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Abstract – Sparse neural networks can greatly facilitate the 
deployment of neural networks on resource-constrained platforms 
as they offer compact model sizes while retaining inference 
accuracy. Because of the sparsity in parameter matrices, sparse 
neural networks can, in principle, be exploited in accelerator 
architectures for improved energy-efficiency and latency. 
However, to realize these improvements in practice, there is a need 
to explore sparsity-aware hardware-software co-design. In this 
paper, we propose a novel silicon photonics-based sparse neural 
network inference accelerator called SONIC. Our experimental 
analysis shows that SONIC can achieve up to 5.8× better 
performance-per-watt and 8.4× lower energy-per-bit than state-of-
the-art sparse electronic neural network accelerators; and up to 
13.8× better performance-per-watt and 27.6× lower energy-per-bit 
than the best known photonic neural network accelerators. 
 

I. Introduction 
 

Over the past decade, convolutional neural networks (CNNs) 
have exhibited success in many application domains, such as 
image/video classification, object detection, and even sequence 
learning. As CNNs continue to be used for solving more 
complex problems, they have become increasingly compute and 
memory intensive. This is reflected in the increase in operations 
needed from ~4.5 million for LeNet-5 [1], proposed in 1998, to 
~30 billion for VGG16 [2], proposed in 2014.  

 To keep pace with the continuous increase in CNN resource 
requirements, several accelerator platforms have been proposed, 
including graphical processing units (GPUs) with tensor units, 
Google’s tensor processing units (TPUs), and custom 
application-specific integrated circuits (ASICs). However, these 
platforms still have low performance and energy-efficiency for 
most CNN applications. Sparse neural networks (SpNNs) [3] 
enable a reduced number of neurons and synapses while 
maintaining the original model accuracy. Therefore, they 
represent a promising optimization to reduce the overall resource 
requirements for CNNs in resource-constrained environments.  

Unfortunately, simply deploying an SpNN on an accelerator 
does not necessarily ensure model performance and energy-
efficiency improvements. This is because the strategies for dense 
neural network acceleration, for which most accelerators today 
are optimized, are not be able to take advantage of the sparsity 
available in neural networks. Dense neural network accelerators 
orchestrate dataflow and operations for parameters that have 
been sparsified (i.e., zeroed out). By having to process sparse 
parameters, conventional accelerators incur high latency and 
energy consumption that should be avoided. Therefore, carefully 
devised strategies for taking advantage of sparsity and reducing 
the number of operations becomes absolutely essential.  

There have been a few recent efforts to design accelerators 
that provide support for SpNNs [4]-[6]. But these electronic 
accelerators face fundamental limitations in the post-Moore era, 
where processing capabilities are no longer improving as they 
once did, and metallic wires create new dataflow bottlenecks [7]. 
Neural network accelerator architectures that leverage silicon 
photonics for computing and data transfer can enable low latency 
and energy-efficient computation solutions [8]-[10]. However, 
they are not impervious to the high latency and energy wastage 
problem when accelerating SpNNs.  

In this work, we present a novel neural network accelerator 
designed with silicon photonics that is optimized for exploiting 
sparsity, to enable energy-efficient and low-latency SpNN 
acceleration. To the best of our knowledge, this work presents 
the first non-coherent photonic SpNN accelerator (see Section 
II). Our novel contributions in this paper include: 

x The design of a novel photonics-domain SpNN hardware 
accelerator architecture that utilizes a modular, vector-
granularity-aware structure to enable high throughput and 
energy-efficient execution across different CNN models; 

x Sparsity-aware data compression and dataflow techniques for 
fully connected and convolution layers, which are tuned for 
the high throughput operation of our photonic accelerator; 

x A comprehensive comparison with state-of-the-art sparse 
electronic and dense photonic CNN accelerator platforms, to 
demonstrate the potential of our accelerator platform. 

