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Abstract—While a human is tracking a moving object to
prepare for later grasping, we naturally change our hand pose
to generate optimal pre-grasp to avoid post-grasp adjustment.
Robot hand controllers need dynamic pre-grasp planning
capability, so they are not limited in dynamic tracking and
catching tasks. To fill this gap, we explore the feasibility of using
a two-stage optimization method to enable dynamic pre-grasp
planning of individual fingers while tracking a moving object to
ensure a later successful grasp. The first stage adopts multi-
agent pursuit to partition the search space on the object surface.
The method allows each finger to consider its immediate
surroundings in a local view instead of globally determining the
best location for all fingers. The search space for each finger is
dramatically reduced since sensible alternatives are the ones left
after pruning. Each finger goal location acts independently yet
coordinates with others to achieve the goal of covering the object.
In the second stage, four different goal point movement
strategies are presented to impact the finger goal location in
their respective search space to demonstrate the ability to
facilitate different needs of the task and requirements of the
designer. Dynamic finger goal adaption is obtained by iteratively
updating these two stages. The approach is consistent in
different scenarios for the object.

I. INTRODUCTION

People naturally track falling objects and adjust their hand
posture in anticipation. This is seen in common tasks such as
tossing car keys to a friend or playing catch with a kid. Often
when teaching a kid to catch, we instruct them to keep their
hands up and predict where the ball will land. This
phenomenon is known as pre-shaping [1]. Pre-shaping
depends upon time and prior hand configurations as the
human anticipates how the object will conform to their hand.
An example of this is juggling as shown in Figure la. Two
different postures are shown in Figure 1b. The first is with
inappropriate pre-shaping which results in a recovery to a
more proper pose of the hand (top of Figure 1c¢). Further, the
type of “catch” is important as it minimizes the recovery
motion and allows for faster manipulation post catch (bottom
of Figure 1¢). The ramifications of an inappropriate pre-grasp
pose lead to either 1) a suboptimal grasp configuration occurs,
and an unstable grasp of the object results in a failure, or 2)
too much energy is consumed and distance to travel to correct
to an appropriate pose. Therefore, generating a pre-shaping
posture is critical for determining the overall success for
grasping a moving object.
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Figure 1: a) a juggling task as an example in which dynamic pre-grasp
planning is essential for task success. b) shows two potential strategies
for catching the object. The top row is a fixed pre-grasp pose. The bottom
is a dynamic pre-grasp pose. ¢) is the consequences of choosing b). The
fixed pre-grasp pose requires post grasp recovery before releasing. The
dynamic pre-grasp pose minimizes post-grasp adjustment if any. This
work focuses on developing a dynamic pre-grasp planning method to
help robotic structures to grasp moving objects.

release

The potential avenues to achieve the above tasks include
tracking and tracing an object commonly found in hitting
tasks [2], and predefined static poses before a grasp [3][4][5].
Yet, neither of these solutions are quite suitable achieve the
task. Although the tracking approaches can dynamically
adjust to a moving object, the hand is simplified by not
considering multi-finger grasping dynamics. It is necessary to
apply this dynamic adjustment to individual fingers to achieve
a better grasp solution—a finger dominated grasp (precision
grasp) allows for rotations or adjustments of the object, while
a palm dominated grasp (power grasp) allows for greater
grasp stability. Synergy-based approaches create an
interdependent model and can replicate these different grasp
styles; however, they lack the ability to generate independent
finger motion [6][7]. Specifying every predefined pre-grasp
pose on moving objects can become tedious and tricky as the
uncertainties can cause instability, and undesired results. By
considering each time point as static, the pre-grasp pose
trajectory is susceptible to dynamic disturbances and
uncertainties in the environment. Therefore, pose generation
must be able to recover from uncertainties in the environment
and from ill-positioned initial conditions. Ideally dynamic
pre-grasp planning needs a fast, parallel process (multi-agent
finger control) to handle dynamic environmental changes,
disturbances, and task constraints.

