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Abstract—While a human is tracking a moving object to 
prepare for later grasping, we naturally change our hand pose 
to generate optimal pre-grasp to avoid post-grasp adjustment.  
Robot hand controllers need dynamic pre-grasp planning 
capability, so they are not limited in dynamic tracking and 
catching tasks. To fill this gap, we explore the feasibility of using 
a two-stage optimization method to enable dynamic pre-grasp 
planning of individual fingers while tracking a moving object to 
ensure a later successful grasp.  The first stage adopts multi-
agent pursuit to partition the search space on the object surface. 
The method allows each finger to consider its immediate 
surroundings in a local view instead of globally determining the 
best location for all fingers. The search space for each finger is 
dramatically reduced since sensible alternatives are the ones left 
after pruning. Each finger goal location acts independently yet 
coordinates with others to achieve the goal of covering the object. 
In the second stage, four different goal point movement 
strategies are presented to impact the finger goal location in 
their respective search space to demonstrate the ability to 
facilitate different needs of the task and requirements of the 
designer. Dynamic finger goal adaption is obtained by iteratively 
updating these two stages. The approach is consistent in 
different scenarios for the object.  

I. INTRODUCTION 
People naturally track falling objects and adjust their hand 
posture in anticipation. This is seen in common tasks such as 
tossing car keys to a friend or playing catch with a kid. Often 
when teaching a kid to catch, we instruct them to keep their 
hands up and predict where the ball will land. This 
phenomenon is known as pre-shaping [1]. Pre-shaping 
depends upon time and prior hand configurations as the 
human anticipates how the object will conform to their hand. 
An example of this is juggling as shown in Figure 1a. Two 
different postures are shown in Figure 1b. The first is with 
inappropriate pre-shaping which results in a recovery to a 
more proper pose of the hand (top of Figure 1c). Further, the 
type of “catch” is important as it minimizes the recovery 
motion and allows for faster manipulation post catch (bottom 
of Figure 1c). The ramifications of an inappropriate pre-grasp 
pose lead to either 1) a suboptimal grasp configuration occurs, 
and an unstable grasp of the object results in a failure, or 2) 
too much energy is consumed and distance to travel to correct 
to an appropriate pose. Therefore, generating a pre-shaping 
posture is critical for determining the overall success for 
grasping a moving object. 

The potential avenues to achieve the above tasks include 
tracking and tracing an object commonly found in hitting 
tasks [2], and predefined static poses before a grasp [3][4][5]. 
Yet, neither of these solutions are quite suitable achieve the 
task. Although the tracking approaches can dynamically 
adjust to a moving object, the hand is simplified by not 
considering multi-finger grasping dynamics. It is necessary to 
apply this dynamic adjustment to individual fingers to achieve 
a better grasp solution—a finger dominated grasp (precision 
grasp) allows for rotations or adjustments of the object, while 
a palm dominated grasp (power grasp) allows for greater 
grasp stability. Synergy-based approaches create an 
interdependent model and can replicate these different grasp 
styles; however, they lack the ability to generate independent 
finger motion [6][7]. Specifying every predefined pre-grasp 
pose on moving objects can become tedious and tricky as the 
uncertainties can cause instability, and undesired results. By 
considering each time point as static, the pre-grasp pose 
trajectory is susceptible to dynamic disturbances and 
uncertainties in the environment. Therefore, pose generation 
must be able to recover from uncertainties in the environment 
and from ill-positioned initial conditions. Ideally dynamic 
pre-grasp planning needs a fast, parallel process (multi-agent 
finger control) to handle dynamic environmental changes, 
disturbances, and task constraints. 
The goal of this work is to create a dynamic pre-shape pose 
planning method to help control robotic structures to grasp a 
moving object. A technique in multi-agent pursuit paired with 
grasping dynamics is employed to 1) reduce the available 
search space for a given task, 2) simplify the complexity of 
robotic structures and controllable parameters which are 
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Figure 1: a) a juggling task as an example in which dynamic pre-grasp 
planning is essential for task success. b) shows two potential strategies 
for catching the object. The top row is a fixed pre-grasp pose. The bottom 
is a dynamic pre-grasp pose. c) is the consequences of choosing b). The 
fixed pre-grasp pose requires post grasp recovery before releasing. The 
dynamic pre-grasp pose minimizes post-grasp adjustment if any. This 
work focuses on developing a dynamic pre-grasp planning method to 
help robotic structures to grasp moving objects. 
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difficult to determine in real time, and 3) improve fast 
kinematic solutions which are cumbersome to develop for 
generalized systems. This paper does not focus on robotic 
structure design, nor inverse kinematic solutions. The 
contributions of this work are three-fold: 

