
Articles
https://doi.org/10.1038/s41567-021-01417-7

1Department of Physics, University of Notre Dame, Notre Dame, IN, USA. 2Center for Network and Data Science, University of Notre Dame, Notre Dame,
IN, USA. 3Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network, Budapest, Hungary. ✉e-mail: toro@nd.edu

Many network growth models have been introduced in the
literature, with possibly the preferential attachment model
by Barabási and Albert1 being the most popular. In most

of these models, when the incoming node joins the existing net-
work, it also increases (including in the Barabási and Albert model)
the degrees of the nodes to which it connects. However, there are
networks in which the nodes cannot accept additional connections
because their connectivity is saturated or even fixed. For example,
in a chemical complex, a node represents a chemical species and
an edge represents a covalent bond, and thus node degree is the
number of bonds a species can form, which is given by its electron
configuration and is fixed. Through reactions, the complexes grow
in size, but the degrees of their atoms stay constant in the process.
In physical networks, creating and maintaining connections bears
a cost, leading to degree saturation, and the only way a new node
can join such nodes is if some of them lose their existing connec-
tions and form a new connection with the incoming node. In social
networks, for example, this is known as tie dissolution and forma-
tion2,3. One may, therefore, consider growth processes that do not
force degree increases on nodes (such as in the Barabási and Albert
model) but instead respect the existing degrees over time. Although
there are many variations, here we consider the simplest of such
processes, namely those that preserve the existing degrees. We call
this ‘degree-preserving growth’ (DPG) and the created graph struc-
tures as DPG graphs. When nodes represent physical entities, they
will have limited connections and possibly even a preferred degree,
with a distribution that decays on both sides of this degree. The
DPG formulation assumes precisely constant degrees; however, this
helps with mathematical tractability and understanding. Despite its
simplicity, DPG-generated networks have rich mathematical prop-
erties and a wide range of potential applications.

Definition of the DPG process
Here we work with graphs (called simple) that have no multiple
edges between any pair of nodes and no self-loops. The basic DPG
mechanism is that, at every step, a new node w joins a graph G by
first cutting and removing k of its edges, then connecting w to the 2k
nodes of the removed edges, thus preserving their degrees; G gains
a new node of degree dw = 2k. One could also say that the incoming

node w, shown as a node with 2k ‘stubs’ in Fig. 1, is joined to the
stubs resulting from the cut edges. The only constraint is that
the cut edges must be independent (no common node), otherwise
the resulting graph would not be simple. Figure 1b shows two more
DPG scenarios. In the upper scenario, dw = 4 and we show two pos-
sible outcomes corresponding to cutting either the blue edges or the
green ones. In the lower scenario, w (dw = 6) joins by cutting the red
edges, which is the only possibility. The above implies even degrees
for all incoming nodes; however, it can be generalized to arbitrary
degrees by allowing a stub in the graph (an ‘unsatisfied bond’), to
be picked up in later steps (see Supplementary Information section
III.B for the general algorithm). Note that non-edges stay non-edges
at all times during the process, and thus DPG cannot build graphs
that are too dense, including complete graphs.

A set of independent edges (selected at every step in DPG) is
called a matching. Matchings4 have applications in many areas
including computer science, computational chemistry5 and net-
work control6. A matching is maximal if no additional edges from
the graph can be added to it. A maximal matching of the larg-
est size is a maximum matching, and its size ν(G) is the graph’s
matching number. Clearly, 1 ≤ ν ≤

1
2n for any G with at least one

edge, where n is the number of nodes in G. There can be several
maximal or maximum matchings in a graph (Fig. 1b). If ν = ⌊

n
2 ⌋,

then G has a perfect/near-perfect matching for even/odd n (the
red set in Fig. 1b is perfect). Note that not all graphs have perfect/
near-perfect matchings. In DPG, ν limits the largest degree that
can be added in a step: d ≤ 2ν + 1 (Supplementary Information
section I.A).

In trade or political networks, the DPG can be interpreted as
‘middleman’ dynamics, when a new agent inserts itself between
(trading) partners and overtakes their flow. Middleman positions
are advantageous, allowing flow control by either facilitating coop-
eration or exploiting differences among the connected nodes. If two
nodes u and v have been trading a commodity (an edge), a new node
w may offer incentives to both for trading with it, thus overtaking
this trade (or edge). Related to Burt’s structural holes theory7,8, this
was studied from a game-theoretic point of view by Kleinberg et al.9.
The ‘middleman’ structure is also present in biology and chemical
biology, especially in vivo (see, for example, ref. 10).

Degree-preserving network growth
Shubha R. Kharel   1,2, Tamás R. Mezei   3, Sukhwan Chung1,2, Péter L. Erdős3 and
Zoltan Toroczkai   1,2 ✉

Real-world networks evolve over time through the addition or removal of nodes and edges. In current network-evolution models,
the degree of each node varies or grows arbitrarily, yet there are many networks for which a different description is required.
In some networks, node degree saturates, such as the number of active contacts of a person, and in some it is fixed, such as
the valence of an atom in a molecule. Here we introduce a family of network growth processes that preserve node degree,
resulting in structures substantially different from those reported previously. We demonstrate that, despite it being an NP
(non-deterministic polynomial time)-hard problem in general, the exact structure of most real-world networks can be gen-
erated from degree-preserving growth. We show that this process can create scale-free networks with arbitrary exponents,
however, without preferential attachment. We present applications to epidemics control via network immunization, to viral
marketing, to knowledge dissemination and to the design of molecular isomers with desired properties.

Nature Physics | www.nature.com/naturephysics

mailto:toro@nd.edu
http://orcid.org/0000-0001-7165-8203
http://orcid.org/0000-0002-7608-3215
http://orcid.org/0000-0002-6602-2849
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-021-01417-7&domain=pdf
http://www.nature.com/naturephysics

Articles NatuRe PHysIcs

Due to the freedom in choosing the incoming degrees and the
matchings, DPG defines a large family of network models, which
makes it well suited for network modelling; for example, it can pro-
duce scale-free networks (without preferential attachment) or be
used as a degree-constrained method for maximizing graph statis-
tics with applications to epidemics, marketing, knowledge dissemi-
nation and chemistry.

Real-world networks as realizations of DPG processes
Here we ask the question: given a real-world network G on n
nodes, is there a DPG sequence that can form G, starting from a
small graph Gf on nf = O(1) nodes, and if so, how easy is it to find
such a sequence? To answer this question, we employ the inverse of
the DPG process (the exact reverse of the steps in Fig. 1). A single
degree-preserving (DP) reduction step consists in cutting all the
links to some node w, removing w and then joining the stubs of
the cut links remaining in the graph between themselves, avoiding
multiple edges (see Supplementary Information section III.C for the
general case). Clearly, for a node w to be DP-removable, there must
be a sufficient number of non-links between the neighbours of w.
One can show (Supplementary Information section II.A) that G is
DP-reducible by one step if and only if the graph of non-edges of the
neighbours of w has a perfect/near-perfect matching. It is known that
deciding whether a graph has a perfect matching takes polynomially
many steps in n (it is said to be in class P), due to Edmonds’ blos-
som algorithm11. Thus, deciding whether G is DP-reducible by one
node is in class P and so is reducibility by k nodes, where k is a finite
constant. We can prove, however12, that if k > nε with ε > 0, then DP
reduction is an NP (non-deterministic polynomial time)-complete
problem (only exponential-time algorithms are known) and finding
the largest possible k for a given graph is NP-hard.

A simple algorithm allows us to test how well a network can
be reduced by inverse DPG: pick a node uniformly at random
and remove if allowed, then repeat. Once no more nodes are
DP-removable, the algorithm stops, giving a final graph Gf. As there
is randomness in both the choice of the nodes and in the way the

stubs are linked after removals, the algorithm generates one sto-
chastic backward path out of many possible ones. Note that due to
reversibility, this implies a forward DPG path from Gf to G (with
ns = n nodes). We record the reduction fraction ϕ = nf/ns, corre-
sponding to a stochastic backward path. Repeating the process
from G we may arrive at another Gf value and ϕ value. If nf = O(1)
and thus ϕ = O(n−1

), we say that G is a DPG-feasible network.
Figure 2 shows ϕ values obtained from 50 repeated runs on 36 ran-
domly picked real-world networks from a wide range of domains
(Supplementary Table 2). We see that despite the deconstruction
process being NP-hard, most networks are actually DPG-feasible,
that is, there is a forward DPG process that can generate them,
even though it is not necessarily how they actually formed. Note
the small variability in ϕ for most networks, which shows that find-
ing a deep DP deconstruction path is easy and that, when tested,
many paths result in identical or similar Gf graphs (Supplementary
Figs. 5–8). Of the least decomposable networks, three (1, 3 and 4)
have the highest densities, which agrees with the earlier observation
that DPG cannot construct high-density networks. However, in this
case, it is easy to decide that these networks are not DPG-feasible.
Note that other work12 shows NP-hardness of DP deconstruction
using sparse networks, and thus sparsity is not a good criterion for
DPG feasibility. A point in case here is the sparse disease–gene asso-
ciation network DiseaseGene (ρ = 4.8 × 10−3, 〈ϕ〉 = 0.53). However,
most of the networks tested here seem DPG-feasible, implying that
they share specific properties that make them so.

DPG models
To develop an understanding of DPG networks, we present several
models based on different rules for the incoming degree sequence
and matching selection. As it does not change the conclusions but
is simpler to deal with analytically, here we focus on even incoming
degrees. We first establish the simple bound (valid for any graph G)

ν(G) ≥ m(G)
∆(G) + 1 , (1)

for the matching number of G, where m(G) is its number of edges
and Δ(G) is its maximum degree. See Supplementary Information
section II.B for proof and for similar bounds13,14.

It is known that large homogeneous random graphs have a large ν
and, under mild conditions, even perfect matching15. We call ν ‘large’
if ν(G) ∝ N, where N is the number of nodes of G. If Gn denotes the
DPG graph after n steps, its number of nodes is Nn = Nn−1 + 1 = N0 + n,
and thus it has large matching if ν(Gn) ≡ νn ∝ n for n ≫ N0. The time
step i when a node joins the graph indexes that node (i) and its degree
(di). The edge count of Gn is mn = mn−1 +

1
2dn = m0 +

1
2
∑n

i=1 di.
We write ∆n ≡ ∆(Gn) = max(∆n−1, dn) = max

i≤n
(∆0, di). Note that

νn can grow at most by unity in a step, that is, νn+1 ≤ νn + 1, but it can
drop by large amounts (Supplementary Fig. 1), which also shows
that the evolution of νn depends on both the graph structure and the
incoming degrees. All DPG algorithms and pseudocodes are pre-
sented in Supplementary Information section III.

The simplest case is bounded-degree DPG dynamics, that is,
dn ≤ Δ = constant for all n ≥ 0. As dn ≥ 2, mn ≥ m0 + n ∝ n for n ≫ 1.
From equation (1), νn ≥ (Δ + 1)−1(m0 + n) ∝ n, showing that these
graphs have large matching numbers, asymptotically. Choosing
dn = Δ for all n ≥ 0, we obtain a dynamic model for random regu-
lar graphs. Supplementary Fig. 9 shows that random regular
DPG graphs have asymptotically perfect/near-perfect matching.
Four-regular random graphs are used as client-server architectures
in peer-to-peer networking called SWAN technology16, using a spe-
cial case of the DPG process, which results in reliable and efficient
TCP/IP (transmission control protocol/internet protocol) fabrics of
connections17. DPG have also been used in two-dimensional vortex

a

+ +
w w w

1
3

4

5

6 2 +

1

2

3

4
5

6

1

2

3

4
5

6

+

1

2

3

4
5

6

or

b

w

w

w w

w

u

v

u

v

u

v

G

Fig. 1 | Degree-preserving growth. a, In the simplest case, a new vertex w
joins the graph by removing some edge (u, v) and then connecting to its
nodes. The thin dashed line indicates the non-edge between u and v. b, Two
more scenarios, one with an incoming degree of d = 4 with two outcomes
(above the horizontal dashed line), and another with an incoming degree of
d = 6 (below). The pair of blue edges, the pair of green edges and the three
red ones in G each form a matching. The blue set is maximal but the green
is not; adding edge (2, 3) yields the red matching, which is also a maximum
(and a perfect) matching.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics

ArticlesNatuRe PHysIcs

liquids analysis18 and as proof techniques19,20. Three-regular graphs
formed by complex but degree-preserving rules are used in the
design of self-reproducing graph automata21.

Linear DPG. Here we consider the case in which the incoming ver-
tex’s degree is proportional to the matching number:

dn = 2⌈cνn−1⌉ , 0 < c ≤ 1 , (2)

where c is a constant. We call this model Linear DPG (or LinDPG)
because, as we show, the degrees grow linearly with n and thus the
degree distribution is uniform (all degrees are equally likely). Figure
3a–c shows three sample graphs. Figure 3d shows that, asymptotically,
LinDPG graphs have almost perfect matching for any c, which implies
from equation (2) that the degree sequence is linear, with slope c.

To characterize these networks, we study the c = 1 limit, called
the Maximum DPG (MaxDPG) model. Here, at every step, we
join the new node with as many edges as the graph can take, while
keeping the graphs simple. Thus, for MaxDPG, dn = 2ν(Gn−1), n ≥ 1.
However, in this case we need a stronger bound than that of equa-
tion (1). In Supplementary Information section II.C we prove that
for large enough n,

νn ≥
1
2n− log 2n+O(1) , (3)

that is, the matching number is asymptotically equal to that of per-
fect matching. From equation (2) (with c = 1) and equation (3),

k− 2log 2k+O(1) ≤ dk+1 ≤ k , 1 ≤ k ≤ n− 1 , (4)

with d1 = 2ν0. Thus, 1
4n(n− 1)− nlog 2n+O(n)

≤ mn ≤
1
4n(n− 1) +O(1), showing that MaxDPG graphs are

dense, with density ρn =
1
2 −O

(ln n
n
)
; due to their maximal nature,

no densities higher than 1/2 can be reached by any DPG process as
n → ∞.

To better understand the structure of MaxDPG graphs, we call
on the notion of split graphs. A graph G with node set V is called
a split graph22,23 if its nodes can be partitioned into a set S and a
set V − S such that the S nodes form a complete graph K∣S∣ in G
but those in V − S have no connections between them (an inde-
pendent set), except to S. Thus, split graphs have a maximal core
(S) and periphery (V − S) structure. By sorting a degree sequence
d non-increasingly as d1 ≥ … ≥ dn, one defines the pivot index24 as
s(d) = max{i : di ≥ i} (so ds+1 < s + 1). (In ref. 23 the slightly dif-
ferent ‘pivot’ index m(d) = max{i : di ≥ i− 1} is defined; how-
ever, s is a better choice as shown in ref. 24, slightly strengthening
the results of ref. 23.) By analogy, this is the scientometric Hirsch, or
h-index, if di is the number of citations of the ith-most cited paper.
In Supplementary Information section I.C we show (with s as the
pivot index of d) that

Social, communications
and co-authorship

Biological Infrastructure

Economic and transaction Ecosystem Others

ϕ

ϕ

1
Ec

on
om

icT
ra

ns
.