II. Related Work 
 

To efficiently accelerate SpNNs, there is a need for 
specialized hardware architectures. In recent years, a few such 
architectures have been proposed by the electronic machine 
learning (ML) acceleration research community, e.g., [4]-[6]. 
The framework presented in [4] leveraged a custom instruction-
set architecture (ISA) for SpNNs. Specialized buffer controller 
architectures were used, which involved indexing to keep track 
of sparse elements, thus preventing them from being fed to the 
processing elements. In [5], a software-hardware co-optimized 
reconfigurable sparse CNN accelerator design was proposed for 
FPGAs. The architecture exploited both inter- and intra-output 
feature map parallelism. Kernel merging along with structured 
sparsity were considered to further improve overall efficiency. 
The work in [6] described an FPGA-based implementation of a 
sparse CNN accelerator. The accelerator made use of an output 
feature map compression algorithm, which allowed the 
accelerator to operate directly on compressed data. 

To obtain lower latency and better energy efficiency, there 
has been growing interest in using silicon photonics for ML 
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acceleration. Silicon photonic neural network accelerators can 
be broadly classified into two types: coherent and non-coherent. 
Coherent architectures use a single wavelength to operate and 
imprint weight and activation parameters onto the electrical field 
amplitude of optical signals, e.g., [9]. In contrast, non-coherent 
architectures use multiple wavelengths, where each wavelength 
can be used to perform an individual neuron operation in parallel 
with other wavelengths, e.g., [8], [10]. In these architectures, 
parameters are imprinted directly onto signal amplitude. The 
recent work in [9] was the first to consider sparsity in the design 
of coherent photonic neural network accelerators. Structured 
sparsity techniques were used along with fast Fourier transform 
(FFT) based optical convolution, with the goal of reducing the 
area consumption of coherent architectures. The singular value 
decomposition (SVD)-based approach for phase matrix 
representation, which is crucial to reduce the overall area of the 
coherent architecture, also makes these architectures susceptible 
to accuracy loss, as the experiments in [9] showed. Due to phase 
encoding noise, phase error accumulation, and scalability 
limitations of coherent accelerators [24], there has been a 
growing interest in non-coherent photonic accelerators. Non-
coherent dense neural network accelerators were proposed in [8] 
and [10], where the basic device for multiply and accumulate 
units relies on microring resonators [8] and microdisks [10]. The 
work in [8] also utilized cross-layer device-level and circuit-
level optimizations to enable lower power consumption in the 
optical domain. The SONIC architecture proposed in this work 
represents the first non-coherent photonic SpNN accelerator, 
where multiple software optimizations for sparsity, clustering, 
and dataflow are integrated closely with the hardware 
architecture design for improved energy-efficiency and latency, 
without compromising on inference accuracy. 

The rest of the paper is organized as follows. Section III 
provides an overview of our proposed software and dataflow 
optimizations for convolution and fully connected layers in 
CNNs. Section IV describes the hardware design of our non-
coherent photonic accelerator that is tuned for these model 
optimizations. Section V presents the experiments conducted 
and results. Lastly, we draw conclusions in Section VI. 

III. Software and Dataflow Optimizations 
 

A. Model Sparsification  
 

To generate SpNNs, we adapt a layer-wise, sparsity-aware 
training approach from [11]. We opt for layer-wise sparsity 
instead of sparsifying the entire model, to have more control over 
the process, and to avoid overly sparsifying sensitive layers 
which notably contribute to the overall model accuracy. In our 
approach, for every layer selected to be sparsified, a binary mask 
variable is added, which is of the same size and shape as the 
layer’s weight tensor. The algorithm also determines which of 
the weights participate in the forward execution of the graph. 
The weights in the chosen layer are then sorted by their absolute 
values and the smallest magnitude weights are masked to zero 
until the user-specified sparsity levels are reached. Also note that 
we opt for sparsity-aware training instead of post-training 
sparsification, as the latter approach can indiscriminately 
remove neurons, thus adversely affecting the inference accuracy. 
We also utilize an L2 regularization term during training, to 

encourage smaller weight values and avoid overfitting, which 
further helps improve the overall accuracy post-deployment.  