1) Developed a dynamic convex partitioning for each 
projected contact point (projected finger goal point) 
on an object (called safe regions). Inspired by a 
multi-agent perspective—we treat each finger 
through a local viewpoint with safe regions—the 
search space for potential poses are dramatically 
reduced since sensible alternatives are the ones left 
after pruning. Further, the safe regions are 
independently found where each finger does not 
need to be aware of all the global environments, just 
its nearest surroundings, which avoid undesired 
surfaces of an object. The safe regions can also 
depend upon physical capabilities of robotic 
hands/fingers. 

2) Determining the placement and movement of the 
projected contact points (centroid) within a safe 
region through pose estimation of the object. The 
pose estimation allows for dynamic adaptation of the 
centroids by providing lookback and lookahead 
capabilities. Within each safe region, finding the 
right contact point is critical. We present four 
separate strategies (one based on position tracking 
and three are based on optimizing grasp matrix 
measures) to determine the placement given the 
potential candidates. This paper demonstrates how to 
find the centroid of safe regions (fingers) 
independently and how to apply coupling between 
centroids (e.g. fingertips, finger joints).  

3) Validate and demonstrate robustness (through grasp 
quality metrics) of determining the contact points on 
a moving object through different object property 
scenarios such as speed, size, number of contact 
points needed. 

II. RELATED WORK 
In robotic grasping, a recent resurgence of effort has been put 
in to reduce the needed input dimensions by exploring and 
expounding the concept of synergies [6][8][9]. Synergies 
attempts to mimic human-like interdependence muscle-
tendon motion. This is further extended to be used in 
underactuated robotics [10]. Other work in grasping has 
presented approaches in understanding the interdependence 
relationship of a human hand’s degrees of freedom [11]. 
However, the dexterity of robotic hands can surpass that of 
the human hands due to independent control of each joint.  
Independence of each joint should be used to our advantage 
as they this allows each finger to determine their own goal 
location locally. However, to our knowledge treating each 
finger and palm as multi-agents has been rarely reported. The 
platforms which exist for controlling models only focus on 
the kinematic hand postures globally [12][13]. Since these 
approaches rely on synergies (interdependent finger model), 
the possible finger goals may not cover all possible poses or 
could lead to erratic motion of the hand. Further, these 
planners focus on objects with static positions. Decentralizing 

the mechanisms for goal locations by each finger to a local 
viewpoint will allow for a reduction in total search space, 
faster response time, and simplify the kinematic solvers by 
relieving them of the burden to find finger goal locations. 
Interacting with moving objects is often simplified to striking 
tasks such as robot arms [14], or quadcopters [15] playing 
ping pong. The motions generated demonstrate that it is 
possible to achieve a good approach positions through 
tracking a moving object on board [16]. Even in the event of 
poor starting conditions [2]. Other similar trajectory planners 
have quadcopters catch a ball [17][18]. However, they do not 
consider grasping dynamics. In [18], they use multiple 
quadrotors tied to a net to catch and throw a ball, however, 
this is a simplification of the grasping task as they are not 
considering grasp dynamics. In [19], pose estimation of 
objects is considered for a controller that switches between a 
local and global planner. However, as in [20], the grasp 
models are learned by humans rather than analytical. Without 
considering the dynamics in the modeling process, this leaves 
little opportunity for these techniques to be extended to other 
object interaction scenarios. 
When most platforms attempt to determine where and how to 
grasp objects, they attempt to optimize form closure or at the 
least force closure [21]. A common approach to form closure 
is referred to as caging [3][22]. Force closure is the relaxed 
case of form closure where friction forces help balance the 
object wrench [3]. These grasp measures often are viewed as 
static; they do not consider the temporal aspects of the contact 
points as they move. This too is reflected when attempting to 
collect human hand motion to create contact maps. The 
contact maps, developed through heat signatures [23] and 
motion tracking [24], of human hand motions provide good 
insights into how people contact various static objects. 
However, we view the moving object scenario as more 
challenging (as seen in Figure 1a) due to a less forgiving 
environment. A necessary study needs to be conducted into 
the efficacy of these metrics for dynamic objects. The 
repercussions of task failure are much higher leaving little to 
no chance for recovery and replanning of a poor grasp pose.  