2
D

is
ea

se
G

en
e

3
Ec

os
ys

te
m

W
et

FL
4

Ec
os

ys
te

m
D

ry
FL

5
Co

Au
th

N
et

wo
rk

Sc
i

6
Co

Au
th

G
R

Q
C

7
Co

Au
th

As
tro

ph
ys

ic
s

8
H

um
an

Co
nt

ac
t

9
N

eu
ra

lC
El

eg
an

s
10

 C
oA

ut
hC

on
dM

at
te

r
11

 W
or

dR
el

at
io

ns
12

 F
BC

om
pa

ny
Pa

ge
s

13
 E

nr
on

Em
ai

ls
14

 G
oo

gl
eI

nt
er

na
lW

eb
15

 A
m

az
on

Co
pu

rc
ha

se
16

 C
oA

ut
hH

ig
hE

ne
rg

y
17

 F
BN

ot
re

D
am

e
18

 P
ro

te
in

In
te

ra
ct

io
n

19
 M

et
M

Pn
eu

m
on

ia
e

20
 P

ol
itc

al
Bl

og
s

21
 F

BP
ub

lic
Fi

gu
re

s
22

 M
et

N
G

on
or

rh
oe

ae
23

 M
et

ST
yp

hi
24

 M
et

M
Tu

be
rc

ul
os

is
25

 M
et

EC
ol

i
26

 W
ik

iV
ot

eN
et

wo
rk

27
 W

or
ld

Ai
rp

or
ts

28
 B

itc
oi

nO
TC

29
 P

ow
er

gr
id

U
S

30
 T

w
itc

h
31

 R
oa

ds
U

S
32

 R
oa

ds
TX

33
 F

BW
al

lP
os

ts
34

 L
in

ux
So

ur
ce

co
de

35
 G

ith
ub

So
ci

al
36

 In
te

rn
et

To
po

lo
gy

0

0.2

0.4

0.8

0.6

1.0

10–4

10–3

10–2

10–1

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Fig. 2 | Real-world networks from DPG process. Fraction ϕ = nf/ns of the number of nodes nf in the final network to those of the starting network
(ns = n), after DPG deconstruction. For every network, 50 runs were performed and for each, the final fraction ϕ is plotted. Real-world networks were
chosen from social, communications and co-authorship networks and five other categories as indicated in the figure legend. Networks are ordered by
decreasing value of 〈ϕ〉 (over the 50 runs). The inset shows the same on a log–linear scale. The largest network (32 RoadsTX) has n = 1,379,917 nodes
and m = 1,921,660 edges, for a density of ρ = 2m/n(n − 1) = 2.02 × 10−6. Networks 32–36, namely InternetTopology (ρ = 1.8 × 10−4, 〈ϕ〉 = 1.2 × 10−4),
GithubSocial (ρ = 4.1 × 10−4, 〈ϕ〉 = 2.2 × 10−4), LinuxSourcecode (ρ = 4.5 × 10−4, 〈ϕ〉 = 3.7 × 10−4), FBWallPosts (ρ = 1.7 × 10−4, 〈ϕ〉 = 5.1 × 10−4) and RoadsTX
(ρ = 2.02 × 10−6, 〈ϕ〉 = 6.4 × 10−4) are the most decomposable, whereas networks 1–5 with the highest 〈ϕ〉 (〈ϕ〉 > 0.1) are the least DPG-decomposable. Of
the latter, three have the highest densities: EconomicTrans (ρ = 0.34, 〈ϕ〉 = 0.97), EcosystemWetFl (ρ = 0.44, 〈ϕ〉 = 0.44) and EcosystemDryFl (ρ = 0.43,
〈ϕ〉 = 0.43).

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics

Articles NatuRe PHysIcs

σ̃(G) =
s(s− 1)−

∑s
i=1 di +

∑n
i=s+1 di∑n

i=1 di
∈ [0, 1) , (5)

is the fraction of edges to be added or removed to make a graph
into a split graph23, thus serving as a ‘splitness’ measure. σ̃ can also
be regarded as a core-periphery measure with σ̃ = 0 correspond-
ing to maximal core periphery. In Fig. 3e and Methods, we show
that MaxDPG graphs are near split-graphs and describe their
steady-state dynamics.

Returning to the general case of c ≤ 1 and dk ≃ c(n − k), the pivot
is simply s = cn/(c + 1) and thus lim

n→∞

σ̃(Gn) = (1− c)/(1+ c)

(see Fig. 3f for agreement with simulations). Thus, to obtain
graphs with a given core-periphery strength σ̃ we may set
c = (1− σ̃)/(1+ σ̃).

Another analytically tractable model is ‘Random Fraction dpg’,
with dn = 2⌈rnνn−1⌉, where rn ∈ (0, 1] is a uniformly distributed
random variable (Supplementary Information section II.D). This
model also shows linear scaling, νn ≃ an, where a is a constant, but
has a logarithmically decaying degree distribution.

Scale-free DPG. The following simple algorithm produces
scale-free networks:

(1) �Find a maximum matching M of Gn−1, νn−1 = ∣M∣ and let
A ≡ {1,…, νn−1}.

(2) �Generate the probabilities pi = i−γ/c, i ∈ A, where
c =

∑
k∈A

k−γ.
(3) Sample an integer m ∈ A with probability pm.
(4) Select uniformly at random a subset of m edges from M.
(5) Perform a DPG step on these edges, joining a new vertex of

degree dn = 2m. To set the minimum degree dmin, all integers less
than dmin/2 must be excluded from A.

Figure 4a shows the degree distributions for various γ values, and
Supplementary Fig. 10 shows their matching fractions 〈νn/Nn〉 ver-
sus n. Supplementary Fig. 11 shows a scale-free DPG graph (even
degrees) for n = 104, dmin = 4 and γ = 2.5 with its magnified centre
presented in Fig. 4b, showing the hubs. The scale-free network in
Fig. 4c was generated with the generalized algorithm (arbitrary par-
ity degrees).

As every node in Gn−1 contributes with at most one edge to a
matching, independently of its degree, edge formation is not based
on degree preference. This contrasts with the Barabási and Albert1,
configuration25,26 and Chung–Lu27 models, where the probability
of an edge is proportional to the product of the degrees of their
nodes. Figure 4d shows that the node participation ratio does not
scale with node degree except at small, finite degrees. Although
there is no degree preference in a single step, the networks are
degree-correlated. Note that ours, like the Barabási and Albert
model, is a growth algorithm (unlike the configuration and Chung–
Lu models), but is not an endogenous scale-free network generator

50

0.50

0.25

⟨ν
n/N

n⟩

1.0

0

0.5σ~

100

150

200

k c = 0.2 c = 0.6 c = 1.0

Maximum DPG

c = 0.6

c = 0.7

c = 0.8

c = 0.9

c = 1.0

c = 0.1

c = 0.2

c = 0.3

c = 0.4

c = 0.5

1,000

n–1

n + 1
C I

P

3

2

1

…

…
n

750500

n

2500 1.0

n = 200

n = 500

n = 1,000

1 – c
1 + c

0.4 0.6

d e f

a b c

C
0.80.20

Fig. 3 | DPG models. a–c, Networks grown from a triangle in 200 steps of the LinDPG process with c = 0.2 (a), 0.6 (b) and 1.0 (c). Nodes are coloured by
their index, that is, by their join time k, with darker colours indicating old nodes (small k). Networks are drawn using spring-electrical embedding force-
directed layout. A MaxDPG network is shown in c with recently added nodes (larger k) forming a complete subgraph (core), whereas the older nodes
(smaller k) form an independent set (periphery); splitness σ̃ = 2× 10−4. d, Linear DPG networks have perfect/near-perfect matching, with 〈νn/Nn〉 → 0.5
asymptotically and independently of c. Averages are taken over 50 runs. e, Steady-state dynamics of MaxDPG graphs. A newly incoming node n + 1 joins
the complete subgraph KC and also connects to most nodes in the independent set I (see Methods for explanation). f, Decay of splitness σ̃ with c for
LinDPG and its theoretic expression (continuous curve).

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics

ArticlesNatuRe PHysIcs

(unlike the Barabási and Albert model); it is more similar to the
configuration and Chung–Lu models in that respect.

Network design through DPG and applications
In network modelling, we often create graphs with a given degree
sequence28. This can also be done via DPG, for example by either
joining degrees increasingly (iconf-DPG) or greedily (gconf-DPG)
(Methods and Fig. 5a).

The freedom in the choice of matchings allows the tuning of graph
properties beyond degrees, for example degree correlations29. Given
a graph, Rα =

∑
i∼j(didj)

α (sum over edges) is called its general
Randić index30,31. R1 is the second Zagreb index, used in chemistry as
a topological descriptor for molecular graphs32 and is related to the
graph’s assortativity coefficient r (ref. 33) via r = 1− C−1

(S3 − 2R1)
where C = S3 − (S2)2/S1 and Sk =

∑n
i=1 (di)

k (ref. 34). It was shown
that r (or R1) is strongly related to the graph’s spectral radius λ1 (the
largest eigenvalue of its adjacency matrix)34–36 and that minimizing
λ1 increases the epidemic threshold, thus curbing disease spread37,38,
whereas maximizing λ1 aids in viral marketing or in knowledge
spread in research and development collaboration networks39. R−1/2
is the original Randić index applied in chemistry and pharmacology
to study structure–property or structure–activity relations30,31. In
particular, R−1/2 closely tracks the boiling points of alkanes (Fig. 1 of
ref. 31), formation enthalpies and chromatographic retention times.
R−1/2 is also related to the normalized Laplacian matrix40.

In terms of algorithms, edge rewiring is currently used to tune
R1 (ref. 29), which can be costly. Here we propose configurational
DPG with Rα tuning as an alternative. In tuning, we assign weights
to the edges, then select a matching such that the total weight in the
matching is within a desired range, or the largest or smallest pos-
sible (Supplementary Information section III.D); Fig. 5b,c shows two

DPG graphs (same degree sequence) with extremal degree assorta-
tivity coefficients. The relationship between r and λ1 (ref. 34) allows
the tuning of λ1 (Fig. 5d). As a chemistry application, this can be used,
for example, to efficiently generate specific molecular structures
such as alkane isomers with desired boiling points. Moreover, the
DPG algorithm also samples pathways towards these end-structures,
informing the chemical synthesis of these substances.

Finally, we discuss an alternative route to epidemics control using
the DPG process. Because the DPG reroutes connections between
old nodes, we can use it to disrupt the transmission routes of a
pathogen (a biological or computer virus) by adding immune DPG
nodes, which still allow transmission pathways for other quantities.
Let G0 be the virus-transmitting network. We ask how the small-
est number of immune DPG nodes should be added such that viral
spread is maximally disrupted. To quantify disruption, we moni-
tor the fraction of old nodes q in the largest cluster, still connected
through virus-transmitting edges, after the addition of N − N0 ≡ xN0
DPG nodes. The DPG node degrees follow the degree distribution
of G0. For matchings (Supplementary Table 1) we choose from the
set of old edges with the highest betweenness centrality within that
set. Figure 5e shows in different colours the components discon-
nected by this algorithm for a human contact network: all paths
between components pass through the immune nodes (grey). We
next consider two-dimensional random geometric graphs41, which
are spatial networks without shortcuts and Erdős–Rényi random
graphs (non-spatial with shortcuts). Figure 5f shows a ‘shattering’
phase transition in both cases as fraction x is increased: above the
critical xc, the disease-transmitting network breaks into many small
pieces. Interestingly, Erdős–Rényi networks have a fairly large xc of
0.205, when compared to 0.011 for random geometric graphs. Thus,
DPG immunization of spatial networks is much more efficient than

10 100 1,000

10–6

10–5

10–4

10–3

10–2

10–1

100

P n
(d

)
γ = 2.0
γ = 2.5
γ = 3.0
γ = 3.5

2γ

ξ(γ) d−γ

a

c

d

0 50 100 150 200
0.8

1.0

1.2

1.4

1.6

1.8

: 4
: 2

: 10
: 100
: 200
: 300
: 600

dn+1

d

d

b

Pse
l (d

)/P
n(
d)

n

Fig. 4 | Scale-free DPG networks. a, Degree distributions for γ = 2.0, 2.5, 3.0 and 3.5, after n = 104 DPG steps. b, A part of a scale-free DPG network (even
degrees) for n = 104, γ = 2.5 and dmin = 4 (full graph is in Supplementary Fig. 11). c, A connected, scale-free network obtained with the general algorithm
(arbitrary parity degrees), γ = 2.5 and n = 7,035 nodes, started from a single-edge ForceAtlas2 layout43. d, Node participation ratio Pseln (d)/Pn(d) versus its
degree d, in a matching of size dn+1/2, in a scale-free DPG graph with n = 103 nodes, for several incoming node degrees dn+1. Pseln (d) is the probability of a node
of degree d being selected into the matching and Pn(d) is the probability of a node of degree d. For every dn+1, the matchings were drawn 6 × 105/dn+1 times.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics

Articles NatuRe PHysIcs

that of non-spatial ones. As human physical contacts and computer
networks have a strong spatial component, we expect DPG immu-
nizations to work well in such cases.

In summary, we introduced a family of network growth models
based on degree saturation, a realistic constraint in physical net-
works. The DPG mechanism can generate the exact structure of most
real-world networks, despite the fact that this is an NP-hard problem,
highlighting its modelling potential in real-world applications. An
interesting open question then is what properties make real-world
networks DPG-feasible. The flexibility of the DPG mechanism
allows the tuning of various graph statistics. In addition to those
shown above, we can tune for clustering; for example, the iconf-DPG
constructs tree-like networks (like the configuration model) but
gconf-DPG generates clustered ones. Proper selection of matchings
can also tune network communities. Regarding scale-free networks,
DPG builds them without preferential attachment, unlike other mod-
els. If preferential attachment represents the ‘rich-gets-richer’ mecha-
nism, then DPG is a ‘tinkering’ mechanism that preserves function
(in this case degrees) during growth while expanding its functional
repertoire, a property observed in real systems42.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of

author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41567-021-01417-7.

Received: 31 August 2019; Accepted: 13 October 2021;
Published: xx xx xxxx

References
	1.	 Barabasi, A.-L. & Albert, R. Emergence of scaling in random networks.

Science 286, 509–512 (1999).
	2.	 Burt, R. S. Decay functions. Soc. Netw. 22, 1–28 (2000).
	3.	 Bahulkar, A., Szymanski, B. K., Lizardo, O., Dong, Y., Yang, Y. & Chawla, N.

V. Analysis of link formation, persistence and dissolution in NetSense data. In
Proc. 2016 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM) 1197–1204 (IEEE, 2016).

	4.	 Lovász, L. & Plummer, M. D. Matching Theory (AMS Chelsea, 2009).
	5.	 Trinajstić, N., Klein, D. J. & Randić, M. On some solved and unsolved

problems of chemical graph theory. Intl J. Quant. Chem. 30, 699–742 (1986).
	6.	 Liu, Y. Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks.

Nature 473, 167–173 (2011).
	7.	 Burt, R. S. Structural Holes: The Social Structure of Competition (Harvard

Univ. Press, 1992).
	8.	 Burt, R. S. Reinforced structural holes. Soc. Netw. 48, 149–161 (2015).
	9.	 Kleinberg, J., Suri, S., Tardos, É. & Wexler, T. Strategic network formation

with structural holes. In Proc. 9th ACM Conference on Electronic Commerce
(EC ’08) 284–293 (Association for Computing Machinery, 2008).

