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In a two-dimensional (2D) turbulent fluid containing point-like vortices, Lars Onsager predicted
that adding energy to the fluid can lead to the formation of persistent clusters of like-signed vortices,
i.e., Onsager vortex (OV) clusters. In the evolution of 2D superfluid turbulence in a uniform
disk-shaped Bose-Einstein condensate (BEC), it was discovered that a pair of OV clusters with
opposite signs can form without any energy input. This striking spontaneous order was explained
as due to a vortex evaporative-heating mechanism, i.e., annihilations of vortex-antivortex pairs which
remove the lowest-energy vortices and thereby boost the mean energy per vortex. However, in our
search for exotic OV states in a boundaryless 2D spherical BEC, we found that OV clusters never
form despite the annihilations of vortex pairs. Our analysis reveals that contrary to the general
belief, vortex-pair annihilation emits intense sound waves, which damp the motion of all vortices
and hence suppress the formation of OV clusters. We also present unequivocal evidences showing
that the true mechanism underlying the observed spontaneous OV state is the vortices exiting the
BEC boundaries. Uncovering this mechanism paves the way for a comprehensive understanding of

emergent vortex orders in 2D manifolds of superfluids driven far from equilibrium.

In two-dimensional (2D) turbulent flows such as in
soap films [1] and Jupiter’s atmosphere [2], large-scale
persistent vortex structures are often observed. The ap-
pearance of these large-scale vortices can be understood
in terms of a simplified point-vortex model proposed by
Onsager [3]: when energy is continuously injected into a
finite-sized 2D fluid containing many point-like vortices,
the like-signed vortices must eventually aggregate to form
large clusters (i.e., Onsager vortex (OV) clusters) in order
to sustain the high kinetic energy of the fluid. This or-
dered OV state is associated with a negative temperature
since it has more energy but less entropy as compared to
a state with randomly distributed vortices [3]. While
Onsager’s model has provided valuable insights into 2D
turbulence in general [4, 5], it is particularly relevant to
2D superfluids, such as planar Bose-Einstein condensates
(BECs) [6, 7] and superfluid helium films [8, 9], where the
vortices are indeed point-like topological defects with a
quantized circulation [10].

Surprisingly, recent numerical simulations of 2D tur-
bulence in uniform disk-shaped BECs uncovered that a
pair of OV clusters with opposite signs can form even in
the absence of any energy input [11, 12]. This intriguing
spontaneous emergence of order from chaos has prompted
extensive subsequent research [13-19]. A widely accepted
explanation is that this emergent order is caused by a
vortex evaporative-heating mechanism [11, 12], i.e., an-
nihilations of vortex-antivortex pairs at close separation.
Such pairs of vortices induce negligible flows in the BEC.
Therefore, their annihilations merely decrease the num-
ber of vortices but retain the total energy of the vor-
tex system, which thereby increases the mean energy per

vortex. For a disk-shaped BEC with a radius R carrying
zero angular momentum but sufficient energy, it has been
shown that as the vortices keep annihilating, the vortex
system can evolve into the negative temperature state
and eventually approach a limiting configuration consist-
ing of two concentrated vortex clusters separated sym-
metrically around the disk center by about 0.922R [13],
as shown in Fig. 1 (a). This limiting configuration gives
the highest kinetic energy per vortex.

(a) (b) T

FIG. 1. Schematics showing the limiting configuration of OV
clusters in 2D BECs with zero angular momentum in a) planar
disk geometry and b) spherical shell geometry. The points of
different colors represent vortices of different signs.

Recently, there have been increasing interests in BECs
confined in a spherical shell geometry [20-24]. Creat-
ing such a curved BEC manifold using a spherical bub-
ble trap was proposed two decades ago [25], but later
research showed that this could be achieved only in mi-
crogravity since otherwise the atoms would fall to the
bottom of the trap [26, 27]. Nevertheless, this techni-
cal barrier was conquered recently due to the installation
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FIG. 2. (a) and (b) show the evolution of the condensate density 5 = |¢|* in the GP model for the quasi-2D BEC in the disk
geometry and the spherical shell geometry, respectively. The vortices and antivortices are marked with dots of different colors
for better visibility. The shaded regions in the disk BEC signify the places where coherent OV clusters are seen. (c) and (d)

show the evolution of the total vortex number N(t) (black circles). The red circles in the disk BEC case give the partition of
the decayed vortices due to the pair-annihilation process ANpqir and due to vortices exiting the boundaries ANy,

of the NASA cold atom laboratory at the international
space station [28, 29]. Unlike the disk BEC case, the for-
mation of any dipole OV-cluster configuration in 2D tur-
bulence on a spherical surface is always associated with
a finite angular momentum and therefore is prohibited if
the BEC has zero angular momentum to begin with. In
this situation, a novel quadrupole limiting configuration
with two pairs of like-signed OV clusters across two per-
pendicular diameters is expected (see Fig. 1 (b)), since
the corresponding flow field carries the highest kinetic
energy with zero angular momentum.

