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Abstract—Recent advances in deep learning can be attributed
to the continued performance improvement of hardware pro-
cessors and artificial intelligence (AI) accelerators. In addition
to conventional CMOS accelerators based on Von Neumann
architecture, emerging technologies such as silicon photonics,
memristors, and monolithic 3D (M3D) integration are being
explored as post-Moore’s law alternatives. However, the energy
efficiency and performance of emerging AI accelerators can be
catastrophically impacted by faults due to fabrication-process
variations, thermal crosstalk, and aging. In this paper, we analyze
the performance of several emerging AI accelerators in the
presence of different uncertainties, and present low-cost methods
to assess the significance of faults and mitigate their effects. We
show that across all technologies, the impact of uncertainties on
the performance can vary significantly based on the fault type
and the parameters of the affected component. Therefore, the
fault criticality-assessment techniques presented in this paper are
necessary for yield improvement.

I. INTRODUCTION

The rapid growth in big data from mobile, Internet of
things (IoT), and edge devices and the continued demand
for higher computing power have established deep learning as
the cornerstone of most artificial intelligence (AI) applications
today. Recent years have seen a push towards deep learning
implemented on domain-specific AI accelerators that support
custom memory hierarchies, variable precision, and optimized
matrix multiplication [1]. Commercial AI accelerators have
shown superior energy and footprint efficiency compared to
GPUs for a variety of inference tasks [2].

CMOS-based accelerators are, however, approaching fun-
damental bottlenecks because of (i) the slowdown in CMOS
scaling leading to limited performance-per-watt, and (ii) low-
bandwidth metallic interconnects. To address such issues,
several emerging technologies are being explored. For exam-
ple, optical interconnects represent an alternative to metallic
interconnects with a promise of lower power consumption and
latency and higher bandwidth [3]. Integrated photonic neural
networks based on silicon photonics use optical interconnects
and photonic components to perform matrix multiplication;
doing so can reduce the computation time from O(N2) to O(1)
[4]. Deep neural networks (DNNs) are also being mapped to
memristor devices due to their scalability, high performance,
and non-volatility [5]. As for emerging integration solutions,
monolithic 3D (M3D) stacking of different elements (e.g.,
processing and memory) is being explored [6] to compensate
for large interconnect delays in AI accelerators.

Despite continued scaling in the nanometer technology nodes,
process variations and manufacturing defects are inevitable,
leading to permanent faults and soft errors. AI accelerators

based on emerging technologies are prone to several reliability
issues stemming from fabrication-process variations, thermal
crosstalk, and aging-related uncertainties. In this paper, we
discuss these roadblocks that need to be understood and
analyzed to ensure functional robustness in emerging AI
accelerators. In Sections II–V, we explore DNNs based on
systolic arrays, memristors, silicon photonics, and M3D ICs.
Moreover, we present various technology-specific low-cost
fault-tolerance and criticality assessment techniques. Finally, we
summarize the reliability concerns in emerging AI accelerators
and draw conclusions in Section VI.

II. VON NEUMANN CMOS ACCELERATORS

A. Need for Robustness Analysis

Prior work [7] suggests that DNNs are inherently tolerant
to noisy inputs due to the robust training process. Moreover,
regularization features such as dropout, normalization, and
loss minimization [8] make DNNs robust to permanent faults
and soft errors [9]. Robustness analysis identifies faults (i.e.,
stuck-at faults, delay faults, and transient faults) that result in
significant deviations from system specifications.

The robustness of a systolic array-based accelerator in
presence of faults depends on the fault locations, the dataflow
through the array, the mapping of the DNN model to the array,
and the parameter distribution of the DNN. Recent work on
systolic array accelerator architectures carried out the analysis
of functional errors caused by faults injected in the I/O pins
of a processing element (PE) in the systolic array [10], [11].
Deep learning (DL) driven methods for criticality assessment
of stuck-at faults in gate-level PE netlists have been presented
in [12] and [13].

