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Modern RNA-sequencing protocols can produce multi-end data, where multiple reads originating8

from the same transcript are attached to the same barcode. The long-range information in the multi-9

end reads is beneficial in phasing complicated spliced isoforms, but assembly algorithms that leverage10

such information are lacking. Here we introduce Scallop2, a reference-based assembler optimized for11

multi-end RNA-seq data. The algorithmic core of Scallop2 consists of three steps: (1) using an algo-12

rithm to “bridge” multi-end reads into single-end phasing paths in the context of a splice graph, (2)13

employing a method to refine erroneous splice graphs by utilizing multi-end reads that fail to bridge,14

and (3) piping the refined splice graph and the bridged phasing paths into an algorithm that inte-15

grates multiple phase-preserving decompositions. Tested on 561 cells in two Smart-seq3 datasets and16

on 10 Illumina paired-end RNA-seq samples, Scallop2 substantially improves the assembly accuracy17

compared to two popular assemblers StringTie2 and Scallop.18
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Main19

The established high-throughput RNA sequencing technologies (RNA-seq) have fueled many biological and20

biomedical discoveries. One of the critical steps and yet the major computational challenges in RNA-seq21

analysis is transcript assembly—the reconstruction of full-length expressed transcripts captured by a given22

RNA-seq sample. Over the decades, tremendous efforts have been made to develop efficient approaches23

for transcript assembly, including these for short-read RNA-seq data (e.g., Cufflinks1, Scripture2, Traph3,24

CLASS24, TransComb5, Scallop6, StringTie7, StringTie28, and RefShannon9), and these for long-read25

RNA-seq data (e.g., Scallop-LR10 and StringTie28). Theoretical and algorithmic advances have also been26

made in studying the flow-decomposition problems and their variants abstracted from transcript assem-27

bly11,12,13.28

Despite these, the task of transcript assembly is far from being solved. Assemblers for short-read RNA-seq29

data have been struggling with correctly phasing the complete intron-chains from (short) reads especially30

when genes expressing numerous alternatively spliced isoforms. It remains algorithmically challenging to31

efficiently use the paired-end information to resolve such complicated cases. Long-read RNA-seq data has32

its own limitation of low coverage, making it less efficient in identifying lowly expressed transcripts. A33

large portion of long reads remain transcript fragments due to complementary DNA (cDNA) synthesis and34

sequencing length limit14, and hence the assembly of long-reads data faces the same challenge as short-35

reads data. According to benchmarking studies15 and recent assemblers, the accuracy of existing methods36

remains unsatisfactory; improved algorithms are therefore still urged for transcript assembly.37

The recently developed protocols such as Smart-seq series16,17 provide single-cell RNA-seq data with cov-38

erage spanning full-length molecules (as opposed to protocols that only captures 3’ or 5’ end of mRNAs),39

which therefore can be used to assemble transcriptomes at single-cell resolution. Smart-seq3 employed a40

barcoding technology that can produce multi-end RNA-seq data, for which (a subset of) reads originating41

from the same transcript will be attached to the same barcode. Such multi-end RNA-seq data offers strong42

long-range phasing constraints that are promising for resolving complicated splicing variants, but again they43

are inherently difficult to use, as there often exist gaps (which might contain missing junctions) between44

consecutive ends (a similar situation with paired-end RNA-seq data).45

We present Scallop2, a reference-based transcript assembler optimized for multi-end and paired-end RNA-46

2



seq data. To make use of the long-range constraints in multi-end reads, Scallop2 proposes an algorithm that47

infers a single, long path in the splice graph that connects all ends attached with the same barcode. This48

algorithm solves a formulation that calculates a path with maximized bottleneck-weight, which characterizes49

the true bridging path while also robust to sequencing/alignment errors and transcript noises. Second, it’s50

long been recognized that the quality of the underlying splice graph highly affects the assembly accuracy.51

Scallop2 uses the multi-end reads that are failed to bridge, which are often due to incomplete splice graphs,52

to determine the false starting and ending vertices and consequently to refine the splice graph. Third, the53

central formulation of transcript assembly seeks a decomposition of the (refined) splice graph with the54

(bridged) long-range constraints. Scallop2 proposes an improved algorithm for this formulation by sampling55

multiple “phase-preserving” decompositions followed by a consensus approach to select transcripts. These56

algorithmic advances of Scallop2 lead to its high accuracy in assembling multi-end RNA-seq data (e.g.,57

Smart-seq3 data). Substantial improvement is also obtained in assembling paired-end RNA-seq data, a58

special case of multi-end RNA-seq data with exactly two ends in each read group.59

We compare Scallop2 with three recent transcript assemblers, StringTie28, Scallop6, and CLASS24, on both60

Smart-seq3 data (including a human dataset named HEK293T with 192 cells and a mouse dataset named61

Mouse-Fibroblast with 369 cells) and Illumina paired-end RNA-seq data (including 10 samples named EN-62

CODE10). Their assembly accuracies are evaluated using gffcompare18. Please refer to Supplementary63

Notes 1–2 and Supplementary Figure 15 for more details about methods compared, accuracy measures, and64

evaluation pipeline.65

Scallop2 achieves both the highest sensitivity and precision on the two Smart-seq3 datasets (Figure 1a).66

More specifically, Scallop2 produces 3.6%, 18.5%, and 24.3% more matching transcripts (proportional to67

sensitivity) than StringTie2, Scallop, and CLASS2 averaged over all cells in the HEK293T dataset, and68

assembles 1.7%, 13.4%, and 20.7% more matching transcripts than them on the Mouse-Fibroblast dataset.69

In terms of precision, Scallop2 improves 93.6%, 34.2% and 105.5% comparing with StringTie2, Scallop,70

and CLASS2 on the HEK293T dataset, and improves 75.9%, 19.3%, and 62.7% than them on the Mouse-71

Fibroblast dataset. A scatter plot that integrates precision and sensitivity is given in Supplementary Figure 1.72

An aligned comparison at the level of individual cells separately for precision and sensitivity is given in73

Supplementary Figure 2.74

One method might obtain higher (respectively lower) precision but lower (respectively higher) sensitivity.75
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To quantitatively compare two methods in this case, we calculate the adjusted precision, defined as their76

precisions when their sensitivities are adjusted to the same (see Supplementary Note 3). For the Smart-77

seq3 data (Figure 1b), Scallop2 improves 97.6%, 65.6%, and 161.1% in terms of adjusted precision than78

StringTie2, