SONIC: A Sparse Neural Network Inference Accelerator with Silicon
Photonics for Energy-Efficient Deep Learning

Febin Sunny, Mahdi Nikdast, and Sudeep Pasricha
Colorado State University, Fort Collins, CO, USA
{febin.sunny, mahdi.nikdast, sudeep}@colostate.edu

Abstract — Sparse neural networks can greatly facilitate the
deployment of neural networks on resource-constrained platforms
as they offer compact model sizes while retaining inference
accuracy. Because of the sparsity in parameter matrices, sparse
neural networks can, in principle, be exploited in accelerator
architectures for improved energy-efficiency and latency.
However, to realize these improvements in practice, there is a need
to explore sparsity-aware hardware-software co-design. In this
paper, we propose a novel silicon photonics-based sparse neural
network inference accelerator called SONIC. Our experimental
analysis shows that SONIC can achieve up to 5.8x better
performance-per-watt and 8.4 lower energy-per-bit than state-of-
the-art sparse electronic neural network accelerators; and up to
13.8% better performance-per-watt and 27.6x lower energy-per-bit
than the best known photonic neural network accelerators.

I. Introduction

Over the past decade, convolutional neural networks (CNNs)
have exhibited success in many application domains, such as
image/video classification, object detection, and even sequence
learning. As CNNs continue to be used for solving more
complex problems, they have become increasingly compute and
memory intensive. This is reflected in the increase in operations
needed from ~4.5 million for LeNet-5 [1], proposed in 1998, to
~30 billion for VGG16 [2], proposed in 2014.

To keep pace with the continuous increase in CNN resource
requirements, several accelerator platforms have been proposed,
including graphical processing units (GPUs) with tensor units,
Google’s tensor processing units (TPUs), and custom
application-specific integrated circuits (ASICs). However, these
platforms still have low performance and energy-efficiency for
most CNN applications. Sparse neural networks (SpNNs) [3]
enable a reduced number of neurons and synapses while
maintaining the original model accuracy. Therefore, they
represent a promising optimization to reduce the overall resource
requirements for CNNs in resource-constrained environments.

Unfortunately, simply deploying an SpNN on an accelerator
does not necessarily ensure model performance and energy-
efficiency improvements. This is because the strategies for dense
neural network acceleration, for which most accelerators today
are optimized, are not be able to take advantage of the sparsity
available in neural networks. Dense neural network accelerators
orchestrate dataflow and operations for parameters that have
been sparsified (i.e., zeroed out). By having to process sparse
parameters, conventional accelerators incur high latency and
energy consumption that should be avoided. Therefore, carefully
devised strategies for taking advantage of sparsity and reducing
the number of operations becomes absolutely essential.

There have been a few recent efforts to design accelerators
that provide support for SpNNs [4]-[6]. But these electronic
accelerators face fundamental limitations in the post-Moore era,
where processing capabilities are no longer improving as they
once did, and metallic wires create new dataflow bottlenecks [7].
Neural network accelerator architectures that leverage silicon
photonics for computing and data transfer can enable low latency
and energy-efficient computation solutions [8]-[10]. However,
they are not impervious to the high latency and energy wastage
problem when accelerating SpNNs.

In this work, we present a novel neural network accelerator
designed with silicon photonics that is optimized for exploiting
sparsity, to enable energy-efficient and low-latency SpNN
acceleration. To the best of our knowledge, this work presents
the first non-coherent photonic SpNN accelerator (see Section
II). Our novel contributions in this paper include:

e The design of a novel photonics-domain SpNN hardware
accelerator architecture that utilizes a modular, vector-
granularity-aware structure to enable high throughput and
energy-efficient execution across different CNN models;

o Sparsity-aware data compression and dataflow techniques for
fully connected and convolution layers, which are tuned for
the high throughput operation of our photonic accelerator;

e A comprehensive comparison with state-of-the-art sparse
electronic and dense photonic CNN accelerator platforms, to
demonstrate the potential of our accelerator platform.

