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Abstract—Applying Deep Reinforcement Learning (DRL) to
Human-Robot Cooperation (HRC) in dynamic control
problems is promising yet challenging as the robot needs to
learn the dynamics of the controlled system and dynamics of the
human partner. In existing research, the robot powered by DRL
adopts coupled observation of the environment and the human
partner to learn both dynamics simultaneously. However, such
a learning strategy is limited in terms of learning efficiency and
team performance. This work proposes a novel task
decomposition method with a hierarchical reward mechanism
that enables the robot to learn the hierarchical dynamic control
task separately from learning the human partner’s behavior.
The method is validated with a hierarchical control task in a
simulated environment with human subject experiments. Our
method also provides insight into the design of the learning
strategy for HRC. The results show that the robot should learn
the task first to achieve higher team performance and learn the
human first to achieve higher learning efficiency.

I. INTRODUCTION

HRC has been studied in the past decades in applications
such as robot-assisted manufacturing [1], teleoperation [2],
life assistance [3], and augments the human partner to
complete the task together [4]. The rapid development of DRL
[5] has shown that it is feasible to solve complex robot control
problems in recent years. DRL problems are modeled as a
Markov decision process (MDP) [6], where the robot interacts
with the environment and receives observations and rewards.
Then the agent takes actions based on the feedback
information to maximize its performance in the task. Such
learning mechanisms mimic the human’s behaviors when
dealing with an unfamiliar task, which makes DRL naturally
suitable to solve HRC.

A potential problem with applying DRL in HRC is that the
robot simultaneously learns how to cooperate with the human
partner and complete the task [7]. Recent approaches have
considered humans as part of the environment [8]. The robot
can observe environmental changes and human behaviors.
Such scenarios fit simple cooperation tasks like table carrying
tasks [9], object manipulation tasks [10], or block stacking
tasks [11]. However, in the real world, cooperation usually
associates with dynamic environments and complex tasks,
including several subtasks, where DRL may not be able to
stably and sufficiently learn a cooperative policy [12][13]. The
reasons are two-fold. First, the robot observation comprises of
end effects caused by both the human and the robot. Human
action can hinder the robot from extracting knowledge to build
a correct relationship between its action and the corresponding
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Fig. 1. In this HRC case, the robot and the human cooperatively complete
a hierarchical dynamic control task, where the low-level subtasks are to keep
the orange slider in the middle of the vertical rod and the blue pendulum in a
horizontal position, and the high-level subtask is to keep the gray ball in the
middle of the pendulum. The question is whether the robot should leamn to
accomplish the task first or learn to cooperate with the human first.

environmental changes. Second, the tedious exploration
process of the DRL algorithm may challenge the human
partner’s patience and distract concentration. As a result, the
robot may frustrate the human and lose the trust of the person
[14]. The team may take a long time to reach an equilibrium
with lower task performance or even fail to complete it.

In this work, we hypothesize that better HRC can be
achieved with DRL when the robot learns the task and human
partner separately, but should the robot learn the task first
or learn to cooperate with the human partner first (shown
in Fig. 1)? We propose a novel task decomposition method
that decomposes the task based on the task priority level and
the action executor level with a hierarchical reward
mechanism to answer this question. We aim to study the
fundamental nature of HRC and develop learning strategies to
improve team performance and learning efficiency. The
contributions are two-fold:

1) Developed a novel task decomposition method, with a
hierarchical rewards mechanism, that allows a robot to use
DRL to learn the HRC task with multiple prioritized subtasks
and cooperate with the human partner. The proposed method
improves learning efficiency and learning outcomes, which
results in better cooperation.

2) Understanding the influence of human involvement and
tasks with a general asymmetric hierarchical structure in HRC
helps develop novel performance evaluation metrics for
learning strategy selection.

II. RELATED WORK

The DRL application to HRC has been studied in the last
decade because of its potential ability in complex control tasks
[15]. Work to use DRL in control tasks under an HRC setup
has improved performance compared with traditional control
methods. DRL has enabled the robot to learn and interact with



humans through a trial-and-error method in more
straightforward human-robot interaction tasks such as shaking
hands and guiding directions [16]. The robot has been
equipped with attention-based DRL to interact with many
people in a navigation task [17]. The researchers have
implemented DRL to handle more complicated decision-
making tasks and communication tasks [18][19]. An
awareness-based RL algorithm was proposed in [20] to
adaptively switch the robot’s cooperation level from
autonomous to semi-autonomous. In [21], the robot uses a
model-based DRL variable impedance controller to assist
human partners in a cooperative lifting task. In [22], the DRL
method is used for assisted lunar lander game control. The
robot acts as a filter and optimizer of the human’s control
command rather than individually interacts with the
environment as in normal HRC. These methods enable the
robot to learn to accomplish the task together with the human
or to augment human performance. In [23], the authors
proposed a probability-based sensorimotor DRL algorithm
and used a similar dynamic experiment for validation. In
current approaches, the robot and the human are trained
together to learn the task and cooperate at the same time. The
training strategies on how to improve the learning efficiency
and learning outcome for HRC still lack attention. Our work
concentrates on using DRL to learn the fundamental nature of
HRC in hierarchical dynamic tasks and develop a new
perspective of the HRC formalization. The outcome can be
used to improve training efficiency and task performance in
HRC.

III. METHODOLOGY

This section explains the development of our approach.
Part A introduces the formulation of the HRC problem. Part
B introduces the development of our methods. Compared to
the methods reviewed in Related Work, the proposed method
advances the reward function’s design in the HRC task by
developing a hierarchical reward mechanism based on the
task decomposition tree. It enables the robot to understand the
priority relationship of the subtasks during the cooperation.

A. Problem Formulation

We model the HRC task as an RL problem that follows the
MDP. The MDP is defined as a tuple {S, 4, R, y}, where S is
the state of the environment, 4 is the set of robot actions.
=R (5,+,|$;, a,)is the reward received after the transition from
state s,ES to state s,,;ES. y is a discount factor. A policy
7(s, 0) specifies the action for state s. 6 is the policy network
parameters. A Proximal Policy Optimization (PPO) algorithm
[24] is adopted to find 6.

B. Hierarchical Task Decomposition and Reward
Mechanism

For a dynamic control task with a hierarchical structure, we
first decompose it to different hierarchy levels; each level
contains multiple subtasks. The decomposition is tree-based
for more straightforward representation and visualization.
There are two main components in the decomposition tree. The

first one is the subtask, which is denoted as T ,’ , where
j=1, 2, ..., J, which is the index of the logical hierarchy layers.
The priority level follows a descending manner as j increases
(i.e., the objective with priority 1 has the highest level). i is the

subtask index at that level. The second one is action, which is

denoted as A4; , where /' is the index of the level, and k is the
index of the action at that level. In HRC, the action can either
be executed by the robot or the human. We define the
decomposition rules as: 1) A higher-level subtask may have
one or multiple lower-level subtask branches. 2) The
decomposition tree’s root ends are always an action, which
means all decomposed subtasks can trace back to actions.
According to the decomposition rules, we define two basic
components in the decomposition tree: task-action connection
and task-task connection, shown in Fig. 2. The decomposition
rules help to generate a clear scope of the priorities of subtasks
and their relationships.

In HRC, each team member will take control of different
actions that correspondingly contribute to the subtasks
following the decomposition tree. The human operator can be
directly informed of the subtasks and his/her responsibility
during the cooperation. Then the human can process the task
information and start to cooperate and refine his/her
performance. For the robot, the reward function R is essential
to guide the learning process. We propose a hierarchical
reward mechanism based on the hierarchical task
decomposition tree to efficiently guide the robot to learn an
optimal policy. For a subtask that is contributed by the robot

T/, a reward function component f, is defined as:
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f’:’ can be designed as a function of state s, action a or time 7.

The overall reward function is cumulated level by level

following the decomposition tree:

R=Y, 201 (2)

In practice, the hierarchical reward mechanism makes it
flexible to design the learning strategy for the robot. It should
be noted that the human and robot can share the same higher-
level tasks, but they do not need to know each other's low-level
tasks. With the hierarchical reward mechanism, we design two
learning strategies that both have two training steps:

1)  Responsibility-guided cooperative learning. During the
first training step, the robot learns all subtasks that its
action can contribute. The human joins at the second
training step, cooperating with the robot to complete the
overarching task. This learning strategy helps the robot to
better understand the environment dynamics during the
first stage without the human factor. Then the robot can
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Fig. 2. A hierarchical task that has j levels, each with 7 subtasks. The level

represents the priority of the subtasks.



focus on learning the influence of human involvement
and updating its policy to cooperate.