B. Analysis Using Deep Learning

Training ML models for criticality classification requires
feature extraction based on the topology of the circuit, the
functional dataflow through the design, and functional features
like gate type. In [12], we utilize DNN-based classifiers and the
features described above for assessing the functional criticality
of stuck-at faults in the synthesized netlists of 128⇥128 systolic
arrays implemented using 16-bit and 32-bit floating-point
architectures. We map the LeNet-5 neural network to the
systolic array-based accelerator for carrying out inferencing on
a dataset containing 100 representative MNIST images. The
functional criticality of a fault is determined by its impact on
the fault-free inferencing accuracy. If both stuck-at-0 (s-a-0)
and stuck-at-1 (s-a-1) faults at a gate’s output are functionally
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TABLE I: Evaluation of aggregated GAN-based fault-criticality assessment in 32-bit PE(20,0) and 16-bit PE(20,0).

Exp.
Adder in 32-bit PE Multiplier in 32-bit PE 16-bit PE

Ncr
AML1 Fcr TE1 TE2

TEp
2 TEcat Ncr

AML1 Fcr TE1 TE2
TEp

2 TEcat Ncr
AML1 Fcr TE1 TE2

TEp
2 TEcat

(%) (%) (%) (%) (%) (%) (%) (%) (%)
I 109 89.4 139 7 7 5.0 2.8 52 90.0 55 12 4 7.2 3.6 111 60.4 158 45 3 1.8 0
II 114 89.2 142 8 8 5.6 2.1 48 90.7 51 11 4 7.8 3.9 105 61.4 149 49 3 2.0 0
III 114 88.9 143 7 7 4.8 2.0 45 90.1 59 9 2 3.3 4.3 110 61.4 153 51 3 1.9 0

Ncr : number of critical nodes in the evaluation set; AML1: accuracy of ML1 on evaluation set; Fcr : number of critical faults in the evaluation set;
TEp

2 : (TE2/Fcr)⇥ 100; TEcat: percentage of faults misclassified as benign by ML2, causing more than 20% drop in inferencing accuracy.

benign, the gate is labeled as functionally benign; otherwise,
it is labeled as critical.

We develop a two-tier DNN-based model to classify func-
tional fault criticality. The first tier model (ML1) classifies a
node as either critical or benign. However, the challenge with
fault-criticality assessment using a single tier (i.e., ML1) is the
inevitability of misclassification; even a highly effective model
can lead to misclassification. We use a second ML model
(ML2) to identify test-escapes from the predictions by ML1.
Training and validation: Ground-truth data comprising the
criticality information of nodes in a gate-level PE is collected
for training and validation of ML1. Single fault simulation is
carried out to determine the functional criticality of a node
based on a pre-determined threshold. We set a conservative
threshold of 95% inferencing accuracy for collecting more
critical-labeled nodes. First, the ML1 is trained to classify
nodes as critical or benign. The trained model is then evaluated
on the validation set. The critical nodes in the validation
set that are misclassified as benign by ML1 are added to
the set of misclassified nodes STE . The set STE is used
for training a generative adversarial network (GAN [14]) to
generate samples with features matching the feature distribution
of the actual misclassified nodes. This ML scheme is referred
to as aggregated GAN-based criticality assessment. The trained
GAN is then used for generating test escape-like samples to
further augment STE . The augmented STE , along with actually
benign nodes, is used to train ML2.
Evaluation: The pre-trained ML1 model is used to predict
the criticality of nodes not seen before during training. The
nodes predicted as benign by ML1 are fed to the pre-trained
ML2 model for post-processing—ML2 evaluates if any of
those nodes is misclassified. Finally, the nodes classified as
real benign by ML2 are categorized as the truly-benign nodes.
Table I shows the evaluation results for the 32-bit adder and
multiplier, and 16-bit PE. Note that TE1 (TE2) denotes the
number of test-escape faults after prediction by ML1 (ML2).