II. Related Work

To efficiently accelerate SpNNs, there is a need for
specialized hardware architectures. In recent years, a few such
architectures have been proposed by the electronic machine
learning (ML) acceleration research community, e.g., [4]-[6].
The framework presented in [4] leveraged a custom instruction-
set architecture (ISA) for SpNNs. Specialized buffer controller
architectures were used, which involved indexing to keep track
of sparse elements, thus preventing them from being fed to the
processing elements. In [5], a software-hardware co-optimized
reconfigurable sparse CNN accelerator design was proposed for
FPGAs. The architecture exploited both inter- and intra-output
feature map parallelism. Kernel merging along with structured
sparsity were considered to further improve overall efficiency.
The work in [6] described an FPGA-based implementation of a
sparse CNN accelerator. The accelerator made use of an output
feature map compression algorithm, which allowed the
accelerator to operate directly on compressed data.

To obtain lower latency and better energy efficiency, there
has been growing interest in using silicon photonics for ML

This research is supported by grants from NSF (CCF-1813370, CCF-2006788)

mailto:@colostate.edu

acceleration. Silicon photonic neural network accelerators can
be broadly classified into two types: coherent and non-coherent.
Coherent architectures use a single wavelength to operate and
imprint weight and activation parameters onto the electrical field
amplitude of optical signals, e.g., [9]. In contrast, non-coherent
architectures use multiple wavelengths, where each wavelength
can be used to perform an individual neuron operation in parallel
with other wavelengths, e.g., [8], [10]. In these architectures,
parameters are imprinted directly onto signal amplitude. The
recent work in [9] was the first to consider sparsity in the design
of coherent photonic neural network accelerators. Structured
sparsity techniques were used along with fast Fourier transform
(FFT) based optical convolution, with the goal of reducing the
area consumption of coherent architectures. The singular value
decomposition (SVD)-based approach for phase matrix
representation, which is crucial to reduce the overall area of the
coherent architecture, also makes these architectures susceptible
to accuracy loss, as the experiments in [9] showed. Due to phase
encoding noise, phase error accumulation, and scalability
limitations of coherent accelerators [24], there has been a
growing interest in non-coherent photonic accelerators. Non-
coherent dense neural network accelerators were proposed in [8]
and [10], where the basic device for multiply and accumulate
units relies on microring resonators [8] and microdisks [10]. The
work in [8] also utilized cross-layer device-level and circuit-
level optimizations to enable lower power consumption in the
optical domain. The SONIC architecture proposed in this work
represents the first non-coherent photonic SpNN accelerator,
where multiple sofiware optimizations for sparsity, clustering,
and dataflow are integrated closely with the hardware
architecture design for improved energy-efficiency and latency,
without compromising on inference accuracy.

The rest of the paper is organized as follows. Section III
provides an overview of our proposed software and dataflow
optimizations for convolution and fully connected layers in
CNNs. Section IV describes the hardware design of our non-
coherent photonic accelerator that is tuned for these model
optimizations. Section V presents the experiments conducted
and results. Lastly, we draw conclusions in Section VL.

III. Software and Dataflow Optimizations
A. Model Sparsification

To generate SpNNs, we adapt a layer-wise, sparsity-aware
training approach from [11]. We opt for layer-wise sparsity
instead of sparsifying the entire model, to have more control over
the process, and to avoid overly sparsifying sensitive layers
which notably contribute to the overall model accuracy. In our
approach, for every layer selected to be sparsified, a binary mask
variable is added, which is of the same size and shape as the
layer’s weight tensor. The algorithm also determines which of
the weights participate in the forward execution of the graph.
The weights in the chosen layer are then sorted by their absolute
values and the smallest magnitude weights are masked to zero
until the user-specified sparsity levels are reached. Also note that
we opt for sparsity-aware training instead of post-training
sparsification, as the latter approach can indiscriminately
remove neurons, thus adversely affecting the inference accuracy.
We also utilize an L2 regularization term during training, to

encourage smaller weight values and avoid overfitting, which
further helps improve the overall accuracy post-deployment.