The goal of this work is to create a dynamic pre-shape pose
planning method to help control robotic structures to grasp a
moving object. A technique in multi-agent pursuit paired with
grasping dynamics is employed to 1) reduce the available
search space for a given task, 2) simplify the complexity of
robotic structures and controllable parameters which are



difficult to determine in real time, and 3) improve fast
kinematic solutions which are cumbersome to develop for
generalized systems. This paper does not focus on robotic
structure design, nor inverse kinematic solutions. The
contributions of this work are three-fold:

1) Developed a dynamic convex partitioning for each
projected contact point (projected finger goal point)
on an object (called safe regions). Inspired by a
multi-agent perspective—we treat each finger
through a local viewpoint with safe regions—the
search space for potential poses are dramatically
reduced since sensible alternatives are the ones left
after pruning. Further, the safe regions are
independently found where each finger does not
need to be aware of all the global environments, just
its nearest surroundings, which avoid undesired
surfaces of an object. The safe regions can also
depend upon physical capabilities of robotic
hands/fingers.

2) Determining the placement and movement of the
projected contact points (centroid) within a safe
region through pose estimation of the object. The
pose estimation allows for dynamic adaptation of the
centroids by providing lookback and lookahead
capabilities. Within each safe region, finding the
right contact point is critical. We present four
separate strategies (one based on position tracking
and three are based on optimizing grasp matrix
measures) to determine the placement given the
potential candidates. This paper demonstrates how to
find the centroid of safe regions (fingers)
independently and how to apply coupling between
centroids (e.g. fingertips, finger joints).

3) Validate and demonstrate robustness (through grasp
quality metrics) of determining the contact points on
a moving object through different object property
scenarios such as speed, size, number of contact
points needed.

II. RELATED WORK
In robotic grasping, a recent resurgence of effort has been put
in to reduce the needed input dimensions by exploring and
expounding the concept of synergies [6][8][9]. Synergies
attempts to mimic human-like interdependence muscle-
tendon motion. This is further extended to be used in
underactuated robotics [10]. Other work in grasping has
presented approaches in understanding the interdependence
relationship of a human hand’s degrees of freedom [11].
However, the dexterity of robotic hands can surpass that of
the human hands due to independent control of each joint.
Independence of each joint should be used to our advantage
as they this allows each finger to determine their own goal
location locally. However, to our knowledge treating each
finger and palm as multi-agents has been rarely reported. The
platforms which exist for controlling models only focus on
the kinematic hand postures globally [12][13]. Since these
approaches rely on synergies (interdependent finger model),
the possible finger goals may not cover all possible poses or
could lead to erratic motion of the hand. Further, these
planners focus on objects with static positions. Decentralizing

