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SUMMARY

Cognitive functions are subserved by rhythmic neuronal synchronization across widely distributed brain
areas. In 105 area pairs, we investigated functional connectivity (FC) through coherence, power correlation,
and Granger causality (GC) in the theta, beta, high-beta, and gamma rhythms. Between rhythms, spatial FC
patterns were largely independent. Thus, the rhythms defined distinct interaction networks. Importantly, net-
works of coherence and GC were not explained by the spatial distributions of the strengths of the rhythms.
Those networks, particularly the GC networks, contained clear modules, with typically one dominant rhythm
per module. To understand how this distinctiveness and modularity arises on a common anatomical back-
bone, we correlated, across 91 area pairs, the metrics of functional interaction with those of anatomical pro-
jection strength. Anatomy was primarily related to coherence and GC, with the largest effect sizes for GC. The
correlation differed markedly between rhythms, being less pronounced for the beta and strongest for the

gamma rhythm.

INTRODUCTION

Cognitive functions emerge in distributed neuronal networks
through local and interareal neuronal interactions, constituting
a complex interaction network. A full account of this interaction
network will be fundamental for understanding brain function.
Neuronal interaction networks depend on structural neuronal
connectivity networks, and central insights have been obtained
from anatomy. Anatomical tract tracing based on tracer injec-
tions in animals has revealed that connection strengths decrease
exponentially with distance and are highly structured with char-
acteristic motifs (Ercsey-Ravasz et al., 2013; Horvat et al., 2016;
Theodoni et al., 2021). While anatomical connectivity (AC) is
necessary for neuronal interaction, it is not identical to it. A given
anatomical projection may or may not be used for neuronal inter-
actions at a given moment, and it may be used for neuronal
interactions of different kinds (e.g., mediating activation, sup-
pression, modulation). While AC is typically measured in regard
to monosynaptic connections, interareal neuronal interactions
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can extend to di- and polysynaptic interactions. While much of
anatomical tract tracing, including the data used here, is focused
on cortico-cortical connections, neuronal interactions may also
use subcortical pathways (Guillery and Sherman, 2002).
Interareal neuronal interactions are subserved by neuronal
entrainment and synchronization (Bosman et al., 2012; Brovelli
et al., 2004; Gregoriou et al., 2009; Grothe et al., 2012; Lobier
et al., 2018; Siegel et al., 2008). Interareal neuronal synchroniza-
tion can be assessed by local field potential (LFP) coherence,
and entrainment can be assessed by LFP Granger causality
(GC). Both coherence and GC can be determined per frequency,
resulting in coherence or GC spectra. Also, neuronal interactions
can lead to correlated power fluctuations, which can be as-
sessed by power correlation spectra. Intriguingly, neuronal
rhythms in different frequency bands mediate different types of
interareal interactions. We showed previously that among 8
macaque visual areas, interareal GC is stronger in the bottom-
up direction for theta and gamma, and stronger in the top-
down direction for beta (Bastos et al., 2015b). This raises the
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possibility that different rhythms define distinct interaction net-
works, including coherence and GC networks, as also sug-
gested by previous analyses of power correlations in human
subjects (Brookes et al., 2011; de Pasquale et al., 2010; de Pas-
quale et al., 2012; Hipp et al., 2012; Hipp and Siegel, 2015). Our
previous analysis only took into account the GC asymmetry be-
tween bottom-up and top-down directions, per area pair,
thereby accounting for only a very small component of the total
GC variability. We related these GC asymmetries to differences
in the laminar pattern between anatomical bottom-up and top-
down projections, per area pair, again accounting for merely a
tiny part of the total variability in anatomical projections. Anatom-
ical projection strengths show a much larger variance, in fact, >5
orders of magnitude, across different area pairs (Markov et al.,
2014a). Here, we establish the full variability in interareal power
correlation, coherence, and GC across all pairs of simulta-
neously recorded sites and brain areas, which we directly relate
to the full variability in interareal anatomical projection strength
across those area pairs.

We use a unique high-resolution micro-electrocorticography
(mECo0G) dataset providing simultaneous LFP signals from 218
recording sites distributed across 15 areas, in 2 awake ma-
caques. The complete 218 x 218 matrices of power correlation,
coherence, and GC revealed the respective interaction networks
to consist of clearly defined modules, and that the coherence
and GC networks are independent of the underlying power dis-
tributions. Intriguingly, those interaction networks agree partly
for some pairs of frequency bands, while differing markedly be-
tween others, as observed in human subjects (Williams et al.,
2021). This is remarkable given that all rhythms operate on the
same anatomical backbone, suggesting that they are differen-
tially affected by AC. To understand this better, we analyzed
the mutual dependence between on the one hand, interareal po-
wer correlation, coherence, or GC, and on the other hand, the
strength of the corresponding anatomical projections. Anatom-
ical projection strength was assessed by retrograde tracer injec-
tions and quantification of labeled neurons in many cortical
areas. Across area pairs, the resulting cortico-cortical projection
strengths predicted power correlation less than coherence, and
they were most predictive of GC. Importantly, anatomical projec-
tion strengths predicted coherence and GC much better in the
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gamma band than in the beta band, with intermediate values
for the high-beta band. Finally, as we had previously found that
beta is stronger in the top-down and gamma stronger in the
bottom-up direction, we reanalyzed the correlation between
anatomical projection and functional interaction strength, inde-
pendently for the 2 directions. This showed that variability in
beta-based interactions was more related to projections in the
top-down direction, and variability in gamma-based interactions
to projections in the bottom-up direction. These findings provide
a fuller account of cortical interaction networks defined by brain
rhythms and reveal a previously unsuspected richer landscape.

RESULTS

Interareal functional connectivity (FC) occurs in 4
characteristic frequency bands

We investigated neuronal activity in large-scale brain networks in
2 macaque monkeys performing a selective visual attention task
(Figure 1A; see Method details). We focused on the task period
with sustained visual stimulation and attention. Attention condi-
tions were pooled to increase sensitivity, except where explicitly
noted. Chronically implanted subdural mECoG grids with 252
electrodes allowed simultaneous recording from 218 local bipo-
lar derivations, referred to as (recording) sites, distributed over
large parts of the left hemisphere (Figure 1B for the combined
sites of both monkeys, Figure S1A for the sites per monkey),
and covering 15 cortical areas. We computed the following fre-
quency-resolved FC metrics between all possible site pairs:
(1) coherence, a metric of interareal synchronization; (2) power
correlation, the Spearman rank correlation between fluctuations
in band-limited power; and (3) GC, a metric of directed interareal
influence (see Method details). Coherence and power correlation
are undirected metrics, whereas GC is a directed metric that al-
lows the calculation of influences in both directions. For analyses
at the level of site pairs, we used all possible site combinations —
per monkey =23,000 coherence or power-correlation spectra,
and =46,000 GC spectra (after exclusion of site pairs with
spectra indicative of artifactual coupling, which amounted to
1.7% of all site pairs in monkey 1 and 1.1% in monkey 2; see
Method details). The 15 simultaneously recorded cortical areas
allowed for the analysis of FC for 105 area pairs. Each area

Figure 1. Stimuli, attention task, recording site distribution, FC spectra, and frequency bands

(A) Two macaque monkeys were trained to release a lever when a change occurred to the target stimulus, the stimulus with the same color as the fixation dot,
while maintaining fixation and ignoring changes to the distractor stimulus, the stimulus with a different color than the fixation dot. Correct performance was
rewarded with liquid reward (blue droplets). Task delays for Monkeys 1 and 2 are given in seconds. Errors bars indicate possible time of occurrence for cue onset
and target change.

(B) Pooled recording sites of both monkeys on the surface of the INIA19 template brain (see Figure S1A for sites per monkey). Sites are colored according to the
area color legend on the right, based on the Kennedy lab nomenclature (Markov et al., 2011). V1, primary visual cortex; V2, secondary visual cortex; 8L, lateral part
of area 8/FEF; V4, fourth visual area; TEO, temporal-occipital area; DP, dorsal prelunate area; 7A and 7B, parts A and B of parietal area 7; TPt, temporo-parietal
area (posterior auditory association cortex); 5, area 5; S1, primary somatosensory cortex; 8M, medial part of area 8/FEF; F1, corresponding to primary motor
cortex; F2, corresponding to the caudal part of dorsal premotor cortex; F4, corresponding to the caudal part of the ventral premotor cortex. Spectra show
examples of interareal coherence (in blue) and GC (green: feedforward; black: feedback, plain/dashed lines point to the cortical area sending feedforward/
feedback projections). Spectra show means over all trials + 99.9% confidence intervals from bootstrap estimates over trials.

(C) Each line is the average coherence spectrum for a pair of cortical areas, in 1 of the monkeys (Monkey 1: left plot; Monkey 2: right plot). With 15 simultaneously
recorded cortical areas, there are 105 area pairs, hence, 105 average coherence spectra per plot. Each area has been recorded with several recording sites (see
Method details). Therefore, each area pair corresponds to several interareal site pairs. The spectra of site pairs belonging to a given area pair were averaged for
this plot. For each of the 4 frequency bands, the peak frequencies (PFs) and the corresponding full width at half-maximum (FWHM) are given in the Results and
Method details, and the FWHMSs are indicated in this figure by the gray-shaded areas.

See also Figure S1.
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Figure 2. Brain rhythms define distinct interaction networks

(A-D) Data from monkey 1 (see Figure S2 for monkey 2). Note that the color scales are logarithmic.

(A) The 4 matrices in this column show coherence (lower triangular matrix) and power correlation (upper triangular matrix) for the frequency bands listed to their
left. Each matrix entry corresponds to the respective FC value of 1 pair of recording sites, calculated across all available post-cue data epochs (see Method
details), and averaged over the frequency bins in the respective frequency bands (see Results and Method details). Matrix entries with non-significant FC are
masked in gray (non-parametric randomization test by shuffling data epochs, corrected for multiple comparisons across site pairs). The axes list the cortical
areas, from which the sites have been recorded, with the areas ordered according to their hierarchical level (Chaudhuri et al., 2015). Area boundaries are indicated
by gray lines on the matrices. Each area, and its corresponding recording sites, is given a color code. The sites will maintain these area-specific colors, when they
are reordered in the modularity analysis shown in (B) and (D).

(B) Same FC values as in (A), but reordered according to modules obtained from a consensus modularity analysis (see Method details). Modules are separated by
gray lines. The modularity analysis was performed separately for coherence and power correlation (i.e., separately on those triangular matrices), and consensus

(legend continued on next page)
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was recorded from several sites (see Method details), such that
each interareal interaction was assessed by several interareal
site pairs. The spectra of site pairs belonging to a given area
pair were averaged for all of the analyses at the level of
area pairs.

Figure 1B shows example coherence and GC spectra for
several pairs of cortical areas. These spectra show distinct
peaks, which are specific for the respective pair of brain areas.
Across all 105 area pairs, average FC spectra showed peaks
for 4 characteristic brain rhythms, with some individual differ-
ences across the 2 monkeys (Figure 1C for coherence, Fig-
ure S1B for power correlation and GC): The theta rhythm (3 +
2 Hz in monkey 1 and 4 + 3 Hz in monkey 2; peak + full width
at half-maximum [FWHM])), the beta rhythm (18 + 5 Hz in monkey
1 and 15 £ 5 Hz in monkey 2), the high-beta rhythm (34 £ 5 Hz in
monkey 1 and 32 + 4 Hz in monkey 2), and the gamma rhythm
(75 = 8 Hz in monkey 1 and 62 + 8 Hz in monkey 2) (Figures
1B, 1C, and S1B). All further analyses focus on these 4 rhythms.
For analyses at the 4 corresponding frequency bands, FC values
were averaged over the frequency bins in the monkey-specific
frequency bands and subsequently averaged over monkeys.
For analyses of full spectra, the FC spectra were aligned to the
4 monkey-specific peak frequencies (PFs) and subsequently
averaged over monkeys.

Different rhythms define distinct FC networks

For each band, we calculated all FC metrics for all pairs of
recording sites. The resulting FC matrices for monkey 1 are
shown in Figures 2A and 2C; The same analysis for monkey 2
is shown in Figures S2A and S2C; The individual matrices cannot
be directly averaged over animals because the numbers of
recording sites per area differ between monkeys (see Method
details). The 4 frequency bands showed distinct interaction net-
works. We defined distinctiveness D = 1-R?, with R? being the
coefficient of determination (squared Pearson correlation coeffi-
cient) across all site pairs, between matrices of one FC type
(concatenated over the 2 animals), separately for all combina-
tions of frequency bands (Figure 2E). As an example, GC net-
works were least distinct between beta and high-beta, with
D = 0.29, and most distinct between beta and gamma, with
D = 0.75. As it is known that FC metrics in different frequency
bands tend to jointly decrease with distance (Leopold et al.,
2003; Nelson and Pouget, 2012), we partialized the calculation
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of R? for distance, which increased all D values. Hence for GC
networks, D between beta and high-beta increased to 0.74,
and D between beta and gamma increased to 1. Note that D
was overall much lower for power correlation than for coherence
or GC.

The almost complete distinctiveness, after distance partiali-
zation, between FC networks for some frequency-band combi-
nations is remarkable, given that all networks emerge on the
same AC network. If the shared AC network does not account
for the distinct interaction networks, then these interaction net-
works may be accounted for by different distributions of power
across recording sites for the different frequency bands. We
calculated the same distinctiveness metric between FC and
the co-occurrence of power, concretely, for example, between
the gamma-GC matrix and the matrix of the products of
average gamma power values of the corresponding site pairs
(specifically log1o(/POWersite1 XPOWErite2)), again either with
or without partializing for cortical distance (Figure 2F). Staying
with the example of the gamma GC network, distinctiveness
was 1, both with and without partialization for distance. We
considered that GC may be particularly related to power in
the sending-area sites, and therefore also calculated D be-
tween, for example, the gamma-GC matrix and the matrix of
average gamma power values of the corresponding sending-
area sites (specifically logso(power); Figure 2G). This left D
values essentially unchanged at 1 (with and without partializa-
tion). Thus, band-specific FC networks, as assessed, for
example, by gamma and beta GC, are highly distinct and
contain structure beyond power distributions. Note that the D
values were overall much lower for power correlation than for
coherence or GC.

Note that the GC matrices (Figure 2C) list both the sending
areas (on the y axis) and the receiving areas (on the x axis) ac-
cording to their hierarchical level. In this manner, differences be-
tween GC in the bottom-up versus top-down direction described
previously (Bastos et al., 2015b) can be appreciated by appropri-
ately comparing the upper and lower triangular GC matrices (for
the 8 visual areas investigated in Bastos et al. [2015b], i.e., V1,
V2, 8L, V4, TEO, DP, 8M, 7A). This illustrates that these bot-
tom-up versus top-down differences account for only a small
fraction of the full GC variability that we investigate here.

Visual inspection of the FC matrices suggested that band-
specific interaction networks may form distinct modules. We

was obtained over the 4 frequency bands. The color codes on the margin indicate per site the respective cortical area as introduced in (A); note that those color

codes are separate for the upper and lower triangular matrix.

(C) Similar to (A), but for GC. GC is a directed metric, requiring the full matrix. Each matrix entry corresponds to the GC from a site in the cortical area listed on the

y axis to a site in the area listed on the x axis.

(D) Similar to (B), but for GC. GC modularity analysis was performed on the full matrix, and consensus community structure was obtained over the 4 fre-

quency bands.
(E-G) Data averaged over both monkeys.

(E) Distinctiveness (1-R?; see Results) between patterns of FC of a given type (as listed per row), for all combinations of frequency bands (listed per column). The
patterns of FC are the triangular matrices shown in (A) for coherence and power correlation, and the full matrices shown in (C) for GC. Values in parentheses are
the distinctiveness after partialization for distance on the cortical surface.

(F) Distinctiveness (1-R%; see Results) between patterns of FC of a given type (as listed per row in E), and the pattern of the product of power at the respective sites
(specifically log1o (1//POWersjte1 XPOWETite2)), and in the frequency bands listed per column. Values in parentheses are the distinctiveness after partialization for
distance on the cortical surface.

(G) Same as (F), but only for GC and replacing the product of power by the power at the sending site, the site from which the GC originates.

See also Figure S2.
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therefore performed a modularity analysis that rearranges con-
nectivity matrices so that highly connected sites (“nodes”) are
contained in the same module (see Method details; Rubinov
and Sporns, 2010). The resulting partitioning is referred to as
community structure. To obtain 1 consensus community struc-
ture over the 4 frequency bands, we combined (for example)
the GC matrices for the 4 bands in the same way as previous
studies combined connectivity matrices over participants. For
the example of GC in monkey 1 (Figure 2D), this revealed that
module 1 was dominated by gamma, module 2 by high-beta,
and module 3 by beta, with relatively strong links between mod-
ules 2 and 3, and weak links between both of these modules and
module 1. The modularity analysis for monkey 2 is shown in Fig-
ure S2 and shows an overall similar pattern for GC. To charac-
terize overall modularity, we calculated the modularity index.
Networks with high modularity index show strong intramodule
and weak intermodule connectivity. Modularity indices are re-
ported in Figures 2 and S2, on the margins of the corresponding
(triangular) matrices. Modularity indices were much lower for po-
wer correlation than for coherence or GC.