2) Level-guided cooperative learning. At the first training
step, the robot and the human learn together from the
lowest level subtask. The team starts to learn higher-level
subtasks at the next training step if all lower-level
subtasks are satisfied. In this learning strategy, the robot
can continually learn how to work with the human partner
while learning the task. The cooperation starts with
relatively simpler and less relevant subtasks, which may
help the robot understand human behaviors and adjust its
cooperation policy.

Overall, responsibility-guided learning allows the robot to
learn the task first, while level-guided learning encourages the
robot to learn the human partner first.

IV. EXPERIMENT

We formulate the HRC problem in an asymmetric
hierarchical dynamic task using a slider-pendulum-ball
simulator (Fig. 3). The pendulum is attached to a slider with
two degrees of freedom: rotation along the z-axis and
translation along the x-axis. A ball rests on the pendulum and
can roll along with it. The two available actions are to apply
torque to rotate the pendulum and apply force to move the
slider up and down. A two-level hierarchical task is designed.
There are two subtasks in level 2: 77 is to keep the slider in the
middle of the rod and 73 is to keep the pendulum in the
horizontal direction. There is one subtask in level 1: 7% is to
keep the ball in the middle of the pendulum. Both actions
contribute to each subtask in level 2. Both tasks in level 2
contribute to the ball position task in level 1. In this task, each
action contributes more to the subtask that is directly contacted
(i.e., translation directly controls the slider position but also
affects the pendulum’s rotational position, vice versa). The
pendulum position contributes more than the slider position
toward the high-level ball position subtask because the ball is
more sensitive to the pendulum’s rotational position. The
subtasks are intentionally designed to be asymmetric to
comprehensively evaluate the developed algorithm and study
the HRC with more possible scenarios. The reward component
for each subtask for the robot is derived from the Gaussian
distribution:

2
1 e'é(s;jﬁ) 3

2
Ji=ai

1 Pz'ﬂi
] —
17=03 AF) )

7 2

g ! 'é<3y; ]) 5

= 1
Sl e )
where a, g, i are the tunable parameters to shape the reward
function. In the experiment, all a were set to 10, all o were set
to 1, and all x were set to 0. P, is the rotation angle of the
pendulum with east direction as 0 degree, and S, is the slider’s
vertical position with the midpoint of the rod as the point 0,
B, is the ball position with the midpoint of the pendulum as
the point 0. The length of the pendulum is 0.5m, the length of
the rod is 0.2m.

The experiment was implemented in a simulated
environment with real human subjects. Constraints were set

up on both ends of the pendulum to prevent the ball from
falling off and causing unnecessary restarts to the training.
The human can visually observe the environment on a
monitor and execute the action by controlling a joystick (Fig.
3). For the PPO agent, the state space is defined as {By,PZ,Sx,

ay}, where a, are the actions of the human. The action space
is one of the available actions (i.e., translation or rotation).
The hyperparameters of the PPO agent are shown in Table I.
Each training episode was 40 seconds to avoid decreased
human performance due to the human’s variation or
frustration.

Three learning strategies are validated in the designed
experiment, include the two proposed learning strategies and a
baseline strategy. Each learning strategy has two training cases
by swapping the robot’s and human’s actions. In total, 6
training cases are designed. They are responsibility-guided
cooperative learning (learn the task first: case 1 and case 2),
level-guided cooperative learning (learn the human first: case
3 and case 4) and learn all tasks together (Baseline: case 5, and
case 6). In cases 1, 3, and 5, the human controls the rotation
action, and the robot controls the translation action. In cases 2,
4, and 6, the human and the robot swap actions. 6 human
subjects were invited to the experiments. Each human subject
only completed one training case and was not involved in other
cases to ensure that the human subjects had no previous
knowledge of the experiment setup for proper validation. The
details of reward structures and training steps for cases 1, 3,
and 5 are outlined next. The task decomposition trees of cases
1, 3, and 5 are shown in Fig. 4. For simplicity, the details of
cases 2, 4, and 6 are not shown because they follow the same
structures as cases 1, 3, 5.
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Human Action
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T

Fig. 3. Experiment setup. The robot gets sensory observations, including
human action and state information. The human can observe the real-time
simulated results shown on the monitor. The robot directly inputs its
action to the model, and the human input his/her action to the model by
controlling a joystick.