the mechanisms for goal locations by each finger to a local
viewpoint will allow for a reduction in total search space,
faster response time, and simplify the kinematic solvers by
relieving them of the burden to find finger goal locations.
Interacting with moving objects is often simplified to striking
tasks such as robot arms [14], or quadcopters [15] playing
ping pong. The motions generated demonstrate that it is
possible to achieve a good approach positions through
tracking a moving object on board [16]. Even in the event of
poor starting conditions [2]. Other similar trajectory planners
have quadcopters catch a ball [17][18]. However, they do not
consider grasping dynamics. In [18], they use multiple
quadrotors tied to a net to catch and throw a ball, however,
this is a simplification of the grasping task as they are not
considering grasp dynamics. In [19], pose estimation of
objects is considered for a controller that switches between a
local and global planner. However, as in [20], the grasp
models are learned by humans rather than analytical. Without
considering the dynamics in the modeling process, this leaves
little opportunity for these techniques to be extended to other
object interaction scenarios.
When most platforms attempt to determine where and how to
grasp objects, they attempt to optimize form closure or at the
least force closure [21]. A common approach to form closure
is referred to as caging [3][22]. Force closure is the relaxed
case of form closure where friction forces help balance the
object wrench [3]. These grasp measures often are viewed as
static; they do not consider the temporal aspects of the contact
points as they move. This too is reflected when attempting to
collect human hand motion to create contact maps. The
contact maps, developed through heat signatures [23] and
motion tracking [24], of human hand motions provide good
insights into how people contact various static objects.
However, we view the moving object scenario as more
challenging (as seen in Figure 1a) due to a less forgiving
environment. A necessary study needs to be conducted into
the efficacy of these metrics for dynamic objects. The
repercussions of task failure are much higher leaving little to
no chance for recovery and replanning of a poor grasp pose.
III. METHODS
A. Developing Safe Regions by Each Finger
To ensure each finger’s contact point does not overlap, act
independently, and provide reasonable reachability an
approach used in multi-agent pursuit tasks called Obstacle-
Aware Voronoi Cells (OAVC) [25] can be employed to
ensure the appropriate coverage of objects. Further, this
approach can be used to follow the center of mass of an object
through pose estimation [25] which will be explained in the
next subsection. The goal of the OAVC is to find a safe
region, S;, for a projected finger contact point, ¢; € R3, of a
workspace, Y € R, consisting of obstacles of Z € R3. For
consistency, q denotes points in Y, while z; denotes obstacle
points j in Z. Y is determined based on shape related features
such as object convexity and object related features such as
material. The OAVC algorithm is given by Equation (1):

2 :
Si={geY|llc;—ql*< ”Zj —CI” —wy,j €Zand
llei —qll*> = b < lleg —qll? —h, k €{1,..,n} =i} (1)
where h; is a weighting term to describe the physical
capabilities (such as maximum providable force or the degree
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Figure 2: a) Demonstrates safe regions(blue and red zones) on an cube with 2 placed obstacles (locations we do not want the fingertips to touch). b) 2-D
representation of different safe regions(dashed vs solid) depending on the weighting of h;. The z; represents obstacles. The smaller regions occur due to the
smaller weighting value of h; while larger weighting values lead to larger regions. This corresponds to making to the capabilities larger or smaller. In the
case study of this paper h;is weighted and considered through the fingertip dimensions. ¢) The weighting heatmaps for a single contact point. The black dot
on each subplot corresponds to the new centroid location according to the respective weighting schemes. 1) represents the position tracking, ii) represents

MSV
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of importance of a single agent i.e., thumbs are more useful
than little fingers) and attributes of the projected finger
contact point ¢; [26]. In the context of this paper, the size of
the finger contact points was considered. The wj; is defined in
equation (2):

wi; = 2 Bille; = 7]l = [le; = 7] )
where R; is the radius of obstacle z; [27]. Although these
equations have been geared towards cartesian points for this
paper, the algorithm is able to handle higher dimensions
including forces, torques, or other physical capabilities of the
finger joints. Obstacles can be user defined where certain
regions on an object must be ignored due to task constraints
(Figure la, grasp the top of the bowling pin, not the bottom)
or hazardous reasons (robot harms itself or the environment).
Figure 2b illustrates a 2-D representation of the Voronoi cell
with obstacles. Capability changes of h; can impact location
of the boundaries (blue lines change). By finding each S;, the
search space for contact point selection can be reduced, where
the next section discusses determining which is the most
suitable location for the projected finger contact point c;.
B. Determining Contact Points

1) Position Tracking Centroid Strategy

Determining the centroid of the safe region decides the next
ciwithin a S;. Each c; follows a parallel procedure where they
independently determine their subsequent motion based off of
the motion of the object. A Kalman filter is used for pose
estimation of the object’s center of mass. The Kalman filter
collects measurement data (through image processing
techniques [28][29] or in simulated environments [30]) and
refines the estimation of the object pose. The Kalman filter
creates a mean, |, and a covariance matrix, ¥, to inform the S;
of the potential distribution of the pose. A Gaussian
estimation has been used in multi-agent systems to estimate
the location of the points [31] and is shown in equation (3). gn
is the points within a S;, and b, corresponds to the probability
density of the point. The probability density is then used as a
weighting scheme to determine the best location to move the
centroid as shown in equation (4). d is the vector length of g,
—2@n-w= " (an-)7