B. Weight Clustering

The electrical-optical interface in photonic accelerators, such
as in [8], can be highly power consuming. This is because
digital-to-analog converters (DACs), which have high power
overheads, are used in these interfaces to tune the optical devices
in the multiply-and-accumulate (MAC) units. Moreover, higher
resolution (i.e., the number of bits used to represent each weight
and activation parameter) requirements for a DAC translate into
higher power and latency overheads in the DAC. Thus, to reduce
these DAC overheads, we perform post-training quantization of
the models, in the form of weight clustering. We opt for density-
based centroid initialization of the weights, for the clustering
operation, as described in [12]. For this clustering approach, a
cumulative distribution function is built for the weights. The
distribution is evenly divided into regions, based on the user
specified number of clusters. The centroid weight values of the
evenly distributed regions are then deduced, and these values are
used to initialize clustering. This process effectively reduces the
variations in weight values and confines the values to the
centroids. Therefore, if there are C centroids, and thus C clusters,
the model will end up with C unique weights. This implies that
the weights can be represented with a resolution of log,C, thus
reducing the required DAC resolution and enabling power and
latency savings. Section V.A describes our weight clustering
(and sparsification) explorations and parameters in more detail.

C. Dataflow Optimizations

Beyond sparsification and weight clustering optimizations,
we also perform enhancements to improve dataflow efficiency
in our hardware platform. Fully Connected (FC) layers are
computationally intensive layers in CNNs where all neurons in
the layer are connected to all the other neurons in the following
FC layer. The baseline FC-layer operation is a matrix-vector
product, which generates the output vector to be passed on to the
next FC layer, as represented in Fig. 1(a). As the figure shows,
there can be many parameters in the weight matrix and the
activation vector which are zeroes. These zero parameters can be
prevented from being passed on to the processing elements to
reduce model latency and energy consumption.

Weights Activations Output Weights Activations Output
0 Wz f¥isfl O s [Wis 0 [Wys [Wis [Wie
ool O B 0w, M| 0 : Wi 0 s 0
o, W, No il - = 0 [wis| 0 | - =

AR

sl 0 b s s
(@ (b)

Fig. 1: FC layer operation, where the product of the weight matrix
and activation vector is calculated. (a) Zero element identification
in the activation vector and corresponding columns in weight matrix
(marked in dotted outlines); (b) Compressed matrix and vector, but
weight matrix still exhibits parameter sparsity.

Wa Wz [Was [Wae

51 Ws3 [Wss [Ws6

To achieve this goal, a compression approach as depicted in
Figs. 1(a)-(b) is utilized. In this approach, we identify the zero
parameters in the activation vector, and remove the
corresponding columns in the weight matrix which will be

operated upon by these parameters during the dot-product
operation. This approach generates dense activation vectors, but
the weight vectors can still be sparse, as depicted in the weight
matrix in Fig. 1(b). This process also does not impact the output
vector calculation accuracy or output vector dimension.

For convolution (CONV) layers, the main difference with FC
layers is the convolution operation performed in CONV layers.
We unroll the CONV layer kernels and their associated patch of
the input feature (IF) map matrix, to form vector-dot-product
operations from the convolution operations (see Fig. 2(a)). The
compression approach for FC layers can be repeated for these
unrolled matrix-vector multiplication operations (see Fig. 2(b)).
The compression approach in CONV layers helps generate dense
kernel vectors to be passed to the vector-dot-product units
(VDUs). Note that the IF vectors (activations) being passed for
processing may still have sparsity present, as shown in Fig. 2(c).

The residual sparsity in the FC layer weight matrices and the
CONV layer IF maps is handled at the vector-dot-product unit
(VDU) level, as discussed in more detail in Section IV.B.

Input feature map Kernel Output feature map
05
04
0,3 025
0.2 024
o 023 035
027 034
021 033 085
0s* 0
05 043 L~
047
04
AWz [z [P o M O
I
Az [Ais | O |H2s n Mz [Azs m _
t . =
sl 0 [acs e |] Mua faza | [Waa
)
} |
0 (A5 [Az0 |25 0 425
bl
AL;IA, Ays l’l"" Ays |4z
(b) (©)

Fig. 2: (a) Convolution operation between kernel (weight) matrix
and input feature map (activations). A patch of the input feature map
is convolved with the kernel matrix at a time to generate an output
feature map element (a patch and the corresponding output element
are shown in red boxes). (b) Convolution operation unfurled into a
vector-matrix-dot-product operation; avenues for compression are
indicated by dotted-red outlines. (c) The result of the compression
approach, with input feature map still exhibiting parameter sparsity.