III. METHODS 
A.  Developing Safe Regions by Each Finger 
To ensure each finger’s contact point does not overlap, act 
independently, and provide reasonable reachability an 
approach used in multi-agent pursuit tasks called Obstacle-
Aware Voronoi Cells (OAVC) [25] can be employed to 
ensure the appropriate coverage of objects. Further, this 
approach can be used to follow the center of mass of an object 
through pose estimation [25] which will be explained in the 
next subsection. The goal of the OAVC is to find a safe 
region, Si, for a projected finger contact point, ci ∈ R3, of a 
workspace, Y ∈ R3, consisting of obstacles of Z ∈ R3. For 
consistency, q denotes points in Y, while zj denotes obstacle 
points j in Z. Y is determined based on shape related features 
such as object convexity and object related features such as 
material. The OAVC algorithm is given by Equation (1): 

𝑆௜ = {𝑞 ∈ 𝑌 | ‖𝑐௜ − 𝑞‖ଶ ≤ ฮ𝑧௝ − 𝑞ฮ
ଶ

− 𝑤௜௝ , 𝑗 ∈ 𝑍 𝑎𝑛𝑑  
‖𝑐௜ − 𝑞‖ଶ − ℎ௜ ≤ ‖𝑐௞ − 𝑞‖ଶ − ℎ௞ , 𝑘 ∈ {1, … , 𝑛} ≠ 𝑖 }      (1) 
where hi is a weighting term to describe the physical 
capabilities (such as maximum providable force or the degree 



  

of importance of a single agent i.e., thumbs are more useful 
than little fingers) and attributes of the projected finger 
contact point ci [26]. In the context of this paper, the size of 
the finger contact points was considered. The wij is defined in 
equation (2): 

𝑤௜௝ = 2 𝑅௝ฮ𝑐௜ − 𝑧௝ฮ − ฮ𝑐௜ − 𝑧௝ฮ
ଶ
                   (2) 

where Rj is the radius of obstacle zj [27]. Although these 
equations have been geared towards cartesian points for this 
paper, the algorithm is able to handle higher dimensions 
including forces, torques, or other physical capabilities of the 
finger joints. Obstacles can be user defined where certain 
regions on an object must be ignored due to task constraints 
(Figure 1a, grasp the top of the bowling pin, not the bottom) 
or hazardous reasons (robot harms itself or the environment).  
Figure 2b illustrates a 2-D representation of the Voronoi cell 
with obstacles. Capability changes of hi can impact location 
of the boundaries (blue lines change). By finding each Si, the 
search space for contact point selection can be reduced, where 
the next section discusses determining which is the most 
suitable location for the projected finger contact point ci. 
B. Determining Contact Points 

1) Position Tracking Centroid Strategy 
Determining the centroid of the safe region decides the next 
ci within a Si. Each ci follows a parallel procedure where they 
independently determine their subsequent motion based off of 
the motion of the object. A Kalman filter is used for pose 
estimation of the object’s center of mass. The Kalman filter 
collects measurement data (through image processing 
techniques [28][29] or in simulated environments [30]) and 
refines the estimation of the object pose. The Kalman filter 
creates a mean, μ, and a covariance matrix, Σ, to inform the Si 

of the potential distribution of the pose. A Gaussian 
estimation has been used in multi-agent systems to estimate 
the location of the points [31] and is shown in equation (3). qn 
is the points within a Si, and bn corresponds to the probability 
density of the point. The probability density is then used as a 
weighting scheme to determine the best location to move the 
centroid as shown in equation (4). d is the vector length of qn.  

𝑏௡ = 𝑃(𝑞௡ , 𝜇, 𝛴) =  
ଵ
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                                       (4) 

The resulting ci is the centroid for the next iteration where the 
process does another iteration of determining Si and ci. With 

each iteration updating ci, motion constraints can be imposed 
to ensure no combination of contact points lead to an 
infeasible grasp. 