1
b, = P(qn, 1, 2) = Toaot (3)
ZTIY= bn n
o = S 4)

The resulting c; is the centroid for the next iteration where the
process does another iteration of determining S; and c¢;. With

, iii) represents b, iv) represents b, V. The b, method is directly proportional to the

b,5Y which is the reason the heat maps are incredibly similar.

each iteration updating ci, motion constraints can be imposed
to ensure no combination of contact points lead to an
infeasible grasp.
2) Alternative Centroid Determination Strategies

The weighting of g, within S; can be determined in other
methods which include grasp measures involving the grasp
matrices [3]. Three common measures are employed: the
minimum singular value, grasp isotropy index, and volume of
ellipsoid. Equation (5) is the minimum singular value (Qmsv)
of the grasp matrix (G) where it determines how near the
grasp is to a singularity. Generally, the larger the value
indicates a better grasp. Note, G, , refers to the partial grasp

matrix at point gn.
bZISV = Umin( an) (5)

Equation (6) is the grasp isotropy index (Qgn), where the goal
is to look at the uniform contribution of the contact points.
The metric seeks to have equal contributions across all contact
points which the optimal grasp value is 1.

o'min( Gq )
Umax( an)

Equation (7) is the volume of the ellipsoid (Qvew), where k is
an arbitrary constant. The goal is to view the global
contribution of all the contact points. Each singular value is
weighted the same, however, cannot distinguish which
contact points are contributing more than others to grasp. By
maximizing the measure, the closer the grasp achieves an
optimum grasp configuration.

b = k|6 6,

GIl _
b, =

(N

Determining c; is used in the same fashion as equation (4).
Figure 2c shows a comparison of weighted heat maps to
describe the different centroid selection criteria for a single S;,
as well as the resulting centroid location for each criterion.
The different centroid locations change depending on the
probability density. The c" and cf"! are nearly identical as
they both rely on the Qumsv, unlike the ¢;Y*W. The updating
process among pose estimation, the safe regions, and centroid
determination is shown in Figure 3. This updating continues
until a grasp occurs. The pose estimation provides updates for
the object pose and twist, while also providing updates of sets
Y and Z. The updated local S; are then provided to
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Figure 3: The overall system flow of dynamic contact goal points. The
pose estimation of the object provides update sets Y and Z for the safe
regions and object pose and twist for the centroid determination. The
new centroids are set as the contact points which then provide a new
point to update the safe regions.

determining the new c;. These new c; are then provided to
back to update S; and restart the process again.
3) Additional Evaluation Classifications

Each potential grasp is classified as indeterminate and
graspable using null spaces (N) from equations (8) and (9) [3].
Equation (8) describes an indeterminate system by looking at
the object twist in relation to the contact points. Any grasp
with three or more non-collinear hard contacts will produce
trivial solutions (N(GT) = 0). Equation (9) determines if the

object is graspable—nontrivial solutions describe the

tightness of a grasp and the wrench intensities necessary.
N(GT) # 0 (8)
N(G) #0 )

IV. EXPERIMENTS AND RESULTS
A. Simulation Setup
For the experiments, simulations in the V-REP robotic
simulation platform [30] were conducted since it is easier to
show the S;, ¢i, and their updates (see supplementary video).
To simulate the dynamic behavior of adapting c;, a cube
moving on a table was used. The cube has both translational
and rotational movement. The c; are made aware of physical