IV. SONIC Hardware Accelerator Overview

Fig. 3 shows a high-level overview of the proposed non-
coherent SONIC architecture for SpNN inference acceleration.
SONIC comprises of an optical processing core, which uses
vector-dot-product units (VDUs)—described in Section [V.B—
to perform multiply and accumulate operations for FC and
CONV layers in the photonic domain during inference. Several
peripheral electronic modules are also integrated, to interface
with the main memory, map the dense and sparse vectors to the
photonic VDUs, and perform post-processing operations, such
as applying non-linearities and accumulating partial sums
generated by the photonic core. DAC arrays within VDUs
convert buffered signals into analog tuning signals for MRs, and
vertical-cavity surface-emitting lasers (VCSELs) are used to
generate different wavelengths. Analog-to-digital converter

(ADC) arrays are used to map the output analog signals
generated by photonic summation to digital values that are sent
back for post-processing and buffering. The devices, VDU, and
architecture are discussed further in the following subsections.

]

Vector

— PostF

Dense Parameter Buffer

Decomposition
and Mapping 5 I‘\\r?:y
t €
@ CONV - CONV
Parameter Fetch 5 VDU #1 VDU #N
and Compression 3
£ 5 .
t g : i
2 | }
“» DRAM Interface o
s - FC s FC
& VDU #1 VDU #K
Off-Chip Main
Memory Optical Processing Core

Fig. 3: An overview of the SONIC architecture, with N CONV
layer-specific VDUs and K FC layer-specific VDUs.

A. Microring Resonators (MRs) and Robust Tuning

MRs are the primary devices used within our VDUs to
implement matrix-vector multiplication operations. MRs are
wavelength-selective silicon photonic devices, which are usually
designed to be responsive to a specific ‘resonant’ wavelength
(Aur). Such MRs are used to modulate and filter their resonant
wavelengths in a carefully controlled manner, via a tuning
circuit, to realize multiplications in the optical domain.

Tunable MR
Input Output
signal V signal
Waveguide -
(a)
Input W1 w, W; OUt‘Ft)rL-:t WDM stignal
WDM signal 1 wi inf:rr;r;z ers
@ Amrz Amrs
L Waveguide)

Tunable MR bank
(b)
Fig. 4: (a) An all-pass microring resonator (MR) filter (R is the
radius of the MR and determines the resonant wavelength). (b) An
MR bank where multiple MR filters, each sensitive to a particular
wavelength, are arranged to perform vector-matrix multiplication.

An MR tuning mechanism can be used to induce a resonance
shift (4Aur), and to change the output wavelength amplitude
(Fig. 4(a)) to realize a scalar multiplication operation. The tuning
mechanism in MRs operates by heating (thermo-optic (TO)
tuning [13]) or carrier injection (electro-optic (EO) tuning [14]),
thereby inducing a change in effective index (.4), which impacts
Aur. The induced AAur increases the loss a wavelength
experiences as it passes the MR, modifying the amplitude and
imprinting the desired parameter (W ,—W; for MR|—-MR; in Fig
4(b)). To improve throughput, WDM signals are used with a
group of MRs (i.e., MR bank, Fig. 4(b)), where each MR is

sensitive to a specific Ayr. A large passband in MRs can be
achieved by cascading several of them, as in [15], which can be
used to simultaneously tune multiple wavelengths.

In SONIC, we make use of a hybrid tuning circuit where both
TO and EO tuning are used to induce AAyz. Such a tuning
approach has previously been proposed in [16] for silicon
photonic devices with low insertion loss. This approach can be
easily transferred to MR banks for hybrid tuning in our
architecture. The hybrid tuning approach supports faster
operation of MRs with fast EO tuning to induce small A4y and
using TO tuning for large Ayr. To further reduce the power
overhead of TO tuning in our hybrid approach, we adapt a
method called thermal eigen decomposition (TED), which was
first proposed in [17]. Using TED, we can collectively tune all
the MRs in an MR bank with much lower power consumption.