C. Analysis Using Graph Convolutional Networks (GCNs)

A GCN leverages the topology of a graph for the classi-
fication of nodes in the graph [15]. The gate-level netlist of
the PE can be represented as a directed graph G, where the
nodes represent gates and edges represent interconnections. A
GCN-based 2-tier criticality analysis framework is presented
in [13].

Training and validation: The first tier applies a GCN model,
referred to as GCN-1, to classify the criticality of a node. The
labeled set of nodes SGT is randomly split into training and
validation sets; rtr is the fraction of nodes in SGT assigned
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Fig. 1: Training and evaluation of a 2-tier GCN-based framework.

to the training set. The adjacency matrix of G, functional
and data flow-based features of all nodes in G, and the
criticality labels of the nodes in the training set are used to
train GCN-1. The GCN-1 model uses a multi-layer perceptron
for criticality classification. The trained GCN-1 is validated
on the nodes in the validation set. During validation, the
GCN-1 may misclassify some critical nodes as benign. At
the same time, some benign nodes may be misclassified as
critical; such a scenario is considered to be a false alarm. We
follow a conservative approach by prioritizing the minimization
of critical-fault misclassification (CFM). To reduce CFMs,
the second tier uses another GCN model, referred to as
GCN-2, to learn the feature distribution of the critical nodes
misclassified by GCN-1 and distinguish them from the benign
nodes. The misclassified critical nodes (MCNs) obtained during
the validation of GCN-1 are added to a set, STE . The nodes in
STE , along with benign nodes classified correctly by GCN-1,
are used to train GCN-2. Fig. 1 illustrates the 2-tier GCN-based
framework.

Evaluation: During the evaluation of the functional criticality
of the unlabeled nodes in G, the nodes classified as benign by
GCN-1 are evaluated by GCN-2 for the potential detection of
test-escapes. If a node is classified as critical by either GCN-1
or GCN-2, it is considered to be functionally critical. Table II
presents the evaluation results of the framework for the 32-bit
adder and multiplier of PE(20,0), and for 16-bit PE(20,0). The
percentage reduction in the number of faults to be targeted for
in-field testing is denoted by �S . Here, �S = 100 ·NB/NT ,
where NB is the number of faults classified as benign and NT

is the total number of faults in the netlist.
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TABLE II: Performance summary of 2-tier GCN-based framework.
Netlist Ac (%) Mc (%) NT NB �S (%)
Add32 81.2 1.2 6952 4562 65.6
Mult32 84.4 0 6525 5737 87.9
PE16 78.8 0 6415 2477 38.6

III. MEMRISTOR-MAPPED DEEP NEURAL NETWORK

A promising implementation pathway for DNN models
is to map them to specialized neuromorphic hardware, e.g.,
memristor-based crossbars. However, recent research has
highlighted a number of reliability concerns when DNN models
are mapped to memristor-based crossbars. Crossbar faults can
deviate the mapped DNN weights from their nominal values.

A. Memristor Crossbars and Weight Mapping

Memristors can be viewed as programmable resistors. A
memristor crossbar can perform vector-matrix multiplication
with O(1) computation time and without the need for data
movement between processors and memory. Fig. 2(a) shows
a crossbar of memristors that can be used for vector-matrix
multiplication. A memristor crossbar that is implemented using
resistive random-access memory (ReRAM) cells can achieve
extremely high density, as ReRAM cells are 10-times smaller
than DRAM cells [16]. Micron and Sony have fabricated a
16 Gb 8192⇥2048 ReRAM crossbar [17]; each cell corresponds
to a single bit and can store a high or low conductance level.

In general, a realistic DNN model has tens of millions of
weights: e.g., AlexNet has 61 million weights and uses a total
of 6.1 Gb memristor cells. Such a large number of memristors
implemented using ReRAM cells can achieve extremely-high
memory cell density (10 times the cell density of DRAM [16])
and does not require excessive on-chip area.

B. Crossbar Fault Models

Faults in a crossbar result in the deviation of nominal DNN-
model weights. These faults lead to deviations (referred to as
matrix � in this paper) of the DNN-model weights (referred to
as matrix ⇥ in this paper) from the nominal values; the DNN
weights in the faulty crossbar thus become ⇥+�. We next
review some common fault models for a memristor crossbar.