TABLE I. SUMMARY OF EXPERIMENTAL CONDITIONS
. Object # of
Cases Object Speed Size Points
v=0.001m/s, _
Base 2) ©=0.0174rad/s | SO >
v=0.001m/s, _
Object ®) ©=0.0087rad/s | S~O-Im >
Speed v=0.001m/s, »
°) ©=0.0349rad/s | SOIM 3
d) v=0.001m/s, s=0.07m 5
Object ®=0.0174rad/s | h=0.075m
Size ) v=0.001m/s, s=0.2m 5
© ©=0.0174rad/s | h=0.lm
v=0.001m/s, _
Damage f) =0.0174rad/s s=0.1m 523
Poor ) v=0.001m/s, =0.1m 5
Start & ©=0.0174rad/s '

constraints such as no occupation on the face of the cube in
contact with the table. This constraint is implemented through
the set Z discussed in the methods section. To further
demonstrate adding constraints on the object surface, the top
face was excluded from allowing c;. The cube’s center of mass
was estimated by a Kalman filter. Five separate cases are
conducted. The first two cases are object-based attributes of
speed and size (cases b-e). The next two cases demonstrate
the effective robustness through simulating damage to two
fingers (going from 5 fingers to 3 fingers), and an example of
a poor starting configuration for c¢; (cases f-g). The last case
compares the different centroid strategies (cases h-j). The
summary of the conditions is summarized in Table I except
for the centroid strategies which follow the base conditions.
Three grasp measures—Qwsv, Qan, and Qvew—are used to
evaluate the grasp quality (object-based metrics) based on
centroid locations. For each trial, every grasp was shown to
be graspable through equations (8) and (9), thus the results are
not shown for the sake of brevity.
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Figure 4: First 4 seconds are the static configuration. a) the base case, b)
object, ) damage recovery from 5 to 3 contact points, g) poor start, h) c;
metric, the blue is the Qg metric, and the red is Qvgw metric.

the slower object, ¢) the faster object, d) the smaller object, e) the bigger
MSV centroid, i) ¢;!" centroid , j) ¢;YEY centroid. The black line is the Qusv



TABLE II. GRASP METRICS SUMMARY FOR POSITION TRACKING

Fig. 4 Grasp Grasp Grasp

Cases Qmsv Qan Qvew
Base a) 2.2307 | 0.9941 | 125.4403
Object b) 2.2152 | 0.9804 | 125.4160
Speed c) 2.2357 | 0.9981 | 125.4970
Object d) 22356 | 0.9989 | 125.2405
Size e) 2.1846 | 0.9514 | 126.2973
Static | 1.6913 | 0.9494 26.8783

Damage | f)

Dyn. | 1.7129 | 0.9770 27.0855

Poor " Init 1.9508 | 0.9512 64.0511
Start Dyn. | 2.2159 | 09812 | 125.3789

a), b), ¢) f) have static grasp values of Qusy = 2.2089, Qi =0.9749, Qvew

=125.4176. d)’s static grasps values are of Qusy=2.2161, Qan=0.9818,

Qvew =125.2092. e)’s static grasps values are of Qmsy =2.1817, Qqn

=0.9489, Qvew =126.2972. f) shows after damage values. Static = static

pre-pose; Dyn. = dynamic pre-pose.

B. Position Tracking for Object Properties Results
The simulation results are shown in Figure 4. The drops are a
result of the discretization of Y; however, these are not
significant as the scale on all three metrics show. Table II
shows the maximum of the simulations’ grasp qualities for a)-
g) in Figure 4. Surprisingly, no significant difference is found,
except for the damaged and ill starting condition cases.
Trends still exist, for instance, the faster case has a higher Qg
(0.9981) than the slower case (0.9804). This is likely due to
the Kalman filter anticipating insignificant motion in the
slower case thus the contact points are not as active resulting
in lower uniformity. With object size we see a slight expected
uptick in Qvew (126.2973) for the larger object compared to
the smaller one (125.2405). The Qgr for the larger object is
lower (0.9514) than the smaller object (0.9989); likely due to
the larger Y space which contact points can occupy so it is
less likely the metric will have uniformity of contact points.
The adaption solution remedied the damage case from the
static values (Qusv=1.6913, Qan=0.9494, Qvew=26.8783) to
(QMSV:1-7129, Q011:0.9770, QVEW:27-0855)- The
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TABLE III. CENTROID STRATEGIES GRASP METRICS SUMMARY