B. Vector-Dot-Product Unit (VDU) Design

As we decompose the operations in FC and CONV layers to
vector-dot-product operations, our processing units are
effectively vector-dot-product units (VDUs). Fig. 5 depicts the
VDU design in SONIC. As Figs. 1(b) and 2(c) showed, the
granularity of the vectors involved in FC and CONV operations
can be different. In real models, the CONV kernel sizes are
relatively small when compared to FC layers. Also, in our
dataflow for CONV layers, the dense vectors are generated by
kernel matrices (weights), and for FC layers, the dense vectors
are generated by activation vectors. However, for CONV layer
dense vectors, we only need low resolution digital-to-analog
converters (DACs), because of the clustering approach we utilize
(see Section II1.B). Moreover, for FC layers, the sparse vectors
may utilize the low-resolution DACs, due to the same reason.
Therefore, considering these differences, we separate the VDU
implementations for CONV and FC layers. However, both the
VDU implementations follow the layout illustrated in Fig. 5.
.....

PAC ATV b array for ¥_Dense vector feed

for driving driving MR
VCSEI':S tuning circuits Dense vector buffer
- '

Co0"0 B

Batch normalization
(BN) layer parameter

Photodetector
»—

Broadband
MR

VCSEL array

Fig. 5: Vector-dot-product unit in the SONIC architecture.

As shown in Fig. 5, VDUs use separate local buffers to store
the sparse and dense vector parameter values. The parameters
are fed into DAC arrays for driving the optical devices (MRs or
VCSELSs). Each VDU has a local VCSEL array, which is driven
using a DAC array. A DAC drives its corresponding VCSEL to
generate optical signals with amplitude tuned to reflect its
corresponding vector parameter.

We enhance the VDU design for sparsity by preventing a
VCSEL from being driven if a zero element is encountered in
the sparse vector (recall that after the compression approach
described in Section III.C, there may be residual sparsity in the
IF map or weight matrix). This involves power gating the

VCSEL, and hence subsequent operations for the dot product
will not occur. The power gating thus helps avoid the wasteful
operations with the zero parameters, which were not eliminated
by our data compression approach (see Section III), in the
vectors fed to the VDU. The signals from the VCSEL array are
fed into an optical multiplexer (MUX in Fig. 5) to generate a
WDM signal, which is transmitted to the MR bank via a
waveguide. The MR bank is comprised of several tunable MRs,
each of which can be tuned to alter the optical signal amplitude
of a specific input wavelength, so that the intensity of the
wavelength reflects a specific value, as discussed earlier.

We also make use of a broadband MR to tune all wavelengths
simultaneously to reflect batch normalization (BN) parameters
for a layer (Fig. 5). Once the multiplication between parameters
and BN parameters have been performed, a photodetector is used
to convert the optical signal back to an electrical signal, to obtain
a single, accumulated value from the VDU.

C. SONIC Architecture

The VDU design discussed above is integrated in the SONIC
architecture shown in Fig. 3. As mentioned earlier, we separate
the VDU designs for the FC and CONV layer operations. The
separate VDU designs account for the vector granularity
differences between FC and CONV layer operations, and the
differences in DAC requirement for driving the VCSEL and MR
arrays. The architecture relies on an electronic-control unit for
interfacing with the main memory, retrieving the parameters,
mapping the compressed parameters, and post-processing the
partial sums generated by the VDUs. The optical processing core
(see Fig. 3) focuses on CONV, FC, and batch normalization
acceleration during the inference phase. Other operations, such
as activation and pooling are implemented electronically, as
done in all prior works on optical computation, due to the
difficulty in performing such operations optically. The SONIC
architecture design in Fig. 3 arranges VDUs in an array. For
CONV layers, we consider N VDU units, with each unit
supporting an nxn dot product. For FC layer acceleration, we
consider K VDU units, with each unit supporting a mxm dot
product. Here, m >n and N > K, as per the requirements of each
of the distinct layers. In each VDP unit, the original vector
dimensions are decomposed into n or m dimensional vectors.
Here, n and m are dependent on the dense vector granularity we
obtain through the compression approach for the CONV and FC
layers, as discussed in Section III.C.