In this Letter, we discuss our search for the exotic OV
states in 2D spherical BECs. To our surprise, we find
that OV clusters never form despite the annihilations of
vortex pairs. We then present unequivocal analysis re-
sults to show that the spontaneous OV state in isolated
BECs is not due to vortex-pair annihilations but instead
is caused by vortices exiting the BEC boundaries. Un-
covering this true mechanism not only explains the ab-
sence of OV clusters in boundaryless 2D spherical BECs
but also advances our knowledge of spontaneous vortex
orders in 2D superfluid manifolds in general.

Numerical method: We model the dynamics of the
BECs at low temperatures using the three-dimensional
Gross-Pitaevskii equation (GPE) [30]:
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where ¢ = |i]e’® is the condensate wave function, m

is the particle mass, g is the coupling constant, and U is

the external potential that confines the BEC. To generate
quasi-2D BECs in both the disk and the spherical shell
geometries for comparative studies, we adopt the confin-
ing potential used in Ref. [11] to create a disk BEC:

U(r) = Uy [tanh ((r — R)/ase) + 1] + %mwQ,zQ, )
where Uy and w are parameters pertinent to the trap
strength in the radial plane and along the z-axis. ays. =
v/ i/mw is the characteristic trapping length in the z di-
rection that controls the disk thickness, and R sets the
disk radius. To create a spherical BEC shell, the follow-
ing radial potential is used [20-22]:

Ulr) = %muﬂ (r—R)?

(3)
For convenience, we normalize the time and length scales
as t = wt and 7 = r/as. so the original GPE can be
written in a dimensionless form:

OV
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where 1 = ¢ /(1/N/a3,,) with N=[ dV|¢|? being the to-
tal particle number. We select the trap parameters such
that the normalized coupling constant § = gN/hwa3,,. =
V125 x 10* and Up/hw = 64, matching with those in
Ref. [11] and the experimental work [31]. The radius for
the disk BEC is set to R = R/assc = 30 and for the

spherical BEC shell is R = 15 so the two BECs have the
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same surface areas.

We then numerically imprint [22, 32, 33] the velocity
field of 80 vortices and 80 antivortices at random loca-
tions in the two BECs while keeping their angular mo-
mentum nearly zero [11]. The Eq. 4 is evolved in imagi-
nary time for a short period to heal the vortex-core struc-
ture [34]. The dynamical evolution of the condensate
wavefunction is then obtained by numerically integrating
Eq. 4 with spatial resolutions AZ = Aj = AZ = 0.1 and
a time step of 1072 using the forth-order Runge-Kutta
method [35] (see Supplemental Material).

Simulation results: The evolution of the quasi-2D
BEC from a typical initiate state in both the disk ge-
ometry and the spherical shell geometry can be seen in
the movies in the Supplemental Material. In Fig. 2, we
show snapshots of the condensate density on the zZ = 0
plane for the disk BEC and on the # = R surface for the
spherical BEC shell. In the disk BEC, the like-signed vor-
tices tend to form transient clusters that grow with time,
which eventually lead to two counter-rotating persistent
OV clusters. The annihilation of the vortices essentially
ceases upon the formation of the OV clusters. These ob-
servations agree nicely with those of Ref. [11].

