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Abstract— Teleoperation needs accurate and robust motion
mapping between human and humanoid motion to generate
intuitive robot control with human-like motion. Data-driven
methods are often deployed as it can result in intuitive, real
time motion mapping. When using these methods, the common
focus is on the accuracy of the motion mapping model. However,
effort needs to be put into making the mapping model robust
in face of noisy or incomplete dataset. In other words, the
model needs to learn the generalizable mapping rules, not just
be accurate in predicting the training data. To create a robust
and accurate model for motion mapping, we developed the
novel CycleAutoencoder method. This method simultaneously
trains two autoencoders using traditional losses, mixed losses,
and cycle losses. These losses allow the autoencoders to recon-
struct the motion mutually between humans and humanoids.
This allows the method to learn the mapping with improved
accuracy and robustness compared to training a traditional
autoencoder. The results of human subject involved experiments
demonstrated that the CycleAutoencoder method can achieve
both accuracy and robustness for the mapping compared with
other autoencoder-based mapping methods.

I. INTRODUCTION

Teleoperation allows an operator to control the robot with-
out needing to be physically present in the task environment.
This allows an operator to safely perform a task in danger-
ous environments, across large distances, and over different
scales. Motion mapping techniques have been utilized for
creating teleoperation models as it allows the operator to use
their body to intuitively control the humanoid robot. Properly
developing motion mapping models is essential to generating
human-like and intricate robot movements [1], [2].

Many researchers have been interested in using data-driven
methods for mapping human motion to robots instead of
developing empirical models. Rather than laboriously creat-
ing mapping rules or generating inverse kinematics models
for every human tracking system and robot structure, data-
driven methods learn how to perform the motion mapping
through collected training samples [1], [3]. These models can
overcome the high computation associated with conventional
inverse kinematics-based motion mapping equations. Data-
driven models can also learn the mapping without needing
the operator to convert the human and humanoid’s coordinate
systems into a common coordinate system.

The challenge of creating a data-driven mapping model is
to achieve high accuracy and robustness while maintaining
efficient training [4]–[9]. A model that is not accurate is
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unable to precisely predict the information provided. Robust-
ness is defined as how sensitive a model is to perturbances
in the training data [8]–[10]. This includes the ability of the
model to understand the mapping even in locations where the
training data is lacking. In other words, the model should be
able to map motion rather than overfitting to the training
data. Training efficiency is defined as how long it takes
the model to converge to a valid mapping solution from
the training data; ideally it should not take long for the
model to converge. These objectives will often conflict when
training a model, meaning that improving one of the criteria
will decrease another. To improve these three criteria, a new
model frame work will need to be designed.

This is the purpose for the design of the CycleAutoencoder
model. We designed this model to use two autoencoders that
can map information between each other. Autoencders are
used since they are designed to reduce the dimensionality of
mapping problems [11]. Reducing the dimensionality of the
motion should result in key features arising that represents
the motion that can be converted into human motion and
robot motion. The dimension reduction should produce ro-
bust mapping quicker. By training these two autoencoders
simultaneously, they should generalize the mapping rules
between human motion and robot motion. This will produce
more robust mapping compared to other models that pri-
oritize one mapping direction. To train both autoencoders
while achieving the desired accuracy and robustness, the
CycleAutoencoder introduces three pairs of loss function
structure to ensure accurate representation of the human and
robot motion, to ensure accurate mapping between the two,
and to improve robustness between the mapping.

In pursuit of a more accurate and robust data-driven
method for teleoperation, we contributed the following:

1) Creating the CycleAutoencoder method to perform
accurate and robust mapping teleoperation between a
human and a humanoid robot.

2) Comparing the CycleAutoencoder method with other
training methods for motion mapping autoencoders
with human subject to robot experiments. The criteria
used to compare these methods are:

a) Accuracy: How well the model can predict the
mapping.

b) Robustness: How well the model can predict
outside of the trained workspace.

c) Efficiency: how long it takes to train the models
for each method.