Fig. 4 Grasp Grasp Grasp

Cases Qmsv Qan Qvew
a) 2.2307 0.9941 125.4403
Centroid h) 2.2359 0.9974 125.7573
Strategy i) 2.2340 0.9965 125.8007
i) 2.2260 0.9890 125.7573

Static grasp values of Qusyv=2.2089, Qcn=0.9749, Qvew= 125.4176.

discrepancy of the quality of grasp between the base and the
remedied solution is expected since higher values should
occur with more contact points (Qmsv=2.2307, Qcn=0.9941,
Qvew=125.24403) compared to the fewer contact points.
Condition g) shows the ability to rebound to perform as well
as other cases (QMsv:2.2159, QGHZO.9812, QVEw:125.3789).
C. Centroid Strategy Results

Table III shows a summary of the simulation grasp qualities
for a) and h)-j). There is no significant difference between the
quality of grasps across the centroid strategies. However,
quantitative analysis of the grasps cannot alone inform
behaviors as similar values can result from different grasps.
Figure 5 shows a subset of qualitative differences between
cases. Figure 5i is the static contact point cases where points
will not move. Figure 5ii is the position tracking centroid
strategy which resembles caging [22] by attempting to
surround the cube on all faces. The middle two images are an
example of equivalent grasps due to the similarity. Figure Siv
is the ¢;YEW grasp which attempts to move to corners and
edges. Figure 5iv is a result of finger reassignment constraints
since we are aware non-unique grasps could exist resulting in
fingers crossing. Figure 5iii shows the damaged case of
relieving 2 broken fingers.

Further, the centroid analysis needs to consider the effort of
moving the contact points between time steps. A subset of the
energy and distance in Figure 6 show how the weighting
schemes can cause more active or less active centroid
movement. From most active to least active the approaches
rank as follows: ¢i9!, ¢MSV, ¢;VEW and lastly with the position
tracking. Although Table III and Figure 4 (the bottom row)
show they garner similar quality of grasps, the activity of each

VEWC

entroids

Figure 5: Centroid determination examples, the configurations are not synchronized to better show the safe regions (color clusters on the cub surfaces). 1)
the static contact points in green (baseline method. All other three cases started with the same initial condition as 1). ii) the position tracking method and iii)
is the same method for the contact points switching from 5 to 3. iv) is the centroid method using Qvew as the weighting scheme. In ii) the safe regions
attempt to surround the object on the faces where the hand configuration is a smooth natural transition to all faces. The safe regions of iv) expand to the
edges and corners. Since kinematic metrics currently are not being used as primary constraints, the grasps appear to be less comfortable and natural.
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Figure 6: A subset of the data for 4 centroid cases. The top is the net
distance changed between each time point for all contact points. The
position tracking strategy (orange line) is stable, and lower than the other
strategies. The ¢;YV (green line) is lower than the other two metrics. The
ciMSV (pink line) is lower than the ¢;°" (blue line). The same trends hold
for the net energy changed (bottom row).

strategy to achieve the similar results are intriguing. For
instance, a succession of multiple active points likely
indicates transitional contact points to find a suitable stable
configuration (searching the Y space). While small gradual
changes reflect readjustment to an already stable
configuration (refinement at local minimum). The difference
between highly active and subtle movement does not
necessarily correspond to minimizing the pre-shaping hand
motion. Yet, the significance in motion demonstrates the
necessity for desired behavior when hand kinematics are
considered in the contact points.
V. CONCLUSION AND DISCUSSION

A. The Position Tracking Centroid Approach
One of the more unexpected and pleasantly surprising results
from this work is seeing the position tracking method
surround the cube on all faces mimicking caging schemes.
This is promising as it places fingers in an intuitive way, while
holding up in terms of grasp quality (Qmsv = 2.2307, Qgn =
0.9941, Qvew = 125.4403). The position tracking method is
also the fastest centroid to compute because the other
approaches compute partial grasp matrices in the safe region.
The position centroid is the least active (energy and
displacement) compared to the other centroid methods.
Overall, it appears the most promising centroid approach.