	10.	Roy, S. & Jones, A. K. Cutting out the middleman. Nat. Chem. Biol. 9,
603–605 (2013).

0.1 0.3 0.4 0.5

0

0.2

0.4

0.6

q

0.8

1.0

0.011 0.205

0 2 4 6 8 10
0

0.05

0.10

X

0.15

0.20

0.25
q = 0.4

ER RGG

q = 0.5 q = 0.6

1/N0 (×10–4)

x = (N – N0)/N0

N0 = 2 × 104N0 = 1.5 × 104

N0 = 1,000

N0 = 5,000

N0 = 2,000

N0 = 8,000

N0 = 3,000

N0 = 104

a

f

1.8 2.0 2.2 2.4 2.6

Iconf-DPG

Gconf-DPG

n = 1,000
n = 1,500
n = 2,000
n = 3,000

2.8 3.0

0

0.25

0.50f(γ
)

S
pe

ct
ra

l r
ad

iu
s

(λ
1)

γ

0.75

1.00
b

d

–1.0 –0.5 0

r
0.5 1.0

5

6

7

8

9

10

11 G0

DPG+

DPG–

REW+

REW–

e

c

Fig. 5 | DPG in network design. a, Fraction of successful configurational DPG runs for scale-free degree distributions using gconf-DPG and iconf-DPG
(Methods). b,c, Configurational DPG graphs of the same degree sequence with extremal assortativity coefficients 0.99 (b) and −0.71 (c), respectively.
The degree sequence is d1 = 3 (× 100, blue), d2 = 4 (× 100, light blue), d3 = 5 (× 100, yellow) and d4 = 6 (× 100, red). d, Spectral radius λ1 as function of
assortativity r when tuning r with the rewiring method (REW) versus the DPG method, starting from 50 Erdős–Rényi graphs (G0) on 103 nodes and average
degree of 〈d〉 = 5. For every G0 its degree sequence was used to construct graphical realizations of it with conf-DPG, while tuning r to extreme positive
(DPG+) and negative (DPG−) values. Degree-sequence-preserving rewiring of G0 was done to increase (REW+) or decrease (REW−), greedily. The DPG
approach achieves good improvement in the largest λ1 over REW values (viral spread), whereas REW is a bit better for low λ1 values (epidemics control).
Unlike the REW, the DPG algorithm is rejection-free and thus one expects better DPG performance when REW has many rejections. e, DPG immunization
(partitioning) with 53 (grey) nodes of a human contact network with 410 individuals, using matchings based on the highest betweenness centrality edges.
Paths between partitions (different colours) run through DPG nodes. f, Same as in e, but on Erdős–Rényi graphs (ER, 〈k〉 = 2.4) and random geometric
graphs (RGG, 〈k〉 = 10), monitoring the fraction of nodes q (averaged over 50 runs) in the largest component still connected through the edges of the
original network, as function of fraction x of DPG nodes. N0 is the number of nodes in the original network. For both types, a shattering transition happens
at xc (xc = 0.011 for RGG and xc = 0.205 for ER). The inset shows the convergence to the transition point with increasing N0, for both cases.

Nature Physics | www.nature.com/naturephysics

https://doi.org/10.1038/s41567-021-01417-7
https://doi.org/10.1038/s41567-021-01417-7
http://www.nature.com/naturephysics

ArticlesNatuRe PHysIcs

	11.	Edmonds, J. Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965).
	12.	Erdös, P. L., Kharel, S. R., Mezei, T. R. & Toroczkai, Z. Degree-preserving

graph dynamics—a versatile process to construct random networks. Preprint
at https://arxiv.org/abs/2111.11994 (2021).

	13.	 Biedl, T., Demaine, E. D., Duncan, C. A., Fleischer, R. & Kobourov, S. G. Tight
bounds on maximal and maximum matchings. Discrete Math. 285, 7–15 (2004).

	14.	Henning, M. A. & Yeo, A. Tight lower bounds on the matching number in a
graph with given maximum degree. J. Graph Theory 89, 115–149 (2018).

	15.	Frieze, A. & Pittel, B. in Mathematics and Computer Science III: Algorithms,
Trees, Combinatorics and Probabilities (eds Drmota, M. et al.) 95–132
(Birkhäuser, 2004).

	16.	Bourassa, V. & Holt, F. SWAN: Small-world wide area networks. In Proc.
International Conference on Advances in Infrastructure (SSGRR 2003w),
paper 64 (2003).

	17.	Holt, F. B., Bourassa, V., Bosnjakovic, A. M. & Popovic, J. in Handbook on
Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and
Peer-to-Peer Networks (ed. Wu, J.) 799–824 (CRC, 2005).

	18.	Hu, J., MacDonald, A. H. & McKay, B. D. Correlations in two-dimensional
vortex liquids. Phys. Rev. B 49, 15263–15270 (1994).

	19.	Robinson, R. W. & Wormald, N. C. Almost all regular graphs are
hamiltonian. Random Struct. Algorithms 5, 363–374 (1994).

	20.	Cooper, C., Dyer, M. & Greenhill, C. Sampling regular graphs and a
peer-to-peer network. Comb. Probab. Comput. 16, 557–593 (2007).

	21.	Tomita, K., Kurokawa, H. & Murata, S. Graph automata: natural expression of
self-reproduction. Physica D 171, 197–210 (2002).

	22.	Földes, S., Hammer, P.L. Split graphs. In Proc. 8th Southeastern Conference on
Combinatorics, Graph Theory and Computing (eds Hoffman, F. et al.)
311–315 (Utilitas Mathematica, 1977).

	23.	Hammer, P. L. & Simeone, B. The splittance of a graph. Combinatorica 1,
275–284 (1981).

	24.	Barrus, M. D., Hartke, S. G., Jao, K. F. & West, D. B. Length thresholds for
graphic lists given fixed largest and smallest entries and bounded gaps.
Discrete Math. 312, 1494–1501 (2012).

	25.	Bollobás, B. A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. Eur. J. Comb. 1, 311–316 (1980).

	26.	Molloy, M. & Reed, B. A critical point for random graphs with a given degree
sequence. Random Struct. Algorithms 6, 161–180 (1995).

	27.	Chung, F. & Lu, L. The average distances in random graphs with given
expected degrees. Proc. Natl Acad. Sci. USA 99, 15879–15882 (2002).

	28.	Kim, H., Toroczkai, Z., Erdős, P. L., Miklós, I. & Székely, L. A. Degree-based
graph construction. J. Phys. A 42, 392001 (2009).

	29.	Xulvi-Brunet, R. & Sokolov, I. M. Changing correlations in networks:
assortativity and dissortativity. Acta Phys. Pol. B 306, 1431–1455 (2005).

	30.	Li, X. & Shi, Y. A survey on the Randić index. MATCH Commun. Math.
Comput. Chem. 59, 127–156 (2008).

	31.	Randić, M. On characterization of molecular branching. J. Am. Chem. Soc.
97, 6609–6615 (1975).

	32.	Devillers, J. & Balaban, A. T. (eds) Topological Indices and Related Descriptors
in QSAR and QSPR (Wiley-VCH, 1999).

	33.	Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701
(2002).

	34.	Van Mieghem, P., Wang, H., Ge, X., Tang, S. & Kuipers, F. A. Influence of
assortativity and degree-preserving rewiring on the spectra of networks.
Eur. Phys. J. B 76, 643–652 (2010).

	35.	Winterbach, W., de Ridder, D., Wang, H. J., Reinders, M. & Van Mieghem, P.
Do greedy assortativity optimization algorithms produce good results?
Eur. Phys. J. B 85, 151 (2012).

	36.	Abdo, H., Dimitrov, D., Réti, T. & Stevanović, D. Estimating the spectral
radius of a graph by the second Zagreb index. MATCH Commun. Math.
Comput. Chem. 72, 741–751 (2014).

	37.	Wang, Y., Chakrabarti, D., Wang, C. & Faloutsos, C. Epidemic spreading in
real networks: an eigenvalue viewpoint. In Proc. 22nd International
Symposium on Reliable Distributed Systems (SRDS) 25–34 (IEEE, 2003).

	38.	Saha, S., Adiga, A., Aditya Prakash, B., & Vullikanti, A. K. S. Approximation
algorithms for reducing the spectral radius to control epidemic spread. In
Proc. 15th SIAM International Conference on Data Mining (SDM)
568–576 (2015).

	39.	Cvetković, D. & Simić, S. Graph spectra in computer science. Linear Algebra
Its Appl. 434, 1545–1562 (2011).

	40.	Chung, F. R. K. Spectral Graph Theory (American Mathematical Society,
1997).

	41.	Dall, J. & Christensen, M. Random geometric graphs. Phys. Rev. E 66,
016121 (2002).

	42.	Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).
	43.	Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. ForceAtlas2, a

continuous graph layout algorithm for handy network visualization designed
for the Gephi software. PLoS ONE 9, 98679 (2014).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Nature Physics | www.nature.com/naturephysics

https://arxiv.org/abs/2111.11994
http://www.nature.com/naturephysics

Articles NatuRe PHysIcs

Methods
Steady state growth dynamics of MaxDPG networks. Because σ̃ depends only
on d, similar degree sequences should have similar splitnesses. Let C be the set
of nodes in the complete subgraph K∣C∣ and I the periphery. Because for a linear
degree sequence, equation (4) with unit slope s ≃ ⌊n/2⌋, we have ∣C∣ ≃ ∣I∣ ≃ n/2.
As MaxDPG graphs are not quite split graphs, one has a small set of nodes P
with connections to both C and I, so that ∣I∣ ≃ n/2, |C| ≃ n/2 − O(ln n) and
|P| = O(ln n). Due to equation (3), nearly all the nodes are matched and because
half the nodes are in I, almost all the edges of a maximum matching are between C
and I. This allows us to describe the steady-state MaxDPG dynamics as in Fig. 3e.
Accordingly, the new node n + 1 must connect to all nodes in C (thus joining C)
and to almost all the nodes in I. The new C becomes a Kn+1 graph. During cutting,
however, all nodes in C lose a link to I, and eventually a node in C (Fig. 3e, top) will
lose its last connection to I, thus joining it.

Configurational DPG. The task is the following: given an initial graph G0 and
a graphic set of degrees D, find an ordering d = (d1, …, dn) of D in which to join
these degrees via DPG into a graph. We call this method ‘configuration DPG’
or conf-DPG, and it is also a sampling method. Because DPG graphs grow by
a node per step, one expects the process to succeed with a higher probability
when D is increasingly ordered, which we call the iconf-DPG. Figure 5a shows
the fraction of successful iconf-DPG runs f(γ) on scale-free sequences chosen
at random, as a function of γ. The curves cross around γiconf ≃ 2.25, which by a
finite-size scaling argument shows a transition at γiconf between almost never to
almost always successful iconf-DPG runs. Note that the graphicality transition
is at γc = 2 (ref. 44). However, there is a better ordering of D: choose in every step
the largest available degree that the current graph can accept; we call this model
the greedy conf-DPG, or gconf-DPG. Figure 5a shows a higher success rate for
gconf-DPG than for iconf-DPG, with only a weak dependence on sequence
length.

Data availability
Source data are provided with this paper. The data that support the findings of this
study are available from the corresponding author upon reasonable request.

Code availability
The codes used for simulation and analysis are available from the corresponding
author upon reasonable request.

References
	44.	Del Genio, C. I., Gross, T. & Bassler, K. E. All scale-free networks are sparse.

Phys. Rev. Lett. 107, 178701 (2011).

Acknowledgements
We thank D. Soltész, I. Miklós, N. Rupprecht and J. Baker for useful discussions. The project
was supported in part by the United States National Science Foundation through grant
IIS-1724297 (Z.T.) and by the National Research, Development and Innovation Office of
Hungary through NKFIH grants K 116769, KH 126853, K 132696 and SNN 135643 (P.L.E.
and T.R.M.).

Author contributions
S.R.K. performed mathematical modelling, contributed proofs, provided analysis
tools, designed and ran experiments, analysed data and generated the figures. S.C. ran
experiments. T.R.M. and P.L.E. performed mathematical modelling and provided proofs.
Z.T. proposed the main idea, performed mathematical modelling, contributed proofs and
was the lead writer of the manuscript. All authors contributed to proofreading the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41567-021-01417-7.

Correspondence and requests for materials should be addressed to Zoltan Toroczkai.

Peer review information Nature Physics thanks Thilo Gross and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Physics | www.nature.com/naturephysics

https://doi.org/10.1038/s41567-021-01417-7
http://www.nature.com/reprints
http://www.nature.com/naturephysics

Degree-preserving network growth

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s41567-021-01417-7

Supplementary Information

Degree-preserving network growth

Shubha R. Kharel,1 Tamás R. Mezei,2, 3 Sukhwan Chung,1 Péter L. Erdős,2, 3 and Zoltán Toroczkai1

1Department of Physics, 225 Nieuwland Science Hall,
University of Notre Dame, Notre Dame, IN, 46556 USA

2Alfréd Rényi Institute, Reáltanoda u 13-15 Budapest, 1053 Hungary
3Eötvös Lorànd Research Network, Budapest, 1052 Hungary

CONTENTS

I. Mathematical background 2
A. Matching 2
B. Graphical sequences 2
C. Graph splitness 3

II. Theorems and proofs 3
A. Degree-preserving reduction 3
B. The Vizing bound on the matching number 4
C. Maximum DPG 4

1. Alternative proof of the main Theorem S8 6
D. Random fraction DPG and the derivation of its degree distribution 7

III. Algorithms 9
A. Finding a matching 9
B. The DPG algorithm 9

1. Auxiliary node 9
2. DPG Step 9

C. The Degree-preserving reduction step 11
D. Configurational DPG and tuning 12
E. Algorithms for DPG models 13

IV. Real-world Networks 14

V. Supplementary Figures 15

References 22

Supplementary Information: ”Degree-preserving network growth”

I. MATHEMATICAL BACKGROUND

In the following, we work with simple, undirected graphs, i.e., graphs in which there is at most one edge between
any pair of distinct nodes and no edge starts and ends in the same node (no self-loops). Graph or network is used
interchangeably and it is typically denoted by G(V,E) (or, simply by G), where V (or V (G)) is the set of nodes and
E (or E(G)) is the set of edges of G. An edge is labeled by the pair (u, v) of nodes that it connects. Given some set
A, |A | denotes the number of elements (cardinality) of A. We will also use the standard asymptotic notation O and
Θ meaning that f(x) = O(g(x)) if f(x) does not grow faster than g(x) for x → ∞ and f(x) = Θ(g(x)) when f(x)
grows like g(x) as x→∞.

A. Matching

A matching in a graph is a set of independent edges, which are pairwise non-adjacent, i.e., no two of them share
a common vertex. A matching in a graph is maximal if no additional edges from the graph can be included in the
matching. Maximum matching is a maximal matching of the largest size and this size is called the graph’s matching
number, ν(G). We have 1 ≤ ν(G) ≤ 1

2n (for graphs with at least one edge), where n = |V (G)| is the order of G. When

ν(G) =
⌊
n
2

⌋
the matching is called perfect matching for n even and near perfect matching for n odd. We say a node is

matched if it is incident on an edge from the matching. Nodes that are not matched by any edge from the matching
are called exposed. There can be several maximal or maximum matchings in a graph as discussed in the main text
and Fig. 1 of the main text. Simple examples of graphs with perfect matching are the 2n-cycle C2n (sparse) and
the complete graph K2n (dense): C2n has two, whereas K2n has (2n− 1)!! perfect matchings. Clearly, when ν(G) is
low then a small number of vertices collect a large number of edges, with the star graph Sn having the lowest value,
ν(Sn) = 1.

Since only one node is added to the graph in a single DPG step, the matching number can increase at most by
unity: νn+1 ≤ νn + 1. This is because a node contributes with at most one edge to any matching. However, it can
drop by almost any amount in one step, as shown in Fig. S1.

⇒+ ≡ ,+ ⇒⋮ ⋮ ⋮ ⋮ ⋮ ⋮

FIG. S1. Matching number drop during DPG: An example for a large drop in the matching number. Starting with a
cycle C2n, n ≥ 3, and thus ν(Cn) = n, we join a new node of degree 2n in a DPG step, resulting in a so-called friendship
graph [1]. The edges of the triangles opposite to the common node form an independent set of size n and thus we can join
another DPG node of degree 2n, resulting in the end graph shown in the figure. However, that graph has a matching number
of 2, independently of n. Thus, the matching number dropped from Θ(n) to Θ(1) in two DPG steps. The red edges form a
maximum independent set.

B. Graphical sequences

A sequence of integers d = (d1, . . . , dn), di ≥ 1, i = 1, . . . , n is graphical if there is a simple graph G with d as its
degree sequence, denoted by d(G). Sufficient and necessary conditions for a given sequence of integers to be graphical
is provided by the Erdős-Gallai theorem [3]:

Theorem S1 (Erdős-Gallai, EG). Let d : d1 ≥ d2 ≥ ≥ dn ≥ 0 be a sequence of non-negative integers, arranged
non-increasingly. Then d forms the degree sequence of a simple graph iff (i) d1 + ... + dn is even, and (ii) for all

2

Supplementary Information: ”Degree-preserving network growth”

k = 1, ..., n we have

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di} . (S1)

Theorem S1 is not minimal in terms of the number of inequality checks that need to be done; it was shown by
several authors for example in [4], that it is sufficient and necessary to check these inequalities only for special k
values, in particular for only those 1 ≤ k ≤ s values for which dk > dk+1 (step-indices) and at s, where s is the pivot
index introduced in the main text (also introduced in [4] but not called as such).