II. RELATED WORKS

Data-driven methods have been widely accepted to per-
form motion mapping tasks. Many data-driven techniques
have been developed to improve the performance for tele-
operation mapping. Aleotti [12] proposes a system that
uses feed-forward neural networks to generate a robot’s
arm joint angles from the detected motions with multiple
demonstrations for the model training. In addition, Stanton
[1] implements a system that can transfer the motions to a
humanoid robot by using feed-forward neural networks to
calculate all joint angles. Kim [13] used recurrent neural
networks (RNN) to extract the features from the motions of
a human and corresponding robot motions.

An issue with using data-driven methods for motion map-
ping is guaranteeing accurate, robust mapping. The quality
of the data, data collection scenario, and learning policies
affect how confident one can be in data-driven predictions
[14]. This negatively impacts the accuracy and robustness of
all data-driven methods, no matter how they are trained [9].
Another limitation of data-driven methods stems from dis-
crepancy in robot structure from a human skeletal structure
[4] and difference in the size of their manipulable workspace
[2], [15]. The differences make creating an exact mapping
dataset difficult, further diminishing the quality of the data.
This furthers the importance of creating a data-driven model
that is robust as well as accurate.

Autoencoders is promising to achieve the desired accuracy
and robustness in the data-driven mapping method. The main
benefit of an autoencoder is that it performs dimension re-
duction [11]. This allows the model simplify the complicated
motions into a lower dimensional manifolds [9]. This is ideal
for motion mapping, as mapping the common manifolds is
simpler than mapping the full structure. Even autoencoders
are subject to accuracy and robustness issues presented in the
previous paragraph. While data quality is one feature that af-
fects the accuracy and robustness, the autoencoder’s structure
and training method will also influence these criteria. In this
paper, differences in training methods on the accuracy and
robustness are investigated.

III. METHODS

A. CycleAutoencoder
To increase the accuracy and reduce the computation

complexities, a novel mapping technique called CycleAu-
toencoder is developed for motion mapping. This technique
is inspired by the CycleGAN method, with the main differ-
ence being the use of regression losses instead of classifi-
cation losses. Much like CycleGAN, the CycleAutoencoder
is a method of training two autoencoders with cyclical
loss functions. CycleGAN originated for recreating art in
a different style [16]. Recently, this method has begun to
appear in the field of robotics for associating gestures to
expression internal and effective states [17] and creating
reward images for human to robot reinforcement learning
[18]. Since classification problems use logistic regression
which is orthogonal to standard regression [19], it is possible
to modify CycleGAN to perform regression mapping.

Fig. 1. The CycleAutoencoder method. This method trains two autoen-
coders with the same size latent features using six loss functions. The
blue lines show the path of each loss functions. The inner two curves are
traditional autoencoder losses to understand each agent. The middle straight
lines are the mixed losses to understand the mapping between agents. The
outer two curves are the cycle losses to enforce the mapping can be reversed.

Traditionally, the CycleGAN model uses two mappings
separate autoencoders to map between two domains and
two classifiers to identify if an image is in one of the
specific domains. This involves having the model generate
images for both outputs and using another model to classify
them. If they cannot be accurately classified, the CycleGAN
model updates its weights to improve the image generation.
This structure works for image generation, since the images
are the same size and contain similar subjects in different
domains; however, it will not work for robot teleoperation.
Robot design is very diverse, with ranging degrees of free-
dom, joint lengths, joint count, and control parameters. While
the CycleGAN structure has shown to be effective at motion
classification, it will not work for teleoperation. Therefore,
the loss function for the CycleAutoencoder needs to be
redesigned in order to work for robot control.

The CycleAutoencoder method combines encoders and de-
coders from two autoencoders to perform mapping between
agents A and B. Both autoencoders are designed such that
the latent features (ZA and ZB) have the same shape, which
results in the motion from one agent to be encoded by its au-
toencoder then decoded by the other autoencoder. Instead of
using discriminators, the CycleAutoencoder uses regression
loss functions. Figure 1 demonstrates the six loss functions
used to train this method. The loss functions belong to three
categories. The first two losses are the traditional autoencoder
losses, where each agent is encoded then decoded back to
itself. For example, human motion should be encoded by the
human encoder then decoded back by the human decoder to
human motion. This ensures that each autoencoder knows
the information it is trying to encode.