B. Coupling Motion, Limiters, and Other Constraints
The coupling motion between c; can occur by constraints that
limit the centroid motion. This is practical if ¢; correspond to
kinematic chains such as the fingertip and distal joint.
Coupling the motion would result in two possible outcomes:
1) a coupled pair would find the best approach for the couple,
but not necessarily the best for either c;, or 2) find the best for
a single c; and a suboptimal solution for the second.
An additional type of limitations put on the centroids is the
amount of motion they are allowed. For each iteration, the
centroid could update discretely and discontinuously. To
provide more natural transitions, centroids could have
constraints such as maximum distance/velocity allowed.
Another consideration is the choice of weighting schemes.
The strategies presented in this paper were independent
metrics; linear combinations of them are possible
[32][33][34] where this could present behavior taking
advantage of all grasp metrics and positional tracking.

Likewise, other metrics such as independent contact regions
[35] could be used or integrated to weight the safe regions.
Certain surfaces on the objects can be considered obstacles
(i.e. the cube’s bottom face in contact with a table). This can
be extended to ensure certain faces or parts of an object are
off limits to facilitate a task need. The obstacles can act
dynamically (as shown in Figure 5 as the cube moves) and the
safe regions’ movements still adapt to their environment. The
flexibility of the safe regions allows integration of these
constraints to perform a users’ specifications.

C. Limitations and Considerations of the Approach

Considerations of using the multi-agent perspective to adapt
contact points rely on three necessary components: 1) pose
estimation of the object, and consequently, 2) defining free
space (set Y) and closed space (set Z) on the objects, and 3)
choosing the weighting and modeling scheme of the contact
points. Although pose estimation was done by a Kalman filter
with measurement data from simulation, this measurement
can be achieved by other means of computer vision [28], or
inertial measurement unit [36], as well as filtered by other
techniques such as Partially Observable Markov Decision
Process [37], or adaptive filtering [38]. Since the approach is
an object-centric perspective, it requires estimation of the
object pose. Defining the available points on an object
requires understanding object properties (materials and shape
convexity) and task constraints (where grasping is available).
Defining both sets, Y and Z, is necessary which requires
extensive knowledge of the robot’s environment. The
weighting scheme to build safe regions we proposed are based
on physical limitations of the robotic hand, however, these
could be based on other practical aspects such as friction and
forces. Likewise, modeling the contact points as hard-finger,
soft finger, point without friction [3] are alternatives which
influence the safe region and centroid point.
Finger assignment and hand kinematics are not our primary
focus in this paper. Explicit hand-centric grasp metrics need
to be considered. Future avenues are analyzing the candidate
grasps during or after the safe region development through
common hand-centric grasp metrics such as the distance to
singular configuration, volume of the manipulability
ellipsoid, and uniformity of transformation [35].

D. Equivalent vs Non-unique Grasps
Another aspect of considering dynamic contact point adaption
is determining contact points that can be solved by nonunique
or equivalent grasps to achieve a task [11]. The example
illustrated in [11] shows how separate finger combinations
can play the same notes on a guitar. Equivalent finger
configurations are those that have different positions, but the
same functional purpose (i.e., overall goal and task success).
With the guitar example, this is two separate configurations
playing the same note. In a grasping context, this would often
be observed where hand postures would look identical, but at
a different location on an object to solve the same task. A non-
unique solution is achieved when finger assignment for the
same location is interchangeable, such as using your index
finger or middle finger to play a note. In a grasping context,
this would be seen in a two-finger pinching grasp where the
index finger and middle finger are interchangeable. Being



cognizant of these two potential solution types is imperative
when designing kinematic and ¢; motion constraints.
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