To investigate whether band-specific FC networks have
meaningful brain-topographical patterns, we calculated, for
each site pair, a metric that is referred to as “strength.” Coher-
ence strength of a recording site is the average coherence of
that site with all other sites (excluding sites within a 2-mm radius
to avoid residual volume conduction effects). Power correlation
strength is defined accordingly. For GC, we defined the GC-
outflow strength of a site as the average GC of that site to all
other sites, and GC-inflow strength as the average GC to that
site from all other sites. Averaging collapses the FC matrices
onto their margins, and allows visualization of topographical dis-
tributions as strength maps (Figure 3, averaged over monkeys;
see Method details). Strength maps, for most combinations of
FC type and frequency band, showed contiguous clusters with
the tendency to respect sulcal anatomy, and thereby most
strength maps showed clear and meaningful topographies.

We also demonstrate that weak long-distance FC deviates
significantly from randomized intersite FC (Figure S3A; see
Method details). Significant interareal FC covers long distances
(>20 mm) for all frequencies; FC at gamma extends up to
50 mm and FC at beta, theta, and high-beta beyond 60 mm.

FC network topographies correlate with AC

We next investigated whether these FC patterns could be partly
explained by known patterns of AC. We previously showed that
GC asymmetries are related to the feedforward/feedback char-
acter of the respective anatomical projections (Bastos et al.,
2015b), as quantified by the supragranular labeled neuron
(SLN) percentage value (Barone et al., 2000; Markov et al.,
2014b). In the present study, we address another fundamental
aspect of an anatomical projection, namely its strength, which
is captured by the fraction of labeled neurons (FLN) (Vezoli
et al., 2004). After injection of a retrograde tracer into area A,
retrogradely labeled neurons are counted across the brain
(e.g., in area B). The FLN of the projection from B to A is the num-
ber of labeled neurons found in B divided by the total number of
neurons found across the brain. In this way, FLN reflects the frac-
tion of neurons projecting to A that originates in B. While the ma-
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jority of projections to a given cortical area arises from within the
area itself (~80%), we are concerned here with projections
arising from other areas and so estimate the extrinsic fraction
of labeled neurons (FLNe) (Markov et al., 2011).

We were interested in how interareal FC, assessed by coher-
ence, power correlation, and GC, relates to interareal AC, as-
sessed by FLNe. We used a dataset based on 28 retrograde
tracer injections across 14 cortical areas (Figure 4A). These 14
areas were identical to the 15 areas recorded electrophysiolog-
ically, except that they did not include the temporo-parietal area
(TPt). The 14 areas resulted in a 14 x 14 matrix of 182 FLNe
values (Figure 4C). Note that this is a directed matrix of AC, in
which FLNe from area A to area B is quantified independently
of the FLNe in the reverse direction. Thus, the following ana-
lyses relate the full FLNe matrix (Figure 4C) to the corresponding
part of the full GC matrix. By contrast, the matrices of coher-
ence and power correlation assess overall FC irrespective of di-
rection. To relate them to AC strength, we averaged FLNe over
the 2 directions, giving a triangular matrix with 91 entries (Fig-
ure 4B). Spectra were averaged over all site pairs of a given
area pair (Figures S3C and S3D) and subsequently over the 2
animals (Figure S4). Hence, we determined the PFs per monkey
and per rhythm (theta, beta, high-beta, gamma), and expressed
frequencies relative to the per-monkey PFs. This suggested that
overall, coherence and GC increased with increasing FLNe (Fig-
ure S4A). For this analysis, we excluded FLNe values based on
<10 labeled neurons (Figure S4A) to ensure the reliability of
FLNe estimation (Markov et al., 2014a). The pattern held,
when we included those FLNe values (Figure S4B), or when
we replaced them by estimates from a model fitted to neuron
counts from the non-zero FLNe values (Figure S4C; see Method
details).

FLNe-FC correlations differ across FC types and
frequencies
To quantify the observed patterns, we performed linear regres-
sion analysis between logo(FC) and logo(FLNe) separately for
all combinations of FC type (coherence, power correlation and
GC) and frequency band (theta, beta, high-beta, gamma) (Fig-
ure 5). For each combination, there was a significantly positive
correlation (p < 4.17E—3 after Bonferroni correction for multiple
comparisons), but with a wide range of correlation strengths
(Figure 5A). FLNe was least predictive for FC at beta, with ex-
plained variance (R? values) for beta power correlation or beta
GC of 0.14. FLNe was most predictive of theta (R? = 0.47) and
high-beta coherence (R? = 0.39) and gamma GC (R? = 0.42).
To capture the size of the FLNe effect on FC, we used aregres-
sion analysis (Figure 5B). We performed a simple linear regres-
sion with the dependent variable logo(FC) and the independent
variable logio(FLNe). We then used the linear fit to calculate the
expected FC at the minimal FLNe value, in other words,
FC(min(FLNe)), and at the maximal FLNe value, in other words,
FC(max(FLNe)). The ratio FC(max(FLNe)) / FC(min(FLNe)) was
used as the FLNe-related FC change (Figures 5B and 5C). This
metric is related to the regression slope, but normalizes for differ-
ences in FC across frequencies that are not due to FLNe. We
derived error estimates by 100 bootstrap replications over trials
(Figures 5B and 5C) (Efron and Tibshirani, 1994).
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Figure 3. Topographies of FC strengths
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Areal boudaries
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All of the panels show FC strength topographies averaged over both monkeys, with the FC type (coherence, power correlation, GC outflow, GC inflow) listed
above the columns and the frequency bands listed to the left of the rows. The strength metric for a given FC type and frequency band is defined per recording site:
the coherence (or power correlation) strength of a given site is the average coherence (or power correlation) of that site with all other sites; the GC outflow strength
of a given site is the average GC directed from that site to all other sites; the GC inflow strength of a given site is the average GC directed to that site from all other
sites. Strength topographies of the 2 monkeys have been co-registered to the same template brain and then averaged over the monkeys. Gray masking indicates
non-significant strength (comparison to a random graph with equal weight distribution; false discovery [FDR] corrected for multiple comparisons over sites; see
Method details). The template brain in the upper right of the figure shows the cortical area boundaries.

See also Figure S3.

This analysis revealed that the 3 types of FC showed
different degrees of dependency with FLNe. The power corre-
lation was the least FLNe dependent, coherence was interme-
diate, and GC was by far the most strongly FLNe dependent.
The spectrum for power correlation did not show any clear
peaks (even when scaled independently). The spectrum for
coherence showed peaks for high-beta and gamma, and a
local trough for beta, while that for GC showed a small peak
in the theta range and substantial peaks for high-beta and
gamma, and again a local trough for beta. These results sug-
gest that the dependence of coherence and GC on AC has a

3868 Neuron 709, 3862-3878, December 1, 2021

characteristic spectral pattern. At the individual PFs for gamma
and high-beta (and partly also for theta), this dependence is
stronger than at neighboring frequencies; by contrast, at the
individual PFs for beta, this dependence is weaker than at
neighboring frequencies.

FC is both stimulation and task dependent, which is likely to
dynamically influence its dependence on AC. Therefore, we ob-
tained this spectrum for GC separately for the pre-stimulus base-
line period, and for the 2 attention conditions during the post-cue
period (Figure S5A). During the baseline, the spectrum showed
much less of a gamma peak and higher values for beta. With
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A Figure 4. Anatomical connectivity assessed
anatomical connectivity by FLNe
3x10° (A) Each colored dot indicates the injection site of a
retrograde tracer, shown here on a template brain.
o 2 (B) FLNe values for all indicated pairs of areas,
5 averaged over the projections in the respective 2
TN directions, for example, V1-to-V4 and V4-to-V1.
1 (C) FLNe values for all indicated projections from the
areas listed on the y axis to the areas listed on the x
0 axis. Black matrix entries indicate projections for
Areal Area2 Area3 Target Area4 Area5 Areab which <10 labeled neurons were counted (see also
B o C receiving aéeas Figure S4). Those entries were discarded for the
SSBILEEEpLRETD SSB3EE3EHLRETT (agegigecs;c;\l\,::emti).Iogarithmic grayscale, which
x; x; applies to both panels and spans 6 orders of
magnitude.
3'; FLNe 3'; See also Figure S4.
TEO [T1?° TEO
DP 10" DP
8M 102 8M . '
7A 7A ysis also informs us whether FLNe can be
S1 10° 8 551 partly predicted by FC metrics. Figure S6E
— ?B 10 &g shows that FC alone (without distance in-
F1 108 2F formation) is strongly predictive of FLNe,
F4 10° g F4 with explained variance (R? full model)
undirected (average) F2 0 o F2 directed l ranging from 0.48 for GC to 0.56 for coher-

attention, values tended to be reduced for theta and high-beta
and enhanced for gamma.