V. Experiments and Results

For our experiments, we consider four custom CNN models
with both CONV and FC layers, for the well-known CIFAR10,
STL10, SVHN, and MNIST datasets. Details on the baseline
models are shown in Table 1. For evaluating the performance of
the SONIC architecture, we compare it against two state-of-the-
art SpNN accelerators: RSNN [5] and NullHop [6], along with
dense photonic accelerators CrossLight [8] and HolyLight [10],
and a photonic binary neural network accelerator LightBulb [23].
Furthermore, we attempted to implement the coherent SpNN
photonic accelerator from [9]; however, the work does not
provide details or results for latency, power, and energy, which
prevented us from comparing against it. We also show

comparative results against the NVIDIA Tesla P100 GPU and
Intel Xeon Platinum 9282 CPU. We compared all these
architectures in terms of throughput (i.e., frame per second
(FPS)), energy per bit (EPB), and power consumption efficiency
(FPS/W). We devised a custom Python simulator, integrated
with Tensorflow v2.5, to evaluate SONIC and other accelerators.
The parameters summarized in Table 2 were used to configure
the accelerators to obtain performance and power/energy results.

Table 1: CNN models considered for experiments.

Datasets Conv FC No. of Baseline
layers | layers parameters accuracy
MNIST 2 2 1,498,730 93.2%
CIFARIO 6 1 552,874 86.05%
STL10 6 1 77,787,738 74.6%
SVHN 4 3 552,362 94.6%
Table 2: Parameters considered for analysis of accelerators.
Devices Latency Power
EO Tuning [13] 20 ns 4 uyW /nm
TO Tuning [14] 4 us 27.5 mW/FSR
VCSEL [18] 0.07 ns 1.3 mW
Photodetector [19] 5.8 ps 2.8 mW
DAC (16 bit) [20] 0.33 ns 40 mW
DAC (6 bit) [21] 0.25 ns 3 mW
ADC (16 bit) [22] 14 ns 62 mW

A. Model Sparsification and Clustering Results

In the first experiment, we focus on software model
optimization in SONIC. To obtain the best accuracy possible, we
performed layer-wise sparsification in the models considered, as
described in Section IIILA. We also use this experiment to
partially explore the design space of SONIC hardware
implementations. As depicted in Fig. 5, we use DACs for driving
MRs and VCSELSs in our accelerator. To decide on the required
DAC resolution (and corresponding power and latency costs),
we perform post-training weight clustering, as described in
Section III.B. Our goal was to generate models with as much
per-layer sparsity as possible, and minimal DAC resolution,
while exhibiting comparable accuracy to the baseline model.

Table 3: Summary of the sparsification and clustering results.
Datasets | Layers | No. of weight No. of Final
pruned clusters parameters | accuracy
MNIST 4 64 749,365 92.89%
CIFARIO 7 16 276,437 86.86%
STL10 5 64 46,672,643 | 75.2%
SVHN 5 64 331,417 95%

A summary of the optimized models and the final accuracy
achieved after sparsification and weight clustering is shown in
Table 3. Note that the final accuracy of the optimized models in
Table 3 is comparable or slightly better than the baseline
accuracy shown in Table 1, which is consistent with the trend in
prior works. To arrive at these numbers for each model, we
performed a detailed exploration. Fig. 6 shows the design space
considered during sparsity and clustering exploration for the
CIFAR10 model (figures for the other three models are omitted
for brevity). The best solution selected is the one with the highest
accuracy and is highlighted with a star (the same solution as
shown in Table 3). Fig. 7 further shows the layer-wise

breakdown of sparsification for all four models, where the plots
show the layer-specific sparsity level for weight parameters (in
the best solution for each model from Table 3) and the resulting
sparsity in activations as they traverse the sparse layers. Our
exploration was able to identify the need for a maximum of 16
clusters for the best CIFAR10 solution and a maximum of 64
clusters across the four models (Table 3). Based on these results,
we consider 6-bit DACs (to support up to 64 levels) for weight
parameters. We kept activation granularity at 16-bits, which
provided us with sufficient accuracy (Table 3) and thus used 16-
bit DACs for activations, in the SONIC accelerator.

o o 0.8
o o S
(o] O
o o o o o o o oo. {250 0r
o o o 4
o o 2
o o %
o o o s 0.6
(@]
o ° o o s >
o o = 05 ®
o o ° o] 3
o o £ S
e goaloll O E &
8 [Oﬁ 3 0.4
R
®OC o0, e 03
[
O A "
1 P L J °

; .
N 4 5
Umber of layers =

Fig. 6: Visualization of sparsity and clustering exploration on the
CIFAR10 model. Number of layers is the total layers sparsified,
sparsity is the average pruning aggressiveness, and number of
clusters refers to the total weights clusters. The best (highest
accuracy) configuration is indicated by the star.