 

B. Weight Clustering  
 

The electrical-optical interface in photonic accelerators, such 
as in [8], can be highly power consuming. This is because 
digital-to-analog converters (DACs), which have high power 
overheads, are used in these interfaces to tune the optical devices 
in the multiply-and-accumulate (MAC) units. Moreover, higher 
resolution (i.e., the number of bits used to represent each weight 
and activation parameter) requirements for a DAC translate into 
higher power and latency overheads in the DAC. Thus, to reduce 
these DAC overheads, we perform post-training quantization of 
the models, in the form of weight clustering. We opt for density-
based centroid initialization of the weights, for the clustering 
operation, as described in [12]. For this clustering approach, a 
cumulative distribution function is built for the weights. The 
distribution is evenly divided into regions, based on the user 
specified number of clusters. The centroid weight values of the 
evenly distributed regions are then deduced, and these values are 
used to initialize clustering. This process effectively reduces the 
variations in weight values and confines the values to the 
centroids. Therefore, if there are C centroids, and thus C clusters, 
the model will end up with C unique weights. This implies that 
the weights can be represented with a resolution of log2C, thus 
reducing the required DAC resolution and enabling power and 
latency savings. Section V.A describes our weight clustering 
(and sparsification) explorations and parameters in more detail.  

 

C. Dataflow Optimizations 
 

Beyond sparsification and weight clustering optimizations, 
we also perform enhancements to improve dataflow efficiency 
in our hardware platform. Fully Connected (FC) layers are 
computationally intensive layers in CNNs where all neurons in 
the layer are connected to all the other neurons in the following 
FC layer. The baseline FC-layer operation is a matrix-vector 
product, which generates the output vector to be passed on to the 
next FC layer, as represented in Fig. 1(a). As the figure shows, 
there can be many parameters in the weight matrix and the 
activation vector which are zeroes. These zero parameters can be 
prevented from being passed on to the processing elements to 
reduce model latency and energy consumption. 

 

 
Fig. 1: FC layer operation, where the product of the weight matrix 
and activation vector is calculated. (a) Zero element identification 
in the activation vector and corresponding columns in weight matrix 
(marked in dotted outlines); (b) Compressed matrix and vector, but 
weight matrix still exhibits parameter sparsity. 
 

To achieve this goal, a compression approach as depicted in 
Figs. 1(a)-(b) is utilized. In this approach, we identify the zero 
parameters in the activation vector, and remove the 
corresponding columns in the weight matrix which will be 



  
 

 

operated upon by these parameters during the dot-product 
operation. This approach generates dense activation vectors, but 
the weight vectors can still be sparse, as depicted in the weight 
matrix in Fig. 1(b). This process also does not impact the output 
vector calculation accuracy or output vector dimension. 

For convolution (CONV) layers, the main difference with FC 
layers is the convolution operation performed in CONV layers. 
We unroll the CONV layer kernels and their associated patch of 
the input feature (IF) map matrix, to form vector-dot-product 
operations from the convolution operations (see Fig. 2(a)). The 
compression approach for FC layers can be repeated for these 
unrolled matrix-vector multiplication operations (see Fig. 2(b)). 
The compression approach in CONV layers helps generate dense 
kernel vectors to be passed to the vector-dot-product units 
(VDUs). Note that the IF vectors (activations) being passed for 
processing may still have sparsity present, as shown in Fig. 2(c). 

The residual sparsity in the FC layer weight matrices and the 
CONV layer IF maps is handled at the vector-dot-product unit 
(VDU) level, as discussed in more detail in Section IV.B.  