FC-FLNe correlations are not explained by distance, yet
FC predicts FLNe

FLNe declines exponentially with interareal distance, a phenom-
enon referred to as the exponential-distance rule (EDR), charac-
terized by the exponential decay rate, A (see Ercsey-Ravasz
et al., 2013). The EDR held for the subset of areas investigated
here (Figure S5B), with A = 0.202/mm for distance through white
matter, consistent with previous reports (Ercsey-Ravasz et al.,
2013). Importantly, the EDR holds for the present FC data (Fig-
ure S5B, all bands averaged for simplicity), but with exponential
decay rates that were substantially lower (0.01-0.08/mm; values
per band and FC type reported in Table S1) (Fischer et al., 2018;
Leopold et al., 2003; Nelson and Pouget, 2012). Figure S5B
shows linear relationships between logio(FLNe) or logo(FC)
and distance, which is equivalent to an exponential decay of
FLNe or FC with distance. Furthermore, Figure 5A shows linear
relationships between log4o(FC) and logqo(FLNe). Hence, for
further regression analyses, we use log1o(FC), log1o(FLNe), and
the non-log-transformed distance.

The joint dependence of FC and FLNe on distance may explain
the observed correlation between FLNe and FC. Note that this
would not explain the observed frequency dependence of the
FLNe-FC correlation. Nevertheless, we investigated the extent
to which the FLNe-FC relation is explained by distance by per-
forming a multiple linear regression (MR), with the dependent
variable being log1o(FLNe) and the independent variables being
log10(FC) for theta, beta, high-beta, and gamma, and additionally
the distance (as distance metric, we use distance on the cortical
surface [Figure 6] or distance through the white matter [Fig-
ure S6), both giving similar results [Table S2]). Note that this anal-

ence (Table S2). This is interesting

because FLNe cannot be obtained for the
human brain, as it requires active retrograde transport of tracer
injected into the living brain (Donahue et al., 2016). By contrast,
FC, and in particular GC, can be obtained for the human brain,
and GC has already been shown to relate to the anatomical
SLN metric (Michalareas et al., 2016).

The MR analysis revealed that all of the FC metrics were signif-
icantly predictive of FLNe for some frequency bands, and impor-
tantly, that this was the case when distance was included as an
independent variable (Figure 6A). Specifically, power correlation
was significantly FLNe predictive in the beta and gamma bands.
Coherence and GC were FLNe predictive in the gamma band.
Note that those FC metrics predicted FLNe so accurately that
the contribution of distance was not significant. Figure 6A shows
results obtained for distance measured on the cortical surface.
When distance was measured through white matter, this ex-
plained slightly more FLNe variance, but overall, the pattern of
results was highly similar (Figure S6).

To further investigate the differential FLNe-predictive power
of the FC metrics in the different bands and of distance, we
performed the following analysis. We determined R? values
for the full MR models, separately for power correlation, coher-
ence, and GC (Figure 6B). We repeated this analysis after
excluding either one of the frequency bands or distance as
an independent variable, in other words, we calculated R?
values for reduced models. Figure 6C shows the R? difference
between the full and the reduced model (similar to a stepwise
linear regression approach); the x axis lists the independent
variable that had been removed, such that the corresponding
y axis values reflect the improvement in R2 value when this var-
iable is included. For all FC metrics, the removal of distance
reduced R? values by only relatively small amounts, less than
the removal of most of the individual band-wise FC metrics.
As above, distance through white matter had a larger effect,
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but overall, the pattern of results was highly similar (Figure S6C).
Also, complete removal of distance as an independent variable
left the overall pattern of results qualitatively unchanged, and
as expected, regression coefficients for FC increased (Figures
S6D-S6F).

Note that these analyses revealed that all logio(FC) metrics
were linearly related to distance (Figure S5B), leading to a
multi-collinearity among the independent variables. We per-
formed several analyses to control for this (Figures S5C, S5D,
and S7C-S7E; Table S2; see Method details). We also used
simpler MR models, each with the dependent variable being
log1o(FLNe), and each with the independent variables being dis-
tance and the log4o(FC) of merely 1 frequency band (Figure S8).
Most of these models found a significant effect of distance. For
the power correlation, only gamma was significantly FLNe pre-
dictive. For coherence and GC, all frequency bands except
beta were significantly FLNe predictive.

FLNe-FC relations depend on corresponding SLN values
The analyses so far suggest that FLNe partly determines FC
values, with a specific spectral pattern. We had previously found
that one aspect of FC, namely GC between 2 areas, is related to
another aspect of AC, namely the feedforward/feedback charac-
teristics of the corresponding connections captured by the SLN
metric. When retrograde tracer is injected in area A and the
labeled cells are counted in area B, separately for the supragra-
nular (Nsupra) and infragranular (Ninfra) compartments of B, then
the SLN of the A-to-B projection is

Nsupra / (Nsupra + Ninfra).

The larger the SLN metric, the more the corresponding projec-
tion is of the feedforward type. Projections with SLN > 0.5 are
considered feedforward, and projections with SLN < 0.5 are
considered feedback. We previously found that if the SLN indi-
cates that area B is higher in the hierarchy than area A, then
theta- and gamma-band GC is stronger in the A-to-B (feedfor-
ward) than the B-to-A (feedback) direction, whereas beta-band
GC is stronger in the B-to-A (feedback) than the A-to-B (feedfor-
ward) direction (Bastos et al., 2015b). Here, we investigate
whether this SLN-GC relationship influences the above-
described dependence of GC on FLNe.

To investigate this, we selected 2 groups of projections,
namely strongly feedforward projections, with SLN > 0.7, and
strongly feedback projections, with SLN < 0.3. Within those 2
groups, we calculated the FLNe-related GC change for all fre-
quencies (i.e., as in Figure 5C, but split for SLN). For feedfor-
ward projections, the change spectrum showed peaks at theta
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and gamma, separated by a relative trough around beta (Fig-
ure 7A, green line). For feedback projections, the change spec-
trum showed the strongest peak at high-beta and a smaller one
at gamma (Figure 7A, black line). Figure 7B shows the corre-
sponding scatterplots at the PFs of each rhythm. For gamma
GC, FLNe explained 48% (R? value) of the variance in the feed-
forward and 37% in the feedback direction, whereas for beta
GC, FLNe explained 15% in the feedback direction and none
in the feedforward direction (0.0001%, not significant [n.s.]).
The absence of a significant relation between FLNe and beta
GC in the feedforward direction is also reflected in the beta-
band trough (Figure 7A, in green). We next determined the
asymmetry index of the FLNe-related changes by taking the
difference of the feedforward- minus the feedback-related
spectrum and dividing by their sum (Figure 7A, inset). This
asymmetry index showed particularly pronounced negative
values for beta and positive values for gamma, with much
smaller effects for theta and high-beta. To test whether this
result depended on the particular SLN cutoff (0.7/0.3), we
repeated the same analysis for various cutoffs and found that
the observed effects generally showed a gradual dependence
on SLN values (Figure 7C).

When we perform this analysis separately for the 2 attention
conditions in the post-cue period, we find that attention
strengthens particularly the relation between FLNe of feedfor-
ward connections and feedforward GC in the gamma band (Fig-
ure S7A). By contrast, this relation is essentially lost during the
baseline, when gamma is weak (Figure S7B).

Mapping frequency-specific FC networks onto the
anatomical core-periphery structure

We established that FC is related to both the strength (FLNe)
and the feedforward character (SLN) of anatomical projections.
The analysis of anatomical projections has integrated those 2
metrics, demonstrating that areas can be arranged in a bowtie
structure: some areas are in the knot (the core) and others in
the two fans (peripheries) of the bowtie (Markov et al., 2013).
Areas inside the core are densely interconnected and with
strong (high FLNe) connections, whereas areas in the fans
are connected less densely with areas in the core and with
weaker connections to those areas. We found FC strength in
the gamma frequency band to dominate in the left fan areas
of the bowtie structure (Figure 8A), the areas sending predom-
inantly feedforward projections to the core. FC strength at other
frequencies was more evenly distributed among core and pe-
riphery (Figures 8B-8D). Overall, FC strength was the strongest
in the high-beta frequency band for the core and in the beta

Figure 5. FC and AC display frequency-dependent covariance

(A) Scatterplots between the 3 FC types (indicated to the left of the rows) and FLNe. For coherence and power correlation, each dot corresponds to a pair of areas,
for which the combined FLNe in both directions was based on >10 labeled neurons (N = 60). For GC, each dot corresponds to an anatomical projection for which
the FLNe in the same direction as the corresponding GC was based on >10 labeled neurons (100). FC values were averaged over monkeys before correlation

analysis. Note logarithmic scaling on x and y axes.