LAA = ||A−DA(EA(A))||1 (1)

LBB = ||B −DB(EB(B))||1 (2)

The second type of loss functions is the mixed losses.
This loss function encodes an agent then decodes it into the



form of the other agent. For example, the human motion is
mapped to the robot where it is compared to the expected
robot motion. These loss functions ensure that information
can be converted between agents.

LAB = ||B −DB(EA(A))||1 (3)

LBA = ||A−DA(EB(B))||1 (4)

The final type of loss functions is the cycle losses. For this
type of loss, each agent is encoded, decoded into the form of
the other agent, encoded again, and finally decoded back into
its original form. For example, the human motion is encoded
and decoded into robotic motion, then encoded and decoded
back to human motion. These last loss functions are used to
verify that information can be reconstructed correctly after
being transferred between agents.

LABA = ||A−DA(EB(DB(EA(A))))||1 (5)

LBAB = ||B −DB(EA(DA(EB(B))))||1 (6)

By enforcing all six loss functions, the model learns how
to correctly map motion information between the two agents.
These losses will balance trying to learn learning the features
to map back to the original agent and the features to map to
the other agent. The first loss guarantees accurate mapping
from an agent back to itself while the second one ensures
decoders will work with both encoders. Finally, the last lost
ensures that motion mapped to the other agent will contain
the same information when mapped back to the original
agent. To evaluate its performance, the CycleAutoencoder
model is compared against two other autoencoder training
methods: a direct feedforward autoencoder method and using
Recommendation via Dual-Autoencoder (ReDa) [20], [21].

B. Baseline Method 1 - Direct Autoencoder

The direct autoencoder method uses a single, feedforward
autoencoder to encode the motion of agent A and decode it to
the motion of agent B. Unlike the CycleAutoencoder, training
a direct autoencoder model only produces one mapping;
however, more separate direct autoencoder models can be
created to create the other mappings such as mapping agent
B to agent A. Only one loss function, shown in Figure 2 is
used to train the direct autoencoder to ensure that the output
of the model matches expectation.

LDirect = ||B −DB(EA(A))||1 (7)

C. Baseline Method 2 - Recommendation via Dual-
Autoencoder

The other mapping technique used for creating the mo-
tion mapping is the ReDa [20], [21]. Like the CycleGAN
method, this method simultaneously trains two autoencoders
to perform the mapping between agents A and B where both
latent features have the same shape. The method achieves the
motion mapping with three loss functions, shown in Figure
3. The first two losses are standard autoencoder losses to
ensure the motion can be reconstructed.

Fig. 2. The direct autoencoder method trains a single feedforward
autoencoder to map agent A to agent B using a single loss function. The
loss function the predicted motion of B against the expected motion of B
for the input motion from A.

Fig. 3. The ReDa method trains two autoencoders with the same size
latent features using three loss functions. The blue lines show the path of
each loss functions. The LA and LB lines are traditional autoencoder losses
to understand each agent. The LZ line is the latent loss to enforce each
autoencoder to generate the same latent features. The red line shows how
the input can be transferred since the latent features should be the same.

LA = ||A−DA(EA(A))||1 (8)

LB = ||B −DB(EB(B))||1 (9)

The third loss function is to force the resulting latent
features of both models to be equal. This loss is used to
balance the importance of each autoencoder’s latent features.
This results in both autoencoders using the same latent
features to encode the motion mapping information.

LZ = ||EA(A)− EB(B)||1 (10)

IV. EXPERIMENTS

A. Data Collection

To demonstrate the capability of these models for tele-
operation, we collected motion data between a human and
the humanoid robot, Pepper. Rather than using full body
tracking, we collected data for the human and Pepper moving
their arms. This was done to reduce the input size of the
models while maintaining a complex relationship to demon-
strate the capability of our CycleAutoencoder. The dataset is
comprised of Pepper joint rotations and the skeletal structure
of the human. Figure 4 demonstrates the data collection
process used to generate synchronized motion pairs. Pepper
is programmed with a predefined path to move its arms while
the human is instructed to mimick Pepper. This ensures that



Fig. 4. Illistration of the data collection process. Pepper is programmed
with an action and the joint angles are recorded. A human then imitates
Pepper while a Kinect tracks the human’s joint position. This results in
paired data used to train the three autoencoder methods.

the models will have a one-to-one mapping between the
human arms and robot arms.