2) Alternative Centroid Determination Strategies 
The weighting of qn within Si can be determined in other 
methods which include grasp measures involving the grasp 
matrices [3]. Three common measures are employed: the 
minimum singular value, grasp isotropy index, and volume of 
ellipsoid. Equation (5) is the minimum singular value (QMSV) 
of the grasp matrix (G) where it determines how near the 
grasp is to a singularity. Generally, the larger the value 
indicates a better grasp. Note, 𝐺௤೙

, refers to the partial grasp 
matrix at point qn. 

𝑏𝑛
𝑀𝑆𝑉 = 𝜎𝑚𝑖𝑛ቀ 𝐺𝑞𝑛

ቁ                             (5) 

Equation (6) is the grasp isotropy index (QGII), where the goal 
is to look at the uniform contribution of the contact points. 
The metric seeks to have equal contributions across all contact 
points which the optimal grasp value is 1. 

𝑏𝑛
𝐺𝐼𝐼 =

𝜎𝑚𝑖𝑛ቀ 𝐺𝑞𝑛
ቁ

𝜎𝑚𝑎𝑥ቀ 𝐺𝑞𝑛
ቁ
                                   (6) 

Equation (7) is the volume of the ellipsoid (QVEW), where k is 
an arbitrary constant. The goal is to view the global 
contribution of all the contact points. Each singular value is 
weighted the same, however, cannot distinguish which 
contact points are contributing more than others to grasp. By 
maximizing the measure, the closer the grasp achieves an 
optimum grasp configuration. 

𝑏௡
௏ாௐ =  𝑘ටห𝐺௤೙

 𝐺௤೙
் ห                             (7) 

Determining ci is used in the same fashion as equation (4). 
Figure 2c shows a comparison of weighted heat maps to 
describe the different centroid selection criteria for a single Si, 
as well as the resulting centroid location for each criterion. 
The different centroid locations change depending on the 
probability density. The  𝑐௜

ெௌ௏  and 𝑐௜
ீூூ are nearly identical as 

they both rely on the QMSV, unlike the ci
VEW. The updating 

process among pose estimation, the safe regions, and centroid 
determination is shown in Figure 3. This updating continues 
until a grasp occurs. The pose estimation provides updates for 
the object pose and twist, while also providing updates of sets 
Y and Z. The updated local Si are then provided to 

 
Figure 2: a) Demonstrates safe regions(blue and red zones) on an cube with 2 placed obstacles (locations we do not want the fingertips to touch). b) 2-D 
representation of different safe regions(dashed vs solid) depending on the weighting of hi. The zj represents obstacles. The smaller regions occur due to the 
smaller weighting value of hi while larger weighting values lead to larger regions. This corresponds to making to the capabilities larger or smaller. In the 
case study of this paper hi is weighted and considered through the fingertip dimensions. c) The weighting heatmaps for a single contact point. The black dot 
on each subplot corresponds to the new centroid location according to the respective weighting schemes. i) represents the position tracking, ii) represents 
bn

MSV, iii) represents bn
GII, iv) represents bn

VEW. The bn
GII method is directly proportional to the bn

MSV which is the reason the heat maps are incredibly similar. 



  

determining the new ci. These new ci are then provided to 
back to update Si and restart the process again.  

3) Additional Evaluation Classifications 
Each potential grasp is classified as indeterminate and 
graspable using null spaces (N) from equations (8) and (9) [3]. 
Equation (8) describes an indeterminate system by looking at 
the object twist in relation to the contact points. Any grasp 
with three or more non-collinear hard contacts will produce 
trivial solutions (𝑁(𝑮𝑻) = 𝟎). Equation (9) determines if the 
object is graspable—nontrivial solutions describe the 
tightness of a grasp and the wrench intensities necessary.  

𝑁(𝑮𝑻) ≠ 𝟎                                     (8) 
𝑁(𝐆) ≠ 𝟎                                      (9) 