(B) With both axes in log4g units, subtraction of FC values between minimum and maximum AC values (left) can be interpreted as FLNe-related fold change of

FC (right).

(C) FLNe-related FC change as a function of FC frequency. Log1o(FC) spectra (color coded, legend top right) have been aligned to individual peak frequencies
before averaging over monkeys and then correlated with logqo(FLNe). Means over all trials + 99.9% confidence intervals from bootstrap estimates over trials.

See also Figure S5.
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Figure 6. Multiple regression discloses distance as poor predictor
of the structure-function relationship

(A) Violin plots of model estimates (left column: t-statistic; right column: beta
coefficients) for each of the 5 variables considered, namely FC in the 4 fre-
quency bands and distance, separately per FC type (as indicated above
each row).

(B) Total explained variance (R® for the 3 models (color-legend, top right).
Means + 99.9% confidence intervals from bootstrap estimates over trials.
(C) Difference in total explained variance of the 3 models (same color code as
in B) between the full and the reduced model, after removing the parameter
listed on the x axis. This estimates the contribution of each of the 5 parameters
to the total explained variance.

See also Figures S6 and S8.

frequency band for right-fan areas of the bowtie structure (Fig-
ure 8C), areas sending predominantly feedback projections to
the core.

DISCUSSION

In summary, we report and make available, for each of 4 rhythms,
the full pattern of =23,000 coherence and power-correlation
values and =46,000 GC values, among 218 recording sites
distributed over 105 pairs of cortical areas in 2 awake, task-per-
forming macaque monkeys. We find that the rhythms define
distinct interaction networks that are largely independent of the
spatial distribution of power, particularly for coherence and
GC. Modularity analyses revealed that beta, high-beta, and
gamma GC are largely contained in separate modules, with rela-
tively strong links between the beta and high-beta modules, and
relatively weak links between beta and gamma modules. The
coexistence of distinct rhythm-specific functional interaction
networks on a fixed anatomical backbone partially reflects the
differential dependence of the rhythmic interactions on cortico-
cortical anatomical projections. Projection strength, assessed
by FLNe, was predictive of all FC types in all frequency bands,
but with marked differences: weakest for power correlation, in-
termediate for coherence, and strongest for GC, and weakest
for beta and much stronger for high-beta and gamma. This sug-
gests that high-beta and particularly gamma-based interactions
prominently depend on direct cortico-cortical projections. The
relative independence of beta FC from AC may be due to the
known geometry of feedback projections (Markov et al.,
2014b) and/or to a more prominent dependence on pathways
involving subcortical structures (Guillery and Sherman, 2002); it
may make beta an ideal candidate to quickly establish new FC
structures based on learning and top-down cognition, including
prediction (Miller et al., 2018). Intriguingly, FC in the different fre-
quency bands jointly predicted about half of the FLNe variability
across projections. In a MR, this rendered the previously re-
ported strong influence of distance insignificant. As FC and AC
values for this study have been obtained in separate animals,
the prediction of AC by FC in a given individual is likely even
higher. This suggests that FC metrics could provide estimates
for AC in humans, with relevance for science and medicine
(Becker and Hervais-Adelman, 2020; Smith et al., 2015). Finally,
GC in the gamma band showed a much stronger relation to
FLNe in the feedforward than in the feedback direction, and
conversely, GC in the beta band showed no significant relation
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Figure 7. Anatomical influence on FC
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See also Figure S7.
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to feedforward, but did show a sizeable relation to feed-
back FLNe.

This latter set of results is likely related to our previous finding
that for a given pair of areas in visual cortex, beta GC is stron-
ger in the feedback than the feedforward direction, whereas
theta and gamma GC are stronger in the feedforward than
the feedback direction (Bastos et al., 2015b). Across area pairs,
interareal GC asymmetries were linearly related to the corre-
sponding interareal hierarchical separation, as quantified by
the anatomical SLN metric. SLN quantifies, for a given anatom-
ical projection, the extent to which it originates from supragra-
nular neurons. The more a projection is feedforward (feedback)
(i.e., the more hierarchical levels it bridges in the feedforward
[feedback] direction), the closer its SLN is to 1 (to 0). SLN is
normalized for the total number of parent neurons of the projec-
tion and is independent of projection strength. By contrast,
FLNe quantifies, for a given anatomical projection, how many

T T
+50 +100

Frequency (Hz) and it is thereby independent of the feed-

forward/feedback character of the pro-
jection. In fact, FLNe and SLN have an in-
verted U-shaped relation. The strongest
projections, with the largest FLNe, are between areas on similar
hierarchical levels, with SLN close to 0.5 (Markov et al., 2013).
Across interareal projections, FLNe ranges over 5 orders of
magnitude. Here, we have related this large range of FLNe
values to corresponding values in coherence, power correla-
tion, and GC across an edge-complete 14 x 14 matrix,
including both visual and non-visual areas.
The calculation of FLNe involves a normalization. When area B
is the area injected with retrograde tracer, the FLNe from area A
to area B is the number of labeled neurons in A normalized by the
total number of retrogradely labeled neurons outside B. There-
fore, FLNe can be considered to be a strength metric of the
A-to-B projection relative to all other projections to B. Given
this normalization of FLNe, one could consider similarly normal-
izing GC from A to B by the total GC inflow to B from all recorded
areas. We performed this GC normalization and repeated the MR
analysis of Figures 6A and 6C. Overall, this increased the effects
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Figure 8. FC strength displayed on the AC-derived core-periphery structure

For cortical areas both recorded by the ECoG and used to build the core-periphery structure (highlighted areas) (Markov et al., 2013), the color code displays the
FC strength of the respective area, separately per FC type (as indicated above the columns), and separately per frequency band (as indicated to the left of the
rows). FC strength values were averaged over monkeys before normalization into the range 1-5 (color scale, bottom right), separately for each frequency band.

See also Figure S3.

for beta while reducing the effects for gamma, although effects
still remained much weaker for beta than gamma, and the latter
at similar levels as high-beta (and no frequency band reaching
significance). Importantly, distance still had relatively minor
effects. Note that this GC normalization is dependent on the spe-
cific areas recorded by our ECoG, which constitutes only a sub-
set of areas and therefore cannot strictly be compared to the
normalization of FLNe. Note also that GC from A to B is normal-
ized by the power in B. The power in B can be considered a
metric of the total, interareal and local, synaptic input to B (Pe-
saran et al.,, 2018). Thus, GC already entails a normalization
similar to that of FLNe.

The relation of FLNe with FC metrics was weakest for power
correlation, intermediate for coherence, and strongest for GC.
The fact that GC is strongly related to FLNe may partly reflect
the fact that GC assesses the strength of the directed interareal
influence, just as FLNe assesses the strength of the directed in-
terareal projection. Anatomical projections are always directed
from the area containing the parent neurons to the area contain-
ing the synaptic contacts. Thus, there is a natural correspon-
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dence between FLNe and GC. Intriguingly, GC is also particularly
interesting for using the observed prediction of AC by FC in hu-
mans. FC metrics based on non-invasively recorded signals from
the human brain are challenging to interpret because those sig-
nals reflect mixtures of many brain sources (Palva et al., 2018;
Schoffelen and Gross, 2009). As signal mixing is essentially
instantaneous, it is explicitly rejected in the calculation of GC,
which estimates causal, and thereby time-delayed, interactions
(Michalareas et al., 2016). The investigation of neuronal synchro-
nization in the human brain is of the utmost importance, which
has motivated the development of very advanced methods (Far-
ahibozorg et al., 2018; Wang et al., 2018), some of which capi-
talize on the exclusion of instantaneous interactions (Colclough
et al., 2015; Hipp et al., 2012; Nolte et al., 2004; Pascual-Marqui
et al., 2017; Stam et al., 2007; Vinck et al., 2011).

These and related approaches in human participants link
higher-order cognitive functions, including attention and working
memory, to brain-wide networks synchronized at different fre-
quency bands (Gross et al., 2002, 2004; Hipp et al., 2011; Kujala
et al., 2007; Lobier et al., 2018; Rouhinen et al., 2020; Siegel
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et al., 2008). Intrinsic brain networks in addition to task-related
networks have been investigated with source-projected magne-
toencephalography (MEG) and have revealed well-characterized
resting-state networks through power correlation at different fre-
quency bands (Brookes et al., 2011; de Pasquale et al., 2010; de
Pasquale et al., 2012; Hipp et al., 2012; Hipp and Siegel, 2015).
Source-projected human MEG has revealed intriguing relations
between brain rhythms and anatomy. Source-projected MEG
resting state recordings from 187 participants revealed domi-
nant PFs across the cortex in the theta- to alpha-band range,
decreasing along the posterior-anterior axis and negatively
correlated to cortical thickness, a proxy of cortical hierarchical
level (Mahjoory et al., 2020). Source-projected MEG data from
participants performing an attention task on visual stimuli
showed stimulus-induced occipital gamma-band activity with
PFs that had a positive correlation, across 123 participants,
with the local cortical thickness (van Pelt et al., 2018). Of partic-
ular relevance to the present study, source-projected MEG
demonstrated that across 26 participants attentional top-down
effects on alpha and gamma power in occipital cortex have a
positive correlation to frontoparietal structural connectivity as-
sessed with high angular resolution diffusion imaging magnetic
resonance measurements (Marshall et al., 2015). Furthermore,
alpha-band synchronization between superior-occipital cortex
and the parietal lobule is modulated by attention, and its hemi-
spheric asymmetry across 28 participants is predicted by the
asymmetry in frontoparietal structural connectivity (D’Andrea
etal., 2019).

