of the system. The 
oscillation frequency of the residual vibration mostly happens with the funda
mental frequency of the system. The command signal consists of a smaller step 
for reaching the desired position with zero velocity, and then increasing the 
driving force to the maintain in the desired position. 

Fig. 3. Experimental setup.  

M. Mousavi et al.                                                                                                                                                                                                                               



Sensors and Actuators: A. Physical 338 (2022) 113453

6

In addition, two electrodes were fabricated at each of the driving elec
trode which are responsible for applying levitating force to the movable 
electrode. Table. 1 contains the parameters of the system. According to 
the PolyMUMPS [28] process, the levitation-based MEMS was fabricated 
by MEMSCAP. The micro-beam tip displacement and velocity are 
measured by a laser vibrometer (Polytec MSA-500). The measured data 
are received and conveyed to MATLAB through a data acquisition sys
tem (National Instruments USB 6366 DAQ). The levitating voltage is 
provided by a wide-band amplifier (Krohn-Hite 7600). A DC power 
supply (B&K Precision 9110) supplies the driving voltage. The levitating 
voltage is approximately 10 orders of magnitude greater than the 
driving voltage. The disparity is caused by the different electrostatic 
fields, i.e., attraction and levitation at the bottom and the side elec
trodes, respectively. The voltages are manipulated with MATLAB and 
the outputs are measured by two electrometers (Keithley 6514) and 
transferred to MATLAB again through the data acquisition system. The 
tests were conducted in MEMS and Energy Harvesting Laboratory [29] 
in 22 oC and relative humidity of 37%. The schematic of the setup is 
shown in Fig. 3. 

The damping ratio that includes structural and air damping was 
determined according to the experimental results. Using logarithmic 
decrement, the damping ratio is measured as ξ = 0.0025 in 
P = 400 mTorr of air pressure. For pressures larger than 1 Torr, no 
oscillation is observed which means that the system transient response is 
overdamped. To demonstrate the effectiveness of the proposed device 
and method in a severe ring-down situation, the chamber pressure is 
decreased to 400 mTorr. Squeeze film damping is a resisting force when 
a fluid is trapped between two solid layers that are in relative motion. 
This phenomenon is prevalent in MEMS devices and causes mismatch 
between the linear model and experiments. Considering the levitation 
MEMS presented in this paper, the movable electrode is levitated away 
from the substrate and because of the large gap, the air is not highly 
squeezed. This assumption was proven to be valid because of the close 
agreement between the simulation and experimental results (see Section 
5). Therefore, the linear damping effect properly captures the transient 
response. The quality factor at the test conditions is obtained as: 

Q =
1
2ξ

= 200 (32)  

5. Results and discussion 

In this section, the open-loop control performance applied to a 

levitation-based parallel-plate mechanism is demonstrated and dis
cussed.Fig. 4. 

5.1. Operation range and linear actuation region 

A thorough study of the linearity in the input/output relation is first 
achieved by force analysis. The experimental and fitting of Multiphysics 
COMSOL simulation results [19,20] show that the total electrostatic 
force in levitation MEMS consists of the levitating force FL, the driving 
force FD and the interaction between levitating and driving force FLD. 
The driving force FD resembles the parallel-plate capacitive electrostatic 
force [30] which increases drastically when the movable and the driving 
electrodes get close to each other. A comparison of the electrostatic force 

Fig. 4. Open-loop control procedure of the MEMS levitation actuator.  

Fig. 5. The variation of the electrostatic force components with the motion of 
the movable electrode in a levitation MEMS actuator. FL is the levitating force 
generated by the side electrodes for the purpose of increasing the operation 
range. FD is the driving force generated by the center electrode for the purpose 
of open-loop position control. FLD is the interacting force generated as a result of 
the interaction between the side and center electrodes. 