Stuck-on/off faults: A memristor cell can be stuck-on or
stuck-off, i.e., its conductance is stuck at either gon (stuck-on)
or goff (stuck-off). In our quantization setting, a stuck-on (off)
cell forces the corresponding weight bit to be 1 (0). Several
other failure mechanisms in memristors can be modeled as
stuck-on/off faults [19]. One such example is a deep fault
where the conductance of a memristor is affected after a large
number of reading (inference) operations.

Stuck-open/short faults [20]: A stuck-open/short fault forces
the conductance of a memristor cell to fall out of its nominal
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Fig. 2: (a) Illustration of a memristor crossbar; (b) An example to
illustrate the mapping of a fully-connected layer [18].

range. A stuck-open fault implies that the memristor cell is
open, i.e., gopen 2 [0, goff]. On the other hand, a short fault,
i.e., gshort 2 [goff,1), induces a large current through the
corresponding crossbar column and it can damage the circuit.
Therefore, an open/short fault can force the associated weight
to go beyond the nominal range [✓min, ✓max].

Slow-write faults: A defective memristor may require a
longer write cycle to overwrite the conductance value. This
is referred to as a slow-write fault [21]. Similar to a deep
fault, a slow-write fault can be the direct consequence of
consecutive write—1/0 operations. In addition, deviations in
physical parameters can cause slow-write faults.

Read/write disturbance and coupling faults: While reading
(writing into) a memristor, the read (write) current may affect
other memristors in the same column [22], [23]. Similar to
the write disturbance, writing a memristor can affect the
nearby “victim” memristors. A crossbar with a high density
of memristor cells is prone to coupling faults [19].
C. Fault-Tolerance in Memristor Crossbars

To ensure fault tolerance, techniques that detect, locate,
and recover from faults have been proposed for memristor-
based crossbars. Fault detection [24], [25] and localization [26]
can be followed by mitigation methods such as remapping
and retraining to restore the classification accuracy [27]–[29].
March-based test algorithms can accurately detect and locate
deviated weights, but they impose high test time [25]. [30] used
adversarial examples for functional testing to detect weight
deviations in memristor-mapped DNNs to reduce the test time.
However, the approach in [30] still relies on time-consuming
March test algorithms to localize deviations and restore the
deviated weights to the desired values.

IV. SILICON-PHOTONIC NEURAL NETWORKS (SPNNS)

Silicon-photonic neural networks (SPNNs) use photonic
components to realize linear operations (i.e., matrix multiplica-
tion) with ultra-high speed and ultra-low energy consumption
[31]. The linear multipliers can be represented using two
unitary multipliers and a diagonal matrix, which are obtained
using singular value decomposition (SVD). The multipliers
and the diagonal matrix can be realized using a network of
interconnected Mach–Zehnder interferometers (MZIs) [32], a
common silicon photonic device, each of which includes beam
splitters (BeS) and phase shifters (PhS) to split and change the
phase angle of optical signals (see Fig. 3). Deviations in the
phase angles in PhS (� and ✓ in Fig. 3) and the splitting ratio
in BeS–due to inevitable fabrication-process variations and
thermal crosstalk–have a critical impact on SPNN performance.
We systematically analyze the impact of such uncertainties in
SPNNs in a hierarchical fashion [33].
A. Hierarchical Study of Uncertainties in SPNNs

Component-Level (Phase Shifters and Beam Splitters): The
phase change in thermo-optic PhS is proportional to the
temperature change applied using thermal actuators (i.e.,
microheaters). The proportionality constant can be affected by
lithographic variations. Additionally, mutual thermal crosstalk
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among neighboring devices affects the efficiency of the tuning
and bias-control mechanism, imposing phase-angle errors.
Prior studies indicate an average fabrication error of ⇡0.21
radian in the tuned phase angles in PhS [34]. Uncertainties in
phase angles can be of two types: type-I: nominal-dependent
uncertainties, where the variation in a phase shifter is expected
to be proportional to the nominal tuned phase angle (e.g., ther-
mal crosstalk), and type-II: nominal-independent uncertainties,
where the variation is independent of the nominal phase angle
(e.g., process variations). For fabricated BeS, prior work shows
a 1–2% deviation from 50:50 ideal splitting ratio [34]. Note
that uncertainties in BeS are exclusively type-I as the nominal
splitting ratio is 50:50 for all BeS.