MNIST model sparsity

» 0.9 Weight e Activation’

% of non-zero
m
°
3

Convl FC2

Conv2 FC1
CIFAR10 model sparsity
" 0.9 [— Weight s Activation |

T e—

Conv3 Conv4 Conv5 Convé FC1
STL10 model sparsity

% of non-zero
m
°
3

.4
Convl Conv2

o rapmre)
E 0 0.9 [— Weight = Activation
N &2
L 08
S %oy
cE”
4 806
o —
X o \/
0.4
Convl Conv2 Conv3 Conv4 FC1 FC2 FC3
SVHN model sparsity

»n 0.9 Weight e Activation |

% of non-zero
m
°
3

Convl Conv2 Conv3 Conv4 Conv5 Convé FC1

Fig. 7: Sparsity across various layers in the four models considered.

B. Comparison with state-of-the-art accelerators

We explored various (n, m, N, K) configurations for the
SONIC architecture (see Section IV.C) and found the best
configuration in terms of FPS/W, EPB, and power consumption
to be (5, 50, 50, 10). We found that the value of is heavily
dependent on CONV layer kernel values, which was fixed after
our model sparsification experiments. Increasing »# beyond five
did not provide any benefits, as the dense kernel vectors do not
exceed five-parameter granularity for the considered models.

[0 NP100 =N RSNN HolyLight B CrossLight |
| Em= xp 777 NullHop EEE LightBulb EEE SONIC
B
50
.210?
| |
E
E
2 |
810
SR N
g | \
: | \
£ NN 72 7
© \ N R A & <
éz’\/g & Qgﬁ *2‘0 \\\/\ ‘&\’\ &é\ %o%\
> NS &
s L O (}OL’

Fig. 8: Power comparison across the accelerator platforms.

[Sava) CrossLightw
s SONIC

[mm NP100
== IXP

=N RSNN
777 Null Hop

HolyLight
B LightBulb

104

Average FPS/W

Fig. 9: FPS/W comparison across the accelerator platforms.

Fig. 8 shows power consumption and Fig. 9 shows the power
efficiency (in terms of frames-per-second/watt or FPS/W) across
the accelerators considered. In these figures, NP100 is the GPU
and IXP is the CPU. We can observe that due to its sparsity-
aware, clustering-aware, and dataflow-optimized hardware
architecture design, SONIC exhibits substantially higher power
efficiency, even though it has higher power consumption than
the electronic SpNN accelerators. SONIC, on average, exhibits
5.81x and 4.02x better FPS/W than the NullHop and RSNN
electronic SpNN accelerators. SONIC also exhibits 3.08x, 2.94x,
and 13.8x better power efficiency on average than the LightBulb,
CrossLight, and HolyLight photonic accelerators, respectively.
This is because none of these photonic accelerators are
optimized to take advantage of sparsity and clustering.

E=58 RSNN
s B Null Hop

HolyLight
E LightBulb

@8 CrossLight = SONIC

10~

10-10

10-11

Energy Per Bit (J/bit)

10-12

Z, Z, 2. A
IST Average
Fig. 10: EPB comparison across the accelerator platforms.

When comparing the energy-per-bit (EPB) across the
accelerators, as shown in Fig. 10, we can again observe that the
co-design of the software and dataflow optimizations along with
the hardware architecture in SONIC allow it to outperform the
photonic and electronic SpNN accelerators. SONIC exhibits, on
average, 19.4x, 18.4x, and 27.6x lower EPB than LightBulb,
CrossLight, and HolyLight, respectively. SONIC also exhibits
8.4x and 5.78x lower EPB than NullHop and RSNN. These
results highlight the promise of SONIC for optimized SpNN
implementations on resource-constrained platforms.