C. Graph splitness

Hammer and Simeone [6] define the “splittance” σ(G), as the minimum number of edges that need to be
added/removed from G to make it into a split graph, thus serving as a measure of how far G is from a split
graph. They show that

σ(G) =
1

2

(
s(s− 1)−

s∑
i=1

di +
n∑

i=s+1

di

)
, (S2)

where s is d’s pivot index. In the main paper we define the normalized version of splittance via σ̃(G) = σ(G)/m(G),
where m(G) = 1

2

∑n
i=1 di is the total number of edges, and we call σ̃(G) the “splitness ” of the graph.

Some particular values for the splittance σ(G) of a graph G: σ(Pn) = n− 4, σ(Km,n) = q(q − 1)/2, q = min(m,n)
and for a regular graph of degree d: σ(Rd,n) = d(n − d − 1)/2. For any graph, we also have the tight upper bound

σ(G) ≤
⌊
1
2

((
n
2

)
−
⌊
n2

4

⌋)⌋
, or roughly n2/8.

II. THEOREMS AND PROOFS

A. Degree-preserving reduction

In the main text we discussed the conditions under which a node w can be DP reduced from a network, i.e.,
performing the “inverse” of a DPG step for the simpler case when w has an even degree. Below we first provide its
precise formulation along with its proof, then we turn to the more general case, corresponding to the general forward
DPG algorithm which allows also odd degree nodes to be added to the graph, and do the same. We first introduce
some notations. Given a set of nodes S let Γ(S) denote the subgraph induced in G by the nodes of S. Let N(S)
denote the set of neighbors of S in G and Γ(S) denote the complementary graph of Γ(S) in G.

Lemma S2. A simple graph G is DP-reducible under the even degree DPG process iff G has at least one vertex whose
complement neighborhood graph has a perfect matching.

Proof. Let w ∈ V (G) be a node with even degree d such that Γ(N(w)) has a matching M with d/2 edges (perfect
matching). This partitions the neighbors of w in G into d/2 disjoint pairs, each pair connected by an edge in M .
Remove w with its edges in G, then transfer all edges of M into edges of G (edges of Γ(N(w)) are non-edges in G),
obtaining another simple graph G′. The other direction is also simple. �

We now turn to discuss the general DPG case and its inverse operation. The general forward DPG step and also
its inverse (or the DP reduction step) are described in the algorithms sections III B 2, III C. As presented there, in
the general forward DPG step we allow one stub to be present at times in the graph (since now we allow also odd
degree nodes to join the graph), considered connected to an “auxiliary” node (see III B 1 for description). When
reversing this procedure, therefore, we also need to consider the existence of such an auxiliary node, denoted by s.
The following Lemma is a generalization of Lemma S2 for the general DPG process:

Lemma S3. A simple graph G (which may contain an auxiliary node s) is DP-reducible iff G has at least one node
w such that one of the following is true: 1) the degree dw of w is even and Γ(N(w)) (which may include s) has perfect
matching; 2) dw is odd and Γ(N(w)) has near-perfect matching when s is absent or Γ(N({w, s}) \ {w, s}) has perfect
matching when s is present.

3

Supplementary Information: ”Degree-preserving network growth”

Proof. The proof proceeds along similar lines as in Lemma S2, however, considering now all the possible cases corre-
sponding to the generalized DPG process, presented in section III B 2. �

This provides a polynomial algorithm for checking if a graph is DP-reducible. The reduction step is then repeated
on G′, obtaining G′′ and so on, until a smallest graph G0 obtained that is non-reducible. Using Lemma S2 one can
show that one family of such G0 graphs is obtained from taking m copies of K` and adding a 1-factor between every
pair of them, for ` ≥ 4, `+m even and ` > m. The graph obtained is a non-DP-reducible (`+m− 2)-regular graph.
However, there are other, non-DP reducible graph families, including sparse graphs, with some examples being shown
in Figs. S5-S8.

B. The Vizing bound on the matching number

Denoting by ∆(G) the maximum degree of graph G, Vizing’s theorem [5] says that for all finite simple graphs
∆(G) ≤ χ′(G) ≤ ∆(G) + 1, where χ′(G) is the chromatic index of G. The chromatic index is the minimum number
of colors needed for a proper edge-coloring of G. A proper edge coloring of a graph is any coloring in which no two
incident edges (incident edges share a node) are colored with the same color. Since every color class forms a matching

in G we can write χ′(G) ≥ m(G)
ν(G) where m(G) = |E(G)| is the number of edges in G, thus obtaining

ν(G) ≥ m(G)

∆(G) + 1
. (S3)

C. Maximum DPG

The Maximum DPG (or MaxDPG) model is a limiting case of the DPG family of models, and it allows rigorous
analytical treatment, although not easily, by any means. In MaxDPG the incoming degree (working with even degrees,
only) in the n-th step is completely determined by the graph’s matching number after the n− 1-th step via

dn = 2ν(Gn−1) = 2νn−1 , n ≥ 1 (S4)

which is also the maximum degree of a DPG node that the graph can take, at that step. Here we provide the proof
of the bound (3) (in the main text) on the matching number, presented here as Theorem S8. While the bound itself
looks simple, the proof below is fairly involved, requiring several other results, that we first need to establish.

We start by invoking an observation according to which a Hamiltonian graph (of even order) always has a perfect
matching. A graph is Hamiltonian if there is a closed path (a cycle) that visits each node exactly once. Given such a
graph, we can easily construct a perfect matching in it, by taking every other edge along the Hamiltonian cycle. We
now recall a theorem by Pósa:

Theorem S4 (Pósa [2]). Let G be a graph on n vertices and let t(k) denote the number of vertices of degree not
exceeding k. If t(k) < k, ∀ 1 ≤ k < n

2 , then G has a Hamiltonian cycle.

Pósa’s theorem expresses the intuitive observation that if a graph has sufficiently many edges, it will also have
a Hamiltonian cycle. As we will see, G in general does not satisfy the conditions in Pósa’s theorem for MaxDPG,
however, it is not far from it. The idea then is to extend G with the smallest number of r(G) vertices, each connected
to all vertices of G, such that the extended graph G+ satisfies Pósa’s theorem. Note that an equivalent formulation
of the conditions in Theorem S4 is to demand that dk ≥ k + 1. Thus, this procedure amounts to “lifting” all the
degrees of G such that dk + r(G) ≥ k + 1 for all 1 ≤ k < (n+ r(G))/2. Having a Hamiltonian cycle in the extended
graph G+, we now delete the added vertices and their links and thus the remaining edges of the matching along the
cycle in G+ will form a matching in G. One can therefore announce:

Theorem S5. Let G be a simple graph on n vertices and let tG(k) be the number of vertices of degree not exceeding
k. Let

r(G) := min

{
` ∈ Z+: tG(k − `) < k , ∀ ` ≤ k < n+ `

2

}
(S5)

then G has a matching of size: dn−r(G)
2 e ≤ ν(G).

4

Supplementary Information: ”Degree-preserving network growth”

Proof. Based on (S5), r(G) is the smallest positive integer ` for which the inequality holds for all degrees k in the
shown range. One can think of ` as the extra degree coming from the ` added vertices. The value of r(G) guarantees
that the larger G+ satisfies the conditions in Pósa’s theorem. Proceeding as described just before Theorem S4, when

n + r(G) is even, we obtain a matching of size n−r(G)
2 in G and when odd, the matching is of size n+r(G)−1

2 . Thus,

at least n+r(G)−1
2 − (r(G)− 1) = n−r(G)+1

2 of the chosen edges are inside G. �

dk

knn+ ¸

2
n

2
q1

tG(q)

q

¸

2

¸ = r(G)

k + 1
k

0 25 50
0

25

50

FIG. S2. Schematic for the proof of Theorem S5. The dashed green curve is the red curve shifted up by `. Inset: the
degree sequence d for a MaxDPG run starting from K2 shown in red and the sequence ∆ (defined in the text) in gray.

For r(G) small, we get a high lower bound on maximum matching. This bound is useful only for sufficiently dense
graphs but it is noninformative for sparse ones. E.g., if G = C2n then r(G) = 2n − 4, so ν(C2n) ≥ 2, far from
ν(C2n) = n.

Next, we estimate r(G) for the MaxDPG process. Let (Gn)
∞
n=0 be the sequence of MaxDPG graphs and denote

rn = r(Gn) and tn = tGn
. Let us introduce

sn := min
{
` ∈ Z+: tn(k − `) < k , ∀ ` ≤ k < n

}
, (S6)

which simply extends the range of k to n, compared to the definition of rn. Since existing degrees are preserved,
(rn)

∞
n=0, (sn)

∞
n=0 are both monotonically increasing sequences and rn ≤ sn for all n ≥ 0 (since for sn more constraints

need to be satisfied). We next prove the following:

Lemma S6. For any m: n ≤ m ≤ 2n− sn, we have rm ≤ sn.

Proof. To simplify notations, let pn := 2n − sn. We proceed by induction on m. The statement is clearly true for
m = n. Let us assume that rm−1 ≤ sn, m ≥ n+1. Want to show that rm ≤ sn. Since Eq. (4) of the main text defines
rm as the smallest ` for which tm(k−`) < k, for all ` ≤ k < (m+`)/2, it is sufficient to show that tm(k−sn) < k holds
for all sn ≤ k < (m+sn)/2. Based on Theorem S5 we have νm−1 ≥ (m− 1− rm−1) /2 and thus for all m ∈ [n+1, pn]
we have

dm = 2νm−1 ≥ m− 1− rm−1 ≥ m− 1− sn ≥ n− sn . (S7)

Clearly, m ≤ pn implies that sn ≤ k < (m + sn)/2 ≤ n and thus the new vertex’s degree dm ≥ n − sn falls outside
the needed range for k, so

tm(k − sn) = tn(k − sn) , sn ≤ k <
m+ sn

2
, (S8)

5

Supplementary Information: ”Degree-preserving network growth”

for all m ∈ [n + 1, pn]. By Eq. (5) of the main text, however, tn(k − sn) < k and thus tm(k − sn) < k, which we
wanted to prove. �

We can now use this result to prove:

Lemma S7. For any n ≥ 0 we have: s2n−sn ≤ sn + 2.

Proof. It is sufficient to prove that tpn(k − (sn + 2)) < k for all sn + 2 ≤ k < pn. Choosing m = pn in (S8) we obtain
that tpn(k − sn) = tn(k − sn) for all sn ≤ k < n. But, by the definition of sn, tn(k − sn) < k for all sn ≤ k < n, so
tpn(k− sn) < k, ∀k ∈ [sn, n). Changing the variable k to k− 2 gives tpn(k− (sn + 2)) < k− 2 < k, ∀k ∈ [sn + 2, n+ 2)
(noting that the lhs is zero for k = 1, 2). In the following, we will make use of the above inequality for k = n+ 1

tpn(n− 1− sn) < n+ 1 . (S9)

We are left to prove that tpn(k − (sn + 2)) < k for all n+ 2 ≤ k < pn. Gpn contains the degree sequence of Gn and,
in addition, the degrees dn+1 ≤ . . . ≤ dpn . Let un(k) be the number of vertices of degree k in Gn. Thus

tpn(k − 2− sn) = tpn(n− 1− sn) +
k−2−n∑
j=0

upn(n+ j − sn) . (S10)

Since dm ≥ m− 1− sn (see (S7)), dn+1 ≥ n− sn but dn+2 ≥ n+ 1− sn, so upn(n− sn) ≤ 1; dn+3 ≥ n+ 2− sn, so
upn(n− sn) +upn(n+ 1− sn) ≤ 2, and so on. This means from (S10) that tpn(k−2− sn) ≤ tpn(n−1− sn) +k−1−n
or after using (S9): tpn(k − 2− sn) < n+ 1 + k − 1− n = k, for all k ∈ [n+ 2, pn). �

Armed with the results above we now focus on our main theorem and provide two proofs for it. The first is a short
technical proof, the second is more involved but provides more insight.

Theorem S8. If sn0
≤ n0 − 3 then sn ≤ 2 log2 n+O(1) and thus

νn ≥
1

2
n− log2 n+O(1) . (S11)

Proof. This is the first, short proof. Let us introduce ni = n0 + 2i + 2i − 1, i ∈ N0. We prove by induction that
sni
≤ n0 + 2i − 3. For i = 0 the statement is just the condition assumed. Let us assume that snj

≤ n0 + 2j − 3,

for all 1 ≤ j ≤ i. Then, 2ni − sni ≥ 2(n0 + 2i + 2i − 1) − (n0 + 2i − 3) = n0 + 2i+1 + 2i + 1 = ni+1. Since sn is
non-decreasing, sni+1

≤ s2ni−sni
≤ sni

+ 2, using Lemma S7 for the last inequality. But sni
+ 2 ≤ (n0 + 2i− 3) + 2, so

sni+1 ≤ n0 +2(i+1)−3, which we wanted to show. Now let f(i) = n0 +2i−3. We have ni = 2[f(i)+3−n0]/2 +f(i)+2.
For i ≥ 1, f(i) + 2 ≥ 0, so 2 log2(ni) + n0 − 3 ≥ f(i) ≥ sni . As sn is monotone increasing and f(i+ 1)− f(i) = O(1),
the theorem holds. �

1. Alternative proof of the main Theorem S8

Before proving this theorem, let us consider the sequence of positive integers zn obeying:

z2n−zn = zn + 2 (S12)

zn+1 ≥ zn (S13)

zn0
≥ sn0

+ 2 , (S14)

for all n ≥ n0.

Lemma S9. We have sn ≤ zn, for all n ≥ n0.

Proof. First we show: if sm ≤ zm, then s2m−sm ≤ z2m−sm . Clearly, sm ≤ zm implies 2m − zm ≤ 2m− sm and since
zm is non-decreasing (from (S13)), z2m−zm ≤ z2m−sm . Thus, from Lemma 6 of the main text: s2m−sm ≤ sm + 2 ≤
zm + 2 = z2m−zm ≤ z2m−sm , which is what we wanted to show. Next, let ni = 2ni−1 − si−1, i ≥ 1. Starting from
sn0

< zn0
, using induction and the above, we get sni

≤ zni
, ∀i ≥ 0. Moreover, zni+1

− zni
= z2ni−sni

− zni
≥

z2ni−zni
− zni

= 2 ≥ s2ni−sni
− sni

= sni+1
− sni

(the last inequality is based on Lemma 6 of the main text). Hence:

zni+1
− sni+1

≥ zni
− sni

, for all i ≥ 0 and therefore zni
− sni

≥ . . . ≥ zn0
− sn0

≥ 2 (from (S14)). Thus zni
− sni

≥ 2
or zni

≥ sni
+ 2 ≥ sni+1

. Since zni
is the minimum of zn and sni+1

is the maximum of sn in n ∈ [ni, ni+1], we must
have sn ≤ zn, n ∈ [ni, ni+1], ∀i ≥ 0 and thus for all n ≥ n0. �

6

Supplementary Information: ”Degree-preserving network growth”

Consider the embedding of the sequence zn into R+, through the functional equation

g(2x− g(x)) = g(x) + 2 (S15)

with g′(x) > 0 (monotonic) and g(x) < x− 2, for all x ≥ n0 and with fixed boundary condition g(n0) = zn0
. If such

a g(x) exists, zn = g(n) will satisfy (S12)-(S14). Note, the functional equation (S15) is an Abel equation. To solve
it we use the fact that g is monotonic and thus it has an inverse x = g−1(y) ≡ h(y). Taking the inverse of (S15) we
obtain

2h(y) = h(y + 2) + y , (S16)

which, differentiated twice gives 2h′′(y) = h′′(y + 2), solved by h′′(y) = a2y/2, where a is an arbitrary constant.
Integrating twice and inserting the result into (S16) we find: h(y) = 2a

ln 22y/2 + y + 2 = g−1(y) = x. Note that a = 0
gives the linear solution of (S16), in which case g(x) = x − 2, but that is excluded by g(x) < x − 2 and thus a > 0.
The inverse is: g(x) = x − 2 − 2

ln 2W
(
a2(x−2)/2

)
, where W is the Lambert function. Asymptotically, for large z,

W (z) ' ln z − ln ln z + ln ln z
ln z +O((ln ln z/ ln z)2) and thus

g(x) = 2 log2 x+
2

ln 2
ln

(
ln 2

2a

)
+O

(
lnx

x

)
, x� 1 , (S17)

with a = (n0 − zn0
− 2)2−1−zn0/2. Note that the leading term does not depend on a. Thus, g(n) = 2 log2 n+O(1) =

zn ≥ sn (from Lemma S9). Using Theorem S5: νn ≥ dn−rn2 e ≥
n−rn

2 ≥ n−sn
2 ≥ n

2 − log2 n+O(1), which finishes the
proof. Note that the logarithmic deviation from n/2 is only an estimate, and in fact, νn stays closer to n/2. �

D. Random fraction DPG and the derivation of its degree distribution

This DPG model is defined via:

dn = 2drnνn−1e , (S18)

where rn ∈ (0, 1) is a uniformly distributed random variable, ρ(r) = 1. Fig. S3a shows a sample graph and Fig. S3b
shows that here too, νn has linear growth: νn ' an, with a = 0.38. The degree distribution is no longer linear but
logarithmic, with Pn(d) ' 1

an ln
(
2an
d

)
for n� 1, as shown in Fig. S3c, which we derive next.