Device-level (MZIs): The 2⇥2 MZI transfer matrix, TMZI , is
a function of the tuned phase angles ✓ and �. Variations in these
phase angles in PhS result in deviations in TMZI , leading to
faulty MZI operation. For nominal-dependent uncertainties,
this deviation in the TMZI is catastrophic for MZIs with
high PhS angles [33] [35]. Similarly, TMZI also varies due to
uncertainties in the BeS splitting ratios.

Layer-level (MZI Array): The unitary multipliers in the
linear layers of an SPNN can deviate from their intended
form due to MZI uncertainties in an array. In [33], we insert
such uncertainties in different MZIs and show that the relative-
variation distance between the intended and deviated unitary
multipliers depends on the location and the nominal phase
angles of the affected MZI. Variations in each MZI have a

unique impact as different elements of the unitary multiplier
are affected by different subsets of MZIs in the array.

System-level (SPNN): Variations in the MZI arrays lead
to faulty matrix multiplication, thereby imposing accuracy
losses in the SPNNs. To demonstrate this, we train a fully-
connected SPNN with two hidden layers of 16 complex-valued
neurons using the MNIST dataset. During inferencing, we insert
nominal-independent uncertainties in (i) only PhS, (ii) only BeS,
and (iii) both PhS and BeS. The uncertainties are sampled from
a zero-mean Gaussian distribution with standard deviations of
�PhS · 2⇡ (for PhS) and �BeS · 1/

p
2 (for BeS). The red

dashed line in Fig. 4 shows that under type-I uncertainties, the
mean classification accuracy over 1000 Monte Carlo iterations
decreases steeply with � till the accuracy drops below 10%
(random guess) at � ⇡ 0.075. The solid magenta line in Fig. 4
shows the impact of type-II uncertainties in PhS. In this case,
the standard deviation of the uncertainties is given by �rel · µ,
where µ denotes the nominal phase angle in PhS.
B. Optimizing SPNNs under Random Uncertainties

The tuning-power consumption and the susceptibility to
nominal-dependent uncertainties increase with the phase angles
in thermo-optic PhS. We leverage the non-uniqueness of
SVD under reflections to realize the linear multipliers with
minimal phase angles, thus improving the power efficiency and
robustness in SPNNs [35]. When applied to a fully connected
SPNN, our method leads to an average reduction of 12.8%
in the overall network phase angles and consequently, the
tuning power consumption (with up to 15.3% reduction in
the phase angles in one layer). The solid cyan line in Fig. 4
shows that the optimized SPNN leads to a lower accuracy loss
and improvement in robustness under type-II uncertainties in
the PhS. The improvement in robustness increases at higher
levels of uncertainties (e.g., at �rel = 0.2, the accuracy loss
is reduced by 16.1%). Note that under this optimization, the
trained weight matrix remains unchanged.

V. MONOLITHIC 3D INTEGRATION

Monolithic 3D (M3D) integration leverages fine-grained
monolithic inter-tier vias (MIVs) for the connections between
tiers. Because MIVs are similar to conventional back-end-of-
line vias, they can achieve high reliability and high integration
density, providing significant improvements in wirelength
reduction and interconnect power consumption. Therefore,
M3D integration has been proposed as a promising solution
for AI accelerators.
A. M3D-integrated Memory Systems for AI Accelerators

[41] proposes an M3D nonvolatile RAM (NVRAM) inter-
face to alleviate memory-bounded problems during training. In
this architecture, the bottom-most tier is devoted to components
for in-memory computation. The second tier is the memory
controller tier, on top of which are resistive random access
memory (RRAM) tiers. M3D integration enables memory buses
to be 1 KB wide because of the advantages of MIVs. Such
memory buses significantly reduce the access latency and
improve energy efficiency. Furthermore, the read and write
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TABLE III: Summary of prior work on analysis and mitigation of reliability issues in AI accelerators.

