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Abstract

Enabling robots to provide effective assistance yet still accommodating the operator’s commands for telemanipulation of
an object is very challenging because robot’s assistance is not always intuitive for human operators and human behaviors
and preferences are sometimes ambiguous for the robot to interpret. Due to the difference in hand structures, some motion
assistance from the robot may surprise the operator with counter-intuitive movements, which could introduce more burden
to the human to correct the actions and/or reduce the operator’s sense of system control. To address these problems, we
developed a novel preference-aware assistance knowledge learning approach. An assistance preference model learns what
assistance is preferred by a human, and a stage-wise model updating method ensures the learning stability while dealing with
the ambiguity of human preference data. Such a preference-aware assistance knowledge enables a teleoperated robot hand to
provide more active yet preferred assistance toward manipulation success. We also developed knowledge transfer methods
to transfer the preference knowledge across different robot hand structures to avoid extensive robot-specific training.
Experiments to telemanipulate a 3-finger hand and 2-finger hand, respectively, to use, move, and hand over a cup have been
conducted. Results demonstrated that the methods enabled the robots to effectively learn the preference knowledge and
allowed knowledge transfer between robots with less training effort.

Keywords Semi-autonomous telemanipulation - Preference-aware assistance - Learn from ambiguous data -
Preference knowledge transfer

1 Introduction robot’s hands. Unlike other teleoperation branches such as
teleapproaching and telefollowing, telemanipulation tasks

Telemanipulation teleoperation [1] in which a human oper-  require fine motion adjustments to grasp objects at specific
ator can remotely manipulate objects using the teleoperated  angles or at specific points and to apply force in a par-
ticular manner. For example, remotely controlling a robot
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Lingfeng Tao
tao @mines.edu

Michael Bowman current telemanipulation approaches are master-slave con-
mibowman@mines.edu trol, where an operator’s hands give motion commands
Xu Zhou through data gloves, optical tracking, or reflective markers,
xuzhou@mines.edu and a robot hand follows. Such approaches rely on the oper-

ator’s cognitive spatial transformation reasoning and fine
Jiucai Zhang motion tuning to overcome the sense of dissmbodiment and

zhangjiucai@gmail.com the physical discrepancy [2, 3] between the operator’s hand

and the robot’s hand to satisfy the subtle motion constraints

I Colorado School of Mines, Intelligent Robotics and Systems for task success. Indirect manipulation and visualization for
Lab, 1500 Illinois St, Golden, CO 80401, USA complex telemanipulation tasks can impose a large physical
2 GACR&D Center Silicon Valley, Sunnyvale, CA 94085, USA and mental burden on the operator, increasing failure, and

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01596-2&domain=pdf
http://orcid.org/0000-0002-2949-4644
mailto: xlzhang@mines.edu
mailto: tao@mines.edu
mailto: mibowman@mines.edu
mailto: xuzhou@mines.edu
mailto: zhangjiucai@gmail.com

48 Page2of16

JIntell Robot Syst (2022) 104: 48

user frustration [4]. It usually takes hundreds of hours to
adequately train an operator for a specific telemanipulation
task and robot [5].

Current telemanipulation approaches still rely on the
kinematic mapping between a human hand and a robot
hand, whose performance is affected by the physical
discrepancy (e.g., telemanipulate a 3-finger robot hand)
and lack of consideration of task requirement/constraints.
Existing efforts add passive constraints such as envelopes
[6] and virtual fixtures [7] to the operation environment,
which cannot achieve subtle motion adjustment in the
manipulation process. Recent research has demonstrated
that robots can blend human input with robot action by
inferring human intent so it can provide more active
assistance in teleoperation [8—10]. However, these methods
are only implemented in teleapproaching using a robot arm
with trajectory assistance, instead of controlling a robot
hand for telemanipulation. Methods that enable robots to
actively provide assistance to telemanipulate objects have
not received enough research attention. To satisfy the fine
motion requirement in telemanipulation, a robot also needs
to understand the operator and provide active assistance
yet still accommodate the operator’s commands, that is,
semi-autonomous telemanipulation is necessary.

Toward semi-autonomous telemanipulation, a critical
problem to overcome is how to enable the robot to provide
assistance that is preferred by the operator. Although active
assistance is essential, it is unknown how much assistance
is appropriate to balance task success with the operator’s
feeling of being in control. Due to the difference in hand
structures, some motion assistance from the robot may
surprise the operator with counter-intuitive movements,
which could introduce more burden to the human to correct
the actions, reduce the operator’s sense of system control
and consequently increase the operator’s resistance of
using the robot. Although researchers can develop different
control methods with the goal to improve the operation
quality [11], the problem still remains in determining
which control method is preferred by a human operator. To
overcome these deficiencies, the robot needs to be equipped
with preferred assistance knowledge to understand the
operators’ preferences on the manner of different assistance
strategies. However, this understanding of human preferred
assistance in telemanipulation has rarely been studied.

Learning preference needs human subject experiments,
which normally present poor data quality caused by the
ambiguity and uncertainty of human intent [12, 13]. One
issue for preference modeling is that the inherent data
discrepancy caused by the human ambiguity and relatively
small size of the human data set may cause the training
process to suffer from performance oscillation, convergence
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difficulty, over-fitting problem, and converging to a local
solution. Additionally, derived or learned models are
mostly user-specific and robot-specific and cannot adapt
to new users or robots. The problem remains of how
robots can quickly learn useful assistance knowledge from
the teleoperation scenario with human involvement and
transfer the knowledge to other robots with less training
efforts.

This paper provides a methodology for robots to learn
the preferred assistance knowledge in a manner of the
predicted rank of the available assistive robot control
methods, which empowers a robot to choose the preferred
method for flexible grasp generation that accommodates
the operator’s motion commands and at the same time
autonomously regulate its pose to satisfy the operator’s
preferences (Fig. 1). Such preferred assistance has the
potential to reduce the frustration of the operator and help
build better human-robot cooperation in telemanipulation
tasks. The main contributions are as follows:

1) Preference-model-enabled assistance A preference
model is developed to learn the preferred assistance
knowledge, where the input is robot grasp configura-
tions generated by control strategies, and the output is
predicted ranking. An interpretation layer was designed
to convert the raw input data to preference-related
features based on domain criteria such as mimicking
operator motion, maximizing task success, or minimiz-
ing travel distance. The preference model enables a
robot to provide active assistance that is preferred by
human operators.

2) Stage wise Preference Model Updating (SMU) methods
To improve the stability while learning the preference
model, we develop SMU methods with optimizing
objectives: prediction accuracy (SMUPA), prediction
error (SMUPE), and weights tendency (SMUWT)
that update the model from model candidates stage
by stage during the training process. The methods
increase the stability of preference learning, reduce
learning iteration, and improve the performance of the
preference-aware models.

3) Cross-robot knowledge transfer methods To avoid
extensive robot-specific training, proactive knowledge
transfer methods are developed to better extend the
learned model across different robot hands. With the
rank-based prediction of the preference model, one
possibility is that the operator may rank the control
methods differently for different robot structures. The
goal of our knowledge transfer methods is to learn the
accurate rank for the new robot structures with less
training effort.
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Fig.1 The framework of modeling assistance knowledge and transfer-
ring knowledge between different robots. In a telemanipulation task,
operator commands are processed by different control strategies to
generate robot grasp poses, which will be converted to preference-
related features that human may use to perceive the quality of robot
assistance, such as mimicking human motion, following human intent
and optimizing kinematics. A preference model is trained with the

2 Related Work
2.1 Development in Telemanipulation

Current telemanipulation research focuses more on analyt-
ical kinematic mapping methods based on the structures of
the operator and robot [14-16]. Data-driven methods are
widely used in kinematic mapping for 5-finger robots, such
as end-to-end mapping for a humanoid robot hand, and
these methods have good performance in mimicking human
motion [17]. There are few applications for robotic end-
effectors that differ from a human hand structure. Recent
research indicates that bilateral telemanipulation that con-
siders the specific kinematics of the devices involved which
takes advantage of a virtual mediate object and forward
and backward mapping algorithms can generate telema-
nipulation relation in asymmetric mapping [18]. But these
methods still are pure kinematics and follow the perspec-
tive of the operator command; the robot lacks the ability
to cooperate with and proactively aid the operator. For
object manipulation tasks, task complexity and the addi-
tional requirement of fine motion operation require the
robot to understand the operator’s intent for task completion
and preference for level of assistance, and autonomously
regulate its configuration to ensure task success [19-22].

Knowledge Transfer

2-Finger Hand

Stage-wise Model Updating methods to overcome the inherent data
imperfection caused by human ambiguity and to learn the relationship
between human preference while controlling a 3-finger robot hand.
Then we transfer the learned knowledge to a 2-finger hand with the
modified knowledge transfer methods. The transferred model can be
refined with much less training to achieve equivalent performance as
if the preference model is specifically trained for the target robot

Reducing both the operator’s workload and the difficulty
of robot control through robot inference of operator intent
for task completion is a recent topic in teleoperation, partic-
ularly in tele-approaching tasks. Research has demonstrated
that in a target-approaching process, the robot agent can
infer the target location by observing the operator’s motion
trajectory and provide motion assistance in approaching
the target using linear blending strategies [23, 24], virtual
boundaries [25, 26], and force guidance [27]. The bounded-
memory adaptation model was used in human-robot mutual
adaptation to predict the intent of an operator to maintain
the operator’s trust in tele-approaching a target object [28].
However, all these works only focused on tele-approaching
an object not telemanipulating an object. For an object
manipulation task, end-effector motion trajectory blending
methods that treat the end-effector as a single point are not
effective for robot finger control, because they rarely con-
sider the fine motion constraints that are critical for the
success of manipulation tasks. These subtleties in motion
for object manipulation are also difficult to replicate with
robotic hands because of their physical differences from
human hands. We vision that different strategies will be
developed to overcome these challenges in telemanipula-
tion tasks. But, in practice, operators may have a preference
for these strategies. The missing component is a model that
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can handle control strategy selection based on preferences.
Therefore, there is a need to build preference models for
telemanipulation.

2.2 Development in Preference Modeling

Modeling human preference is a trending topic in robotic
research, especially in human-robot cooperation applica-
tions [29], such as, industrial assemblies, hybrid driving,
and manipulation, in which a human and a robot need to
cooperate with each other to complete a task. Human pref-
erence is a reference to understand how the action of the
robot is perceived as effective or intuitive by the opera-
tor. A preference model helps to optimize the robot action
and increase the trust and cooperation quality between
humans and robots. Research like [30] present a mathemat-
ical preference model based on probabilistic planning and
game-theoretic algorithms to help the robot to understand
and adapt to human preference in a leader-follower manner.
The preference can also be learned from the online human
trajectory demonstration for mobile manipulators such as
assembly line robots [31]. Machine learning methods are
getting popular recently. The approach in [32] formulates
the model as a Markov Decision Process (MDP) and uses
Inverse Reinforcement Learning (IRL) to learn human pref-
erence as a reward function. A similar approach in [33]
also uses MDP modeling but learn the preference with
regression-based and gradient-based methods. The sources
of data are also expanded from human demonstration to sub-
jective feedback like natural-language-facilitated preference
learning [34]. The above approaches show that researchers
have put great efforts into the preference modeling prob-
lem. However, these methods are applied in applications
where both humans and robots can directly interact with
the environment and have the ability to finish the task indi-
vidually. The robot can autonomously execute action while
taking human preference as a soft constraint. In telemanip-
ulation, the unique problem is that the action of the robot
is controlled by the human operator’s command, which is
a hard constraint that the robot must obey. The robot can
only semi-autonomously assist with the consideration to
balance the control performance and the operator’s feeling
of being in control. A preference model in telemanipula-
tion is essential to help the robot to provide appropriate
assistance. But, to the best of our knowledge, preference
modeling in telemanipulation has been rarely reported.

3 Assistance Preference Model
The human preferred assistance is defined to be those that

are intuitive to human operators yet effective toward task
success. The input of the preference model is characteristic
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raw data of robot hand configurations generated by
different control strategies. These raw configuration data
are converted to preference-related features by the model.
The output of the model is based on human subjects’
ranking of the preferred control strategies. The robot can
use the learned model to determine the preferred control
strategy (i.e., highest rank) to provide active assistance
to achieve semi-autonomous telemanipulation. We define
control strategies C, € C,n represents strategy type.
A control strategy type contains a group of controllers
with different optimization criteria. For example, a control
strategy like mimicking human motion can contain different
controllers that emphasize the fingertip motion mimicking
or joint motion mimicking or both. The optimization criteria
of the controllers are used to design quantitative preference-
related features O,, € O, m is the index of the feature, that
operators may use to perceive the quality of robot assistance.
The raw grasp motion generated by each controller C,
can be interpreted to preference-related features C, —
[0y, Os, ..., Oy]. In Table 1, an example list of potential
preference-related features and corresponding controllers
based on domain knowledge and literature are shown.

4 Stage-Wise Preference Model Updating
Method

Neural networks (NN) have been successful in supervised
learning to map the relation between paired input-output
training data [40]. A novel training method named stage-
wise model updating (SMU) can stabilize the training
process and obtain the optimal model in a short training pro-
cess. A stand-alone model M is used during the training
process and updated stage by stage. During the training, the
snapshot model M J is saved in every N iteration, j is the iter-
ation number. M/ is then evaluated with the defined metrics
include prediction accuracy (SMUPA)-based, prediction error
(SMUPE)-based, and weights tendency (SMUWT)-based.
At the beginning of the next training stage, the current
model is updated with the best-performed snapshot model.

4.1 SMU Evaluation Metrics

SMUPA: Improving the prediction accuracy of the prefer-
ence model is the priority during the training process. In
this metric, the performance of the snapshot models is val-
idated by checking their prediction accuracy based on the
re-ranking of the raw prediction for each operator command,
where the evaluation metric is computed as:

r

acc = % Z f (mnk [M&i(r)] , r,) @))]

=1
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Table 1 Potential

preference-related features and Controllers

Preference-related features

Description

corresponding controllers
Intent-based [35] 0

Kinematics-based [36]

Joint-based [37] 03

Fingertip-based [38] Oy

Vision-based [39] Os

02 =Y} (R — H)?

%Z,-I(Pi(R) —T))? T is the inferred human task intent. P(R)
are the probability distribution of each

given robot pose R.

R and H are robot and human kinematics,
include palm and finger configuration. A
is KL divergence between the human the
robot for feature i.

—
Z,I (oi — (,;Jl-)2 _,0) and To) are robot and human joint
configurations (Joint mapping is needed
for discrepant structures).
E—— — —
Z,l (Xi — Y;)? X and Y are robot and human fingertip

locations (Finger mapping is needed for
discrepant structures).
N Llpi—1In)? N is the number of pixels. /g and Iy
i g VR, , %
are processed pose images from robot and

human. ¢ are the weights.

where rank [Mf (r)] is the re-ranked prediction of the

controllers for one operator command, and r; is the
true rank. Function f compares the rank and output: if
rank [Msj(r)] =r, f =1, 1if rank [M&’(t)] #rr, f =0.
I is the rize of testing data.

SMUPE: This metric also focuses on improving the
prediction accuracy of the model. The difference is that the
performance is validated by comparing the cumulative root
mean square (RMS) error between the actual rank and the
raw prediction. where the error is computed as:

r
Eyms = % Zl \/ > (1) = ro)? )

SMUWT: This metric assumes that the weights of the
neuron should not change dramatically if the training
process is stable and effective. The sudden change of the
weights usually means the input data are insufficient and
have large variances. To avoid the sudden change in weights
and maintain a smooth performance increase, the metric is
designed to monitor the tendency of the weights to change.
When the change in weight is greater than a threshold,
the SMUWT metric terminates the updates, recalls the
last normal snapshot, and continues the training. The KL
divergence [41] can determine how the weights change
between the weights’ distributions in the current model and
snapshot model, which is calculated by:

KL = i P(wy)log [P(wk)] (3)
k=1 P(wp)

where P (wy) is the network weights distribution of the last
updated model and P (wy;) is the network weights distribu-
tion of the current model, k is the index of the neuron.

4.2 Update Mechanism

A threshold @ is set to keep the training stable; it is tuned
to reach the maximum training performance. When the KL
divergence value exceeds &, the current model will be
replaced with the last saved safe model and will start a
new training trial. When the KL divergence value does not
exceed the threshold, the performance of the model may still
decrease, and a validation step is used to avoid performance
degradation. This validation is achieved by checking the
primary goal of the prediction accuracy. If the prediction
accuracy decreases, the current model will still be replaced
with the last saved safe model. Because this method needs
a reference model to calculate the KL divergence of the
weight distribution, the algorithm kicks in at the second
iteration.

In practice, the updates follow an e-updating policy
that updates the stand-alone model with randomly selected
snapshots in probability of ¢ for exploration and updates
the current model with the best-performed snapshot in the
probability of 1 — € for exploitation. The three strategies
share a similar framework (Fig. 2) but follow different
updating laws.

5 Transfer Preferred Assistance Knowledge
Between Different Robots

Conventional telemanipulation methods are robot-specific
and task-specific, which require extensive efforts to gen-
eralize these methods. Our preference model that converts
the raw data to preference-related features establishes a
foundation for knowledge transfer across different robots.
Howeyver, direct transfer of the reference model from one

@ Springer
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Fig.2 The procedure of SMU strategies. First, the stand-alone model
M; is initialized with the weights of the current model M.. During the

training, in every N iterations, a snapshot model M{ is saved to the
model candidates pool. A designed evaluation metric is then used to

robot to another may not be a substantial approach, because
the physical structure discrepancy of different robot hands
causes value change to the feature spaces. For instance, a 2-
finger hand may share a criterion such as task completion
with a 3-finger hand because their structures are consid-
erably different from a human hand; but a 5-finger hand
and 4-finger hand may focus on mimicking human motion
because their structures are more similar to a human hand.
Transfer learning are popular in classification applications
such as image recognition [42, 43]. The principle of transfer
learning is that the training process of the NN approxi-
mates the learning mechanism of biological neurons. In the
learned NN of preferred assistance knowledge, the weights
of each neuron record the knowledge that positively or nega-
tively affects the human preference on the control strategies.
When transferring knowledge between the robots, the fact
is that the weights that store the knowledge are trans-
ferred. The common transfer learning workflow is to select
a trained NN model and replace the final layers and option-
ally freeze the weights of some layers then refine the model
with new data. During the transfer, the weights stored in
each layer are not changed because they supposed to share
the same features in the target model, However, we expect
that a potential better approach is to modify the layers
so that useful knowledge can be enhanced. The following
sub-sections propose two knowledge transfer methods with
model modification approach.

5.1 Positive Weights Transfer and Negative Weights
Transfer

Inspired by the development of rectified linear unit (ReLU)
layers [44], which is built on the neuroscience observation
that control the firing rate of the total input current arising
out of incoming signals at synapses [45], a knowledge
transfer method is developed which modifies the transferred
layers with a positive rectifier function to transfer positive
weights (TrPW) only, or with negative rectifier function

@ Springer
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Z

evaluate the snapshot models in the pool; the current model M, will be
updated with a randomly selected snapshot model in probability of €
for exploration. Otherwise, the current model will be updated with the
best-performed model M for exploitation

to transfer negative weights (TrNW) only. The rectifier
function allows the transferred knowledge to capture sparse
representation, which is naturally suitable for human
preference learning with sparse data.

5.2 Enhanced Weights Transfer

The magnitude of the NN weights in each layer represents
the contribution of an attribute of the input to the output. We
hypothesize that the learned weights in the preference model
are consistently distributed in each layer when transfer-
ring knowledge between similar robot hands. Thus, another
knowledge transferring method, called enhanced weights
transfer (TrEW), is developed to enhance the weights dis-
tributions of each transferred layer. The weights are propor-
tionally enhanced according to their distance to the average
magnitude of all weights within the layer. The weights of
each transferred layer are enhanced by:

L
_ 1
0 _(1—a)9—aLl§9, 4)

where 6 = [wy, ..., wi] is the vector of weights, « is the
gain of enhancement, L is the index of neuron in that layer.

6 Experiment
6.1 Setup

In this work, a two-layer feed-forward neural network
is designed to sufficiently learn the assistance preference
model considering the size of the collected preference data
set. The neural network has one hidden layer with 20
neurons using sigmoid activation and one linear output
layer. The neural network input contains the first three
preference-related features (intent-based Ojp, kinematics-
based O», and joint-based O3), which are defined in Table.
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1, and the robot grasp attributes R (palm orientation, palm
center location, and finger configuration corresponding to
the thumb and the index and middle fingers), which are
defined in the Appendix. The preference-related features are
scalars, and each grasp attribute is a 3-element vector. Thus,
the input can be formulated as a vector with 12 elements in
total. The training data set is generated by pairing the input
with a rank according to the human evaluators for a single
pose generated by a control strategy. The neural network
is trained with the data set to output the rank of a control
strategy among all defined control strategies.

Three control strategies were designed with selected
preference-related features listed in Table 1 (the details
are presented in the Appendix). For simplicity, each
strategy only contains one controller. The first is an intent-
based strategy, where the robot system uses the operator’s
motion to understand the operator’s intended task and then
generates its own motion to accomplish the task. This
strategy enables the robot to obey the task constraints
without being interrupted by the physical discrepancy
between the human hand and its own hand. For example,
if the robot’s task is to hold a cup for an individual to
drink water, the robot’s hand cannot cover the top of the
cup. Also, for a robot to hand the cup to an individual, it
is preferable to have the handle pointing out. The second
strategy is a mimic-based strategy that makes the robot
strictly follow the operator’s motion commands using a
fixed kinematic mapping policy. As motion commands may
lie outside the bounds of the robot’s capability, this strategy
forces the robot to reach its physical limit and not allow
the use of its own domain knowledge to explore a better
alternative in these situations. The third strategy is an intent-
mimic hybrid strategy, which determines the similarity of
the operator command features to those known by the robot
to find the level of importance they should have in the
final grasp configurations. The importance is constructed
as a penalty term into the formulation of the intent-based
strategy. The new components added to the control system
allow the robot to understand which attributes are common
between itself and the operator as well as how similar these
attributes are.

Human-involved experiments (Fig. 3) were designed to
collect training data for a robot to learn the preference
knowledge and to validate our SMU strategies and
knowledge transfer methods. For robustness, three expert
human operators collected motion data from three principle
tasks: Use, Handover, and Move. Each principle task
consisted of a total of 18 different motion trajectories across
the three operators. For each motion trial (54 total motion
trials), three different robot grasp motions were generated
using the three designed control strategies for a 3-finger
robot hand. Thus, each human motion trial was paired
with the three subsequent robot motion trajectories. This

was done to eliminate bias and unfairness when presenting
them to the human subjects as they can evaluate the three
robot motion strategies for a single human motion trial
simultaneously. The order of motion trials was randomly
generated, the subjects were not told how any of the control
strategies behaved, and the models were not explicitly
marked with formulation names. Each evaluator was asked
to rank their preference for the three presented robot motion
strategies for the given human motion. The preference
criteria were open-ended (i.e., they could rank based on
completing the task or following the human). In total, 1080
preference rankings across 20 evaluators were collected
(54 motion trials per evaluator). The SMU strategies were
evaluated first to learn the preferred assistance knowledge
for the 3-finger hand. The training was limited to 20 trials
and each trial had 200 iterations, for a total of 4,000
training iterations. For each trial, the snapshot model during
the training process was saved every 10 iterations; 20
models were saved in total. The baseline is a conventional
supervised learning method, which trained the model with
the same number of trials and iterations but using a
continuous training process that randomly chose 70% of the
data for training, 15% of the data for validating, and 15% of
the data for testing at each epoch. The learned models were
transferred to the 2-finger hand to validate our knowledge
transfer method, and then the SMU strategies were used to
refine the transferred model.

6.2 Evaluation Metrics

The high variance and ambiguity in the collected preference
data from the human subjects made it difficult to evalu-
ate the performance of the trained preference model. For
instance, different people may prefer different grasp con-
figurations for the same manipulation task; consequently,
evaluators may rank them in different orders, causing a
high variance in the data. For example, one evaluator may
have ranked the strategies [1, 2, 3], while another evaluator
ranked them [2, 1, 3]. To deal with this issue in practice, we
evaluated the performance of the learned model in a flexi-
ble way. Although a single control strategy does not satisfy
all evaluators’ preferences, certain control strategies are pre-
ferred than others. Like the previous example, strategies 1
and 2 are preferred, and strategy 3 is the least preferred.
Thus, we formulate the evaluation criteria as a prediction
problem to infer the control strategies with higher ranks
when the operator telemanipulates the robot to complete
a specific task. Instead of the winner-takes-all criterion,
the model focuses on not only learning preferred control
strategies but also understanding the least-preferred control
strategies. This is useful knowledge for a robot as it attempts
to understand human preferences and provide assistance
that is aligned with those preferences. For example, a robot

@ Springer
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Human Commands for Task:
Use, Move, Handover

3-Finger Gripper

Fig. 3 Human-involved experiment for data collection. 54 commands
are generated for principle task: usage, move, handover. A 3-finger
hand is teleoperated with three control strategies: intent based, mimic

can provide the most preferred or sub-preferred choice and
avoid the least-preferred choices.

7 Results

7.1 Statistical Results of the Ranking Data for the
3-finger Gripper

The ranked choices for the total tasks in experiment with
the 3-finger Gripper are shown in Fig. 4. The Intent strategy
is preferred over the other control schemes. The Mimic
approach is the least favored but still has high variance with
the second most first choices. The Intent-Mimic strategy
is in the middle of both other strategies. Table 2 shows
the Intent and Mimic method have statistical significance.
Yet the Intent-Mimic does not have significance with either
control scheme. The preferences based on task are shown

Fig.4 Preference of the
evaluators across 20 subjects.

—> ith Choice ]

> jth Choice —
Mimic Based e -
E Ranking o
Intent-Mimic )
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Combined kth Choice —T
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based, intent-mimic combined. 20 evaluators gave rank for the three
strategies. In total 1080 trials are collected

in Fig. 5. The preferences are consistent across all tasks.
The Intent controller is the most favored. The Mimic
strategy is the least favored. The Intent-Mimic strategy is
in between both controllers for the Move and Handover
tasks and outright beats the Mimic strategy in the Use
task. Table 2 shows the statistical results of the control
schemes for the preferences bystanders held. There is
always significant difference in preferences between Intent
and Mimic strategies, where the Intent is clearly preferred.
The Intent-Mimic and Mimic strategy is conditional on the
task—significant difference for the Handover task only.

7.2 Assistance Preference Modeling for the 3-finger
Gripper

Table 3 row 1 shows the prediction accuracy of the learned
model. The average prediction accuracy for the 3-finger
robot is 86.5%. From the model for each principle task,

Model Preference Ranking

This trend shows the intent only W First choice m Second choice ~ Third choice
strategy is favored with the
Intent-Mimic following and 800
lastly the mimic strategy

600 646

515
400 415
318
200 247
150
116
0
Intent Only Mimic Only Intent-Mimic
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Preference Move
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42 =

0

Intent Only Mimic Only Intent-Mimic

Fig. 5 Preference of the evaluators across each task. The general trend holds which has the Intent strategy being most preferred and the

Intent-Mimic and Mimic strategy following, respectively

the highest prediction accuracy is 88.3% and the lowest
prediction accuracy is 84.5%, which shows the consistency
and feasibility of our methods for different tasks.

7.3 Training with Stage-wise Model Updating
Methods

Figure 6 shows the training process of the preference model
for all principle tasks while using the three SMU methods.
Each data point represents the performance of the model
after the training epoch. ogMU and al%ase are the variance
of prediction accuracy starting from the second data
point. Dgyy and Dpgg. are the cumulative performance
degradation in prediction accuracy when compared with
that of the previous epoch. Overall, compared to the

Table 2 Statistical comparison across tasks for preference (3-finger
gripper)

Data Breakdown Intent vs. Intent vs. Mimic vs.
Mimic Intent-Mimic Intent-Mimic
Total 4.48E-03 7.16E-02 2.98E-01
Use only 8.21E-03 2.87E-01 1.15E-01
Hand over only 6.74E-04 1.72E-01 4.18E-02
Move over only 2.84E-03 1.53E-01 1.20E-01

baseline methods across all tasks, the average performance
of the SMUPA method is 77.6% more stable and reduce
the performance degradation from 0.7448 to 0.2481; the
SMUPE method is 8.5% more stable and reduces the
performance degradation from 0.4185 to 0.2905; the
SMUWT methods is 85.2% more stable and reduce the
performance degradation from 0.6314 to 0. Specifically, the
SMUPA method outperformed the baseline method in all
tasks, but still experience performance oscillation in Hand
Over and Move tasks. The SMUPE method performed well
in Move and Use task but worse than the baseline in Hand
Over task due to a massive performance drop at the late
training stage. Among these three SMU methods, SMUWT
can successfully maintain healthy updates in the neural
network weights to avoid a performance drop caused by

Table 3 Performance of model learning and transferring

Hand Over Move Use Average
3-Finger(Learned Model)  0.868 0.883 0.845 0.865
2-Finger(Direct Transfer)  0.608 0.690 0.561 0.620
2-Finger(TrPW) 0.642 0.771 0.689 0.701
2-Finger(TrNW) 0.762 0.582 0.779 0.708
2-Finger(TrEW) 0.712 0.711 0.599 0.674
2-Finger(Refined) 0.894 0.872 0.847 0.871
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Training with Stagewise Model Updating
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Fig. 6 The training process for each principle task (Hand Over, Move,
Use) while learning the preference model with the three stagewise model
updating strategies: SMUPA (a—c), SMUPE (d—f), and SMUWT (g-
i). G§MU and af; ase are the variance of prediction accuracy starting

data disturbance. Even for the Move task where the other
two SMU methods failed to keep the training stability and
performance gain, the SMUWT method can still maintain
the performance increase with stable training.

The results of the learned preference model confirm
that the operator’s preference relates to the human motion
command and the corresponding robot grasp configuration
for a specific task. Comparing to the baseline, the average
performance of all three SMU methods is 9.2% more stable

@ Springer

Training Epoch

Training Epoch

from the second data point. Dgypy and Dpgge are the cumulative
performance degradation in prediction accuracy during the training
process

and experience 47.4% less performance degradation in
Hand Over task; 64.5% more stable and experience 67.5%
less performance degradation in Move task, 86% more
stable and experience 97.7% less performance degradation
in Use task. Furthermore, the performance of the Move task
is among the highest (accuracy = 0.883), the performance
of the Use task is among the lowest (0.845), and the
performance of the Hand Over task is in the middle (0.868).
The Use task usually has more motion constraints than the
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other two tasks which may result in a clearer preference
rank. However, the habitual differences of humans affect the
data quality; for example, some people prefer holding the
handle of a cup while drinking, while others prefer holding
the body. These differences in preferences cause higher data
variance and lower model performance, which caused the
Use task with the baseline method to have the highest training
instability and the lowest prediction accuracy. The results
showed that the SMU methods were effective to handle
this data variance to improve the stability of the learning
process, and the Use task with the highest data variance was
improved the most with 86% stability improvement.

7.4 Transfer Preference Knowledge to a 2-finger
Gripper

Row 2 of Table 3 presents the performance by directly
transferring the learned model to the 2-finger hand. The
average performance of all transferred preference models
dropped to 0.62 compared to the original model. Rows
3 to 5 show the prediction accuracy of the transferred
model while using different knowledge transfer algorithms.
Statistically, the average prediction accuracy of all modified
knowledge transfer methods is 0.694, which is 12% higher
than direct knowledge transfer. Overall, the proposed
methods outperform the direct transfer method in eight
out of nine cases. The results for TrNW and TrPW
methods show that the ReLU conversion is effective to
transfer sparse information in most cases. The TrEW
method had more performance degradation right after
transfer than the other two methods. One reason is that
when training with imperfect data, the contained noise,
disturbance, and ambiguity are also learned in addition
to the preferred assistance knowledge. Since we cannot

identify which weight contains useful knowledge, this
method may also enhance the learned imperfectness, which
may reduce the performance. In summary, we can draw
three main reasons for performance drops while transferring
knowledge between different robots: (1) the physical
discrepancy of the hand structure cause value change to the
feature weights; (2) loss of information while transferring
knowledge; and (3) the disturbance contained in the weights
are also transferred. Thus, the transferred models need to be
refined to resume the performance.

7.5 Refine Transferred Model

Row 6 of Table 3 shows the model performance after
refining, the average prediction accuracy (0.871) shows the
performance of the transferred model after refining can be
comparable with if the model is specifically trained for the
target robot. Figure 7 is an example of the refining process
with three knowledge transfer methods for Move task and
the SMUWT metric. The model transferred by the TrEW
method reached the peak performance at the 2nd training
epoch, which outperformed the other two transfer methods.
A potential reason is that TrPW and TrNW models may
need more data and training to refine because the hard zeros
in the weights will affect the gradient back-propagation.
Although TrEW has more performance degradation than
the other two methods right after the transfer, it is much
easier to refine to recover the performance because it
transferred the complete distribution of the weighs which
has less information loss and sets a good starting point while
refining the transferred model.

Overall, the experimental results show that the combi-
nation of the TTEW method and the SMUWT strategy can
provide the best performance concerning training stability,

Refining across Transfer Methods (Move Task)

TrEW TrPW TrNW
0.9 09 T 0.9r T T
2 0.85 0.85 0.85
g
!
é 0.8 0.8 0.8
=
2
5 0.75 0.75 | 0.75
=
2
A~ 0.7 0.7 0.7
SMUWT —— SMUWT SMUWT
—— Baseline —— Baseline —— Baseline
0.65 0.65

0 2 4 6 8 10 12 14 16 18 20

Training Epoch

(a)

Training Epoch

(b)

0 2 4 6 8 10 12 14 16 18 20950 2 4 6 8 10 12 14 16 18 20
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(c)

Fig. 7 Refining process across the three transfer methods: (a) TrEW; (b) TrPW; (¢) TrNW, for Move task, using SMUWT for best training

performance
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Refining across Tasks (TrEW)
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Fig. 8 Refining process across the three principle tasks: (a) Hand Over; (b) Move; (c) Use; with the model transferred with TrEW method, The
SMUWT method was used to refine the model

peak performance, and convergent speed. Figure 8 shows  In general, the refined models of the 2-finger robot hand
the example refining process for the SMUWT and TrEW  for Hand Over task has the best prediction accuracy among
method across three tasks. All cases reached peak perfor-  the other two tasks. The preference model for Use task has
mance in less than 4 training epochs with no degradation. slightly lower prediction accuracy than the other two tasks.

Transfer without Modification
(2-Finger)

3rd Choice x

2nd Choice i x
Learned Knowledge (3-Finger)
W

Intent 1st Choice

Mimic 3rd Choice

Modified Transfer (2-Finger) Refined Model (2-Finger) ‘
Refine the Model in 3

Intent-Mimic 2nd Choice 3rd Choice ‘ x 2nd Choice ‘ \/
‘ Training Epochs ‘
1st Choice @ x 3rd Choice i \/

Fig.9 An example of performance changing flow when applying the knowledge transfer method and refining the transferred model in three
proposed methods. The learned preference model for 3-finger hand training epochs, the model classifies the first two preferred strategies
can make correct prediction. The performance dropped when exactly and accurately identifies the least preferred one for 2-finger hand
transfer the model to 2-finger hand. By implementing the modified
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Figure 9 is an example of the performance changing
flow chosen from the data set when implementing the
proposed methods for the Move task. The flow starts
from the learned preference model for the 3-finger hand,
which correctly matches the ground truth. When directly
transferring the knowledge to the 2-finger hand, the model
made a wrong prediction for all strategies. When using
the TrEW knowledge transfer method, the performance
increased compared to that of the direct transfer method.
The model successfully predicted the second choice but
confused the first and third choices. The model was
then refined with the SMUWT methods in three training
epochs with 540 samples (half of the data when train
from scratch). The refined model successfully classified
the first two preferred strategies and accurately identified
the least preferred one. These results verify the feasibility
of our assistance preference model and the assumption of
knowledge transfer between different robots. It also proves
the necessity of the proposed knowledge transfer methods
and SMU methods.

8 Discussion

8.1 Use the Assistance Preference Model
for Telemanipulation

With the learned preference models, different preference-
aware semi-autonomous manipulation schemes can be
developed to enable robots to actively provide human-
perceived effective assistance. For example, the robot can
use the preference prediction to avoid the least preferred
strategies and find the preferred assistance in the rest of
candidates that maximize task reward, which is a more
aggressive assistance scheme. The robot can also provide
the first-ranked (most preferred) assistance to maximize
operator preference, which can build better team coop-
eration but may not achieve the maximum task reward.
Analysis of the confidence of the rank prediction and
human adaptability can improve practicability when provid-
ing assistance in a real context.

8.2 Applications for Other Robot Structures and
Control Strategies

Although for simplicity of testing and evaluation in this
paper, we designed 3 control strategies and one controller
for each strategy, the preference modeling and stabilized
learning methods are expandable for a scenario with more
control strategies and/or controllers and more preference-
related features. The knowledge transfer methods can
reduce the training efforts when adopting the reference
models to different robot structures.

The difficulty of the knowledge transfer varies according
to the level of difference between the source robot and
the target robot. While transferring knowledge between
different robots, the structures of the robots should be
relatively similar; in our case, knowledge transfer between
a 3-finger hand and 2-finger hand is applicable because the
hands are similar, and all parameters are the same except for
the number of fingers. Intuitively, it is more challenging to
transfer the knowledge of a 2-finger hand to a 5-finger hand
because their structures are more dissimilar, which may
inhibit the sharing of transferable knowledge. For example,
operators may prefer the mimic strategy more than other
strategies when working with a 5-finger hand as it is more
like the human hand. Thus, knowledge should be transferred
between robots that are physically similar, like a 5-finger
hand with 20 degrees of freedom to a 5-finger hand with 16
degrees of freedom, or a 5-finger hand to a 4-finger hand.