In the spherical BEC shell, the vortex-pair annihila-
tions result in a somewhat more rapid decay of the total
vortex number N (%), as shown in Fig. 2 (c) and (d). Note
that in 2D BECs, two vortices annihilate essentially via
a multi-vortex interaction process [36-39]. When a gen-
eral n-vortex process controls the vortex decay, a scaling
of N(t) 777 is expected [39]. At large ¢ but be-
fore the OV clusters form in the disk BEC, we find that
N (f) can be fitted well using this scaling with n = 2.4
for the disk BEC and n = 3 for the spherical shell BEC.
The n = 3 scaling is likely generic for pair annihilations
in boundaryless quasi-2D BECs (see Supplemental Ma-
terial). On the other hand, the n = 2.4 scaling for the
disk BEC indicates the presence of both two-vortex and
three-vortex processes. Indeed, there are two distinct
processes through which the vortices can decay in the
disk BEC, i.e., pair annihilations and exiting from the
disk boundary. The exiting process may be regarded as
the annihilation of a vortex with its image charge in the
presence of a second vortex, i.e., essentially a two-vortex
process. According to Fig. 2 (¢), about 1/3 of the decayed
vortices in the disk BEC are caused by vortex exiting.

Despite the more rapid annihilation of the vortex pairs
in the spherical BEC shell, there appears to be no vor-
tex clusters at any time (see Fig. 2 (b)). More concrete
evidence showing whether or not OV clusters ever form
in a BEC can be obtained from the evolution of the vor-
tex energy [40]. Note that the total kinetic energy of
a BEC consists of three parts: an incompressible part
due to the flow field induced by the vortices, a compress-
ible part due to sound waves, and a quantum pressure
term [41]. Many past studies evaluated the incompress-
ible kinetic energy associated with the vortex system in
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FIG. 3. Evolution of the incompressible kinetic energy Ev as-
sociated with the vortices in a) the disk BEC and b) the spher-
ical BEC shell. E.(N) is the threshold energy for transition
to the negative temperature state, and E*(N) is a reference
energy above which vortex clusters are readily observable.

planar BECs by first extracting the core locations of
all vortices and then applying the following point-vortex
Hamiltonian [11-13, 15, 16]:

2
__ Pok . 12y 2 a2
H=- 4w {;stgln(ri r5]%) Zsi In(1 — ;")
1<) 7
(5)
stisjln(l72r§-r3+|r§\2|r;|2)},

i<j

where pg is the mean density, K = h/m is the quantized
circulation, r; = r;/R denotes the normalized position
vector of the ith vortex with a winding number s; = +1.
Here we adopt the same procedures. For vortices in the
spherical shell, the following Hamiltonian is used [42, 43]:

H**pOsz 1 (17 /. /) (6)
= 471- S’I,Sj n I‘i I‘j .
i<j

The variations of the normalized incompressible kinetic
energy By = (47/pok?)H in both BEC geometries are
calculated and shown in Fig. 3. For reference purpose, we
have also included in Fig. 3 the threshold energy E.(N)
above which a 2D neutral N-vortex system enters the
negative temperature regime. This E.(N) is derived via
a Markov chain Monte-Carlo method [44] using the above
Hamiltonians (see Supplemental Material). Since OV
clusters appear only at energies significantly higher than
E.(N) [13], we also introduce a reference energy E*(N)
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FIG. 4. GPE simulation showing density variations in the
disk BEC when: a) a vortex-antivortex pair undergoes anni-
hilation; and b) a vortex merges into the disk boundary.

at which the mean dipole (or quadrupole) moment of the
vortices equals 30% of the value for the limiting config-
uration depicted in Fig. 1. Above E*(NN), clear vortex
clusters are readily observable. Both E.(N) and E*(N)
vary with ¢ as the total vortex number N (f) decays. From
Fig. 3, one can see that for the disk BEC the vortex en-
ergy FEy quickly rises to above E*(N), which explains
why OV clusters were observed. On the contrary, Ey
for the spherical BEC shell barely gets above E.(N) and
is always below E*(N), which thereby confirms that OV
clusters never formed in the spherical BEC shell.

The contrasting fate of the vortices in the disk BEC
and the spherical BEC shell calls for an explanation. As
we discussed earlier, the vortices in the spherical BEC
shell can decay only via pair annihilations, whereas in
the disk BEC they can decay via both pair annihilations
and exiting from the boundary. To better understand
the consequence of this difference, we simulated the an-
nihilation of an isolated vortex pair and the exiting of a
single vortex in the disk BEC using GPE. For the an-
nihilation test, we first prepare a vortex-antivortex pair
at close separation and then evolve Eq. 4 with a small
added damping so the two vortices approach each other
while the pair propagates [39]. When the vortex separa-
tion is about the core size, we set £ = 0 and remove the
added damping so the subsequent annihilation process is
not affected by artificial dissipation. Similar procedures
are adopted for the single vortex near the disk boundary.
The results are shown in Fig. 4. One can see that the
pair annihilation in bulk BEC generates intense sound
waves due to the conservation of linear momentum. On
the contrary, in the vortex exiting process, the vortex
merges into the zero-density region, which hardly gener-
ates any sound waves.