2 10 50 200 800
0

4

8

12

16
x10-3

2 10 50 200 800
0

4

8

12

16

x10-3

2 10 50 200 800
0

4

8

12

16

x10-3

a b c

FIG. S3. Random fraction DPG: (a) A Random fraction DPG built sample graph (200 nodes), same node colors as in main
text Figs. 3a-c; note, here newer nodes can join also the periphery. (b) The fraction 〈νn/Nn〉 (average over 100 runs) saturates
to a value under 0.5. (c) The degree distribution of random fraction DPG networks (obtained from 100 networks with 103

nodes) is logarithmic; the continuous line is the theoretical curve.

The calculations below are generalizable to other DPG processes. Let Nn(d) denote the number of vertices of degree
d after n steps (in the Gn DPG graph). The degree distribution is then

Pn(d) =

〈
Nn(d)

n

〉
(S19)

7

Supplementary Information: ”Degree-preserving network growth”

where 〈·〉 denotes averaging over all Gn DPG graphs started from the same initial condition. Normally, we should
divide by n+ |V (G0)|, but here we are interested in the n� 1 limit. One can write: Nn(d) = Nn−1(d) + In(d), where
In(d) = δdn,d is an indicator function. Clearly, 〈Nn(d)〉 = 〈Nn−1(d)〉+ 〈In(d)〉. However, 〈In(d)〉 = Prob{dn = d} ≡
pn(d). Although the matching number νn itself is a stochastic variable, here we will replace it with its average value,
which in all of the cases studied here is linear in n, with good approximation, i.e., νn ' 〈νn〉 = an, where 0 < a ≤ 1/2.
Neglecting the ceiling function in (S18) and considering variables as continuous ones, dn ' 2arn, 2 ≤ dn ≤ 2an. Thus,
we can express

pn(d) = 〈δ(d− dn)〉 =

∫ 1

0

dr ρ(r) δ(d− 2anr) =
1

2an
θ(2an− d) , (S20)

where θ(·) is the Heaviside step function. Let us denote Sn(d) = 〈Nn(d)〉. We have Sn(d) = Sn−1(d) + 1
2anθ(2an− d),

with S0(d) = N0(d) being the number of nodes of degree d in G0 (for K2, N0(1) = 2, N0(d) = 0, ∀d ≥ 2). Let D = d
2a .

Then Sn(d) = Sn−1(d), ∀n < D. Assuming G0 = K2 and d ≥ 2, we thus have Sn(d) = Sn−1(d) = . . . = S0(d) = 0 for
all n < D. For n ≥ D the recursion is easily solved to give

Sn(d) =
1

2a

n−D∑
k=0

1

D + k
, n ≥ D (S21)

and thus

Pn(d) =
2

n

n− d
2a∑

k=0

1

d+ 2ak
(S22)

expressing the sought degree distribution. The extra factor of 2 comes from the fact that only every second d value
is allowed due to the evenness restriction. Using a Poisson resummation formula we can extract the leading terms as

Pn(d) ' 1

an

[
ln

(
2an

d

)
+

1

2

(
2a

d
+

1

n

)
+ . . .

]
(S23)

plotted in Fig. S3c.

8

Supplementary Information: ”Degree-preserving network growth”

III. ALGORITHMS

A. Finding a matching

In any DPG step, we need to find a matching of size k ≤ ν, where ν is the graphs’s matching number. The simplest
approach to find a matching of size k, which works well if k is not too large (compared to ν), is the greedy method.
In the greedy method we first pick a random edge, add it to our matching set M (M initially is the empty set) then
we remove this edge along with all the edges adjacent to it. We repeat this process by picking another random edge
from the set of leftover edges (if non-empty), etc. until we find k edges or there are no more edges left. Note, that
when the latter occurs, we have just obtained a maximal matching, M . It is well known, that the size of any maximal
matching is at least ν/2 [8] so one expects for the greedy method to succeed as long as k ≤ ν/2.

When k is larger than the size of the obtained maximal matching, we need something more sophisticated, in order
to find k independent edges. This is based on Edmond’s Blossom algorithm, which allows us to continue growing M
(found by the greedy part) and increase its size one edge at a time. A path is called an alternating path if its every
other edge is from the matching, M . An augmenting path P is an alternating path of odd length with exposed start
and end nodes (see subsection I A). Edmond’s algorithm starts with a set M of independent edges (for example, the
maximal matching found greedily), then proceeds by constructing an augmenting path in the graph. If an augmenting
path P exists, it removes the edges at the even positions from M and adds the edges at the odd positions to M . The
resulting matching will have one more edge because P had an odd length. This process is repeated until there are
no more augmenting paths, which, according to Berge’s Lemma, implies that a maximum matching has been found
[9, 10].

Note that the greedy algorithm is of O(|E|) complexity, whereas Edmond’s Blossom algorithm finds a maximum
matching in time O(|V |2|E|), which can be improved to O(|V |1/2 |E|) [35].

Implementation of Edmond’s algorithm in C++ can be found in Boost Graph Library [12] and LEMON Graph
Library [18]. Wolfram Mathematica® also provides a specific function (FindIndependentEdgeSet[G]) to find a maximum
matching in graph G.

B. The DPG algorithm

Degree-preserving growth is a not a single model but a family of models and this is reflected in the algorithm as
well. Accordingly, it has some components that are internal and some that are external to the code. The external
components (those which specify the actual model) are the incoming new node w’s degree dw, and the specificity of
the set M of independent edges that are cut to form connections with node w. Given an incoming degree dw, the
size of M , is determined by that (|M | ∈ {bdw/2c, ddw/2e} see subsection III B 2), however, the identity of the edges
forming a set of that size is an external variable. It is this variable that we can use to tune other properties (such
as degree correlations, or connectivity) of the DPG graph, as explained in a later section. The internal component is
how the new node is connected to the existing graph, given in section III B 2, below.

1. Auxiliary node

To formulate our general DPG algorithm that allows nodes with odd incoming degree, we introduce the notion of
the auxiliary node. Let w be the new node of degree dw to be added through DPG to a simple graph G. If dw is
odd, no matter how we connect it to G without creating multiple edges, there will be a leftover stub or “half-edge”
connected to a node (w or otherwise). Since graph with odd degree-sum cannot exists, we introduce a auxiliary node
s with degree at most one to which we connect this dangling stub, so the whole structure actually forms a simple
graph. When there is no stub, the auxiliary node is isolated (zero degree) and we consider it not present, removed
from the graph, but created again, as necessary. There can be at most one auxiliary node in a DPG graph.

2. DPG Step

In a DPG step we always remove the edges in the selected M . The neighborhood of w may include the auxiliary
node s depending on conditions that are outlined below.

9

Supplementary Information: ”Degree-preserving network growth”

s-creation
<latexit sha1_base64="aCzyweVUE1epgEK77gwi/WrJDEM=">AAACKXicbVBPSxtBHP2t2ppu/yV67GUwFHpow24qaA6i4MWjhSYGzBJmJ7/EIfNnmZm1DUs+iidBD34AP4enVq/9Ip3shlJtHww83vs9ePPSTHDroug+WFlde/Z8vfYifPnq9Zu39cZGz+rcMOwyLbTpp9Si4Aq7jjuB/cwglanAk3R6uPBPztFYrtVXN8swkXSi+Jgz6rw0rDfsQKb6e/GJ+dRCmg/rzagVlSD/knhJmvu34V52+SM8HjYCGIw0yyUqxwS19jSOMpcU1DjOBM7DQW4xo2xKJ3jqqaISbVKU3efkvVdGZKyNf8qRUv07UVBp7Uym/lJSd2afegvxv14qP+bZxCBOHzUohNQjNOpJLTfeTQqustyhYlWrcS6I02SxGhlxg8yJmSeUGe4/RtgZNZQ5v20Ylpt1SpCK7GwvSSf+s1mv3Yo/t9pfouZBGyrU4B1swQeIYQcO4AiOoQsMvsEFXMF1cBPcBT+Dh+p0JVhmNuERgl+/ARdmqfc=</latexit>

s-removal
<latexit sha1_base64="JVShyEl76Tlr8xvjqoBl1a27Sso=">AAACKHicbZDLSgNBEEVrfMbxlejSTWMQXGiYiYK6EAU3LhWMCiaEnk4lNunH0N0TDEP+xJ3owh/wN9yJW7/EySSIrwsNh1tVcPtGseDWBcG7NzE5NT0zW5jz5xcWl5aLpZVLqxPDsMa00OY6ohYFV1hz3Am8jg1SGQm8ironw/lVD43lWl24fowNSTuKtzmjLrOaxaKty0jfpdsGpe5RMWgWy0ElyEX+QjiG8tGLfxg/vPlnzZIH9ZZmiUTlmKDW3oRB7BopNY4zgQO/nliMKevSDt5kqKhE20jz6AOykTkt0tYme8qR3P1+kVJpbV9G2aak7tb+ng3Nf2eR3ErijkHs/kiQCqlbaNSvWK6930i5ihOHio1StRNBnCbD0kiLG2RO9DOgzPDsY4TdUkOZy6r1/byzg1xkBHu7YzgIvzq7rFbCnUr1PCgfV2GkAqzBOmxCCHtwDKdwBjVg0IN7eIQn79l79d6899HqhDe+WYUf8j4+AUqGqY4=</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit>

dw ≠ even
<latexit sha1_base64="vrHXTWSQc4v797d1mqM5uawQQ70=">AAACKXicbZBLSyNBFIVvq+MjM2qiSzeFMuBCQ3cU1J3gxqWCUcGEUF19E4vUo6mqVkOTH+HGnVtd+E/cuZvRpX/ESieIrwMFH+feC6dOnApuXRj+D8bGJ35NTk3PlH7/mZ2bL1cWjq3ODMM600Kb05haFFxh3XEn8DQ1SGUs8CTu7g3mJxdoLNfqyPVSbEraUbzNGXXeapUrSeuSrJOGjPVVjheo+q3ySlgNC5HvEI1gZXfy8OXx5vr+oFUJoJFolklUjglq7VkUpq6ZU+M4E9gvNTKLKWVd2sEzj4pKtM28yN4nf72TkLY2/ilHCvfjRU6ltT0Z+01J3bn9OhuYP85iuZalHYPY/ZQgF1InaNSXWK693cy5SjOHig1TtTNBnCaD1kjCDTIneh4oM9x/jLBzaihzvttSqehspxAZwtbmCHai986Oa9Voo1o79OXVYKhpWIJlWIUItmAX9uEA6sDgEm7hDu6Dh+Ap+Bc8D1fHgtHNInxS8PoGSBuqMA==</latexit>

dw ≠ even
<latexit sha1_base64="vrHXTWSQc4v797d1mqM5uawQQ70=">AAACKXicbZBLSyNBFIVvq+MjM2qiSzeFMuBCQ3cU1J3gxqWCUcGEUF19E4vUo6mqVkOTH+HGnVtd+E/cuZvRpX/ESieIrwMFH+feC6dOnApuXRj+D8bGJ35NTk3PlH7/mZ2bL1cWjq3ODMM600Kb05haFFxh3XEn8DQ1SGUs8CTu7g3mJxdoLNfqyPVSbEraUbzNGXXeapUrSeuSrJOGjPVVjheo+q3ySlgNC5HvEI1gZXfy8OXx5vr+oFUJoJFolklUjglq7VkUpq6ZU+M4E9gvNTKLKWVd2sEzj4pKtM28yN4nf72TkLY2/ilHCvfjRU6ltT0Z+01J3bn9OhuYP85iuZalHYPY/ZQgF1InaNSXWK693cy5SjOHig1TtTNBnCaD1kjCDTIneh4oM9x/jLBzaihzvttSqehspxAZwtbmCHai986Oa9Voo1o79OXVYKhpWIJlWIUItmAX9uEA6sDgEm7hDu6Dh+Ap+Bc8D1fHgtHNInxS8PoGSBuqMA==</latexit>

dw ≠ odd
<latexit sha1_base64="GEPVUb1dAizT/jBdpoeDe4a9PDg=">AAACKHicbZBPS1tBFMXvi9ba9I+JLrsZKgUXNrwXBc1OcONSoTGBJIR5826SIfPnMTPPGh75EG5cuVXBj+LKXZHu+kk6eQlS0x4Y+HHuvXDmxKng1oXhc1BaWX2z9nb9Xfn9h4+fNirVzXOrM8OwybTQph1Ti4IrbDruBLZTg1TGAlvx+Hg2b12gsVyr726SYk/SoeIDzqjzVr9SSfo/yDfSlbG+zHWSTPuV7bAWFiL/QrSA7aO1s1+P11f3p/1qAN1Es0yickxQaztRmLpeTo3jTOC03M0sppSN6RA7HhWVaHt5EX1KvnonIQNt/FOOFO7fFzmV1k5k7DcldSO7PJuZ/53FcjdLhwZx/CpBLqRO0KilWG5w2Mu5SjOHis1TDTJBnCaz0kjCDTInJh4oM9x/jLARNZQ5X225XHTWKETmcLC/gEb00tl5vRbt1epnvrw6zLUOn+EL7EAEB3AEJ3AKTWBwATdwC3fBQ/AU/Aye56ulYHGzBa8U/P4DUp6prw==</latexit>

dw ≠ odd
<latexit sha1_base64="GEPVUb1dAizT/jBdpoeDe4a9PDg=">AAACKHicbZBPS1tBFMXvi9ba9I+JLrsZKgUXNrwXBc1OcONSoTGBJIR5826SIfPnMTPPGh75EG5cuVXBj+LKXZHu+kk6eQlS0x4Y+HHuvXDmxKng1oXhc1BaWX2z9nb9Xfn9h4+fNirVzXOrM8OwybTQph1Ti4IrbDruBLZTg1TGAlvx+Hg2b12gsVyr726SYk/SoeIDzqjzVr9SSfo/yDfSlbG+zHWSTPuV7bAWFiL/QrSA7aO1s1+P11f3p/1qAN1Es0yickxQaztRmLpeTo3jTOC03M0sppSN6RA7HhWVaHt5EX1KvnonIQNt/FOOFO7fFzmV1k5k7DcldSO7PJuZ/53FcjdLhwZx/CpBLqRO0KilWG5w2Mu5SjOHis1TDTJBnCaz0kjCDTInJh4oM9x/jLARNZQ5X225XHTWKETmcLC/gEb00tl5vRbt1epnvrw6zLUOn+EL7EAEB3AEJ3AKTWBwATdwC3fBQ/AU/Aye56ulYHGzBa8U/P4DUp6prw==</latexit>

s
<latexit sha1_base64="H4VNCiprnsurw/0VaDC7wwtksj4=">AAACF3icbZC9SgNBFIXvxr+4/kZLm8EgWEjYjUK0EAM2lgkYFZIgs5ObOGRmdpmZFcKSJ7DVwtqHsLQTWyvxbdxsgmj0wMDHuffCmRNEghvreZ9ObmZ2bn4hv+guLa+srq0XNi5MGGuGDRaKUF8F1KDgChuWW4FXkUYqA4GXQf90NL+8RW14qM7tIMK2pD3Fu5xRm1p1c71e9EpeJvIX/AkUT57d4+jpw61dFxxodUIWS1SWCWpM0/ci206otpwJHLqt2GBEWZ/2sJmiohJNO8mSDslO6nRIN9TpU5Zk7s+LhEpjBjJINyW1N2Z6NjL/nQVyL456GrH/K0EiZNhBraZi2e5hO+Eqii0qNk7VjQWxIRl1RDpcI7NikAJlmqcfI+yGasps2qTrZp0dZSJjqBxM4Mj/7uyiXPL3S+W6V6yWYaw8bME27IIPFajCGdSgAQwQ7uAeHpxH58V5dd7GqzlncrMJv+S8fwHvyqKa</latexit>

s
<latexit sha1_base64="H4VNCiprnsurw/0VaDC7wwtksj4=">AAACF3icbZC9SgNBFIXvxr+4/kZLm8EgWEjYjUK0EAM2lgkYFZIgs5ObOGRmdpmZFcKSJ7DVwtqHsLQTWyvxbdxsgmj0wMDHuffCmRNEghvreZ9ObmZ2bn4hv+guLa+srq0XNi5MGGuGDRaKUF8F1KDgChuWW4FXkUYqA4GXQf90NL+8RW14qM7tIMK2pD3Fu5xRm1p1c71e9EpeJvIX/AkUT57d4+jpw61dFxxodUIWS1SWCWpM0/ci206otpwJHLqt2GBEWZ/2sJmiohJNO8mSDslO6nRIN9TpU5Zk7s+LhEpjBjJINyW1N2Z6NjL/nQVyL456GrH/K0EiZNhBraZi2e5hO+Eqii0qNk7VjQWxIRl1RDpcI7NikAJlmqcfI+yGasps2qTrZp0dZSJjqBxM4Mj/7uyiXPL3S+W6V6yWYaw8bME27IIPFajCGdSgAQwQ7uAeHpxH58V5dd7GqzlncrMJv+S8fwHvyqKa</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit>

s
<latexit sha1_base64="H4VNCiprnsurw/0VaDC7wwtksj4=">AAACF3icbZC9SgNBFIXvxr+4/kZLm8EgWEjYjUK0EAM2lgkYFZIgs5ObOGRmdpmZFcKSJ7DVwtqHsLQTWyvxbdxsgmj0wMDHuffCmRNEghvreZ9ObmZ2bn4hv+guLa+srq0XNi5MGGuGDRaKUF8F1KDgChuWW4FXkUYqA4GXQf90NL+8RW14qM7tIMK2pD3Fu5xRm1p1c71e9EpeJvIX/AkUT57d4+jpw61dFxxodUIWS1SWCWpM0/ci206otpwJHLqt2GBEWZ/2sJmiohJNO8mSDslO6nRIN9TpU5Zk7s+LhEpjBjJINyW1N2Z6NjL/nQVyL456GrH/K0EiZNhBraZi2e5hO+Eqii0qNk7VjQWxIRl1RDpcI7NikAJlmqcfI+yGasps2qTrZp0dZSJjqBxM4Mj/7uyiXPL3S+W6V6yWYaw8bME27IIPFajCGdSgAQwQ7uAeHpxH58V5dd7GqzlncrMJv+S8fwHvyqKa</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit>

s
<latexit sha1_base64="H4VNCiprnsurw/0VaDC7wwtksj4=">AAACF3icbZC9SgNBFIXvxr+4/kZLm8EgWEjYjUK0EAM2lgkYFZIgs5ObOGRmdpmZFcKSJ7DVwtqHsLQTWyvxbdxsgmj0wMDHuffCmRNEghvreZ9ObmZ2bn4hv+guLa+srq0XNi5MGGuGDRaKUF8F1KDgChuWW4FXkUYqA4GXQf90NL+8RW14qM7tIMK2pD3Fu5xRm1p1c71e9EpeJvIX/AkUT57d4+jpw61dFxxodUIWS1SWCWpM0/ci206otpwJHLqt2GBEWZ/2sJmiohJNO8mSDslO6nRIN9TpU5Zk7s+LhEpjBjJINyW1N2Z6NjL/nQVyL456GrH/K0EiZNhBraZi2e5hO+Eqii0qNk7VjQWxIRl1RDpcI7NikAJlmqcfI+yGasps2qTrZp0dZSJjqBxM4Mj/7uyiXPL3S+W6V6yWYaw8bME27IIPFajCGdSgAQwQ7uAeHpxH58V5dd7GqzlncrMJv+S8fwHvyqKa</latexit>

s
<latexit sha1_base64="H4VNCiprnsurw/0VaDC7wwtksj4=">AAACF3icbZC9SgNBFIXvxr+4/kZLm8EgWEjYjUK0EAM2lgkYFZIgs5ObOGRmdpmZFcKSJ7DVwtqHsLQTWyvxbdxsgmj0wMDHuffCmRNEghvreZ9ObmZ2bn4hv+guLa+srq0XNi5MGGuGDRaKUF8F1KDgChuWW4FXkUYqA4GXQf90NL+8RW14qM7tIMK2pD3Fu5xRm1p1c71e9EpeJvIX/AkUT57d4+jpw61dFxxodUIWS1SWCWpM0/ci206otpwJHLqt2GBEWZ/2sJmiohJNO8mSDslO6nRIN9TpU5Zk7s+LhEpjBjJINyW1N2Z6NjL/nQVyL456GrH/K0EiZNhBraZi2e5hO+Eqii0qNk7VjQWxIRl1RDpcI7NikAJlmqcfI+yGasps2qTrZp0dZSJjqBxM4Mj/7uyiXPL3S+W6V6yWYaw8bME27IIPFajCGdSgAQwQ7uAeHpxH58V5dd7GqzlncrMJv+S8fwHvyqKa</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit> s

<latexit sha1_base64="H4VNCiprnsurw/0VaDC7wwtksj4=">AAACF3icbZC9SgNBFIXvxr+4/kZLm8EgWEjYjUK0EAM2lgkYFZIgs5ObOGRmdpmZFcKSJ7DVwtqHsLQTWyvxbdxsgmj0wMDHuffCmRNEghvreZ9ObmZ2bn4hv+guLa+srq0XNi5MGGuGDRaKUF8F1KDgChuWW4FXkUYqA4GXQf90NL+8RW14qM7tIMK2pD3Fu5xRm1p1c71e9EpeJvIX/AkUT57d4+jpw61dFxxodUIWS1SWCWpM0/ci206otpwJHLqt2GBEWZ/2sJmiohJNO8mSDslO6nRIN9TpU5Zk7s+LhEpjBjJINyW1N2Z6NjL/nQVyL456GrH/K0EiZNhBraZi2e5hO+Eqii0qNk7VjQWxIRl1RDpcI7NikAJlmqcfI+yGasps2qTrZp0dZSJjqBxM4Mj/7uyiXPL3S+W6V6yWYaw8bME27IIPFajCGdSgAQwQ7uAeHpxH58V5dd7GqzlncrMJv+S8fwHvyqKa</latexit>

w
<latexit sha1_base64="3G7Wks30/eVHe6cD3P83WDKX/ho=">AAACF3icbZC9SgNBFIXv+hvXv6ilzWAQLCTsRiFaiAEbywRMFGKQ2clNHDIzu8zMKmHJE9hqYe1DWNqJrZX4Nm42QTR6YODj3HvhzAkiwY31vE9nanpmdm4+t+AuLi2vrObX1hsmjDXDOgtFqC8CalBwhXXLrcCLSCOVgcDzoHcynJ/foDY8VGe2H2FL0q7iHc6oTa3a7VW+4BW9TOQv+GMoHD+7R9HTh1u9WnPgsh2yWKKyTFBjmr4X2VZCteVM4MC9jA1GlPVoF5spKirRtJIs6YBsp06bdEKdPmVJ5v68SKg0pi+DdFNSe20mZ0Pz31kgd+OoqxF7vxIkQoZt1Goilu0ctBKuotiiYqNUnVgQG5JhR6TNNTIr+ilQpnn6McKuqabMpk26btbZYSYygvL+GA79784apaK/VyzVvEKlBCPlYBO2YAd8KEMFTqEKdWCAcAf38OA8Oi/Oq/M2Wp1yxjcb8EvO+xf2lqKe</latexit>

or

or

b
<latexit sha1_base64="mpyJfDwENEZk7KGfDrGwBxBNSfk=">AAACF3icbZA7SwNBFIXvxleMr0TtbAaDYCFhNwpqZcBCSwXzABNkdnKTDJmZXWZmhbjkF9hq4Z+wsrcTW0tL/4mbTRBfBwY+zr0Xzhw/FNxY1313MlPTM7Nz2fncwuLS8kq+sFozQaQZVlkgAt3wqUHBFVYttwIboUYqfYF1v388mtevURseqAs7CLElaVfxDmfUJta5f5UvuiU3FfkL3gSKR083HyeP6/HZVcGBZjtgkURlmaDGXHpuaFsx1ZYzgcNcMzIYUtanXbxMUFGJphWnSYdkK3HapBPo5ClLUvf7RUylMQPpJ5uS2p75PRuZ/858uROFXY3Y/5EgFjJoo1a/YtnOQSvmKowsKjZO1YkEsQEZdUTaXCOzYpAAZZonHyOsRzVlNmkyl0s7O0xFxrC/N4FD76uzWrnk7ZbK526x4sJYWdiATdgGD/ahAqdwBlVggHALd3DvPDjPzovzOl7NOJObNfgh5+0TyeajKA==</latexit>

a
<latexit sha1_base64="5Bnl2K6Yp7KOTrXdym+RW0Xo3G0=">AAACF3icbZA7SwNBFIXvxleMr0TtbAaDYCFhNwpqZcBCSwXzABNkdnKTDJmZXWZmhbjkF9hq4Z+wsrcTW0tL/4mbTRBfBwY+zr0Xzhw/FNxY1313MlPTM7Nz2fncwuLS8kq+sFozQaQZVlkgAt3wqUHBFVYttwIboUYqfYF1v388mtevURseqAs7CLElaVfxDmfUJtY5vcoX3ZKbivwFbwLFo6ebj5PH9fjsquBAsx2wSKKyTFBjLj03tK2YasuZwGGuGRkMKevTLl4mqKhE04rTpEOylTht0gl08pQlqfv9IqbSmIH0k01Jbc/8no3Mf2e+3InCrkbs/0gQCxm0UatfsWznoBVzFUYWFRun6kSC2ICMOiJtrpFZMUiAMs2TjxHWo5oymzSZy6WdHaYiY9jfm8Ch99VZrVzydkvlc7dYcWGsLGzAJmyDB/tQgVM4gyowQLiFO7h3Hpxn58V5Ha9mnMnNGvyQ8/YJyDOjJw==</latexit>

FIG. S4. Schematic for the general DPG step: Insertion of a new node w through DPG process. The left hand side (lhs)
shows the subgraphs necessary to perform the DPG step, leading to the outcomes on the right hand side. The labeled edges
(by a or b) on the lhs are only necessary for the corresponding outcome on the rhs, with the same label. The auxiliary node s
is created/removed when dw is odd. All new nodes and edges that are created during the DPG step are colored green.

dw is even, s is either
present or not

In this case the neighbours of w are picked from a matching M of size dw/2; all edges in M
are removed in the process (Figs. S4.1,S4.3a). The chosen matching M may include the edge
connected with s (if s present), in which case, w connects to s as well (Fig S4.3b).

dw is odd, s absent
(s-creation)

We first create the auxiliary node s. There are dw + 2 possible ways of joining s to the graph.
With probability (dw+2)−1, we pick a matching M of size |M | = bdw/2c and the rest of times
(with probability (dw + 1)/(dw + 2)) of size |M | = ddw/2e.

– If |M | = bdw/2c, we join s to w, cut the edges in M and join w to all its dw − 1 nodes
(the case Fig S4.2a).

– If |M | = ddw/2e, we select a node uniformly at random from M and join it with s, cut
the edges in M then connect its remaining dw nodes to w (the case in Fig. S4.2b).

dw is odd, s present
(s-removal)

Select a matching M of size |M | = ddw/2e that includes s in it. Cut all edges of M , remove s,
then connect w to the remaining dw nodes of M . This joins the neighbour of s with w (Fig.
S4.4)

The pseudo-code for the DPG step is on the next page.

10

Supplementary Information: ”Degree-preserving network growth”

Algorithm 1 DPG

1: procedure DPG(G, dw, s) . Adds new vertex w with degree dw to G where s is the auxiliary vertex
2: if dw is even then

Require: A Matching M of size dw/2 that can include the edge with s as well . Fig S4.1/S4.3
3: Add vertex w to G
4: Remove edges in M
5: Add edges between w and vertices in M . s transfers to w if ∃(s, u) ∈M (Fig S4.3b)
6: else [d is odd]
7: if s doesn’t exists then
8: Pick random number I = {0, 1} with probabilty P (I = 0) = 1

d+2
, P (I = 1) = dw+1

dw+2
9: if I = 0 then

Require: A Matching M of size bdw/2c
10: Add vertex w to G
11: Add edges between w and vertices in M
12: Create auxiliary vertex s
13: Add edge (w, s) . s-creation at w (Fig S4.2a)
14: Remove edges in M
15: else
Require: A Matching M of size ddw/2e
16: Add vertex w to G
17: Pick an random edge (u, v) ∈M
18: Add edges between w and vertices in M − {(u,w)}
19: Create a auxiliary vertex s
20: Add edges (w, u) and (s, v) . s-creation at v (Fig S4.2b)
21: Remove edges in M

22: else [s exists]
Require: A Matching M of size ddw/2e that includes the edge (s, u) with s
23: Add vertex w to G
24: Add edges between w and vertices in M − {(s, u)}
25: Add edge (w, u)
26: Remove s from G . s-removal (Fig S4.4)
27: Remove edges in M

28: if s is present in G then
29: return (G, s)
30: else [s was not present or removed]
31: return (G,∅)

In the above pseudo code, failure to find a matching M of required size in the ‘Require’ steps above implies that
vertex w cannot be joined with G through the DPG process.

C. The Degree-preserving reduction step

For the reduction (inverse) DPG step, the goal is to remove a node w from the graph, while keeping the degrees of
remaining nodes in the graph unchanged. We start by selecting a node w at random. According to Lemma S2, this
requires that there are sufficient non-edges between the neighbors of w, and if that is not the case then w cannot be
DP removed from the graph. Otherwise, the specific operations depend on the degree dw and the existence of the
auxiliary node s that is outlined below.

The following description uses the notations S,N(S),Γ(S),Γ(S) introduced in section II A as: the set of nodes, its
neighbors, the subgraph induced by S in G and the complementary graph of Γ(S) in G, respectively.

11

Supplementary Information: ”Degree-preserving network growth”

dw is even Find a perfect matching M in Γ(N({w})) (N({w}) may include s). If such M exists, remove w
along with its edges and then add the edges of M to the graph.

dw is odd The DP reduction step depends on the absence/presence of the auxiliary node s.