In general, after transfer and refinement, we expect the
preferred rank to be similar but not necessarily identical.
For example, for a 4-finger robot, the majority rank may be
[intent-mimic, mimic, intent], and for a 5-finger robot the
majority rank may be [mimic, intent-mimic, intent]. They
still share transferrable knowledge to identify the first two
preferred strategies, which are intent-mimic and mimic, and
the least one intent-based control. Furthermore, if we have
ten control strategies, and three of them are preferred by the
operator, the rank of these three preferred strategies does not
have to be the same. We expect that our model can identify
the three preferred strategies and the learned knowledge can
be transferred between different robots.

9 Conclusion

In this work, we developed a methodology for robots to
choose the human-preferred way for providing a higher
level of active assistance in semi-autonomous telemanipula-
tion. We developed the preference models to learn the assis-
tance preference knowledge in a manner of the predicted
rank of the assistive robot control methods. We presented
SMU methods to stably learn the preference model from
ambiguous human preference data and different methods to
transfer the preference model so different robots can use the
model with fewer training samples. The experiment results
demonstrated that the combination of the weights transfer
method based on weight distribution (TrEW) and stage-
wise model updating strategy based on weights tendency
(SMUWT) can implement the goal of knowledge transfer
to reduce training efforts and ensure training stability. Our
future research will concentrate on understanding the con-
nection between the learned knowledge and the physical
attributes of the task objects and subjects as well as devel-
oping and evaluating preference-aware assistance methods
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petitioned in discussion for telemanipulation with physical
experiments.a

Appendix

The characteristic raw data is broken down into two cate-
gories: grasp attributes, and task attributes. Grasp attributes
represent the hand kinematics, which include the palm ori-
entation, palm center location, and finger configuration
corresponding to the thumb and the index and middle fin-
gers. We denote the set of robot grasp attributes as R and
the set of human grasp attributes as . Task attributes T
describe tasks to be done.

A.1 Intent-Based Strategy

We denote the control variables of the robot as R, € R, a
is the index of variables. A set of R, produces a probability
for each task, which is denoted as P,(R), b is the index
of tasks. An intent-uncertainty-aware human grasp model
from previous work [46] is created to refer to the different
task inference intents 7}. There are upper and lower bounds
for model parameters, U, and L, respectively, which the
robot must adhere to, such as physical limits of end effector
position or joint angles, or force provided. We establish
the intent inference, which consists of three principle tasks
including Use, Move, and Hand Over. For example, for
grasping a cup: Use is using or drinking from the cup,
Move is moving the cup to another location, and Hand Over
is handing the cup over to another agent. We use intent-
uncertainty-aware human grasp model M to infer the intent
T, in Eq. 5:

Ty = M(H) &)

The distribution Pp(R) is used to quantify how much each
task is satisfied by a given robot pose with features R,.
We use Naive Bayes robot model M, to produce the robot
probability vector of satisfying the task P,(R) in Eqgs. 6
to 8, where w; is the average value for task b, X} is
the covariance matrix for task b, and d is the length of
vector R,.

Py(R) = M, (R) (6)

P(R,|b) = e Ra=mp)" 5 Ra=p) (7

1
Vdet(Zp)(2m)d
Py(R = Ry) = P(b|R,) = —> el P )
>_» P(RalD)P(b)
Upon developing the target probability vector and the
robot probability vector, the intent-based strategy can
be constructed based on the intent-based shared control

®)
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criterion with added constraint, where the objective function

is:

C| =min (% S (Pp(R) — Tb)2>
b

sdt. Ly <R, <U; VY,
norm(R;) =1 V., needed for palm direction

(€))

A.2 Mimic-Based Strategy

If a human operator needs the robot to strictly follow
the motion command, unintended errors may occur, but
we can still achieve this goal by adding extra constraints
to the intent-based strategy. The motion constraints can
be explicitly dictated by adding the following set of
constraints:

R, =H,; V¥, (10)

This will give the operator full control of all features of
the robot. The new constraints added to the control diagram
ensure the robot follows the human exactly by matching the
robot features and human features to mimic the motion. The
objective functions are:

Cy = min <% %:(Pb(R) — Tb)z)

st. L, <R,<U, V; (11
norm(R;) =1 V., needed for palm direction
R,=H, VY,

A.3 Intent-Mimic Hybrid Strategy

We first define A, as the KL divergence between the
distribution of each feature:

oH, N 012% + (ur, — E)?* 1
OR, 20'12{(1 2

12)

Ag = ’CE(R_aHHa) =lIn

Additionally, the multivariate normal distribution between
two populations can be used to determine the overall
divergence between hand configurations in Eq. 13:

R 1
y = KLRIA) = 5 (trace(S5' Tr) + (un — )"

—1 |2H|
S — wp) — ki 0 (13)
| ZR]

The formulation results in making the mimic constraint
from the previous formulation in the objective function to
act as an elastic constraint which allows the robot to bend
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the rules on mimicking the human. The grasp position is
generated by minimizing Eq. 14.

A
C3 = min (% S (pp(R) = Ty)> + L3 (R, - Ha>2)
b a
st. Ly, <R, <U,; V;
norm(R;) =1 V., needed for palm direction
(14)
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