The sound waves in the BECs can damp out the vor-
tex motion and dissipate the incompressible kinetic en-
ergy possessed by the vortex system [36]. This process is

similar in nature to the mutual friction damping on quan-
tized vortices in superfluid helium caused by the normal-
fluid component [45-47]. Therefore, one may draw the
following conclusions: 1) the pair annihilation process
alone does not lead to the formation of OV clusters due
to the intense sound emission; and 2) the exiting of the
vortices from the BEC boundaries, which increases the
mean energy of the vortices with minimal sound emis-
sion, is the true mechanism responsible for spontaneous
vortex orders. To verify these conclusions, we present
two complementary tests that can produce unequivocal
supporting evidences.

Complementary tests: In the first test, we examine
the ideal dynamics of the vortices on the spherical surface
(R = 15) without sound waves. To this do, we consider
point vortices with the same initial distribution as in our
GPE simulation and evolve them using the equation of

motion derived from the Hamiltonian in Eq. (6) [42, 43):

/ /
I'j><I‘i

dr} 1
Ay Dt )
i i

To mimic the vortex-pair annihilation process, we remove
vortex-antivortex pairs whenever the arc-length separa-
tion between two vortices is less than 0.03R [11]. At
large £, we find that four vortex clusters form spon-
taneously as shown in Fig. 5, which eventually evolve
towards the limiting configuration given in Fig. 1 (b).
This dynamics is not surprising, because removing a vor-
tex pair at close separation essentially amounts to sub-
tracting a large negative quantity from the Hamiltonian.
Therefore, the energy of the point-vortex system steadily
increases with time, which inevitably leads to the for-
mation of OV clusters. The exact time it takes before
OV clusters emerge depends on the threshold separa-
tion for vortex-pair removal. This test shows that the
evaporative-heating mechanism would work only in the
absence of sound waves. Our result also calls for cau-
tion when using the point-vortex model to understand
the vortex dynamics in real BECs.

FIG. 5. Point-vortex model simulation of the vortex dynamics
on 2D spherical surface from the same initial state as in our
GPE simulation.
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FIG. 6. GPE simulation of the vortex dynamics in quasi-
2D square BEC with a) box-wall boundary condition; and b)
periodic boundary condition.

In the second test, we conduct a GPE simulation with
80 vortices and 80 antivortices at random locations in a
square-shaped planar quasi-2D BEC. We adopt the same
trapping parameters Uy and w as for the disk BEC and
set the side length of the square to R = 50 so its area
is also similar. We can now apply either the box-wall
boundaries (i.e., with the hyperbolic tangent potential)
or the periodic boundaries [39] so that the vortex dy-
namics in the same BEC geometry with and without
the vortex-exiting mechanism can be compared directly.
Fig. 6 shows representative snapshots of the BEC density
from the same initial state with the two boundary condi-
tions. Large-scale OV clusters are seen only in the case
with the box-wall boundaries. We have also tested the
vortex evolution in a curved BEC with a boundary for
vortex exiting (i.e., a quasi-2D spherical BEC cap) and
again observed OV clusters (see Supplemental Material).
These results unambiguously demonstrate the crucial role
of the vortex-exiting boundaries in the spontaneous for-
mation of vortex orders.

In summary, we have examined the evolution of vor-
tices in both planar and spherical 2D BECs. A compre-
hensive understanding of the mechanism underlying the
spontaneous vortex orders is achieved, which represents
a major progress in the study of the far-from-equilibrium
dynamics of 2D superfluids. Our findings may also mo-
tivate future experiments in 2D spherical BECs at the
international space station.
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PRECISION OF THE GPE COMPUTATIONS

We consider the vortex dynamics in quasi-2D (instead
of ideal 2D) BECs in both the disk geometry and the
spherical shell geometry generated using the confining
potentials as described in the paper. Following the work
by Simula et al. [S1], we adopt a cubical mesh grid with
spatial resolutions AZ = Ag = AZ = 0.1 to discretize
the space. The length scale is normalized by a,s, i.e.,
the characteristic length that controls the thickness of
the quasi-2D BECs. The Gross-Pitaevskii (GP) equa-
tion is then evolved at a time step of Af = 10~ using
the forth-order Runge-Kutta method [S2]. The size of the
computational domain for the disk BEC is 66 x 66 x 14
and for the spherical BEC is 46 x 46 x 46. Ideally,
the evolution of the GP equation for the disk BEC and
the spherical shell BEC should conserve the total energy
E=] d3r[2h—;|Aw|2+U(r)|w|2+%|w|4}, the total particle
number N = [ d3r|¢|?, and the total angular momentum
L = [ d®r(*Ly)). We have tested that for both BEC ge-
ometries over the simulation time # = 300, £ only drops
by less than 3%, N decreases by less than 0.1%, and |L|
varies by less than 1% of the initial value, which confirm
the high precision of our GPE computations.

POINT-VORTEX THERMODYNAMICS

In the framework of the GPE, the total kinetic energy
of a BEC can be decomposed into three parts: an in-
compressible part due to the flow field induced by the
vortices, a compressible part due to sound waves, and a
quantum pressure term [S3]. To evaluate the incompress-
ible kinetic energy associated with the vortex system, a
commonly adopted method is to extract the core loca-
tions of the vortices and then calculate this energy using
a point-vortex Hamiltonian [S1, S4-S7]. For a planar disk
BEC, this Hamiltonian is:
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where pg is the mean density of the BEC, k = h/m is
the quantized circulation, r{ = r;/R is the normalized
position vector of the ith vortex with a winding num-
ber s; = £1. For vortices in a spherical BEC shell, the
corresponding point-vortex Hamiltonian is [S8, S9]:
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When the normalized vortex energy E = (47/pok?)H
is higher than a threshold E., the vortex system enters
the negative temperature regime. At sufficiently high
energies, Onsager vortex (OV) clusters can emerge. In
order to determine these thermodynamic energy levels for
reference purpose, a Markov chain Monte-Carlo method
can be adopted [S10]. The relevant procedures have been
discussed in detail for planar disk BECs [S5]. Here we
outline the major steps for the 2D spherical BEC case.
We consider a neutral point-vortex system with a to-
tal vortex number N in a spherical BEC shell (R =
R/a,s. = 15) having zero angular momentum. To evalu-
ate the thermodynamic properties of this vortex system,
a large ensemble (i.e., 5 x 105) of vortex configurations
for a given temperature 7" are generated based on the
Boltzmann distribution e~ /N7 using the Monte Carlo
method as detailed in Ref. [S10], where T = T/Ty is the
normalized temperature with Ty = Npok? /Arkp. We
restrict the generated vortex configurations to have neg-
ligible vortex dipole moment d = )", s;r; and therefore
nearly zero BEC angular momentum. The mean energy
of the vortex system E(T) is obtained as the average
of FE over all vortex configurations. In Fig. S1 (a), we
plot E versus T for a representative vortex system with
N = 120. Besides the vortex energy, we have also calcu-
lated the quadrupole moment @ for each vortex configu-
ration, defined as @ = (3, ql2)1/2 where ¢ (I = x,y,2) is
the eigenvalue of the following quadrupole tensor:
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The maximum quadrupole moment Qazq./N =~ 3v/2/4
is achieved in the limiting vortex configuration as shown
in Fig. 1 (b) in the paper, where the vortices form four
compact clusters, each containing N/4 like-signed vor-
tices. The mean quadrupole moment Q(T) at different
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FIG. S1. Variations of a) the mean energy E and b) the
mean quadrupole moment @ as a function of the normal-
ized temperature T for a neutral point-vortex system in a
spherical shell with N = 120 vortices and zero BEC angu-
lar momentum. Toy = —1/16 denotes the ideal point-vortex
super-condensation transition temperature.

T is determined as the ensemble average of @ and is
shown in Fig. S1 (b). As the temperature approaches
—0, both E(T) and Q(T) rise sharply, signifying a tran-
sition to the Onsager-vortex phase. Indeed, through an
energy-entropy balancing analysis [S11], one can derive a
temperature Tov above which the vortex system would
undergo an super-condensation transition. The obtained
Tov for the disk BEC is —1/4 [S1, S4, S5], and a sim-
ilar analysis gives Toy = —1 /16 for the spherical BEC
shell. In Fig. S1, we also include two representative mi-
crocanonical vortex configurations at temperatures below
and close to Toy .

Now we can proceed to evaluate some key reference en-
ergies. The threshold energy E. is essentially the value
of E as T approaches —oo. To determine E,. reliably, we
follow the method as discussed in Ref. [S5] and plot Q(T)

versus E(T) in Fig. $2. The data near Q = 0 follows a
VE scaling [S5]. E, can be determined as the intersect
of this scaling curve with the E-axis. As for the energy
associated with the formation of OV clusters, we intro-
duce a phenomenological reference energy E* at which
the mean quadrupole moment equals 30% of Qarqz, in-
stead of using the energy corresponding to Toy. This is
because Toy refers to the idealized super-condensation
phase transition, but OV clusters can emerge even at
slightly lower T. Comparing Fig. S1 and Fig. S2, one
can see that the E* we introduced is at the level where
the E curve starts to rise sharply.

FIG. S2. The derived mean quadrupole moment @ as a func-
tion of the mean vortex energy F for the vortex system con-
sidered in Fig. S1. The reference energy levels E. and E*
introduced in the text can be determined.
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FIG. S3. Variations of the derived E. and E* with the total
vortex number N. The solid red curves represent polynomial
fits to the data with the form E = ZZ:O a;N".

We then repeat the above analysis for vortex systems
with different N. The obtained E,. and E* are collected
in Fig. S3. In order for convenient comparison with the
incompressible kinetic energy Ey (f) we calculated for the
vortex system in our GPE simulation, a polynomial fits
of the form F = ZZ:O a;N* is performed to both the E.
data and the E* data so that their dependance on the
vortex number N can be determined. In Fig. 3 in the
paper, the vortex number N(f) at a given ¢ is known.
We can then include the corresponding E.(N(f)) and
E*(N(t)) in that figure.



DECAY SCALING OF VORTEX NUMBER

In an ideal 2D BEC without any added damping, a
vortex and an antivortex alone cannot decay via pair an-
nihilation. Instead, they would form a stable pair and
travel at a constant velocity [S12]. The interaction with
a third vortex is needed in order to dissipate the energy
of the vortex pair so that the two vortices can approach
each other and annihilate. This annihilation then leads
to the generation of a long-lived nonlinear density wave,
which was first identified by Nazarenko and Onorato as
a soliton [S13] and was later denoted as the “crescent-
shaped” wave by Kwon et al. [S14] and the “vortex-
onium” by Groszek et al. [S15]. This nonlinear wave
may collide with a fourth vortex and eventually decay
into phonons [S15, S16]. Therefore, in a boundaryless
ideal 2D BEC, the vortices are expected to decay via a
four-vortex interaction process, which was confirmed by
Baggaley and Barenghi in their study of decaying homo-
geneous turbulence in an ideal 2D square BEC with a
periodic boundary condition [S17]. These authors found
that at large decay times the total vortex number scales
as N(f) o«c i~3. Note that when a general n-vortex pro-
cess controls the vortex decay, a scaling of N (#) o e
is expected. Therefore, their result suggests that n = 4.
Nonetheless, they also showed that when some damping
was intentionally added to the 2D BEC, the decay of N (?)
can change to a scaling with n = 3. This is because the
added damping can dissipate the soliton wave without
the need for a fourth vortex.

In our paper, we showed in Fig. 2 that the decay of the
total vortex number N (%) exhibts the scaling of n = 2.4
for the quasi-2D disk BEC and n = 3 for the spherical
BEC shell. In a qusi-2D BEC with a finite thickness, the
interaction between the sound waves and the vortices is
strong as compared to that in ideal zero-thickness 2D
BECs [S1]. This enhanced interaction likely plays the
role of the added damping as in ideal 2D BECs, which
therefore could result in the observed n = 3 decay scaling
of N(%) in the boundaryless spherical BEC shell. The
n = 2.4 decay scaling found in the quasi-2D disk BEC
can then be interpreted naturally as due to the interplay
of vortex-pair annihilations (i.e., a three-vortex process)
and vortices exiting from the disk boundary (i.e., a two-

vortex process as discussed in the paper).

To support this viewpoint, we have examined the de-
cay of the vortex number in quasi-2D square BECs with
both the box-wall boundary condition (i.e., with the hy-
perbolic tangent potential as described in the paper) and
the periodic boundary condition. The variations of the
vortex number N (f) pertinent to the two cases presented
in Fig. 6 in the paper are shown in Fig. S4. For the case
with the periodic boundary condition, we again observed
the n = 3 decay scaling at late times, which therefore sup-
ports the generic nature of this scaling for vortex-number
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FIG. S4. GPE simulation of the time evolution of the to-
tal vortex number N (#) in a square BEC with a) a box-wall
boundary condition; and b) a periodic boundary condition.
These results are pertinent to the cases shown in Fig. 6 in
the paper.

decay in boundaryless quasi-2D BECs. For the case with
the box-wall boundary, a decay scaling of n = 2.3 is ob-
served, which is close to that in the disk BEC bounded by
the same type boundary. We would like to add that we
have also examined the variation of N () in an ideal 2D
square BEC with the periodic boundary condition and
confirmed the n = 4 decay scaling as reported by Bag-
galey and Barenghi [S17]. Therefore, these observations
together support our view that as the BEC thickness in-
creases from zero to finite, the enhanced sound-vortex in-
teraction can alter the vortex-number decay scaling from
n =4 to n = 3 for pair annihilations.

ONSAGER VORTICES IN SPHERICAL BEC CAP

In our paper, we attribute the spontaneous formation
of OV clusters as due to vortices exiting the BEC bound-
aries, a process that decreases the vortex number without
generating intense sound waves. The absence of the OV
clusters in the quasi-2D spherical BEC shell is then con-
sidered as due to the absence of such boundaries. How-
ever, since the curve BEC geometry may affect the vortex
dynamics [S18], it is worthwhile confirming that OVs can
indeed emerge when solid-wall boundaries are restored.
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FIG. S5. Density profile of the quasi-2D spherical BEC cap
at » = R in the initial state. Vortices of different signs are
marked with dots of different colors.

For this purpose, we have conducted additional GPE sim-
ulations of the vortex dynamics in a quasi-2D spherical
BEC cap. This BEC cap is created using the following
confining potential:

U(r) = gme? (r — B)?
+ Up [tanh ((R/aose)(0 — Omaz)) + 1],

(54)

where the curvature radius of the spherical cap is R =
45045, and the maximum polar angle is chosen to be
Omaz = 0.2167 such that the cap surface area remains the
same as that for the disk and the spherical shell BECs
we have studied. The same normalized potential param-
eter Up/huw and the coupling constant g are used in the
GPE. In the initial state, 80 vortices and 80 antivortices
are randomly imprinted in the BEC cap in a way such
that the initial angular momentum is nearly zero. Fig. S5
shows the density profile at » = R in the initial state as
viewed from different polar angles. We then evolve the
GPE using the cubical mesh grid with the same spatial
resolution (i.e., 0.1) and time step Af = 1073. Repre-
sentative top-view images of the BEC density profile at
different evolution times are shown in Fig. S6 (also see
the Supplemental Movie). Two persistent OV clusters
are indeed observed at large times, similar to those in
the disk BEC case. This result again confirms our view
that the existence of the solid-wall boundaries through
which the vortices can exit is critical in the spontaneous
formation of the OVs.

SUPPLEMENTAL MOVIES

Movie S1: Density evolution of the quasi-2D disk
BEC, simulated using the Gross-Pitaevskii model. The
BEC is initially imprinted with 80 vortices and 80 an-
tivortices and has nearly zero angular momentum with
respect to the disk center, as described in text. The
movie shows the evolution of the condensate density on
the z = 0 plane. The locations of the vortices and an-

FIG. S6. Evolution of the condensate density at » = R for the
spherical BEC cap, viewed from the top. The shaded regions
indicate the locations where persistent OV clusters are seen.

tivortices are marked with blue and green dots, respec-
tively.

Movie S2: Density evolution of the quasi-2D spherical
shell BEC, simulated using the Gross-Pitaevskii model.
The BEC is initially imprinted with 80 vortices and 80
antivortices and has nearly zero angular momentum. The
movie shows the evolution of the condensate density on
the 7 = R surface. The locations of the vortices and an-
tivortices are marked with blue and green dots, respec-
tively.

Movie S3: Density evolution of the quasi-2D spheri-
cal BEC cap, simulated using the Gross-Pitaevskii model.
The BEC is initially imprinted with 80 vortices and 80
antivortices and has nearly zero angular momentum. The
movie shows the evolution of the condensate density on
the 7 = R surface. The locations of the vortices and an-
tivortices are marked with blue and green dots, respec-
tively.
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