IV. EXPERIMENTS AND RESULTS 
A. Simulation Setup  

For the experiments, simulations in the V-REP robotic 
simulation platform [30] were conducted since it is easier to 
show the Si, ci, and their updates (see supplementary video). 
To simulate the dynamic behavior of adapting ci, a cube 
moving on a table was used. The cube has both translational 
and rotational movement. The ci are made aware of physical 

constraints such as no occupation on the face of the cube in 
contact with the table. This constraint is implemented through 
the set Z discussed in the methods section. To further 
demonstrate adding constraints on the object surface, the top 
face was excluded from allowing ci. The cube’s center of mass 
was estimated by a Kalman filter. Five separate cases are 
conducted. The first two cases are object-based attributes of 
speed and size (cases b-e). The next two cases demonstrate 
the effective robustness through simulating damage to two 
fingers (going from 5 fingers to 3 fingers), and an example of 
a poor starting configuration for ci (cases f-g). The last case 
compares the different centroid strategies (cases h-j). The 
summary of the conditions is summarized in Table I except 
for the centroid strategies which follow the base conditions. 
Three grasp measures—QMSV, QGII, and QVEW—are used to 
evaluate the grasp quality (object-based metrics) based on 
centroid locations. For each trial, every grasp was shown to 
be graspable through equations (8) and (9), thus the results are 
not shown for the sake of brevity.  

TABLE I. SUMMARY OF EXPERIMENTAL CONDITIONS 

 Cases Object Speed 
Object 
Size 

# of 
Points  

Base a) 
v=0.001m/s, 

ω=0.0174rad/s 
s=0.1m 5 

Object 
Speed 

b) 
v=0.001m/s, 

ω=0.0087rad/s 
s=0.1m 5 

c) 
v=0.001m/s, 

ω=0.0349rad/s 
s=0.1m 5 

Object 
Size 

d) 
v=0.001m/s, 

ω=0.0174rad/s 
s=0.07m 

h=0.075m 
5 

e) 
v=0.001m/s, 

ω=0.0174rad/s 
s=0.2m 
h=0.1m 

5 

Damage f) 
v=0.001m/s, 

ω=0.0174rad/s 
s=0.1m 53 

Poor 
Start 

g) 
v=0.001m/s, 

ω=0.0174rad/s 
s=0.1m 5 

 
Figure 4: First 4 seconds are the static configuration. a) the base case, b) the slower object, c)  the faster object, d) the smaller object, e) the bigger 
object, f) damage recovery from 5 to 3 contact points, g) poor start, h) ci

MSV centroid, i) ci
GII centroid , j) ci

VEW centroid. The black line is the QMSV 
metric, the blue is the QGII metric, and the red is QVEW metric.  

 
Figure 3: The overall system flow of dynamic contact goal points. The 
pose estimation of the object provides update sets Y and Z for the safe 
regions and object pose and twist for the centroid determination. The 
new centroids are set as the contact points which then provide a new 
point to update the safe regions. 



  

B. Position Tracking for Object Properties Results 
The simulation results are shown in Figure 4. The drops are a 
result of the discretization of Y; however, these are not 
significant as the scale on all three metrics show. Table II 
shows the maximum of the simulations’ grasp qualities for a)-
g) in Figure 4. Surprisingly, no significant difference is found, 
except for the damaged and ill starting condition cases. 
Trends still exist, for instance, the faster case has a higher QGII 

(0.9981) than the slower case (0.9804). This is likely due to 
the Kalman filter anticipating insignificant motion in the 
slower case thus the contact points are not as active resulting 
in lower uniformity. With object size we see a slight expected 
uptick in QVEW (126.2973) for the larger object compared to 
the smaller one (125.2405). The QGII for the larger object is 
lower (0.9514) than the smaller object (0.9989); likely due to 
the larger Y space which contact points can occupy so it is 
less likely the metric will have uniformity of contact points. 
The adaption solution remedied the damage case from the 
static values (QMSV=1.6913, QGII=0.9494, QVEW=26.8783) to 
(QMSV=1.7129, QGII=0.9770, QVEW=27.0855). The 

discrepancy of the quality of grasp between the base and the 
remedied solution is expected since higher values should 
occur with more contact points (QMSV=2.2307, QGII=0.9941, 
QVEW=125.24403) compared to the fewer contact points. 
Condition g) shows the ability to rebound to perform as well 
as other cases (QMSV=2.2159, QGII=0.9812, QVEW=125.3789). 