Some of these studies capitalized on interindividual variability
by performing correlation across many participants. By contrast,
the typical approach in awake non-human primate research, due
to economical constraints and ethical considerations, has been
limited to two or so animals per study. This low N precludes
cross-subject correlations and generally cross-subject statisti-
cal approaches, and it also limits inferences to the investigated
sample, as in the present study (Fries and Maris, 2021). At the
same time, chronic large-scale electrophysiological recordings
in non-human primates provide coverage of many areas,
although not as wide as MEG, with excellent spatial resolution
and signal-to-noise ratio. This revealed that during a selective
attention task, top-down GC from area 7A to V1 enhanced bot-
tom-up GC from V1 to V4, and most strongly so when the top-
down GC targeted the precise site from which the bottom-up
GC originated (Richter et al., 2017). This result, in combination
with the finding that occipito-parietal attention effects depend
on frontoparietal structural connectivity (D’Andrea et al., 2019;
Marshall et al., 2015), known to convey top-down influences, al-
lows interesting predictions. The strength of top-down anatom-
ical projections, assessed with FLNe, may predict the strength
of attention effects at the top-down targets, assessed with
mECoG. This is beyond the present study, but a fascinating topic
for the future.

AC studies have shown that in non-human primates, the large
range of cortical projection strengths, coupled with the EDR, re-
sults in the cortex being spatially embedded (Ercsey-Ravasz
et al., 2013), so that the spatial pattern of long-distance connec-
tions is a defining feature of the cortical network (Horvat et al.,
2016). Spatial embedding has been reported in humans and
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mice, indicating that it is a general characteristic of the cortex
(Gamanut et al., 2018; Horvat et al., 2016; Perinelli et al., 2019;
Roberts et al., 2016; Rubinov et al., 2015). This leads to a high het-
erogeneity that is expressed structurally in a pronounced core-
periphery organization (Markov et al., 2013). The present findings
suggest that functional connectivity based on entrainment and
synchronization shows a similarly high degree of heterogeneity,
which is expressed in the modular organization found in the pre-
sent study. Exploration of this functional heterogeneity promises
to be a highly fruitful avenue for future research.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Tract tracing dataset Open Source http://core-nets.org

Anatomical MRI template Open Source https://www.nitrc.org/projects/inia19/
F99 template and atlases Open Source https://balsa.wustl.edu/

FC spectra and matrices This study https://zenodo.org/record/5511890

Experimental models: organisms/strains

M. mulatta. German Primate Center https://www.dpz.eu/en/home.html

Software and algorithms

MATLAB MathWorks https://www.mathworks.com

FieldTrip Open Source https://www.fieldtriptoolbox.org

FSL Open Source https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
iso2mesh Open Source http://iso2mesh.sf.net/cgi-bin/index.cgi
Brain Connectivity toolbox Open Source http://sites.google.com/site/bctnet/

R R Development Core Team, 2013 https://www.R-project.org/

CORTEX NIMH CORTEX RRID:SCR_006837

Plexon Plexon, USA https://plexon.com

Neuralynx Digital Lynx system Neuralynx, USA https://neuralynx.com

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Pascal Fries (pascal.
fries@esi-frankfurt.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The averaged functional connectivity spectra and the functional connectivity matrices of frequency-band averages for all pairs of
recording sites are available at https://zenodo.org/record/5511890.

Code used for this study is freely available, and the respective references are reported below.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the animal ethics committee of Radboud University (Nijmegen, the Netherlands). Data from two
adult male Rhesus monkeys (Macaca mulatta) were used in this study.

METHOD DETAILS

Visual attention task

Stimuli and behavior were controlled by the software CORTEX (NIMH). After touching a bar, the acquisition of fixation, and a pre-stim-
ulus Baseline period of 0.8 s, two isoluminant and isoeccentric stimuli (drifting sinusoidal gratings, diameter: 3 degrees, spatial fre-
quency: ~1 cycles/degree; drift velocity: ~1 deg/s; resulting temporal frequency: ~1 cycle/s; contrast: 100%) were presented on a
CRT monitor (120 Hz refresh rate non-interlaced). In each trial, the light grating stripes of one stimulus were slightly tinted yellow, the
stripes of the other stimulus were slightly tinted blue, assigned randomly (Figure 1A). After a variable Pre-cue period (1-1.5 s in Mon-
key 1, 0.8-1.3 s in Monkey 2), the color of the fixation point changed to blue or yellow, indicating the stimulus with the corresponding
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color to be the behaviorally relevant one. Either one of the stimuli, irrespective of being cued or not, could change at a random time
between stimulus onset and 4.5 s after cue onset. The period between cue onset and stimulus change is referred to as the Post-cue
period. The stimulus change consisted of the stimulus’ stripes undergoing a gentle bend, lasting 0.15 s. A trial was considered correct
and the monkey was rewarded when the bar was released within 0.15-0.5 s of the change in the cued stimulus. No reward but a time-
out was given when monkeys released the bar in response to equally likely changes of the non-cued stimulus. In Monkeys 1 and 2,
94% and 84% of bar releases, respectively, were correct reports of changes in the relevant stimulus. Trials were terminated without
reward when the monkey released the bar outside the response window, or when it broke fixation (fixation window: 0.85 degree
radius in Monkey 1, 1 degree radius in Monkey 2). Trials with attention directed to the stimulus in the visual hemifield contralateral
to the recorded hemisphere are referred to as Attended, trials with attention ispilateral as Unattended. The analyses presented
here pooled trials from those two attention conditions, unless otherwise specified, and they used only trials with correct behavioral
report. The analyses used the period in the trial, during which stimuli were presented, and the monkey paid attention to one of them,
i.e., the Post-cue period. The exception are Figures S5A, S7A, and S7B, which also used the Baseline period preceding stimulus
onset (Bastos et al., 2015b). In total, the analyses used 9 sessions from Monkey 1 and 14 sessions from Monkey 2.

Neurophysiological recordings

Neuronal signals were recorded from the left hemisphere in two male rhesus monkeys using subdural ECoG grids consisting of 252
electrodes (1 mm diameter), which were spaced 2-3 mm apart. Two nearly identical copies of the ECoG grid were used in the two
animals. Signals were amplified by eight 32-channel Plexon headstage amplifiers (Plexon, USA), against a silver wire implanted epi-
durally over the right occipital cortex (common recording reference). Signals were then high-pass (low-pass) filtered at 0.159Hz
(8kHz) and digitized at approximately 32 kHz with a Digital Lynx acquisition system (Neuralynx, USA). Local Field Potentials were
obtained by low-pass filtering at 250 Hz and down sampling to 1 kHz. Offline, the signals were re-referenced to remove the common
recording reference through local bipolar derivations, i.e., sample-by-sample differences, between neighboring electrodes. Note that
this procedure also allows rejection of headstage-specific noise and greater signal localization (Richter et al., 2019). Bipolar deriva-
tions were obtained for all pairs of immediately neighboring electrodes on the same lane of the ECoG grid, which were also recorded
through the same headstage (Bastos et al., 2015b). We refer to bipolar derivations as “(recording) sites.” The spatial position of each
site was defined to be the midpoint between the two constituting electrodes. In both monkeys, the 252 electrodes resulted in 218
recordings sites. Site pairs with spectra indicative of artifactual coupling (broadband FC outliers, identified by visual inspection)
were excluded from all analyses of all FC types: In monkey 1, this applied to 392 out of a total of 23.653 coherence and power cor-
relation spectra (1.7%), and 784 out of a total of 47.306 GC spectra (1.7%); In monkey 2, this applied to 269 out of a total of 23.653
coherence and power correlation spectra (1.1%), and 538 out of a total of 47.306 GC spectra (1.1%). Power line artifacts at 50 Hz and
its harmonics up to the Nyquist frequency, as well as screen refresh-rate artifacts (120Hz) were estimated and subtracted from the
data using a Discrete Fourier Transform. In order to minimize volume conduction effects, we excluded site pairs with an inter-site
distance (along the dural surface) of less than 4 mm from the calculation of interareal averages. Note that this corresponds to the
diameter of an anatomical macrocolumn: Anatomical tract-tracing studies have shown that 95% of intrinsic connections are located
within a distance of 1.9 mm centered on the injection site (Markov et al., 2011). Note that values of power correlation were very similar
and highly correlated to values of orthogonalized power correlation (Figure S1C), used to exclude spurious coupling due to volume
conduction (Hipp et al., 2012). Orthogonalized power correlation was computed with the FieldTrip function ft_connectivity_powcor-
r_ortho, excluding zero-lag contribution on a trial-by-trial basis.