VI. Conclusions

In this paper, we presented a novel non-coherent photonic
sparse neural network accelerator, called SONIC, that integrates
several hardware and software optimizations. SONIC exhibits up
to 5.8x better power efficiency, and 8.4x lower EPB than state-
of-the-art sparse electronic neural network accelerators; and up
to 13.8% better power efficiency and 27.6x lower EPB than state-
of-the-art dense photonic neural network accelerators. These
results demonstrate the promising low-energy and low-latency
inference acceleration capabilities of our SONIC architecture.

References

[1] Y. Lecun, et al, “Gradient-based learning applied to document
recognition,” in Proc. IEEE, vol. 86, no. 11, Nov. 1998.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in arXiv:1409.1556, 2014.

[3]1 J.Park et al., “Faster CNNs with direct sparse convolutions and guided
pruning,” in Proc. ICLR, 2017.

[4] S. Zhanget al., “Cambricon-X: An accelerator for sparse neural
networks,” in MICRO, 2016.

[S] W. You, C. Wu, “RSNN: A software/hardware co-optimized
framework for sparse convolutional neural networks on FPGAs,” in
IEEE Access, vol. 9, Jan. 2021.

[6] A. Aimar et al., “NullHop: A flexible convolutional neural network
accelerator based on sparse representations of feature maps,” in JEEE
Trans. Neural Netw. Learn. Syst, vol. 30, no. 3, March 2019.

[77 M. M. Waldrop, “The chips are down for Moore’s law,” in Nature
News, vol. 530, no. 7589, 2016.

[8] F.Sunny, etal., “CrossLight: A cross-layer optimized silicon photonic
neural network accelerator,” in arXiv:2102.06960, 2021.

[9] J.Gu, etal., “Towards area-efficient optical neural networks: An FFT-
based architecture,” in ASP-DAC, 2020,

[10] W. Liu, et al., “HolyLight: A nanophotonic accelerator for deep
learning in data centers,” in DATE, 2019.

[11] M.H. Zhu, S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” in arXiv:1710.01878v2,2017.

[12] S.Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding,” in
arXiv:1510.00149v5 [cs.CV], 2015.

[13] A. Stefan et al., “A hybrid barium titanate—silicon photonics platform
for ultraefficient electro-optic tuning,” in JLT, vol. 34, no. 8, 2016.

[14] P. Pintus et al., “PWM-Driven thermally tunable silicon microring
resonators: Design, fabrication, and characterization,” in L&P 2019.

[15] J. Xia, et al., “On the design of microring resonator devices for
switching applications in flexible-grid networks,” in /CC, 2014.

[16] L. Lu et al., “Silicon non-blocking 4x4 optical switch chip integrated
with both thermal and electro-optic tuners,” in IEEE Photonics,2019.

[17] M. Milanizadeh, et al., “Canceling thermal cross-talk effects in
photonic integrated circuits,” in JLT, vol. 37, no. 4, 2019.

[18] R.Intietal., “A scalable 32-to-56Gb/s 0.56-to-1.28pJ/b voltage-mode
VCSEL-based optical transmitter in 28nm CMOS,” in CICC, 2021.

[19] B. Wang et al., “A low-voltage Si-Ge avalanche photodiode for high-
speed and energy efficient silicon photonic links,” in JLT, 2020.

[20] B. Wu, et al., “A 24.7 mW 65 nm CMOS SAR assisted CT modulator
with second-order noise coupling achieving 45 MHz bandwidth and
75.3 dB SNDR,” in [EEE J. Solid-State Circuits,2016.

[21] C.M. Yang, T. H. Kuo, “A 3 mW 6-bit 4 GS/s subranging ADC with
subrange-dependent embedded references,” in IEEE TCAS, 2021

[22] J. Shen et al., “A 16-bit 16-MS/s SAR ADC with on-chip calibration
in 55-nm CMOS,” in IEEE J. Solid-State Circuits, April 2018.

[23] F. Zokaee, et al., “LightBulb: A photonic-nonvolatile-memory-based
accelerator for binarized convolutional neural networks,” in DATE,
2020.

[24] S. Banerjee, et al., “Modeling silicon-photonic neural networks under
uncertainties,” in DATE 2021.