C. Centroid Strategy Results 
Table III shows a summary of the simulation grasp qualities 
for a) and h)-j). There is no significant difference between the 
quality of grasps across the centroid strategies.  However, 
quantitative analysis of the grasps cannot alone inform 
behaviors as similar values can result from different grasps. 
Figure 5 shows a subset of qualitative differences between 
cases. Figure 5i is the static contact point cases where points 
will not move. Figure 5ii is the position tracking centroid 
strategy which resembles caging [22] by attempting to 
surround the cube on all faces. The middle two images are an 
example of equivalent grasps due to the similarity. Figure 5iv 
is the ci

VEW grasp which attempts to move to corners and 
edges. Figure 5iv is a result of finger reassignment constraints 
since we are aware non-unique grasps could exist resulting in 
fingers crossing. Figure 5iii shows the damaged case of 
relieving 2 broken fingers. 
Further, the centroid analysis needs to consider the effort of 
moving the contact points between time steps. A subset of the 
energy and distance in Figure 6 show how the weighting 
schemes can cause more active or less active centroid 
movement. From most active to least active the approaches 
rank as follows: ci

GII, ci
MSV, ci

VEW, and lastly with the position 
tracking. Although Table III and Figure 4 (the bottom row) 
show they garner similar quality of grasps, the activity of each 

 
Figure 5: Centroid determination examples, the configurations are not synchronized to better show the safe regions (color clusters on the cub surfaces). i) 
the static contact points in green (baseline method. All other three cases started with the same initial condition as i). ii) the position tracking method and iii) 
is the same method for the contact points switching from 5 to 3. iv) is the centroid method using QVEW as the weighting scheme. In ii) the safe regions 
attempt to surround the object on the faces where the hand configuration is a smooth natural transition to all faces. The safe regions of iv) expand to the 
edges and corners. Since kinematic metrics currently are not being used as primary constraints, the grasps appear to be less comfortable and natural. 

TABLE III. CENTROID STRATEGIES GRASP METRICS SUMMARY  

 
Fig. 4 
Cases 

Grasp 
QMSV 

Grasp 
QGII 

Grasp 
QVEW 

Centroid 
Strategy 

a) 2.2307 0.9941 125.4403 

h) 2.2359 0.9974 125.7573 

i) 2.2340 0.9965 125.8007 

j) 2.2260 0.9890 125.7573 
Static grasp values of QMSV=2.2089, QGII=0.9749, QVEW= 125.4176. 

TABLE II. GRASP METRICS SUMMARY FOR POSITION TRACKING 

 
Fig. 4 
Cases 

Grasp 
QMSV 

Grasp 
QGII 

Grasp 
QVEW 

Base a) 2.2307 0.9941 125.4403 

Object 
Speed 

b) 2.2152 0.9804 125.4160 

c) 2.2357 0.9981 125.4970 

Object 
Size 

d) 2.2356 0.9989 125.2405 

e) 2.1846 0.9514 126.2973 

Damage f) 
Static 1.6913 0.9494 26.8783 

Dyn. 1.7129 0.9770 27.0855 

Poor 
Start  

g) 
Init 1.9508 0.9512 64.0511 

Dyn. 2.2159 0.9812 125.3789 
a), b), c) f) have static grasp values of QMSV = 2.2089, QGII =0.9749, QVEW 

= 125.4176. d)’s static grasps values are of QMSV =2.2161, QGII =0.9818, 
QVEW =125.2092. e)’s static grasps values are of QMSV =2.1817, QGII 

=0.9489, QVEW =126.2972. f) shows after damage values. Static = static 
pre-pose; Dyn. = dynamic pre-pose. 



  

strategy to achieve the similar results are intriguing. For 
instance, a succession of multiple active points likely 
indicates transitional contact points to find a suitable stable 
configuration (searching the Y space). While small gradual 
changes reflect readjustment to an already stable 
configuration (refinement at local minimum). The difference 
between highly active and subtle movement does not 
necessarily correspond to minimizing the pre-shaping hand 
motion. Yet, the significance in motion demonstrates the 
necessity for desired behavior when hand kinematics are 
considered in the contact points. 

V. CONCLUSION AND DISCUSSION 
A. The Position Tracking Centroid Approach 

One of the more unexpected and pleasantly surprising results 
from this work is seeing the position tracking method 
surround the cube on all faces mimicking caging schemes. 
This is promising as it places fingers in an intuitive way, while 
holding up in terms of grasp quality (QMSV = 2.2307, QGII = 
0.9941, QVEW = 125.4403). The position tracking method is 
also the fastest centroid to compute because the other 
approaches compute partial grasp matrices in the safe region. 
The position centroid is the least active (energy and 
displacement) compared to the other centroid methods. 
Overall, it appears the most promising centroid approach. 