Data analysis

All analyses were performed in MATLAB (MathWorks) using FieldTrip (https://www.fieldtriptoolbox.org) (Qostenveld et al., 2011) and
custom scripts. Except otherwise noted, analyses used data recorded during the Post-cue period (as defined above, in the description
of the visual attention task; see also Figure 1A). The first 0.3 s after cue onset were discarded to minimize cue-related transients. The
remaining data until the first change of one of the stimuli (either target or distractor) were segmented into non-overlapping epochs of 1 s
length. The exception to this are the analyses presented in Figures S5A, S7A, and S7B. These analyses include data from the Baseline
period, which was merely 0.8 s long, and, after discarding 0.3 s of post-fixation transients, left merely 0.5 s of approximately stationary
signals. To ease comparison, the Post-cue data shown in Figures S5A, S7A, and S7B were also segmented into non-overlapping 0.5 s
epochs (again after discarding 0.3 s of cue-related transients). In total, this led to the following numbers of epochs and the following
amounts of time. For the PostCue, we used 1565 (2067) epochs of 1sec, i.e., the total duration of data was 1565 s (2067 s) for Monkey 1
(Monkey 2). For the Baseline, we used 4239 (4396) epochs of 0.5 s, i.e., the total duration of data was 2119.5 s (2198 s) for Monkey 1
(Monkey 2). For the split Attention conditions, we used 1510 and 1358 (2540 and 2542) epochs of 0.5 s i.e., the total duration of data
was 755 and 679 s (1270 and 1271 s), respectively, for the Attended and the Unattended conditions in Monkey 1 (Monkey 2).

Data epochs of 1 s length were multitapered using three Slepian tapers (Mitra and Pesaran, 1999) and Fourier-transformed (using
the FieldTrip function “ft_freq_analysis” with the configuration option “mtmfft”), resulting in a spectral resolution of 1 Hz and a
spectral smoothing of + 1.5 Hz. Data epochs of 0.5 s length were multitapered using three Slepian tapers, zero-padded to 1 s,
and Fourier-transformed (same FieldTrip approach), resulting in an interpolated spectral resolution of 1 Hz and a spectral smooth-
ing of + 3 Hz. The Fourier transforms were the basis for calculating the FC spectra, i.e., coherence spectra (Baker et al., 1997),
spectra of power correlation across epochs (Bruns et al., 2000) and the GC spectra. These FC spectra were first calculated per
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monkey, across all epochs of a given condition (Post-cue, Attended, Unattended, Baseline), and subsequently averaged over the
two monkeys. Note that power correlation has frequently been calculated across partly overlapping windows, whereas we calcu-
lated power correlation across the non-overlapping epochs described above. GC spectra were estimated through non-parametric
spectral matrix factorization of the cross-spectral density matrices, eliminating the need of explicit autoregressive data modeling
with its inherent assumptions (Dhamala et al., 2008). For visualization only, FC spectra were smoothed with a frequency-dependent
boxcar with a width of + 1% of the respective center frequency.

We defined theta, beta, high-beta and gamma frequency bands, separately for each monkey, for each FC type, and for each task
period (Baseline and Post-cue). The respective analyses used frequency bands that were specific per monkey, per FC type and per
task period, yet averaged over site pairs and area pairs as detailed in the following. Per monkey, and per FC type, we first averaged
FC spectra over all site pairs of a given area pair, separately for the 105 area pairs. To the resulting spectra, we applied an algorithm
that blindly detected peaks and their corresponding peak frequencies (PFs) and full widths at half maximum (FWHM). PFs and FWHMs
were similar for a given monkey across FC types. Yet, the two monkeys showed individual values, as expected from previous work (Ro-
henkohl et al., 2018; van Pelt et al., 2018). We report here PF and FWHM values averaged over area pairs and FC types, separately per
monkey. Note that some area pairs showed spectra that lacked some of the peaks, and correspondingly did not contribute to the defi-
nition of the corresponding rhythms frequency band. For the Post-cue period, the thetarhythm was at 3 + 2Hz (PF + FWHM) in Monkey1,
and 4 + 3Hz in Monkey?2; the beta rhythm was at 18 + 5Hzin Monkey1 and 15 + 5Hz in Monkey2; the high-beta rhythm was at 34 + 5Hz in
Monkey1 and 32 + 4Hz in Monkey2; and the gamma rhythm was at 75 + 8Hz in Monkey1 and 62 + 8Hz in Monkey?2 (Figures 1B, 1C, and
S4A). In both monkeys, the theta, beta, high-beta and gamma band peaks were the only peaks detected. The same approach was
applied forthe Baseline period, and gave nearly identical results, even though only few site pairs showed a gamma peak during the Base-
line. Analyses of FC in these four frequency bands averaged the respective FC metric over the frequency bins in the respective band.

Part of the same raw LFP data have been used in previous studies (Bastos et al., 2015a; Brunet et al., 2014; Richter et al., 2017;
Rohenkohl et al., 2018; Spyropoulos et al., 2018). In particular, in one previous study, we used data from 8 visual areas, and focused
our main analysis on the difference between bottom-up and top-down GC per area pair (Bastos et al., 2015b); this GC difference was
related to the corresponding anatomical metric of the feedforward/feedback character of the projection, the SLN metric. The current
study uses data from 15 brain areas, including visual and non-visual areas; it analyzes GC, coherence and power correlation and
analyzes their full variability (not merely the area-wise GC difference) across all possible combinations of areas (and site pairs);
this full FC variability is related to the corresponding anatomical metric of projection strengths, the FLNe metric.

Volume registration of individual ECoG grids

The anatomical MRI of each subject was spatially coregistered with the 3D positions of electrode locations using the FieldTrip toolbox
(Oostenveld et al., 2011). These 3D positions were obtained by projecting the 2D positions (from high-resolution intraoperative photo-
graphs, using the sulci for alignment (Bastos et al., 2015b) onto each individual brain surface using the iso2mesh toolbox (Fang and Boas,
2009). Each individual anatomical MRI was coregistered, using linear and non-linear coregistration with FSL (Smith et al., 2004), to the
F99 template brain containing anatomical atlases information (Van Essen, 2012) (Figure S1). This enabled us to assign each site to the
underlying cortical area as donein (Bastos et al., 2015b), but here for all the 15 areas covered by ECoG grids (V1, V2, 8L, V4, TEO, DP, 8M,
7A,S1,TPt,5, 7B, F1,F4 and F2). This resulted in the following numbers of sites per areain Monkey 1:V1:24,V2:9,V4:17,DP: 10, TEO: 6,
8M:6,8L:2,7A:7,51:20,5:13, TPt: 3, 7B, 20, F1: 23, F4: 4, F2: 17; and the following numbers of sites per area in Monkey 2: V1: 48, V2:
12,V4:16,DP: 8, TEO: 3,8M:2,8L:3,7A:10,S1:22,5:14, TPt: 2, 7B, 27, F1: 22, F4: 4, F2: 15. Furthermore, each individual anatomical
MRI was aligned and warped to the INIA19 macaque brain template (Rohlfing et al., 2012), and the respective transformation matrix was
then applied to a volume containing all ECoG electrode positions. This allowed us to combine the two ECoG grids on this template sur-
face (Figure 1B) to create FC strength maps (Figures 2 and 3), after averaging overlapping parts of the two ECoG grids. Distances sepa-
rating recording sites along the dural surface were determined with the fast-marching toolbox in MATLAB (MathWorks).

Retrograde tracing database

Acquisition and analysis of the anatomical dataset has been reported in (Chaudhuri et al., 2015; Markov et al., 2014a; Molnar et al.,
2020). Updates, atlases and additional information concerning the anatomical dataset that was used for this work is available at
http://core-nets.org. We used the fraction of labeled neurons (FLNe, defined in the Results section) to quantify AC strength. We
used the proportion of supragranular labeled neurons (SLN, also defined in the Results section) to quantify the feedforward or feed-
back nature of an anatomical projection. Furthermore, we used interareal white-matter distances. For comparison of FC with AC, we
selected areas and the corresponding site pairs of the ECoG grids, if they were also injected with retrograde tracers. This resulted in a
total of 14 areas, which were electrophysiologically recorded in two macaques, and injected with tracers in a separate cohort of 26
macaques. The list of selected areas is: V1, V2, 8L, V4, TEO, DP, 8M, 7A, S1, 5, 7B, F1, F4, F2.