Reference Architecture Technology Fault Model Results
Analysis Mitigation

[12] LeNet-5 CMOS-based
Von Neumann
systolic-array

stuck-at 90% accuracy loss due to critical
faults and up to 5% accuracy loss
due to benign faults.

Fast fault-criticality assessment us-
ing 2-tier GAN with negligible test
escape.

[13] LeNet-5 CMOS-based
Von Neumann
systolic-array

stuck-at 90% accuracy loss due to critical
faults and up to 5% accuracy loss
due to benign faults.

Fault-criticality assessment with
low feature-extraction effort com-
pared to [12].

[10] DNNs and AlexNet CMOS-based
Von Neumann
systolic-array

stuck-at 35% TIMIT accuracy loss with
0.005% faulty MACs

Up to 50% faulty MACs can be
tolerated with fault-aware pruning
and retraining.

[36] DNNs and AlexNet Von Neumann
systolic-array

stuck-at, transient Up to 90% accuracy loss due to
0.0003% fault rate.

Test patterns for functional safety
assessment achieves an average of
92.63% fault coverage.

[7] VGG, LeNet,
TiGRU, ResNet-50

Algorithmic
DNN

static memory faults Activations more robust to faults
than weights, weight/activation
reuse determines robustness.

–

[9] AlexNet, CaffeNet,
NiN, ConvNet

Von Neumann
systolic-array

transient faults Higher-order bits vulnerable to
silent-data corruptions, normaliza-
tion layers in DNN mitigate fault
impact.

–

[30] Multi-layer
peerceptron,
LeNet, ConvNet

Memristors stuck-at faults in the
crossbar

8% accuracy loss due to permanent
and soft faults.

Edge-cloud computing framework
detects up to 98% crossbar faults.

[28] 2-layer DNN Memristors stuck-at faults in the
crossbar

MNIST accuracy drops to 42.5%
under 20% single-bit failure (SBF)
rate.

98.1% accuracy under 20% SBF
with selective retraining of critical
weights using defect information.

[37] Fully-connected
DNN (Reck
architecture [38])

SPNN (MZIs) phase encoding error
and photodetection
noise

76.7% accuracy (compared to
91.7% with software).

–

[33] Fully-connected
DNN (Clement
architecture [32])

SPNN (MZIs) random and localized
uncertainties in PhS
and BeS

70% loss in accuracy, impact of
uncertainties depend on nominal
parameter value and fault location,
PhS more critical than BeS

–

[39] 2-layer Fully-
connected DNN,
LeNet-5, and
augmented LeNet-
5

SPNN (MZIs) random uncertainties
in PhS

Fully-connected: 11%, LeNet-5:
11%, and Aug.LeNet-5: 13%

Regularization term to minimize the
phase angles added to the train-
ing cost function. Fully-connected:
97%, LeNet-5: 75%, Aug. LeNet-5:
82%

[40] Fully-connected
DNN (GridNet
and FFTNet
architecture)

SPNN (MZIs) random uncertainties
in PhS and BeS

MNIST accuracy of GridNet drops
to 50% under uncertainties (com-
pared to 98% in fault-free case)

FFTNet maintains near-constant
performance under uncertainties.

[35] Fully-connected
DNN (Clement
architecture [32])

SPNN (MZIs) random and localized
uncertainties in PhS
and BeS

Up to 70% accuracy loss under
nominal-dependent (type-II) uncer-
tainties in PhS

SVD-based zero-cost optimization
reduces accuracy loss by 16.1%
and tuning power consumption by
15.3%.

accesses can be separated by adding another set of MIVs. This
can prevent the write access from blocking the read access
and therefore increase the memory bandwidth. Experimental
results show that the accelerator in [41] outperforms a state-of-
the-art GPU in performance, power consumption, and energy
efficiency during both training and inference.