– If s is absent, we must add s to G. Then find a near perfect matching M in Γ(N({w})). If
such M exists, remove w along with its edges and add edges of M into G. Finally, join s with
the node in Γ(N({w})) that is left unmatched by M .

– If s is present, then find a perfect matching M in Γ(N({w, s}) \ {w, s}). If such M exists,
remove w along with its edges and add the edges of M into G. Finally, remove s from G.

Algorithm 2 DPR

1: procedure DPR(G,w, s) . Removes vertex w with degree dw from the graph G with auxiliary vertex s
2: if dw is even then . Inverse of Fig S4.1, S4.3

Require: A perfect matching M in Γ(N({w})), which can include s
3: Add edges of M into G
4: Remove w from G
5: else [dw is odd]
6: if s is absent in G then . Inverse of Fig S4.4

Require: A near perfect matching M in Γ(N({w}))
7: Add s into G
8: Join s with the node left unmatched by M in Γ(N({w}))
9: Remove w from G

10: Add edges of M into G
11: else [s is present in G] . Inverse of Fig S4.2
Require: A perfect matching M in Γ(N({w, s}) \ {w, s})
12: Remove w and s from G
13: Add edges of M into G

14: if s is present in G then
15: return (G, s)
16: else [s was not present or was removed]
17: return (G,∅)

In the above pseudo code, failure to find a matching M of required size in the ‘Require’ steps above, implies that
vertex w is not DP reducible.

D. Configurational DPG and tuning

In the main text we discuss the configurational version of the DPG, in which case we want to create graphical
realizations of a set of degrees D using the DPG process. Here, the choice of the initial graph G0 for DPG is
important, as it has to be a simple graph and its set of degrees D0 must be a proper subset of D. We want G0 with
the smallest N0 number of nodes with degrees D0 ⊆ D. There can be many possibilities for G0, which may include the
empty graph (in the case of D containing degrees of 1). The choice depends on the degree values in D; for example,
if (2, 2, 2, 4, . . .) are the sorted degrees in D then G0 is K3.

After defining the initial graph G0 with degrees D0 ⊆ D, we need to add all the nodes with degrees D \ D0,
through the DPG process. As discussed in the main text, we can do that either via the iconf-DPG process or the
gconf-DPG process. In all such DPG steps, the degree dw of the new node should obey the constraint dw ≤ 2ν(G)
(or dw ≤ 2ν(G) + 1 if auxiliary node is present). Here ν(G) is the matching number of G at that particular stage,
which may include an edge to the auxiliary node. If the latter condition cannot be satisfied, that run cannot finish
and must be started from the beginning. Note, there can be sets of degrees D that are graphical (see subsection I B)
but non-DPG graphical, that is, not realizable by a DPG process.

If the DPG process doesn’t need to tune network properties (other than degree), then we can just use the non-
weighted matching finding algorithm described in subsection III A to find us a matching of the needed size. However,
if we need to tune higher-order network properties, the matching is chosen based on edge weight information. We
are still choosing independent edges, but we also enforce a criterion that the weights of those edges need to obey,
formulated as an optimization function (that is maximum or minimum total weight), in order to be selected into the
matching. There are several exact and approximate algorithms to find such weighted matching (outlined in Ref. [19]).

12

Supplementary Information: ”Degree-preserving network growth”

Here we use a simple greedy algorithm, similar to that for maximal matching described in subsection III A: pick the
edge with max/min weight, add it to M then remove it along with its adjacent edges before choosing another edge
with max/min weight, etc. Although this greedy method does not select the most optimal set of weighted independent
edges, it produces sufficiently good approximations for network properties that we needed.

E. Algorithms for DPG models

In the previous section we presented the inner components of the DPG algorithm, which referred to the steps taken
once an incoming degree dw and a corresponding matching M were chosen. Below, in Algorithm 3 we present the outer
components, corresponding to the different models discussed in the main text. Other choices can easily be added, by
modeller’s preference. Algorithm 3 builds a DPG graph with N nodes, from an initial graph G0, adding new nodes
with degrees determined by the function dw, while finding matching for DPG considering edge weights given by the
function W . Note, here dw and the weight distribution W are represented as functions. Different functions dw and
W are used for different DPG models. Table S1 outlines how functions dw and W are chosen corresponding to the
DPG models discussed in main text. Refer to section on IV for details on seed graph and weighted matching.

Algorithm 3 DPG Model(G0, N, dw,W,< params >)

1: (G, s)← (G0,∅)
2: while vertex count of G < N do
3: d← dw(G,< params >)
4: (G, s)← DPG(G, s, d) with matching weighted by function W

5: return G

DPG Model dw W
Maximum dw(G) = 2ν(G) 1
Linear dw(G, c) = d2cν(G)e, c ∈ (0, 1] 1
Rand-fraction dw(G) = R,P (R = r) = 1/(2ν(G)), R ∈ [1, 2ν(G)] 1
Scale-Free dw(G, γ) = R,P (R = r) = r−γ/

∑
r−γ , R ∈ [1, 2ν(G)] 1

i-config
dw(G,D) = nth element in sorted degrees D
n = vertex count in G

model dependent

g-config
dw(G,D) = max DPG-feasible d ∈ D
that hasn’t been added to G

model dependent

Randic same as i-config W (e(u, v), α) = (dudv)α

Paritioning same as i-config W (G,V0, e0) = Edge betweeness centrality of edge e0
in induced subgraph of G with seed nodes V0

TABLE S1. Functions in DPG models: Function dw determines the degree of the next node being added through DPG
whereas the function W assigns weights to the edges for matching. W = 1 corresponds to the unweighted matching. Symbols
e(u, v), du, V0 represent an edge connecting node u with v, degree of node u and nodes in initial graph G0, respectively.

13

Supplementary Information: ”Degree-preserving network growth”

IV. REAL-WORLD NETWORKS

Id Graph Name Node Count Edge Count Density min(ns) < φ > Details

1 EconomicTrans. 496 41668 0.33943 482 0.9740 US economic transactions in 1972 – industries x industries [14]

2 DiseaseGene 1777 7491 0.00475 939 0.5322 Network of disorders and disease genes linked by known disordersand gene associations [21]

3 EcosystemWetFL 128 2075 0.25529 36 0.4417 Food web in south Florida during wet season [16][43]

4 EcosystemDryFL 128 2106 0.25910 37 0.4283 Food web in south Florida during dry season [16][43]

5 CoAuthNetworkSci 379 914 0.01276 65 0.1770 Co-authorship network in network science (2006) [37]

6 CoAuthGRQC 4158 13422 0.00155 507 0.1259 Co-authorship network in general relativity and quantum cosmology (1993-2003) [32][33]

7 CoAuthAstrophysics 14845 119652 0.00109 1839 0.1249 Co-authorship network in Astrophysics (1995-1999) [36]

8 HumanContact 410 2765 0.03298 31 0.0903 Face-to-face contact network active for at least 20 seconds during a conference [29][22]

9 NeuralCElegans 297 2148 0.04887 10 0.0781 Network representing the neural network of C. Elegans [45][15]

10 CoAuthCondMatter 13861 44619 0.00046 978 0.0732 Co-authorship network in Condensed Matter (1995-1999) [46]

11 WordRelations 146005 656999 0.00006 8383 0.0581 Lexical network of words from the WordNet dataset [20]

12 FBCompanyPages 14113 52126 0.00052 490 0.0363 Facebook page (2017) networks of companies. Edges are mutual likes among them [33][41]

13 EnronEmails 33696 180811 0.00032 1160 0.0350 Enron email communication network covers all the email communication in Enron [33] [26] [34]

14 GoogleInternalWeb 15763 148585 0.00120 479 0.0321 Hyperlink network from pages within Google’s own sites, i.e., on google.com [29] [39]

15 AmazonCopurchase 334863 925872 0.00002 10030 0.0305 Co-purchase network in Amazon between products that have been bought together [29] [47]

16 CoAuthHighEnergy 5835 13815 0.00081 139 0.0251 Co-authorship network in High-Energy Theory (1995-1999) [36]

17 FBNotreDame 12149 541336 0.00734 82 0.0174 Facebook friends network of students in University of Notre Dame [42]

18 ProteinInteraction 1870 2203 0.00126 22 0.0125 Protein interaction network of yeast [24]

19 MetMPneumoniae 411 926 0.01099 0 0.0123 Metabolic cellular network data for Mycoplasma Pneumoniae [25]

20 PolitcalBlogs 1490 16715 0.01507 0 0.0110 Political blogs network in during 2004 US election [17]

21 FBPublicFigures 11565 67038 0.00100 93 0.0087 Facebook page (2017) networks of Public Figures.Edges are mutual likes among them [33][41]

22 MetNGonorrhoeae 1055 2531 0.00455 6 0.0087 Metabolic cellular network data for Neisseria Gonorrhoeae [25]

23 MetSTyphi 2982 7117 0.00160 11 0.0053 Whole cellular network data for Salmonella Typhi [25]

24 MetMTuberculosis 1520 3655 0.00317 0 0.0034 Metabolic cellular network data for Mycobacterium Tuberculosis [25]

25 MetEColi 2275 5627 0.00218 5 0.0032 Metabolic cellular network data for Escherichia Coli [25]

26 WikiVoteNetwork 7115 100762 0.00398 3 0.0029 Network of Wikipedia admins and users active in the voting for new admins [33][31][30]

27 WorldAirports 2939 15677 0.00363 5 0.0027 The network contains flights between airports of the world [29][38]

28 BitcoinOTC 5875 21489 0.00125 12 0.0025 Who-trusts-whom network of people trading on Bitcoin OTC [33][27][28]

29 PowergridUS 4941 6594 0.00054 0 0.0015 The power grid network of the western states of the United States [45][29]

30 Twitch 7126 35324 0.00139 0 0.0011 Networks of gamers who stream in english language in Twitch [33][40]

31 HighwaysUS 126146 161950 0.00002 85 0.0010 Continental US road network [13]

32 RoadsTX 1379917 1921660 2.02E-6 813 0.0006 Road network of Texas. [33][34]

33 FBWallPosts 46952 183412 0.00017 20 0.0005 Network of posts to other user’s wall on Facebook [29][44]

34 LinuxSourcecode 30837 213217 0.00045 0 0.0004 Dependency network of Linux 3.16 source code[29]

35 GithubSocial 37700 289003 0.00041 3 0.0002 Social network of GitHub (2019) developers with at least 10 repositories [40]

36 InternetTopology 34761 107720 0.00018 0 0.0001 Network of connections between autonomous systems of the Internet. [29][48]

TABLE S2. Real-world networks reduced using the DP reduction process, shown in Fig. 2 of the main text:
Entries are sorted by average fraction 〈φ〉 = 〈nf 〉/ns of final nodes nf remaining after inverse-DPG on network with starting
ns nodes. The table also outlines the minimum (found in the 50 runs) starting node count nf from where we can grow the
exact structure of these networks, though a forward DPG process. In particular, seven of these real-world networks can be
grown using DPG starting from an empty graph.

14

Supplementary Information: ”Degree-preserving network growth”

V. SUPPLEMENTARY FIGURES

FIG. S5. Sample Gf of the Road network of Texas with 1.38 million nodes (intersections/endpoints) can be grown from this
much smaller network with 813 nodes using DPG. Network was obtained using a run of the inverse-DPG process. Nodes and
edges in cliques larger than 2 are drawn using the same (non-gray) color.

15

Supplementary Information: ”Degree-preserving network growth”

FIG. S6. Sample Gf using the inverse-DPG process of the hyperlink network of 15,763 pages within domain google.com. One
can grow the original network from this much smaller one with 479 nodes using forward DPG. Nodes and edges in cliques larger
than 2 are drawn using the same (non-gray) color.

16

Supplementary Information: ”Degree-preserving network growth”

FIG. S7. Sample Gf of the co-authorship network with 4,158 authors in general relativity and quantum cosmology. The
original network can be grown from this Gf with 507 nodes using DPG. Nodes and edges in cliques larger than 2 are drawn
using the same (non-gray) color.

17

Supplementary Information: ”Degree-preserving network growth”

FIG. S8. Sample Gf of the disease-gene network (of 1,777 disorders and disease genes linked by known disorders and gene
associations) obtained with a typical inverse-DPG run. The original network can be grown from this one with 939 nodes using
DPG. Nodes and edges in cliques larger than 2 are drawn using the same (non-gray) color.

18

Supplementary Information: ”Degree-preserving network growth”

n (DPG steps)
<latexit sha1_base64="7uPNqlVxNCUyb7y0GF60GP4gFPE=">AAACL3icbVDLSiNBFL3tY9TMOEZdKLgpRgYUJHSroOJGVJhZRjAqmBCqKzexSD2aqmoxNgH/xa0u9GdEGGS2/oWVThBfBy4czrkXzj1xIrh1YfgYDA2PjH4bG58ofP8x+XOqOD1zZHVqGFaYFtqcxNSi4AorjjuBJ4lBKmOBx3F7r+cfn6OxXKtD10mwJmlL8SZn1HmpXpxTpLpNlqoy1hfZfvkPsQ4T212uFxfDUpiDfCbRgCzuzF/+m7i63y3XpwOoNjRLJSrHBLX2NAoTV8uocZwJ7BaqqcWEsjZt4amnikq0tSz/oEt+e6VBmtr4UY7k6tuLjEprOzL2m5K6M/vR64lferFcSZOWQWy/S5AJqRto1IdYrrlZy7hKUoeK9VM1U0GcJr3uSIMbZE50PKHMcP8YYWfUUOZ8w4VC3tlWDtInG+sDshW9dna0WorWSqsHvrxN6GMcFuAXLEEEG7ADf6EMFWDQhWu4gdvgLngInoL//dWhYHAzC+8QPL8AYeCq/g==</latexit>

d = 4
<latexit sha1_base64="tQv+BQyr2MC++MCsoMTmjmQ7+9g=">AAACG3icbVDLSgMxFL3j2/p+7NwEi+BCStqq1YVYcKFLBauCFslkbmtokhmSjFAHv8GtLvwFf0JX4taFS//EtFXwdULgcM69cO4JEymso/Qt6OsfGBwaHhnNjY1PTE5Nz8we2Tg1HGs8lrE5CZlFKTTWnHASTxKDTIUSj8PWTsc/vkRjRawPXTvBumJNLRqCM+elWkS2yOr5dJ4W1tbpJi0RT8r+rXpCyxuVtQopFmgX+e2nq/fdh/ls/3wmgLMo5qlC7bhk1p4WaeLqGTNOcInXubPUYsJ4izXx1FPNFNp61k17TZa8EpFGbPzXjnTV7xsZU9a2VegnFXMX9rfXEf/1QrWSJk2D2PqRIJMqjtDoX7FcY6OeCZ2kDjXvpWqkkriYdHoikTDInWx7wrgR/jDCL5hh3Pk2c7luZ71iyF/y1dlRqVAsF0oHNF+tQg8jsACLsAxFqEAV9mAfasBBwA3cwl1wHzwGz8FLb7Qv+NyZgx8IXj8A7Hej3Q==</latexit>

d = 6
<latexit sha1_base64="8HbFoXqxJ5MUIhMonS/JBou8C4U=">AAACG3icbVDLSgNBEOz1bXw/bl4Gg+BBwmyMjxzEgAc9KhgVNMjsbCcOmZldZmaFuPgNXvXgL/gTehKvHjz6J26yQVQsaCiquqG6glgK6yj98AYGh4ZHRsfGCxOTU9Mzs3PzJzZKDMc6j2RkzgJmUQqNdSecxLPYIFOBxNOgvdf1T6/RWBHpY9eJsaFYS4um4MxlUj0kO2TzcrZIS9XtjQqlhJZoD11S3qyWK8TvK8Xdl5vP/afF9PByzoOLMOKJQu24ZNae+zR2jZQZJ7jE28JFYjFmvM1aeJ5RzRTaRtpLe0tWMiUkzchkox3pqT8vUqas7agg21TMXdm/Xlf81wvUWhK3DGL7V4JUqihEo//Ecs3tRip0nDjUPE/VTCRxEen2REJhkDvZyQjjRmSPEX7FDOMua7NQyDvrgeRkq9InVf+7s5NyyV8vlY9osVaDHGOwBMuwCj5sQQ0O4BDqwEHAHdzDg/foPXuv3lu+OuD1bxbgF7z3LwIQpFY=</latexit>