TABLEI. HYPER-PARAMETERS FOR PPO ALGORITHM
Parameters Values
Discount Factor(y) 0.995
Experience Horizon 512
Entropy Loss Weight 0.02
Clip Factor 0.05
GAE Factor 0.95
Sample Time 0.2
Mini-Batch Size 64
Learning Rate 0.001
Number of Epoch 3




Case 1: In the first training step, the robot learns the slider
position subtask and pendulum position subtask without
human involvement. The reward function is:

Rj|case I=f12 +f22 (6)
In the second training step, the human joins the training. The

robot and the human learn the overarching task and cooperate.
The robot follows the reward:

R;|case 1 :f12 +f22 +f11 @)

Case 3: In the first training step, the robot and the human

are trained together to learn the lower-level subtasks, where
the robot learns the slider task with reward function:

Rj|case 3=f12+f22 ®)
The human learns the pendulum task. In the second training
step, the team cooperatively learns all subtasks. The robot’s
reward function becomes:
R;|case 3:f12 +f22 +f11 ©))
Case 5: The robot and the human train together to learn the
overarching task, where the robot’s reward function is:

_r2 2 1
R|case 3=f,+f, 4/, (10)
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(a) Responsibility-guided cooperative learning (learn the task first).
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(b) Level-guided cooperative learning (Learn the human first).
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Fig. 4. (a), (b) and (c) are the task decomposition trees of each training
step for cases 1, 3, and 5. Cases 2, 4, and 6 have similar structures with
swapped tasks between the human and the robot.

V. RESULTS AND DISCUSSION

A. Training Processes and Performance Evaluation

Fig. 5 shows the results of the training process for all cases.
For the two proposed learning strategies, both case 1 and case
4 converged in less than 7 iterations, which are faster than the
other cases. Case 2 struggled the most (when the robot learned
the task alone). In case 3, the robot met the difficulty of
learning initially but still reached the target 40% faster than
case 2. After the second training step, case 4 converged in 14
iterations, which is the fastest. Case 2 converged in 31
iterations, which is the slowest. In the baseline strategy, case
6 successfully reached the convergence condition in 16
iterations, but case 5 failed the training because the team
could not reach the convergence condition, and the team
performance started to decrease. The robot’s action and the
human’s action in 4 seconds during a trial of cooperation after
the training are shown in Fig. 6 to analyze the team
performance and better understand the robot’s behaviors and
the human.

Table II shows the training processes’ statistics, the
performance evaluation of the trained HRC policies and the
effort of the human and the robot. The training process section
includes the number of human-involved iterations, total
iterations, and corresponding proportions. The performance
evaluation includes the cumulative numerical error for the
low- and high-level subtasks and total error. The effort is
evaluated by calculating the variance of the actions. High
variance means it takes more effort for human/robot to adapt
to the partner and maintain the task performance. Case 2 is
highlighted as the best performing because it had the least
human-involved training in terms of the number of training
iterations and proportion to total training iterations. It also
achieved the least errors in both the low-level slider task and
the high-level ball balance task. Case 2 still achieved the
second-best performance for the low-level pendulum task with
only an 8% performance gap with case 4. Case 2 also has the
least human effort, and the robot efforts are similar across all
case due to the consistency of the learning approach. In case 1,
the human had to be more involved to reach a mediocre
performance. Cases 3-6 needed 100% human involvement.
Case 4 achieved the second-best performance, and case 5 had
the worst performance.

B. Influence of Human and Asymmetric Hierarchical Task

The results show that the proposed method helped the robot
successfully learn the HRC task in cases 1 - 4 and 6. The
failure of case 5 is due to the inherent low learning efficiency
problems that occurred when the robot must learn the difficult
task and the human together. In cases 2, 4, and 6, where the
human controls the translation action and the robot control the
rotation action, the average total error was 64% less than in
cases 1, 3, and 5, where the roles were swapped. Fig. 6 also
shows that in cases 1, 3, and 5, the robot must adjust its action
to accommodate human action changes. Such adjustment
costs extra effort for both the human and robot, downgrading
learning efficiency and team performance. The harmonious
actions of both the human and the robot in cases 2, 4, and 6
indicate that the robot has found a good cooperative policy
and can reach a higher performance.