Fig. 6. Static tip displacement of the movable electrode in the presence of 
different levitating voltages. The linear regions are indicated where the motion 
is a function of square of the driving voltage VD only (dashed lines). 
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components as a function of the cantilever beam tip displacement is 
shown in Fig. 5 in the presence of VL = 100 V and VD = 5 V. It is noted 
that for larger gaps, FD becomes weaker and mostly insensitive to the 
variation of the gap with the maximum slope of 2.4 × 10−8N∕perμm. 
The capacitive force is a nonlinear function of the system state unless 
there is a sufficiently large gap between the parallel plates [19]. The 
levitating force FL and the interacting force FLD varies slightly with the 
gap where the maximum slope of 5 × 10−9N∕μm observed beyond 4μm. 
The small slope indicates that the electrostatic force can be considered as 
a constant force in the system dynamics which is a desirable feature for 
applying control methods such as double-step linear command shaping 
[11]. As a result, appropriate regions can be found where the electro
static force in Eq. 15 is considered as a constant force that varies with 
inputs VL and VD. In the following, the effect of the electrostatic force on 
the quasi-static response is studied. 

As shown in Fig. 6, the static displacement of the movable electrode 
is plotted versus the square of the driving voltage VD. The graphs indi
cate the linear operation range where the driving force is a function of 
VD rather than the system state as: 

Driving force = F̃(VD) ≈ B1V2
D + B2VD (33)  

In this approximation, B1 and B2 is considered as a constant value for 
sufficiently large gaps. This figure also shows the linear input/output 
relation which is extended in the presence of larger levitating voltage VL. 

A stable operation range is an important design parameter for MEMS 
devices. For a cantilevered parallel plates mechanism, the initial gap d is 
defined as the gap between the cantilever tip and the driving electrode. 
Regarding the range of motion, the movable electrode is driven less than 
d∕3 before it collapses due to the pull-in instability. In order to acquire 
the operation range of R, the initial gap of d = 3R is required. This large 

gap necessitates a thick sacrificial layer to be released using HF solutions 
that often causes complications during micro-fabrication processes. The 
operation range of a MEMS actuator (Table. 1) with the initial gap of d is 
illustrated in Fig. 7. Fabrication of the levitating electrodes around the 
driving electrode is a technique to increase the initial gap by inserting a 
levitating force. As shown in the Fig. 7, the maximum stable displace
ment in the presence of the levitating voltages VL = 60 V, VL = 80 V, VL 
= 100 V, and VL = 120 V is plotted versus the initial gap. For d = 2 μm, 
the parallel plates can travel d = 0.67 μm, while using the levitating 
voltage increases this range by 120%, 193%, 277%, and 387% of the 
gap-closing stable motion range for VL = 60 V, VL = 80 V, VL = 100 V, 
and VL = 120 V, respectively. The initial gap of d = 6 μm provides the 
operation range of 2 μm. Using the levitating electrodes increases the 
operation range by 34%, 48%, 82%, and 127% for VL = 60 V, VL = 80 V, 
VL = 100 V, and VL = 120 V, respectively. The optical angle is twice the 
mechanical angle of the cantilever tip. Table. 4. This table shows that the 
optical can be increased 6 times using 120 V of the levitating voltage. 

5.2. Double-step command shaping 

Unlike gap-closing mechanisms, a unique property of electrostatic 
levitation is that due to distancing from the substrate and the effect of 
side electrodes, the electrostatic force becomes a function of the driving 
voltage and not the gap. This property enables the use of double step 
command shaping to create a large linear range in the order of micro
meters. This is in contrast to gap-closing electrodes where the electro
static force is a nonlinear function of the gap and the command shaping 
technique can only be applied to create a small step in the order of 
nanometers [11,31]. 

Using command shaping approach for the levitating electrode sys
tem, we significantly reduced the ringing in the response of gap-closing 
electrodes as seen in Fig. 8.b As it can be seen the amount of overshoot 
and settling times drastically drops. This unique characteristic is very 
useful for optical switches and modulators. 

