INSTITUT DE FRANCE

Académie des sciences

Comptes Rendus

Mathématique

Christophe Cuny, Jérome Dedecker, Florence Merlevede and Magda
Peligrad

Berry-Esseen type bounds for the matrix coefficients and the spectral
radius of the left random walk on GL;(R)

Volume 360 (2022), p. 475-482

<https://doi.org/10.5802/crmath.312>

© Académie des sciences, Paris and the authors, 2022.
Some rights reserved.

cammm This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

"|.<1
>
MERSENNE

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour [’édition scientifique ouverte
www.centre-mersenne.org


https://doi.org/10.5802/crmath.312
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org

Comptes Rendus
Mathématique

2022, 360, p. 475-482
https://doi.org/10.5802/crmath.312

Probability theory / Probabilités

Berry-Esseen type bounds for the matrix
coeflicients and the spectral radius of the left
random walk on GL;(R)

Inégalités de type Berry—Esseen pour les coefficients
matriciels et pour le rayon spectral de la marche
aléatoire gauche sur GL;(R)

Christophe Cuny*, Jérdme Dedecker* ?, Florence Merlevede
and Magda Peligrad ¢

% Univ. Brest, LMBA, UMR 6205 CNRS, 6 avenue Victor Le Gorgeu, 29238 Brest, France
b Université Paris Cité, MAP5, UMR 8145 CNRS, 45 rue des Saints-Peres, F-75006

Paris, France

¢ Univ. Gustave Eiffel, Univ. Paris Est Créteil, UMR 8050 CNRS, LAMA, F-77454
Marne-la-Vallée, France

d Department of Mathematical Sciences, University of Cincinnati, PO Box 210025,
Cincinnati, Oh 45221-0025, USA

E-mails: Christophe.Cuny@univ-brest.fr (C. Cuny), jerome.dedecker@u-paris.fr
(J. Dedecker), florence.merlevede@univ-eiffel.fr (E Merlevede),
peligrm@ucmail.uc.edu (M. Peligrad)

Abstract. We give rates of convergence in the Central Limit Theorem for the matrix coefficients and the
spectral radius of the left random walk on GL;(R), assuming the existence of an exponential or polynomial
moment.

Résumé. Nous donnons des vitesses de convergence dans le théoréme limite central pour les coefficients
matriciels et pour le rayon spectral de la marche aléatoire gauche sur GL;(R), en supposant I'existence d’'un
moment exponentiel ou polynomial.

2020 Mathematics Subject Classification. 60F05, 60B15, 60G50.

Funding. The fourth author is supported by the NSF grant DMS-2054598.

Manuscript received 18th October 2021, revised 8th December 2021, accepted 9th December 2021.

* Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/


https://doi.org/10.5802/crmath.312
mailto:Christophe.Cuny@univ-brest.fr
mailto:jerome.dedecker@u-paris.fr
mailto:florence.merlevede@univ-eiffel.fr
mailto:peligrm@ucmail.uc.edu
https://comptes-rendus.academie-sciences.fr/mathematique/

476 Christophe Cuny, Jérome Dedecker, Florence Merlevede and Magda Peligrad

1. Introduction

Let (¢,) n>1 be independent random matrices taking values in G = GL;(R), d = 2 (the group of in-
vertible d-dimensional real matrices) with common distribution u. Let ||-|| be the euclidean norm
on R?, and for every A€ GLy(R), let | Al = sup,. =1 lAx|. Let also N(g) := max(lig|, lg~tl). We
shall say that u has an exponential moment if there exists a > 0 such that

fG(N(g))“ du(g) <oo.

We shall say that p has a polynomial moment of order p = 1 if

fG (logN(g))? dpu(g) <oo.

Let A, = €, - €1, with the convention Ay =Id. It follows from Furstenberg and Kesten [10] that,
if p admits a moment of order 1 then

i 1
nlglgoﬁlog Al = Ay P-as., 1)

where 1, :=1lim;, . n‘l[Elog [lA,ll is the so-called first Lyapunov exponent.