 
 

 
Fig. 2: (a) Convolution operation between kernel (weight) matrix 
and input feature map (activations). A patch of the input feature map 
is convolved with the kernel matrix at a time to generate an output 
feature map element (a patch and the corresponding output element 
are shown in red boxes). (b) Convolution operation unfurled into a 
vector-matrix-dot-product operation; avenues for compression are 
indicated by dotted-red outlines. (c) The result of the compression 
approach, with input feature map still exhibiting parameter sparsity. 

IV. SONIC Hardware Accelerator Overview 
 

Fig. 3 shows a high-level overview of the proposed non-
coherent SONIC architecture for SpNN inference acceleration. 
SONIC comprises of an optical processing core, which uses 
vector-dot-product units (VDUs)—described in Section IV.B—
to perform multiply and accumulate operations for FC and 
CONV layers in the photonic domain during inference. Several 
peripheral electronic modules are also integrated, to interface 
with the main memory, map the dense and sparse vectors to the 
photonic VDUs, and perform post-processing operations, such 
as applying non-linearities and accumulating partial sums 
generated by the photonic core. DAC arrays within VDUs 
convert buffered signals into analog tuning signals for MRs, and 
vertical-cavity surface-emitting lasers (VCSELs) are used to 
generate different wavelengths. Analog-to-digital converter 

(ADC) arrays are used to map the output analog signals 
generated by photonic summation to digital values that are sent 
back for post-processing and buffering. The devices, VDU, and 
architecture are discussed further in the following subsections.  

 

 
Fig. 3: An overview of the SONIC architecture, with N CONV 

layer-specific VDUs and K FC layer-specific VDUs. 
 

A. Microring Resonators (MRs) and Robust Tuning 
 

MRs are the primary devices used within our VDUs to 
implement matrix-vector multiplication operations. MRs are 
wavelength-selective silicon photonic devices, which are usually 
designed to be responsive to a specific ‘resonant’ wavelength 
(ɉMR). Such MRs are used to modulate and filter their resonant 
wavelengths in a carefully controlled manner, via a tuning 
circuit, to realize multiplications in the optical domain.  

 

 
(a) 

 

 
(b) 

Fig. 4: (a) An all-pass microring resonator (MR) filter (R is the 
radius of the MR and determines the resonant wavelength). (b) An 
MR bank where multiple MR filters, each sensitive to a particular 
wavelength, are arranged to perform vector-matrix multiplication. 

 
An MR tuning mechanism can be used to induce a resonance 

shift (ǻɉMR), and to change the output wavelength amplitude 
(Fig. 4(a)) to realize a scalar multiplication operation. The tuning 
mechanism in MRs operates by heating (thermo-optic (TO) 
tuning [13]) or carrier injection (electro-optic (EO) tuning [14]), 
thereby inducing a change in effective index (neff), which impacts 
ɉMR. The induced ǻɉMR increases the loss a wavelength 
experiences as it passes the MR, modifying the amplitude and 
imprinting the desired parameter (W1–W3 for MR1–MR3 in Fig 
4(b)). To improve throughput, WDM signals are used with a 
group of MRs (i.e., MR bank, Fig. 4(b)), where each MR is 



  
 

 
 

sensitive to a specific ɉMR. A large passband in MRs can be 
achieved by cascading several of them, as in [15], which can be 
used to simultaneously tune multiple wavelengths.  

In SONIC, we make use of a hybrid tuning circuit where both 
TO and EO tuning are used to induce ǻȜMR. Such a tuning 
approach has previously been proposed in [16] for silicon 
photonic devices with low insertion loss. This approach can be 
easily transferred to MR banks for hybrid tuning in our 
architecture. The hybrid tuning approach supports faster 
operation of MRs with fast EO tuning to induce small ǻȜMR and 
using TO tuning for large ǻȜMR. To further reduce the power 
overhead of TO tuning in our hybrid approach, we adapt a 
method called thermal eigen decomposition (TED), which was 
first proposed in [17]. Using TED, we can collectively tune all 
the MRs in an MR bank with much lower power consumption. 
 

B. Vector-Dot-Product Unit (VDU) Design 
 

As we decompose the operations in FC and CONV layers to 
vector-dot-product operations, our processing units are 
effectively vector-dot-product units (VDUs). Fig. 5 depicts the 
VDU design in SONIC. As Figs. 1(b) and 2(c) showed, the 
granularity of the vectors involved in FC and CONV operations 
can be different. In real models, the CONV kernel sizes are 
relatively small when compared to FC layers. Also, in our 
dataflow for CONV layers, the dense vectors are generated by 
kernel matrices (weights), and for FC layers, the dense vectors 
are generated by activation vectors. However, for CONV layer 
dense vectors, we only need low resolution digital-to-analog 
converters (DACs), because of the clustering approach we utilize 
(see Section III.B). Moreover, for FC layers, the sparse vectors 
may utilize the low-resolution DACs, due to the same reason. 
Therefore, considering these differences, we separate the VDU 
implementations for CONV and FC layers. However, both the 
VDU implementations follow the layout illustrated in Fig. 5. 

 
Fig. 5: Vector-dot-product unit in the SONIC architecture. 

 

As shown in Fig. 5, VDUs use separate local buffers to store 
the sparse and dense vector parameter values. The parameters 
are fed into DAC arrays for driving the optical devices (MRs or 
VCSELs). Each VDU has a local VCSEL array, which is driven 
using a DAC array. A DAC drives its corresponding VCSEL to 
generate optical signals with amplitude tuned to reflect its 
corresponding vector parameter.  

We enhance the VDU design for sparsity by preventing a 
VCSEL from being driven if a zero element is encountered in 
the sparse vector (recall that after the compression approach 
described in Section III.C, there may be residual sparsity in the 
IF map or weight matrix). This involves power gating the 

VCSEL, and hence subsequent operations for the dot product 
will not occur. The power gating thus helps avoid the wasteful 
operations with the zero parameters, which were not eliminated 
by our data compression approach (see Section III), in the 
vectors fed to the VDU. The signals from the VCSEL array are 
fed into an optical multiplexer (MUX in Fig. 5) to generate a 
WDM signal, which is transmitted to the MR bank via a 
waveguide. The MR bank is comprised of several tunable MRs, 
each of which can be tuned to alter the optical signal amplitude 
of a specific input wavelength, so that the intensity of the 
wavelength reflects a specific value, as discussed earlier.  

We also make use of a broadband MR to tune all wavelengths 
simultaneously to reflect batch normalization (BN) parameters 
for a layer (Fig. 5). Once the multiplication between parameters 
and BN parameters have been performed, a photodetector is used 
to convert the optical signal back to an electrical signal, to obtain 
a single, accumulated value from the VDU. 

 
C. SONIC Architecture 

 

The VDU design discussed above is integrated in the SONIC 
architecture shown in Fig. 3. As mentioned earlier, we separate 
the VDU designs for the FC and CONV layer operations. The 
separate VDU designs account for the vector granularity 
differences between FC and CONV layer operations, and the 
differences in DAC requirement for driving the VCSEL and MR 
arrays. The architecture relies on an electronic-control unit for 
interfacing with the main memory, retrieving the parameters, 
mapping the compressed parameters, and post-processing the 
partial sums generated by the VDUs. The optical processing core 
(see Fig. 3) focuses on CONV, FC, and batch normalization 
acceleration during the inference phase. Other operations, such 
as activation and pooling are implemented electronically, as 
done in all prior works on optical computation, due to the 
difficulty in performing such operations optically. The SONIC 
architecture design in Fig. 3 arranges VDUs in an array. For 
CONV layers, we consider N VDU units, with each unit 
supporting an n×n dot product. For FC layer acceleration, we 
consider K VDU units, with each unit supporting a m×m dot 
product. Here, m >n and N > K, as per the requirements of each 
of the distinct layers. In each VDP unit, the original vector 
dimensions are decomposed into n or m dimensional vectors. 
Here, n and m are dependent on the dense vector granularity we 
obtain through the compression approach for the CONV and FC 
layers, as discussed in Section III.C.  

V. Experiments and Results 
 

For our experiments, we consider four custom CNN models 
with both CONV and FC layers, for the well-known CIFAR10, 
STL10, SVHN, and MNIST datasets. Details on the baseline 
models are shown in Table 1. For evaluating the performance of 
the SONIC architecture, we compare it against two state-of-the-
art SpNN accelerators: RSNN [5] and NullHop [6], along with 
dense photonic accelerators CrossLight [8] and HolyLight [10], 
and a photonic binary neural network accelerator LightBulb [23]. 
Furthermore, we attempted to implement the coherent SpNN 
photonic accelerator from [9]; however, the work does not 
provide details or results for latency, power, and energy, which 
prevented us from comparing against it. We also show 



  
 

 

comparative results against the NVIDIA Tesla P100 GPU and 
Intel Xeon Platinum 9282 CPU. We compared all these 
architectures in terms of throughput (i.e., frame per second 
(FPS)), energy per bit (EPB), and power consumption efficiency 
(FPS/W). We devised a custom Python simulator, integrated 
with Tensorflow v2.5, to evaluate SONIC and other accelerators. 
The parameters summarized in Table 2 were used to configure 
the accelerators to obtain performance and power/energy results. 

 

 
 

 

A. Model Sparsification and Clustering Results 
 

In the first experiment, we focus on software model 
optimization in SONIC. To obtain the best accuracy possible, we 
performed layer-wise sparsification in the models considered, as 
described in Section III.A. We also use this experiment to 
partially explore the design space of SONIC hardware 
implementations. As depicted in Fig. 5, we use DACs for driving 
MRs and VCSELs in our accelerator. To decide on the required 
DAC resolution (and corresponding power and latency costs), 
we perform post-training weight clustering, as described in 
Section III.B. Our goal was to generate models with as much 
per-layer sparsity as possible, and minimal DAC resolution, 
while exhibiting comparable accuracy to the baseline model.  

 

A summary of the optimized models and the final accuracy 
achieved after sparsification and weight clustering is shown in 
Table 3. Note that the final accuracy of the optimized models in 
Table 3 is comparable or slightly better than the baseline 
accuracy shown in Table 1, which is consistent with the trend in 
prior works. To arrive at these numbers for each model, we 
performed a detailed exploration. Fig. 6 shows the design space 
considered during sparsity and clustering exploration for the 
CIFAR10 model (figures for the other three models are omitted 
for brevity). The best solution selected is the one with the highest 
accuracy and is highlighted with a star (the same solution as 
shown in Table 3). Fig. 7 further shows the layer-wise 

breakdown of sparsification for all four models, where the plots 
show the layer-specific sparsity level for weight parameters (in 
the best solution for each model from Table 3) and the resulting 
sparsity in activations as they traverse the sparse layers. Our 
exploration was able to identify the need for a maximum of 16 
clusters for the best CIFAR10 solution and a maximum of 64 
clusters across the four models (Table 3). Based on these results, 
we consider 6-bit DACs (to support up to 64 levels) for weight 
parameters. We kept activation granularity at 16-bits, which 
provided us with sufficient accuracy (Table 3) and thus used 16-
bit DACs for activations, in the SONIC accelerator.  

 
Fig. 6: Visualization of sparsity and clustering exploration on the 
CIFAR10 model. Number of layers is the total layers sparsified, 
sparsity is the average pruning aggressiveness, and number of 
clusters refers to the total weights clusters. The best (highest 
accuracy) configuration is indicated by the star.  

 

 
Fig. 7: Sparsity across various layers in the four models considered.  
 