A practical reason for the poor team performance of cases
1, 3, and 5 is that the human perception is better in observing
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Fig 5. (a) shows the training process of cases 1, 3, and 5, where the human controls the rotation action and the robot controls the translation action. (b)
shows the training process core cases 2, 4, and 6 where the actions are swapped. For Responsibility-guided and Level-guided strategies, the reward
functions are updated while finishing the first training step, then starts the second training step, which results in a reward drop. The times where the human

joins the training are marked with the red and blue arrows.
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Fig 6. The actions were executed by the human and the robot during 4 seconds of the policy validation process. In cases 1, 3, and 5, the human controls
the rotation action, and the robot controls the translation action. In cases 2, 4, and 6, the actions are swapped. For cases 1, 3, and 5, only case 1 can learn
arelatively good policy with clearer action patterns for the human and robot. In case 3 and case 5, the human and the robot struggled and must adjust their
actions. On the contrary, in cases 2, 4, and 6, the human and robot learned harmonious action patterns with much lower action frequency.

TABLEII.  TRAINING PROCESS (EPISODE), MODEL PERFORMANCE (ERROR) AND EFFORT

Training (Episode) Performance (Error) Effort
Category & Case -

Human Involved  Total Percentage Slider (m) Pendulum (rad) Ball (n) Total Human  Robot
Learn Task First Case | 18 25 72% 0.26 0.57 0.78 1.61 0.0075  0.0022
Case 2 6 31 19% 0.07 0.38 0.37 0.82 0.0020  0.0023
Learn Human First Case 3 19 19 100% 0.17 0.85 1.01 2.04  0.0078  0.0016
Case 4 14 14 100% 0.11 0.35 0.69 1.14  0.0021  0.0022
Learn Together Case 5 24 24 100% 0.28 3.16 2.82 6.26 0.0096 0.0019
Case 6 16 16 100% 0.13 0.41 0.70 124  0.0023  0.0024

translational movement than rotational movement. In cases 1,
3, and 5, the human struggled to identify if the pendulum was
in the horizontal direction and therefore took a lot of effort
adjusting the pendulum position. The human adjustment then
affected the robot’s observations and forced the robot to
accommodate. In cases 2, 4, and 6, the human can adequately
estimate the slider’s translational movement and apply
appropriate action. The comparison shows the assignment of
the human actions and tasks will end up with different team
performance. With this understanding, we believe task and
role allocation is another promising topic for HRC.

C. Learning Strategies for Cooperative Robot in HRC

The training processes in Fig. 5 and the statistical results in
Table II confirm our hypothesis that robets should
separately learn the task and human partner. Regarding
the question of what the robot should learn first, we realized
that there are multiple answers.

Specifically, in the responsibility-guided learning strategy
(learn task first), the human’s non-involvement helps the

robot better learn the task’s dynamics. The robot can fully
observe the environment in the first training step without
human influence, making it easier for the robot to explore the
environment. When the human joins the task, the robot only
needs to learn human behavior and update its policy to
cooperate. The level-guided learning strategy (learn human
first) achieves higher learning efficiency, mainly because
human involvement helps the robot narrow down the
exploration space. However, the human sacrifice his/her
effort to help the robot learn as the human involvement
increases. The difficulty still exists for the robot to decompose
the end effects of human action and robot action in the high-
level task. That is a possible reason that this strategy achieved
lower team performance.

The baseline strategy (learn together) proves our analysis
on the drawbacks of the state-of-art methods where the
training would be affected by the human’s variation and the
robot’s random exploration. Case 6 managed to converge
because the actions were appropriately assigned to the human
and the robot. Case 5 shows that the tedious robot exploration
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Fig 7. A three-factor diagram considers human involvement, total
training time, and team performance for the validated training
categories. The outer side means higher team performance, less human-
involved training, and less total training time.

causes frustration to the human, and the human’s mistakes
misled the robot during the learning process. Consequently,
team performance is hard to increase.

Conventional performance evaluation metrics only consider
team performance and total training time. However, we
believe that another important factor needs to be considered,
which is human-involved training. Ideally, we want to reduce
the burden on the human in HRC. Comparing the three
learning strategies is shown in Fig. 7 as a three-factor diagram,
which is convenient to select the desired learning strategy. For
example, if faster training is the priority, the robot should learn
the human first. If good team performance is the priority, the
robot should learn the task first. If minimal human
involvement is the priority, the robot should learn the task first.

VI. CONCLUSION

In this work, with the proposed task decomposition method
and hierarchical reward mechanism, we studied the nature of
HRC in a hierarchical dynamic control task with a
hierarchical structure. Experiment results demonstrate that
robots should learn the task and human partners separately. A
three-factor performance evaluation metrics were introduced

to achieve careful consideration for learning strategy selection.

Our future work will focus on the task and role allocation for
a better cooperative robot with adaptability, self-awareness,
and partner-awareness.
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