Let now X := P(R%) be the projective space of R and write X as the projection of x € R% — {0}
to X. An element A of G = GL4(R) acts on the projective space X as follows: AX = Ax. Let Iy be
the closed semi-group generated by the support of u. We say that u is proximal if I';, contains a
matrix that admits a unique (with multiplicity 1) eigenvalue of maximal modulus. We say that u
is strongly irreducible if no proper union of subspaces of R? is invariant by I'y. Throughout the
paper, we assume that yu is strongly irreducible and proximal. In particular, there exists a unique
invariant measure v on %(X), meaning that for any bounded measurable function /s from X to R,

fh(x)dV(x)=ff h(g-x)du(g)dv(x). )
X GJX

Let Wy be a random variable with values in the projective space X, independent of (¢,),>1 and
with distribution v. By the invariance of v, we see that the sequence (W, := A,,Wy) ;1 is a strictly
stationary Markov chain with values in X. Let now, for any integer k = 1,

Xj =0 (eg, Wio1) = Ay = 0 (e, Ag-1 Wo) = Ay, 3)

where, for any g € G and any x € X, (g, X) =log(llgx|l/ | x|). Note that ¢ is an additive cocycle in
the sense that o(g1 g2, X) = 0(g1,82%) + (g2, X). Consequently

n
Sni=Y Xi=log|AnVo| - nAu,
k=1

where Vj is a random variable such that || Vp|| = 1 and Vg = W.
Benoist and Quint [2] proved that if u has a moment of order 2, then
N T
nlgréoE[E(Sn) =2>0, 4)
and, forany r € R,
lim  sup |P(log|{Anx,y)|—nAy<tvn)—¢(t/s)|=0,
=0 x| =yl =1
where ¢ denotes the cumulative distribution function of the standard normal distribution.
Given a matrix g € GL;(R) denote by 1,(g) its spectral radius (the greatest modulus of its
eigenvalues). Aoun [1] proved that if 4 has a moment of order 2, then, for any 7 € R,

lim [P (log (A1 (4,)) ~ nd, < tv/7) = p(2/5)] = 0.

In this paper we provide rates of convergence in these Central Limit Theorems, if p has either
an exponential moment, or a polynomial moment of order p = 3.
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Before giving our main results, les us recall the known results on this subject. Let u be a
proximal and strongly irreducible probability measure on 2(G).

If 1 has an exponential moment, then a Berry-Esseen bound of order O(1/+/n) for the quantity
logll Ay x|l —nAy is proved in [13]. The same rate is obtained in [7] under a polynomial moment of
order 4; in the same paper, the rate O(logn/+/n) is proved under a moment of order 3. Recently,
the rate O(1/4/n) has been obtained in [9] under a moment of order 3, in the special case d = 2.

If u has an exponential moment, then a Berry-Esseen bound of order O(logn/+/n) for the
quantity log|| Ay |l — nA, is proved in [14]. The rate O(1/+/n) is obtained in [7] under a polynomial
moment of order 4; in the same paper, the rate O(y/log(n)/n) is proved under a polynomial
moment of order 3.

If ¢ has an exponential moment, then a Berry-Esseen bound of order O(1/+/n) for the quantity
log|{A,x,y)| — nA, has been obtained very recently by Dinh et al. [8] (see also [15] for a more
precise statement). This improves on the rate O(logn/+/n) of Theorem 1 (1) below (note that the
preprint [8] was available on arxiv after this note was submitted).

If u has an exponential moment, then a Berry-Esseen bound of order O(logn/+/n) for the
quantity log(A1 (An)) — nAy is proved in [14].

As we can see, with regard to the Berry-Esseen type bounds for the four quantities described
above, the main questions which remain to be treated concern the case of polynomial moments.
In particular, it would be interesting to see if the existing moment conditions are optimal (with
regard to the rates obtained), and also to propose bounds in the case where p has a polynomial
moment of order between 2 and 3.

2. The case of matrix coefficients

Theorem 1. Let y be a proximal and strongly irreducible probability measure on B(G).

(1) Assume that u has an exponential moment, and let s > 0 be defined by (4). Then there exists
a positive constant K such that, for any integer n = 2,
Klogn
sup sup|P(log|(A,x,y)|—ndy < tvn) - p(t/s)| < 2o8n. (5)
lxl=lyl=1teR vn
(2) Assume that u has a polynomial moment of order p = 3 and let s > 0 be defined by (4).
Then there exists a positive constant K such that, for any integer n= 2,

sup sup|P(log|(A,x,y)|—ndy < tvn) - p(t/s)| <

—p-Dizp " (6)
Ixll=lyll=1zreR np=-112p

The proof of this theorem is based on Berry-Esseen estimates for log || A, x[|—nA,, (given in [13]
and [7]), and on the following elementary lemma (see [12, Lemma 5.1] for a similar result):

Lemma2. Let(T,),en and (Ry)nen be two sequences of random variables. Assume that there exist
three sequences of positive numbers (a,) nen, (bn) nen and (¢p) nen going to infinity as n — oo, and
a positive constant s such that, for any integer n,

sup][FD(Tnst\/ﬁ)—¢(t/s)|sai, and |]1’(|Rn|2\/271115/bn)sCi
n

teR n
Then,

sup |P (T, + Ry < tv/n) — p(1/5)] si+bi+i,

teR an n Cn
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Proof of Lemma 2. Recall that ¢ is 1/v/27-Lipschitz. We have
P(Ty+ Ry < tv/1) <P (T = V27n5/by < 17, =Ry < V2s/ by + P =Ry = V2rns/ by
< IP(Tn —V2rnslby < r\/ﬁ) +|P>(—Rn > Znns/bn) .
Hence
P (T, + Ry < tv/n) — p(t15) < uin + |¢(r/s+ V2r/b,) —¢(t/s)| + i

_1,1.
“a, b, ¢

The lower bound may be proved similarly, by noting that
P(Tn+ vV2rns/by < tv/n) =P (Ry = V2mnsiby)| <P (T, + Ry < tv/n, Ry < V2rnsib,|
<P(T,+Rn<tVn). O

Proof of Theorem 1 (1). The proof follows the steps used in [5, Section 8.3]. We shall need some
notations. For every X, y € X, let

lxAyl

Ixlliyl’

where A stands for the exterior product, see e.g. [4, p. 61], for the definition and some properties.
Then, d is a metric on X. Let also

a(x,y):=

[{x, )1

Ixliyll
Recall that the function 6 is linked to the distance d on X by the following: For every X, y € X,

8%(%,7) =1-d*(&,7). (8)

5(%, )= )

We shall also need the following result due to Guivarc’h [11] (see [3, Theorem 14.1]):

Proposition 3. Letu be a proximal and strongly irreducible probability measure on %(G). Assume
that u has an exponential moment. Then, there existsn > 0, such that

1
su — dv(X) <oo.
yel))(j;( 6(x, y)n
We start with the identity, for ||x|| = ||yl =1,
[{4nx. y)|

[ Anx|liyl
=logllAyxll +10g8 (An- %, 7).

log|(Anx,y)| =logll Anxll +log

We shall then apply Lemma 2 to T, = log||A, x|l — nA, and R, = logb(A, - %, 7). Since p has an
exponential moment, we know from [13] that we can take a,, = Cy/n in Lemma 2.

In view of Lemma 2, we see that Theorem 1 will be proved if we can show that there exist
7, K > 0 such that (recall that (-,-) < 1)

P(|logd (Ay- %, 7)| > Tlogn) =P (6 (An-%,7)<n”") < —, 9)

Elis

which means that the sequences (b,),en and (c,)nen are such that b, = v2rns/(rlogn) and
cn=+vnlkK.
Recall the identity (8). As in [5], we have, using that d(-,-) <1,

6% (An-%,7)=1-d*(An-%,7) 21— (d(An- X, Wy) +d (W, 7))°
> 5% (Wy, 7) — d? (Ay - %, Wy) = 2d(Ap - X, Wy,)d (W, 7) (10)
> 6% (W, 7) —3d(An- X, Wy).
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Hence, to prove (9), it suffices to prove that there exist 7, K > 0 such that,

P (62 (Wp, 7) < n™%" +3d(Ay - %, Wy)) < % ¢8))

Now, since ¢ has a polynomial moment of order 3, by [5, Lemma 6], there exists ¢ > 0, such that

P(d(An% W)z e ") < -

(in fact this estimate remains true as soon as p has a polynomial moment of order 2, via a
monotonicity argument).
Hence, for n large enough (such that 3e~¢" < n~27), we have
o
P (6% (Wy,7) <n™ +3d (Ap- X, Wy)) < P (6% (Wp, 7) <2n7%7) + =
n

On another hand, by Markov’s inequality, since W}, has law v,

1 nZT 2T[/2
P(62(Wn,y)<2n_27):v{5c€X:T>—}s ~ v,
6°(x,y) 2 nf* ye x x6 (x, nn
and (11) follows from Proposition 3 by taking 7 = % 0

Proof of Theorem 1 (2). The proof follows the lines of that of Theorem 1 (1). Instead of Proposi-
tion 3, we shall use the following result due to Benoist and Quint (see [2, Proposition 4.5]):

Proposition 4. Letu be a proximal and strongly irreducible probability measure on %(G). Assume
that pu has a polynomial moment of order p > 1. Then

supf llogs (%, |7~ dv(®) <oo.

We shall then apply Lemma 2 to T, = log || A, x|l — nA, and R, =1logé(Ay - X, 7). Since p has a
moment of order 3, we know from [7] that we can take a, = C/n/log(n) in Lemma 2 (and even
a,=Cynifp=4).

In view of Lemma 2, we see that Theorem 1 will be proved if we can show that there exists K > 0

such that
K

which means that the sequences (b,)nen and (cp)pen are such that b, = V2rns/nt'?P and
cn=nP~V2PIK.
Starting again from (10), we see that it suffices to prove that there exists K > 0 such that,

P([logs (As- %, 7)| > n'’?P) < 12)

P (6% (Wn7) <e™""™ +3d(An- %, Wy)) < (13)

np-Di2p

Proceeding as in the proof of Theorem 1, we deduce that, for n large enough (such that

e "< e‘z”mp), we have
C
P (6% (Wa,7) <e2""™ +3d(A, -5, W,)) <P (62 (W, 7) < e ) + -
On another hand, by Markov’s inequality, since W}, has law v, and for n large enough,
(62( y) <4e ~2n! Zp) ([logs (Wy, 7)| > n''?P —log2)
=v{xeX: |log6(5c 7| > n'’?P —log2}
1
S—————————sup f [logé (%, y)|p dav(x),
(n1/2P —log2)"™! yex

and (13) follows from Proposition 4. O
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3. The case of the spectral radius

We now prove similar results for the spectral radius. Given a matrix g € GL;(R) denote by A (g) its
spectral radius (the greatest modulus of its eigenvalues). The first result (Theorem 5 (1) below),
assuming an exponential moment for y, has been recently proved by Xiao et al. [14] (in fact, a
stronger result is proved in [14]). We state it only for completeness.

Theorem 5. Let i be a proximal and strongly irreducible probability measure on $(G).

(1) Assume that i has an exponential moment, and let s > 0 be defined by (4). Then there exists
a positive constant K such that, for any integern = 2,

sup [P (logA; (Ap) — nAy, < tv/n) - (1] 5)| = —=— logn. (14)

teR \/ﬁ
(2) Assume that p has a polynomial moment of order p = 3, and let s > 0 be defined by (4).

Then there exists a positive constant K such that, for any integer n =2,
K
sup|lP logA1 (Ap) — ndy < tVn) - ¢(tls)| < D7 (15)

The proof of Item (2) is based on a Berry-Esseen estimate for log|| A, | — nA, given in [7], and
on Lemma 2.

A key ingredient in the proof of Item (1) by Xiao et al. [14] is [3, Lemma 14.13].

To prove Item (2), we shall need a suitable version of [3, Lemma 14.13]. The proof of
Lemma 14.13 relies on [3, Lemma 14.2] (of geometrical nature) and on large deviations, leading
to Lemma 14.3.

We shall need the following consequence of large deviation estimates of Benoist and Quint [2]
(see also [6] for related results under proximality).

Lemma 6. Let u be a strongly irreducible probability measure on %(G). Assume that u has a
polynomial moment of order p > 1. Let € > 0. There exists C > 0 such that, for any integern = 1,

sup IP( max |log | Agx| — kA, >en) C_ , (16)
lei=1 \1sk=n n?
C
p( max [tog]Ac] -1 > en) < =, a7)
C
P(lrsnkaé(nﬂog A% (AR || - k(Au+7y)| > en) < (18)

Remark 7. Let us recall that, for any A € GL;(R), A%(A) is the matrix on AZ([Rd) defined by
A2(A)(x A y) = Ax A Ay. In addition, in (18),7y, is the second Lyapunov exponent of y. With the
notations of [3, Section 14], A, is denoted either A, , or A1, while y,, is denoted either A5 , or A,.

Proof of Lemma 6. Let u, be any of the left-hand side in (16), (17) or (18). It follows from [2,
Proposition 4.1 and Corollary 4.2] that

Y nP"%u, <co. (19)
n=1
In fact, in [2], (19) is proved for u, defined without the maximum over k € {1, ..., n} under the

probability. However, it is easy to see that the maximum over k can be added: it suffices to follow
the proof of [2, Theorem 2.2] with obvious changes, and to use a maximal version of Burkholder’s
inequality for martingales. Now, once (19) has been proven, it is easy to infer (via a monotonicity
argument) that (16), (17) and (18) are satisfied. U

Using Lemma 6 one can reproduce the proof of [3, Proposition 14.3] to prove the following
version of it.

C. R. Mathématique — 2022, 360, 475-482
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Lemma8. Letu bea strongly irreducible and proximal probability measure on 98(G). Assume that
U has a polynomial moment of order p > 1. Then, the estimates [3, (14.5), (14.6), (14.7) and (14.8)]
hold with1 - # in the right-hand side instead of 1 —e™°".

Lemma 8 implies the next result.

Lemma 9. Let 1 be a strongly irreducible probability measure on %(G). Assume that u has a
polynomial moment of order p > 1. For every € > 0, there exist C > 0 and ¢y > 0 such that for
everyly<{¢<n,

P (10 (A1 (An) ~log | An | = ~e0) =1~ 7.
Proof of Lemma 9. The lemma is a version of [3, Lemma 14.13] with the following difference:
Lemma 14.13 holds under an exponential moment while in Lemma 9 we assume polynomial
moments.

Now, it happens that there is a small imprecision in the proof of [3, Lemma 14.13] which can
be easily fixed thanks to a slight modification of the original argument.

One of the steps in the proof of Lemma 14.13 consists in proving that the property (14.38)
is true on an exponentially small set (see the end of [3, page 233] for the definition on an
exponentially small set). A second step of the proof consists in proving the equivalence of the
fact that [3, the properties (14.38) and (14.43)] are true on an exponentially small set.

The problem then comes from the fact that it does not seem possible to deduce straightfor-
wardly from (14.7) that the property (14.43) is true on an exponentially small set, as mentioned
in [3]. Yet the weaker property (20) below follows from (14.7). Notice that since we prove below
that the property (14.38) is true on an exponentially small set, from the above mentioned equiv-
alence, it will follow that the property (14.43) is also true on an exponentially small set.

We choose to explain how to fix the proof of the original Lemma 14.13. Then, the proof of our
Lemma 9 may be done similarly, using our Lemma 8 instead of [3, Lemma 14.3].

From [3, (14.7)] it follows that, with the notations of [3], for every n = ng

u" ({(bl, o bp)€G" 16 (xM yl’;?nm ~~~b1) = e_g[”/z]}) >1-—e M2l (20)

by bin2+1’
Using (14.39), (14.40), (14.41) and (14.42), this yields that
" ({(bl, v bp) €G™ 6(x£/[n~~~b1’ylr;:p--b1) > eff[}) >1-e % V[n/i2l<l<n, (21)

for some ¢ > 0 that may differ from the above one (and from the other ¢’s below).
Let ¢g < ¢ < [n/2], with ¢y = ngy, where ny is such that Lemma 14.3 be true.
By [3, (14.6)], we have

.U®n ({(bl, vy bn) eG": d(xi?v,{---bn,[’bn blxo) < e_(/lly‘u—ﬂ,zyu—g)[}) S 1—e<l 22)
By (14.7), we have
e [ E ey 1 £V N Eod | ES B 3

where we used that by, ---b,,_¢ and by,2; - - - by are independent since n— ¢ > [n/2].
Using the fact that (14.39), (14.41) and (14.42) are true except on an exponentially small set,
combined with (22) and (23), we infer that

p ({01, b e G 8! v ) ze ) 21-e ! Vo so<ia. @)

Combining (21) and (24), we see that the property (14.38) is true on an exponentially small set.
Then, the proof of Lemma 14.13 may be finished as in [3], combining Lemma 14.14 with the
facts that the properties (14.37) and (14.38) are true on exponentially small sets. O
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Proof of Theorem 5 (2). We shall apply Lemma 2 to T, = log || A,|l — nA, and R, =log(A:(Ay)) —
logll A ll. Since 1 has a moment of order 3, we know from [7] that we can take a,, = Cy/n/log(n)
in Lemma 2 (and even a,, = Cy/nif p = 4).

In view of Lemma 2, we see that Theorem 5 (2) will be proved if we can show that there exists

K > 0 such that
P (|log(A1 (An) —logll A, ll| > n'/?P) < _x (25)
n n np-D12p
which means that the sequences (b)nen and (c;)nen are such that b, = v2rns/n'?P and
cp=nP~D2r K.
Recall that 1;(g) < |Ig|l for every g € GL;(R). Hence (25) follows from Lemma 9 by taking € = 1
and ¢ = n'/?P. O
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