To investigate the range of motion using the levitating force, we 
measured and plotted the maximum allowed displacement using the 
linear double-step command shaping (left axis) as a function of VL (see  
Fig. 9). The required driving voltage corresponding to the operation 
range is shown in the right axis. The conventional gap-closing mecha
nism allows for the maximum linear travel range of 0.4μm, while 
applying 80 V, 100 V and 120 V of levitating voltage allows for linear 
regions as large as 1.15 μm, 2 μm, 2.5 μm, respectively. The required 
driving voltage for traveling the whole range of motion with VL = 80 V, 
VL = 100 V and VL = 120 V is 5.5 V, 7.5 V and 11 V, respectively. This 
result indicates that extending the operation range demands a greater 
driving voltage. In the following, the achievements regarding the use of 
command shaping is presented. The settling time was also measured 
49 μs, 47 μs, and 46 μs for the displacement of δ = 1 μm in the presence 
of VL = 80 V, VL = 90 V and VL = 100 V, respectively, which is because 
the fundamental frequency of the system is higher at higher levitating 
voltages. Step excitation forces the beam to resonate at its fundamental 
frequency. The fundamental frequency of the beam was measured to be 
f0 = 9260 Hz. Using the time response of a linear second-order system 
actuated by a single-step, one needs to wait for ts, where 

1 − 0.96 = e−2πf0ξts (34)  

Substituting Eq. 32 in Eq. 34, number of oscillations experienced during 
the settling time is obtained as: 

N =
−ln(1 − 0.96)

π Q = 1.025Q (35)  

At the operation condition of P = 400 mTorr, the Q factor is approxi
mately 200 for the system, and consequently, the user has to wait for 205 
oscillations to reach 96% of the desired position. The settling time is 
linearly increased as the quality-factor is raised. While using double-step 

Fig. 7. The effect of the initial gap between the movable electrode and the 
parallel driving electrode on the maximum stable displacement of MEMS ac
tuators with and without the electrostatic levitation before pull-in instability. 
The results have been obtained from simulations. 

Table 4 
The optical angle, drive range, and settling time at different levitating voltages.  

Levitating voltage 2-Step drive range Optical angle 

VL = 0 V 0.74 μm 0.17∘ 
VL = 60 V 1.48 μm 0.34∘ 
VL = 80 V 1.96 μm 0.45∘ 
VL = 100 V 2.52 μm 0.58∘ 
VL = 120 V 3.27 μm 0.75∘  
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open-loop control reduces the settling time to half of the period, and as a 
result, the settling time is significantly reduced 400 times. 

The open-loop control operation in Fig. 10 demonstrates the driving 
voltage VD (left axis) and the displacement (δ(t)) versus time. For the 
desired displacement of δ0 = 0.5 μm, the levitating voltages of VL 
= 60 V, VL = 80 V and VL = 100 V provide the required operation range 

(see Fig. 9). 
The overshoot percentage is evaluated as  

Compared to the single-step command, the ringdown has been 
drastically decreased by 98%, 96.5.% and 95.5% of the single-step drive, 
respectively. Three more tests were conducted for the desired 
displacement of 1μm which is allowed for VL > 75V. As a result, 97.5%, 
94% and 94% ringdown reduction was observed with the levitating 
voltages of VL = 80 V, VL = 100 V and VL = 120 V, respectively (see 
Fig. 10). To explain the residual vibration, the Fast Fourier Transform 

(FFT) of the residual oscillations in the measured results of Fig. 10 were 
calculated. A similar peak was observed for different levitating voltages. 
The dominant frequency is obtained to be 58,823 Hz which is very close 
to the second mode natural frequency of a cantilever that is calculated as 
follows: 

f02 =
22.03

2π

̅̅̅̅̅̅̅̅̅̅
EI

ρAL4

√

(37) 

Using Table. 1, f02 in Eq. 37 is 58,171 Hz. The governing partial 
differential equation Eq. 1 was simplified using only the first mode. 
Therefore, in contrast with the first mode portion of the step response 
that is damped using the double-step drive, the dominant mode in the 
residual fluctuations is the second mode. 

To implement the command shaping technique with minimal 

Fig. 8. Part (a): Schematic of open-loop control of 
levitation-based MEMS actuator. (1) shows the levitation of 
the micro-cantilever using the levitating electrodes. (2) 
shows the command shaping driving part using the driving 
electrode. Part (b): An experimental time history of the 
open-loop control of a levitation MEMS in the presence of 
VL = 120 V and q0 is the initial absolute position at the 
levitated situation. δ = 2 μm is the desired displacement of 
the actuator. The red graph shows a single-step drive and 
the blue graph shows the open-loop controlled motion.   

Over -shoot percentage (%) =
Uncontrolled overshoot − residual amplitude

Uncontrolled overshoot
× 100 (36)   
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fluctuations, one needs to obtain the first step magnitude. An analytical 
solution for to obtain the first step amplitude of the double-step com
mand shaping VD1 is shown in Eq. 31. The experimental results of open- 
loop control with VL = 100 V is compared with the analytical solution in  
Fig. 11. There is a good agreement for the driving voltages lower than 
6 V, while the accuracy is decreased as for large, desired displacements. 

The variation of natural frequency due to two step magnitudes causes a 
challenge in the calculation of accurate timing between the steps to 
minimize ringdowns. However, this issue is mitigated using the elec
trostatic levitation. As proved in Eq. 25, the fundamental frequency is 
varied as the gap is changed. At constant levitating voltages, the varia
tion of fundamental frequency is shown in the left axis of Fig. 12. The 
right axis of Fig. 12 demonstrates the displacement from the levitated 

Fig. 9. Left axis: Improvement of the operation range by VL in the linear driving 
region (Fig. 6) where the linear command shaping methods are applicable. 
Right axis: the maximum required driving voltage for travelling the operation 
range in the presence of VL. 

Fig. 10. Part (a): time history (obtained from experi
ments) of the open-loop control of a levitation MEMS 
using the double-step command shaping. The double- 
step signals belong to the left axis which represents 
the driving voltage VD. The fluctuating signals repre
sent the displacement of the movable electrode (right 
axis) that corresponds to the driving voltage of the 
same color. Part (b): A comparison between the simu
lation (Eq. 19) and experiments in the presence of VL 
= 100 V and the desired displacement of 0.5 μm.   

Fig. 11. Amplitude part of the double-step command shaping for verifying the 
analytical solution using experimental results. x-axis shown refers to the final 
driving voltage that refers to a desired displacement and y-axis refers to the 
required driving voltage of the first pulse. 
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position (see Fig. 8). Results show that as VL is increased, a smaller 
frequency shift is observed along a wider operation range. The levitating 
voltages VL = 100 V and VL = 120 V enable the 2 μm and 2.5 μm of 
operation range, while the frequency shifts of 1500 Hz and 1000 Hz will 
emerge, respectively. The same value for the conventional gap-closing 
mechanism is 2500 Hz along a thinner operation range of 0.4 μm. The 
frequency shift results in an imperfect actuation and increasing the 
settling time in the open-loop control of MEMS gap-closing drive. By 
implementing the levitating force, the fundamental frequency becomes 
less sensitive to the gap-closing electrostatic force that results in a more 
accurate command shaping. 

6. Conclusions 

In this research, we overcome the obstacles for the inclusion of small 
range of motion and nonlinear input to output correlation. The elec
trostatic levitation is added to the capacitive gap-closing mechanism by 
the fabrication of two side electrodes. The levitating force raises the 
movable electrode away from the substrate, which is advantageous 
because it enables a non-restricted motion in the opposite direction of 
the substrate and results in an operation range of a multiple of times 
larger than previous works. Due to the larger distance between the 
parallel-plates, the relation between the input driving voltage and the 
gap-closing force becomes linear for a wide range of motion. Such 
linearity allows for the use of linear command shaping methods such as 
double-step drive. The linear open-loop control methods are preferred 
because the command manipulation is simple and only requires the 
knowledge about the linear stiffness of the movable electrode. The 
experimental and simulation results show the effectiveness of the 
double-step command shaping in levitation MEMS actuators. By levi
tating the movable electrode by 4.5 μm and 6.5 μm, the linear operation 
range is raised by 5 and 6 times, respectively, compared to the con
ventional gap-closing mechanism investigated in previous studies. Using 
the presented results, the idea can be expanded to rotational micro- 
mirrors for optical modulation. In addition, more complicated linear 
command-shaping methods can be implemented for enhancement of the 
dynamic response. 
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