QUANTIFICATION AND STATISTICAL ANALYSIS
All statistical tests were based on the combined data from both animals with ECoGs, constituting a fixed-effect analysis that results in

inferences limited to the investigated sample of two animals (Fries and Maris, 2021). To lend equal weight to each animal, data were
first combined within each animal (across sites, site pairs, trials) and subsequently averaged over the two animals.
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After definition of the four frequency bands per monkey, we tested which inter-areal site pairs showed significant FC, i.e., FC that
reliably exceeded the bias level. This was done separately per FC type, i.e., power-correlation, coherence and GC. The bias level was
estimated by randomly pairing epochs before FC calculation. For each of 100 randomizations, the maximum over all site-pairs was
placed into a randomization distribution and site pairs were considered significant, if their FC exceeded the 97.5th percentiles of the
randomization distribution (corresponding to a two-sided test).

Wherever possible, data from both monkeys were combined. The combined results amount to a fixed-effect analysis, allowing an
inference on our sample of two animals, as in most other neurophysiology studies. Results presented are averages over interareal
pairs and over all epochs. 99.9% confidence intervals were estimated from a bootstrap procedure over epochs as described in Efron
and Tibshirani (1994): One-hundred bootstrap estimates of the mean were calculated for each area pair and each monkey, before
averaging over monkeys. Averaging over monkeys was done after peak-alignment for each of the four frequency bands of interest.

The correlation between log1o(FC) and log1o(FLNe) was then performed and relevant statistics extracted, i.e., rho, p value and
slope. We additionally extracted the FLNe-related FC change as the difference between FC values predicted (by linear regression)
for minimal and maximal FLNe values. Due to the log4o-transformation, the FLNe-related FC change reflects a fold change.

In order to investigate whether log4o(FLNe) can be predicted by log;o(FC) independently of distance, we performed a partial cor-
relation in the form of a MR, according to the equation

log;o(FLNe) = byxi+ baxa+ ... + bpxa+ bgd + c,

with x,, being the log+o(FC) for frequency band n, and d being the distance on the cortical surface (Figure 6) or through the white matter
(Figure S6) (giving similar results, Table S2). The regression was calculated across area pairs, i.e., 182 area pairs for GC, and 91 area
pairs for coherence and power correlation, as explained in the results section. FC values were first averaged for each area pair, over
the corresponding site pairs, then over monkeys.

Note that the decay rates reported in the results were calculated using the natural logarithm as described in Ercsey-Ravasz
et al. (2013).

By integrating distance into the regression model, we controlled for this potentially confounding variable and provide the partial
correlation coefficients. However, in parallel to the expected bias reduction, the risk of data collinearity could in turn potentially
reduce the precision of model estimates. Analyses revealed that all (log-transformed) FC metrics were linearly related to distance,
leading to a multi-collinearity among the independent variables that may have affected the MR analysis. To investigate the severity
of this, we performed several control analyses. First, we controlled for the non-violation of the ordinary least square assumption and
plotted the residuals of the MR as a function of the predicted FLNe values separately for each FC metric (Figure S5C). This revealed no
systematic relationships, i.e., no indication of relevant unobserved (hidden) variables. Second, we verified that variance inflation fac-
tors (VIFs) remained below critical levels, in particular for variables with significant model coefficients (Figure S5D). The VIF for a given
predictor variable indicates the degree to which collinearity potentially inflates the standard error of its coefficient estimates, thereby
reducing statistical power and warranting caution in the interpretation for this predictor. VIFs start at 1 meaning no correlation be-
tween predictor variables and any other; values between 2.5 and 5 indicate moderate correlation but not warranting corrective mea-
sures; values above 5 indicate a critical level (Dodge, 2008; Everitt and Skrondal, 2008). However, it is also important to note that
values below 10 indicate that multicollinearity does not pose a serious problem to the MR model (Forthofer et al., 2008). We deter-
mined VIFs, separately per FC metric and frequency band (Figure S5D). These values were below the critical threshold for all
combinations of FC metrics and frequency bands that had been found significantly predictive of FLNe in the previous analysis (Fig-
ure S5D). Third, we performed an analysis of structural coefficients and general dominance (Figures S7C-S7E). We computed
squared structure coefficients (rs?), general dominance (GenDom) and relative importance weights (RIW), as well as direct and
shared effects for each variable, including distance (Figures S7C-S7E; Table S2). Importantly, even in the presence of correlation
between variables, multicollinearity does not compromise the interpretation of MR coefficients provided this is done on grounds
of outcome from analyses allowing assessment and control for collinearity, e.g., considering dominance or relative importance of
partial regression coefficients. Hence, in addition to structure coefficients — measured already independently of collinearity and
dividing each variable’s contribution to the multiple regression effect — we measured direct effects of predictors and shared effects
between predictors through ‘unique’ and ‘common’ coefficients calculated from commonality analysis (CA, performed with y-hat
package under R, https://www.R-project.org/). For each predictor, the squared structure coefficients (rs?) characterize the shared
amount of variance with - or the individual contribution to - the multiple regression effect (R?), and therefore should be interpreted
as the amount of explained effect rather than explained variance of the dependent variable. In case of multicollinearity, CA provides
the very useful direct and shared coefficients of total explained variance (R?) to each subset of predictors from all possible subsets
regression. It additionally allows identification of so-called ‘suppressor’ variables, through negative common coefficients, which es-
timate the amount of predictive power lost by other predictors when removing the considered variable(s) from the MR model. Direct
or ‘Unique’ effects are comparable to change in the multiple coefficient of determination from squared semi-partial correlation after
inclusion of a variable at last position of a hierarchical regression. Formulas for direct and shared components of a predictor variable
Xifrom a model with n predictors are, respectively Ui = -(1-Xi)XjXk... Xn) and Ci = -(1-Xi)(1-Xj)(1-XK)...(1-Xn). Other relative importance
measures considered and reported in Table S2 are Effect Size (for adjusted R?), General Dominance weights (GenDom — average of
overall conditional dominance weights i.e., additional contribution to multiple R2 computed in all possible predictors combination
comparisons) and Relative Importance Weights (RIW — proportional contribution to multiple R? after correcting correlation among
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predictors). Dominance analysis ranks predictors based on explained variance for all pairwise comparisons and minimizes the contri-
bution of predictors in presence of collinearity. Thus, conclusions from GenDom and RIW should be consistent. Importantly, the sum
of all weights equal the multiple R? of the MR model for both.

Similar to the principle of stepwise MR, we calculated the individual variables’ contribution to the R? of the full-model by comparing
the latter to the R? of the reduced model after removing this variable (Figures 6C, S6C, and S6F). We performed regression analyses
for each of the 100 samples per predictor variable estimated from bootstrap over epochs, except for distance measures which do not
change across trials.

Modularity analysis was performed using the latest version of the Brain Connectivity toolbox and the modularity, agreement and
consensus functions (Rubinov and Sporns, 2010). For each of the three FC metrics separately, we computed a consensus community
structure using the agreement matrix obtained from the concatenated degenerate partitions across the four frequency bands. This
allowed to compare FC distributions between frequency bands, over the same set of modules (Figures 2 and S2). Degenerate par-
titions were obtained for each frequency band and FC metric by varying the resolution parameter between 0.1-10 (the classical res-
olution parameter value being 1, smaller values detecting larger modules and higher values detecting smaller modules). The
consensus partition was computed with a re-clustering resolution of 0.25 (proportion of resolution parameters, for which any two
vertices were assigned to the same class, across all four frequency bands), reapplied 100 times on the agreement matrix. The modu-
larity values (q) reported on the margins of the matrices in Figures 2 and S2 were obtained with the classical resolution parameter of 1.

All violin plots use bootstrap estimates over trials, their shape along the y axis uses a kernel density estimate with a self-optimized
bandwidth of the density kernel (https://github.com/bastibe/Violinplot-Matlab/blob/master/violinplot.m).

Statistical significance for average FC strength maps (Figure 3) was calculated by comparing experimentally obtained values for
each site to values resulting from permutation of labels across sites i.e., the null model. This procedure was repeated 1000 times and
corrected for multiple comparison, using a controlled false discovery rate of 20% with an alpha of 0.05 (Korn et al., 2007). By doing so,
we compared the topography of frequency-specific maps to those obtained from a random graph with the same number of nodes,
the same number of edges, and the same weight distribution i.e., same values as the original FC values.
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