Pepper data consisted of 10 joints (numbers 2 through 7
in Figure 5a) and 10 degrees of freedom. The joint angles
are recorded as a unit quaternion. The human data consists
of 6 joints (numbers 3 through 8 in Figure 5b) and 14
degrees of freedom. The human joints are represented as a
location relative to the previous joint in meters. The previous
joint for the shoulder and the origin of the human skeleton
is the torso. The skeleton data is captured using the ROS
skeleton markers package by Patrick Goebei with a reported
accuracy for the Kinect being about 10 cm [22]. In total, 788
sample pairs were generated to evaluate the models.

Since Pepper’s joint positions are normalized quaternions,
the human’s joint position needs to be normalized as well.
The reason is to both reduce any error based on differences
in the human’s distance from the Kinect and to equalize the
importance of the human joints and Pepper joints during
training. Since the joints are represented using different co-
ordinates units, the loss magnitudes will be different for each
agent. To normalize human joint information, the unit vector
in the direction from the torso to each joint is calculated.
The unit vector is used since only the angle of each joint
changes, the length is a human arm is constant.

B. Model Construction

To demonstrate the effectiveness of the CycleAutoencoder
model, we compare it’s ability to map human to robot arm
motion against a direct feedforward autoencoder and the
ReDa method. To ensure fair training for the three model
types, each model is constructed such that they will have
a similar number of nodes to train. The CycleAutoencoder
and ReDa methods both train two autoencoders, so the
structure of their autoencoders are the exact same. However,

Fig. 5. The Pepper (a) and human (b) skeletal structures. The models are
trained to match arm positions between the human (joints 3-8) and Pepper
(joints 2-7) since Pepper’s lower body has different manipulability than a
human. Each of Pepper’s joints has one degree of freedom. A human is
more complicated with three degrees of freedom in the shoulders and two
degrees of freedom in the elbow and hand.

the direct autoencoder methods only trains one feedforward
autoencoder. Therefore, the direct autoencoder uses twice as
many layers as the other two methods to produce a similar
node count.

The CycleAutoencoder and ReDa models used four layers
for encoding and four layers for decoding.The encoding
layers for the human joint information goes from a node
count of 18 to 16, 14, 12, then finally 10 latent features. The
encoding layers for Pepper’s joint information goes from a
node count of 40 to 32, 24, 16, then finally to 10 latent
features. The encoders for the direct autoencoder model still
reduces the latent features to 10, but adds a new layer
half way between the layers in the CycleAutoencoder and
ReDa models. The decoders for each methods uses the same
node counts as the encoders but in reverse order. The leaky
rectified linear activation function with an alpha value of 0.01
is used between each layer of all the autoencoder methods,
while the output layer uses a linear activation function.

C. Evalutation Metrics

When comparing three mapping methods, there are three
criteria of interest. The first is the general accuracy of
the model. To determine the accuracy, the dataset is split
randomly between training and testing across the entire
workspace. After the model is trained, the RMSE is cal-
culated over every joint in the predictions of the testing set.
After testing the methods 40 times, the mean and standard
deviation is calculated for the RMSE accuracy.

The second criteria is the model’s robustness. To perform
this test, the dataset is split based on the distance the human
arm travels from the torso joint. By using points closer to the
torso for training, the RMSE can be calculated over every
joint in the untrained region furthest from the human’s torso.
After testing the methods 40 times, the mean and standard
deviation is calculated for the RMSE robustness.

The final criteria is to determine the efficiency of training
each model. As the models are being trained, we use a
validation dataset to compare loss function evaluations with
that from the training data. For this, the root mean squared
loss was plotted during the training of the models at each
epoch. The speed of convergence for the model learning



TABLE I
THE RMSE ACCURACY OF EACH MODEL ACROSS DIFFERENT SIZES OF TRAINING AND TEST DATASETS. HUMAN TO PEPPER MAPPINGS ARE ERRORS

IN UNIT QUATERNIONS WHILE PEPPER TO HUMAN MAPPINGS ARE ERRORS IN UNIT VECTORS. FOR A GIVEN TESTING SIZE, THE

CYCLEAUTOENCODER HAS THE SMALLEST MEAN ERROR AND SMALLEST DEVIATION IN ERROR.