B. Coupling Motion, Limiters, and Other Constraints 
The coupling motion between ci can occur by constraints that 
limit the centroid motion. This is practical if ci correspond to 
kinematic chains such as the fingertip and distal joint. 
Coupling the motion would result in two possible outcomes: 
1) a coupled pair would find the best approach for the couple, 
but not necessarily the best for either ci, or 2) find the best for 
a single ci and a suboptimal solution for the second.  
An additional type of limitations put on the centroids is the 
amount of motion they are allowed. For each iteration, the 
centroid could update discretely and discontinuously. To 
provide more natural transitions, centroids could have 
constraints such as maximum distance/velocity allowed. 
Another consideration is the choice of weighting schemes. 
The strategies presented in this paper were independent 
metrics; linear combinations of them are possible 
[32][33][34] where this could present behavior taking 
advantage of all grasp metrics and positional tracking. 

Likewise, other metrics such as independent contact regions 
[35] could be used or integrated to weight the safe regions. 
Certain surfaces on the objects can be considered obstacles 
(i.e. the cube’s bottom face in contact with a table). This can 
be extended to ensure certain faces or parts of an object are 
off limits to facilitate a task need. The obstacles can act 
dynamically (as shown in Figure 5 as the cube moves) and the 
safe regions’ movements still adapt to their environment. The 
flexibility of the safe regions allows integration of these 
constraints to perform a users’ specifications. 

C. Limitations and Considerations of the Approach  
Considerations of using the multi-agent perspective to adapt 
contact points rely on three necessary components: 1) pose 
estimation of the object, and consequently, 2) defining free 
space (set Y) and closed space (set Z) on the objects, and 3) 
choosing the weighting and modeling scheme of the contact 
points. Although pose estimation was done by a Kalman filter 
with measurement data from simulation, this measurement 
can be achieved by other means of computer vision [28], or 
inertial measurement unit [36], as well as filtered by other 
techniques such as Partially Observable Markov Decision 
Process [37], or adaptive filtering [38]. Since the approach is 
an object-centric perspective, it requires estimation of the 
object pose. Defining the available points on an object 
requires understanding object properties (materials and shape 
convexity) and task constraints (where grasping is available). 
Defining both sets, Y and Z, is necessary which requires 
extensive knowledge of the robot’s environment. The 
weighting scheme to build safe regions we proposed are based 
on physical limitations of the robotic hand, however, these 
could be based on other practical aspects such as friction and 
forces. Likewise, modeling the contact points as hard-finger, 
soft finger, point without friction [3] are alternatives which 
influence the safe region and centroid point.  
Finger assignment and hand kinematics are not our primary 
focus in this paper. Explicit hand-centric grasp metrics need 
to be considered. Future avenues are analyzing the candidate 
grasps during or after the safe region development through 
common hand-centric grasp metrics such as the distance to 
singular configuration, volume of the manipulability 
ellipsoid, and uniformity of transformation [35]. 

D. Equivalent vs Non-unique Grasps 
Another aspect of considering dynamic contact point adaption 
is determining contact points that can be solved by nonunique 
or equivalent grasps to achieve a task [11]. The example 
illustrated in [11] shows how separate finger combinations 
can play the same notes on a guitar. Equivalent finger 
configurations are those that have different positions, but the 
same functional purpose (i.e., overall goal and task success). 
With the guitar example, this is two separate configurations 
playing the same note. In a grasping context, this would often 
be observed where hand postures would look identical, but at 
a different location on an object to solve the same task. A non-
unique solution is achieved when finger assignment for the 
same location is interchangeable, such as using your index 
finger or middle finger to play a note. In a grasping context, 
this would be seen in a two-finger pinching grasp where the 
index finger and middle finger are interchangeable. Being 

 
Figure 6: A subset of the data for 4 centroid cases. The top is the net 
distance changed between each time point for all contact points. The 
position tracking strategy (orange line) is stable, and lower than the other 
strategies. The ci

VEW (green line) is lower than the other two metrics. The 
ci

MSV (pink line) is lower than the ci
GII (blue line). The same trends hold 

for the net energy changed (bottom row). 
 



  

cognizant of these two potential solution types is imperative 
when designing kinematic and ci motion constraints. 
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