d = 8
<latexit sha1_base64="yQehujlQLTzIwQtD+fNyAhFwDm8=">AAACG3icbVDLSgNBEOz1bXwl6s3LYBA8SNiNYpKDGPCgRwWjgglhdrYTh8zMLjOzQlz8Bq968Bf8CT2JVw8e/RM3m4APLGgoqrqhuvxIcGNd98MZG5+YnJqemc3NzS8sLuULy2cmjDXDBgtFqC98alBwhQ3LrcCLSCOVvsBzv3cw8M+vURseqlPbj7AlaVfxDmfUplIjIHuk2s4X3ZKbgfwgu5WqW/aIN1KK+y83n4dPq8lxu+BAMwhZLFFZJqgxl54b2VZCteVM4G2uGRuMKOvRLl6mVFGJppVkaW/JRqoEpBPqdJQlmfrzIqHSmL70001J7ZX56w3Efz1fbsVRVyP2fiVIhAwD1OpPLNupthKuotiiYsNUnVgQG5JBTyTgGpkV/ZRQpnn6GGFXVFNm0zZzuayzWgYyJJWdEal9d3ZWLnnbpfKJW6zXYYgZWIN12AQPKlCHIziGBjDgcAf38OA8Os/Oq/M2XB1zRjcr8AvO+xfbr6Q/</latexit>

d = 10
<latexit sha1_base64="9EIm4AzX+xnfc56Aeib+NvXPugs=">AAACHHicbVBNSxxBFHzjR9TVRI3evDRZAjmEoWd2cPQQsuDBHA1kV0EX6el5u7bb3TN09wjr4H/wGg/+BH+FN/Ea8Og/cXZWJIoFD4qq96BeJbkU1lH64E1Nz8x+mJtfaCwuffy0vLL6uWuzwnDs8Exm5iBhFqXQ2HHCSTzIDTKVSNxPhjtjf/8MjRWZ/uNGOfYUG2jRF5y5Suqm5AcJ6PFKk/q0FcVxTKgfbgZhTYIoijZDEvi0RvPn7fnj7s16uXe86sFRmvFCoXZcMmsPA5q7XsmME1ziReOosJgzPmQDPKyoZgptr6zjXpCvlZKSfmaq0Y7U6v8XJVPWjlRSbSrmTuxbbyy+6yXqe5EPDOLwVYJSqixFo9/Ecv2tXil0XjjUfJKqX0jiMjIuiqTCIHdyVBHGjageI/yEGcZdVWejUXe2XYNMSBw9k+3gpbNu6ActP/xNm+02TDAPG/AFvkEAMbThF+xBBzicwiX8hSvv2rv17rz7yeqU93yzBq/g/XsCmfOkpA==</latexit>

=
‹n
Nn

>

<latexit sha1_base64="NhQ4XHriz8kHkir1bl2JvNKAsio=">AAACRHicbVDRahNBFL1bba2xral99GWwFHwoYbcVk75VffFJKpim0A1hdnJ3M2Rmdpm5WwhLfqL4MX2tQv/Bb9AHQXwVJ5sgpu2BGQ7n3AvnnqRQ0lEYfgtWHjxcXXu0/rjxZGNz62lz+9mpy0srsCtylduzhDtU0mCXJCk8KyxynSjsJeN3M793gdbJ3HyiSYF9zTMjUyk4eWnQ3I8VphQrbjKFLE4tF1VsyoGZVh/8x2IrsxHFtvYHzd2wFdZgd0m0ILvHr79/fvvm68+TwXYA8TAXpUZDQnHnzqOwoH7FLUmhcNqIS4cFF2Oe4bmnhmt0/ao+a8r2vDJkaW79M8Rq9f+NimvnJjrxk5rTyN32ZuK9XqL3yyKziOOlBJXS+RCtuRWL0k6/kqYoCY2Yp0pLxShns0LZUFoUpCaecGGlP4yJEfc9kq+90ag7O6rB5qT9akGOon+dnR60osPWwUdfXgfmWIfn8AJeQgRtOIb3cAJdEHAJV3ANX4Kb4EfwK/g9H10JFjs7sITgz1+LyrZ6</latexit>

FIG. S9. Evolution of the matching numbers for random regular DPG graphs. Ratio of maximum matching size
and the number of nodes in the graph (Nn = n + N0) during a random regular DPG process (with fixed degree d), averages
over 100 runs. Initial graph for all DPG runs is G0 = Kd+1, hence N0 = d + 1. The maximum matching in all cases here is
either perfect matching or near perfect matching.

19

Supplementary Information: ”Degree-preserving network growth”

n (DPG steps)
<latexit sha1_base64="7uPNqlVxNCUyb7y0GF60GP4gFPE=">AAACL3icbVDLSiNBFL3tY9TMOEZdKLgpRgYUJHSroOJGVJhZRjAqmBCqKzexSD2aqmoxNgH/xa0u9GdEGGS2/oWVThBfBy4czrkXzj1xIrh1YfgYDA2PjH4bG58ofP8x+XOqOD1zZHVqGFaYFtqcxNSi4AorjjuBJ4lBKmOBx3F7r+cfn6OxXKtD10mwJmlL8SZn1HmpXpxTpLpNlqoy1hfZfvkPsQ4T212uFxfDUpiDfCbRgCzuzF/+m7i63y3XpwOoNjRLJSrHBLX2NAoTV8uocZwJ7BaqqcWEsjZt4amnikq0tSz/oEt+e6VBmtr4UY7k6tuLjEprOzL2m5K6M/vR64lferFcSZOWQWy/S5AJqRto1IdYrrlZy7hKUoeK9VM1U0GcJr3uSIMbZE50PKHMcP8YYWfUUOZ8w4VC3tlWDtInG+sDshW9dna0WorWSqsHvrxN6GMcFuAXLEEEG7ADf6EMFWDQhWu4gdvgLngInoL//dWhYHAzC+8QPL8AYeCq/g==</latexit>

=
‹n
Nn

>

<latexit sha1_base64="NhQ4XHriz8kHkir1bl2JvNKAsio=">AAACRHicbVDRahNBFL1bba2xral99GWwFHwoYbcVk75VffFJKpim0A1hdnJ3M2Rmdpm5WwhLfqL4MX2tQv/Bb9AHQXwVJ5sgpu2BGQ7n3AvnnqRQ0lEYfgtWHjxcXXu0/rjxZGNz62lz+9mpy0srsCtylduzhDtU0mCXJCk8KyxynSjsJeN3M793gdbJ3HyiSYF9zTMjUyk4eWnQ3I8VphQrbjKFLE4tF1VsyoGZVh/8x2IrsxHFtvYHzd2wFdZgd0m0ILvHr79/fvvm68+TwXYA8TAXpUZDQnHnzqOwoH7FLUmhcNqIS4cFF2Oe4bmnhmt0/ao+a8r2vDJkaW79M8Rq9f+NimvnJjrxk5rTyN32ZuK9XqL3yyKziOOlBJXS+RCtuRWL0k6/kqYoCY2Yp0pLxShns0LZUFoUpCaecGGlP4yJEfc9kq+90ag7O6rB5qT9akGOon+dnR60osPWwUdfXgfmWIfn8AJeQgRtOIb3cAJdEHAJV3ANX4Kb4EfwK/g9H10JFjs7sITgz1+LyrZ6</latexit>

FIG. S10. Evolution of the matching numbers for scale-free DPG graphs. Ratio of maximum matching size and the
number of nodes in the graph (Nn = n + N0) during scale-free DPG process for different γ-s, each averaged over 100 runs.
Shaded region show one standard deviation and the center line is the mean of the data. Initial graph is G0 = K2, so N0 = 2.

20

Supplementary Information: ”Degree-preserving network growth”

FIG. S11. A scale-free DPG network with γ = 2.5, dmin = 4 and with 104 added vertices, started from G0 = K5. The
color legend indicates vertex degree ranges.

21

Supplementary Information: ”Degree-preserving network growth”

[1] Mertzios, George B., and Walter Unger. ‘The friendship problem on graphs.’ Journal of multiple-valued logic and soft
computing 27.2-3 (2016): 275-285.

[2] Posa, Lajos. ‘A theorem concerning Hamilton lines.’ Magyar Tud. Akad. Mat. Kutató Int. Közl 7 (1962): 225-226.
[3] Erdős P, Gallai T (1960) Gráfok elő́ırt fokszámú pontokkal. Matematikai Lapok 11(4):264–274.
[4] Tripathi A., Vijay S. ‘A note on a theorem of Erdős & Gallai.’ Discrete Mathematics 265.1-3 (2003): 417-420.
[5] Vizing V.G. On an estimate of the chromatic class of a p-graph. Diskret. Analiz. 3, 25–30 (1964)
[6] Hammer P.L., Simeone B. The splittance of a graph. Combinatorica 1(3), 275–284 (1981)
[7] Barrus MD, Hartke SG, Jao KF, West DB (2012) Length thresholds for graphic lists given fixed largest and smallest entries

and bounded gaps. Discr Math 312:1494–1501.
[8] Biedl T, Demaine ED, Duncan CA, Fleischer R and Kobourov SG (2004) Tight bounds on maximal and maximum

matchings. Discr. Math. 285:7–15.
[9] Berge C (1957) Two theorems in graph theory. Proc. Natl. Acad. Sci. 43(9):842–844.

[10] Lovász L and Plummer MD (2009) Matching Theory (American Mathematical Society)
[11] Edmonds J (1965) Paths, trees, and flowers. Canad. J. Math. 17:449–467.
[12] Siek JG, Lee L-Q, and Lumsdaine A (2001) The Boost Graph Library: User Guide and Reference Manual (Addison-Wesley

Professional, PAP/CDR edition).
[13] Gleich/usroads-48 sparse matrix. https://www.cise.ufl.edu/research/sparse/matrices/Gleich/usroads-48. (Ac-

cessed on 08/05/2020).
[14] Matrix mbeaflw. https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/econiea/mbeaflw.html. (Accessed on

08/05/2020).
[15] Network data. http://www-personal.umich.edu/~mejn/netdata/. (Accessed on 08/05/2020).
[16] Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/. (Accessed on 08/05/2020).
[17] Adamic, L. A., and Glance, N. The political blogosphere and the 2004 us election: divided they blog. In Proceedings

of the 3rd international workshop on Link discovery (2005), pp. 36–43.
[18] Dezső, B., Jüttner, A., and Kovács, P. Lemon–an open source c++ graph template library. Electronic Notes in

Theoretical Computer Science 264, 5 (2011), 23–45.
[19] Duan, R., and Pettie, S. Linear-time approximation for maximum weight matching. Journal of the ACM (JACM) 61,

1 (2014), 1–23.
[20] Fellbaum, C., et al. Wordnet: An electronic lexical database mit press. Cambridge, Massachusetts (1998).
[21] Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., and Barabási, A.-L. The human disease network.

Proceedings of the National Academy of Sciences 104, 21 (2007), 8685–8690.
[22] Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., and Van den Broeck, W. What’s in a crowd?

analysis of face-to-face behavioral networks. Journal of theoretical biology 271, 1 (2011), 166–180.
[23] Israeli, A., and Itai, A. A fast and simple randomized parallel algorithm for maximal matching. Information Processing

Letters 22, 2 (1986), 77–80.
[24] Jeong, H., Mason, S. P., Barabási, A.-L., and Oltvai, Z. N. Lethality and centrality in protein networks. Nature

411, 6833 (2001), 41–42.
[25] Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A.-L. The large-scale organization of metabolic

networks. Nature 407, 6804 (2000), 651–654.
[26] Klimt, B., and Yang, Y. Introducing the enron corpus. In CEAS (2004).
[27] Kumar, S., Hooi, B., Makhija, D., Kumar, M., and Faloutsos, C. Rev2: Fraudulent user prediction in rating

platforms. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (2018), ACM,
pp. 333–341.

[28] Kumar, S., Spezzano, F., Subrahmanian, V., and Faloutsos, C. Edge weight prediction in weighted signed networks.
In Data Mining (ICDM), 2016 IEEE 16th International Conference on (2016), IEEE, pp. 221–230.

[29] Kunegis, J. Konect: the koblenz network collection. In Proceedings of the 22nd International Conference on World Wide
Web (2013), pp. 1343–1350.

[30] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Predicting positive and negative links in online social networks.
In Proceedings of the 19th international conference on World wide web (2010), pp. 641–650.

[31] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Signed networks in social media. In Proceedings of the SIGCHI
conference on human factors in computing systems (2010), pp. 1361–1370.

[32] Leskovec, J., Kleinberg, J., and Faloutsos, C. Graph evolution: Densification and shrinking diameters. ACM
transactions on Knowledge Discovery from Data (TKDD) 1, 1 (2007), 2–es.

[33] Leskovec, J., and Krevl, A. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/

data, June 2014.
[34] Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. Community structure in large networks: Natural

cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.
[35] Micali, S., and Vazirani, V. V. An o (v— v— c— e—) algoithm for finding maximum matching in general graphs. In

21st Annual Symposium on Foundations of Computer Science (sfcs 1980) (1980), IEEE, pp. 17–27.
[36] Newman, M. E. The structure of scientific collaboration networks. Proceedings of the national academy of sciences 98, 2

(2001), 404–409.

22

Supplementary Information: ”Degree-preserving network growth”

[37] Newman, M. E. Finding community structure in networks using the eigenvectors of matrices. Physical review E 74, 3
(2006), 036104.

[38] Opsahl, T., Agneessens, F., and Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest
paths. Social networks 32, 3 (2010), 245–251.

[39] Palla, G., Farkas, I. J., Pollner, P., Derényi, I., and Vicsek, T. Directed network modules. New journal of physics
9, 6 (2007), 186.

[40] Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale attributed node embedding. arXiv preprint arXiv:1909.13021
(2019).

[41] Rozemberczki, B., Davies, R., Sarkar, R., and Sutton, C. Gemsec: Graph embedding with self clustering. In
Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining (2019),
pp. 65–72.

[42] Traud, A. L., Mucha, P. J., and Porter, M. A. Social structure of facebook networks. Physica A: Statistical Mechanics
and its Applications 391, 16 (2012), 4165–4180.

[43] Ulanowicz, R. E., and DeAngelis, D. L. Network analysis of trophic dynamics in south florida ecosystems. US
Geological Survey Program on the South Florida Ecosystem (1999), 114.

[44] Viswanath, B., Mislove, A., Cha, M., and Gummadi, K. P. On the evolution of user interaction in facebook. In
Proceedings of the 2nd ACM workshop on Online social networks (2009), pp. 37–42.

[45] Watts, D. J., and Strogatz, S. H. Collective dynamics of ‘small-world’networks. nature 393, 6684 (1998), 440–442.
[46] White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. The structure of the nervous system of the nematode

caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314, 1165 (1986), 1–340.
[47] Yang, J., and Leskovec, J. Defining and evaluating network communities based on ground-truth. Knowledge and

Information Systems 42, 1 (2015), 181–213.
[48] Zhang, B., Liu, R., Massey, D., and Zhang, L. Collecting the internet as-level topology. ACM SIGCOMM Computer

Communication Review 35, 1 (2005), 53–61.

23

	NatPhys_DPG_2021
	Degree-preserving network growth

	Definition of the DPG process

	Real-world networks as realizations of DPG processes

	DPG models

	Linear DPG.
	Scale-free DPG.

	Network design through DPG and applications

	Online content

	Fig. 1 Degree-preserving growth.
	Fig. 2 Real-world networks from DPG process.
	Fig. 3 DPG models.
	Fig. 4 Scale-free DPG networks.
	Fig. 5 DPG in network design.

	41567_2021_1417_MOESM1_ESM