TABLE II
THE RMSE ROBUSTNESS OF EACH MODEL ACROSS DIFFERENT SIZES OF TRAINING AND TEST DATASETS. HUMAN TO PEPPER MAPPINGS ARE ERRORS

IN UNIT QUATERNIONS WHILE PEPPER TO HUMAN MAPPINGS ARE ERRORS IN UNIT VECTORS. FOR A GIVEN TESTING SIZE, THE

CYCLEAUTOENCODER HAS THE SMALLEST MEAN ERROR AND SMALLEST DEVIATION IN ERROR.

the random training set and the point of divergence of the
validation samples were noted.

V. RESULTS

Table I shows the accuracy measurement of each model
over different sized training data. Mapping from human to
Pepper motion, the CycleAutoencoder has the lowest RMSE
accuracy across all the trials and the Reda method had an
error that is an order of magnitude greater than other two
methods. As the testing set increase and training set decrease,
the accuracy slowly decreases for the CycleAutoencoder and
direct autoencoder methods. The CycleAutoencoder shows
little variance as the most accurate model. Even when map-
ping from Pepper to human motion, the CycleAutoencoder
method is consistently the most accurate model.

Table II shows the robustness measurement of each model
over different sized training data. Again, the CycleAutoen-
coder method is the most robust method for mapping human
to Pepper motion and Pepper to human motion. Unlike the
accuracy results, there is not an apparent pattern with the
RMSE robustness as a function of percent training size.
This is due to the cycle loss which ensures information
reconstruction across different manipulable regions. The 5%
improvement clearly demonstrates the the cycle loss im-
proves the robustness.

Between the results in Tables I and II, the CycleAu-
toencoder model is shown to be the most accurate and
robust model. Over the 40 samples, the CycleAutoencoder
also shows the lowest variance between the tests. Despite
the improvement to accuracy and robustness, the CycleAu-
toencoder method does not have a good training efficiency.
As seen in Figure 6, all the models were trained without
the validation deviating from the training loss. The direct
autoencoder and ReDa training methods learned the mapping
process quickly and converged at a solution around epoch 25.
The CycleAutoencoder model took more than 75 epochs to
converge to a similar loss value as the other two models.

VI. DISCUSSION AND CONCLUSION

These results can mostly be explained by examining the
loss functions of the three training methods. The direct
autoencoder only has one loss function but is only concerned
with the forwards mapping from human to robot mapping. It
is the simplest model focused on a single task. The simplicity
makes the model accurate and robust. The CycleAutoencoder
method needs to train two autoencoders but it uses six loss
functions to train the model. The mixed losses functions are
used to achieve the same accuracy as the direct autoencoder,
while the standard autoencoder and cycle losses further
improve the accuracy and robustness. The training takes



Fig. 6. The loss validation curve for training each model. None of the
validation losses deviate much from the training losses, meaning they are
being properly trained. The CycleAutoencoder method produces a large loss
at the start due to having six loss functions. This also results in the method
taking the longest time to converge. By the end of the training period, all
three methods converge to a similar loss value.

longer as the model needs to fulfil the requirements of all
the loss functions; however, this results in a more accurate
and robust mapping between human and robot. The ReDa
method can quickly determine the mapping as its three loss
functions are unique. However, since the latent feature loss
only ensure that the model is robust instead of making the
ReDa’s mapping more accurate.

The CycleAutoencoder method presented in this paper is
proposed as a better alternative to traditional data-driven,
motion mapping methods. In two of the three evaluation
criteria, the CycleAutoencoder method was superior to the
baseline methods. The CycleAutoencoder method was more
accurate and robust, but at the cost taking more time to
train. The method is efficient at converting human motion in
relative joint positions to Pepper motion in unit quaternions.
These results indicate that the CycleAutoencoder method is
good for teleoperation to generate human-like motion.
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