B. Comparison with state-of-the-art accelerators 
 

We explored various (n, m, N, K) configurations for the 
SONIC architecture (see Section IV.C) and found the best 
configuration in terms of FPS/W, EPB, and power consumption 
to be (5, 50, 50, 10). We found that the value of n is heavily 
dependent on CONV layer kernel values, which was fixed after 
our model sparsification experiments. Increasing n beyond five 
did not provide any benefits, as the dense kernel vectors do not 
exceed five-parameter granularity for the considered models.  

Table 1: CNN models considered for experiments. 
Datasets Conv 

layers 
FC 

layers 
No. of 

parameters 
Baseline 
accuracy 

MNIST 2 2 1,498,730 93.2% 
CIFAR10 6 1 552,874 86.05% 

STL10 6 1 77,787,738 74.6% 
SVHN 4 3 552,362 94.6% 
Table 2: Parameters considered for analysis of accelerators. 

Devices Latency Power 
EO Tuning [13] 20 ns 4 ߤW/nm 
TO Tuning [14] 4 ߤs 27.5 mW/FSR 

VCSEL [18] 0.07 ns 1.3 mW 
Photodetector [19] 5.8 ps 2.8 mW 
DAC (16 bit) [20] 0.33 ns 40 mW 
DAC (6 bit) [21] 0.25 ns 3 mW 
ADC (16 bit) [22] 14 ns 62 mW 

Table 3: Summary of the sparsification and clustering results. 
Datasets Layers 

pruned 
No. of weight 

clusters 
No. of 

parameters 
Final 

accuracy 
MNIST 4 64 749,365 92.89% 

CIFAR10 7 16 276,437 86.86% 
STL10 5 64 46,672,643 75.2% 
SVHN 5 64 331,417 95% 



  
 

 
 

 
Fig. 8: Power comparison across the accelerator platforms. 

 

 
Fig. 9: FPS/W comparison across the accelerator platforms. 

 

Fig. 8 shows power consumption and Fig. 9 shows the power 
efficiency (in terms of frames-per-second/watt or FPS/W) across 
the accelerators considered. In these figures, NP100 is the GPU 
and IXP is the CPU. We can observe that due to its sparsity-
aware, clustering-aware, and dataflow-optimized hardware 
architecture design, SONIC exhibits substantially higher power 
efficiency, even though it has higher power consumption than 
the electronic SpNN accelerators. SONIC, on average, exhibits 
5.81× and 4.02× better FPS/W than the NullHop and RSNN 
electronic SpNN accelerators. SONIC also exhibits 3.08×, 2.94×, 
and 13.8× better power efficiency on average than the LightBulb, 
CrossLight, and HolyLight photonic accelerators, respectively. 
This is because none of these photonic accelerators are 
optimized to take advantage of sparsity and clustering.  

 
Fig. 10: EPB comparison across the accelerator platforms. 

 

When comparing the energy-per-bit (EPB) across the 
accelerators, as shown in Fig. 10, we can again observe that the 
co-design of the software and dataflow optimizations along with 
the hardware architecture in SONIC allow it to outperform the 
photonic and electronic SpNN accelerators. SONIC exhibits, on 
average, 19.4×, 18.4×, and 27.6× lower EPB than LightBulb, 
CrossLight, and HolyLight, respectively. SONIC also exhibits 
8.4× and 5.78× lower EPB than NullHop and RSNN. These 
results highlight the promise of SONIC for optimized SpNN 
implementations on resource-constrained platforms.  

VI. Conclusions 
 

In this paper, we presented a novel non-coherent photonic 
sparse neural network accelerator, called SONIC, that integrates 
several hardware and software optimizations. SONIC exhibits up 
to 5.8× better power efficiency, and 8.4× lower EPB than state-
of-the-art sparse electronic neural network accelerators; and up 
to 13.8× better power efficiency and 27.6× lower EPB than state-
of-the-art dense photonic neural network accelerators. These 
results demonstrate the promising low-energy and low-latency 
inference acceleration capabilities of our SONIC architecture.    
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