In [6], an RRAM-based CNN accelerator is proposed. With
heterogeneous M3D architecture—multiple technology nodes
for different tiers—the accelerator can achieve scaling of
peripheral logic while RRAM cells remain at legacy nodes. [6]
places RRAM arrays and CMOS transistors, which require high
programming voltages, in the top tier with 40 nm process; the
bottom tier is composed of digital logic and analog-to-digital
converters (ADCs) with the advanced 28/16 nm nodes. The
scaling of the bottom tier spares extra spaces for additional
ADCs, which improves the throughput and energy efficiency
of RRAM accelerators.

B. Robustness During M3D Testing

The benefits of M3D integration are accompanied by new
challenges. Power-supply noise (PSN) is one of the major

concerns due to high current demand in the upper tiers. The
voltage droop induced by PSN may cause erroneous results
during circuit operation. The testing mode suffers more from
PSN than the functional mode because of excessive switching
activity. The additional delay from PSN-induced voltage droop
may lead to fault-free circuits failing on the tester (yield loss).

In [42], an ILP-based reshaping algorithm for M3D transition-
delay fault patterns is presented. The authors create a new
analysis framework specific for M3D designs to obtain PSN-
induced voltage droop of each cell. A detailed analysis between
switching activities and voltage droop shows that switching
activities in the top tier are highly related to the overall voltage
droop. An ILP-based algorithm is proposed to reshape such
patterns to minimize switching activities in the top tier. Patterns
after reshaping have been shown to not only eliminate the yield-
loss problem but also reduce the slack margin.

C. Challenges in M3D Integration

Prior work on M3D-integrated AI accelerators is based
on the assumption that there is no process variation among
tiers. However, one of the major challenges of M3D is to

5

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2022 at 20:31:21 UTC from IEEE Xplore.  Restrictions apply. 



fabricate upper tiers without damaging components underneath.
Interconnect and transistors in the bottom tiers cannot withstand
the standard thermal budget for ion implantation and annealing
when implementing upper-tier transistors. Therefore, low-
temperature processing technologies need to be developed.
Solid-phase epitaxy regrowth (SPER) and laser annealing have
been demonstrated to successfully realize top-tier transistors
without damaging lower-tier transistors. Unfortunately, SPER
may have high source-drain resistance while laser annealing
results in low on-current. Both techniques cause performance
degradation for transistors in the top tiers. Such degradation
negates the benefits of M3D integration. This issue needs to
be addressed for M3D designs before commercial exploitation.

Furthermore, metal usage of intermediate back-end-of-line
(iBEOL) between each tier is another concern. The processing
temperature of SPER and laser annealing is not low enough
to utilize traditional copper interconnect in the bottom tiers
without damages. Tungsten is an alternative for iBEOL, but its
bulk resistance is 3.1⇥ higher than the resistance of copper.
The increase in resistance results in extra latency of bottom
tiers. This diminishes the advantages of M3D-integrated AI
accelerators because bottom tiers are mainly dedicated to in-
memory computing components. Therefore, although M3D
integration is a promising solution for AI accelerators, research
effort is needed to mitigate performance degradation issues.

VI. DISCUSSION AND CONCLUSION

While state-of-the-art AI accelerators have shown great
promise in implementing computationally expensive deep-
learning algorithms, their susceptibility to design-time and
run-time uncertainties remains a concern. Table III summarizes
prior work on the reliability issues in emerging AI accelerators
discussed in this paper. The underlying theme, across all
prior work, is the necessity of robustness assessment and
allied low-cost fault mitigation techniques. The individual
challenges of the different fabrication techniques will be
compounded by those for M3D stacking, thereby making fault-
criticality assessment and optimization even more crucial for
heterogeneously integrated systems.
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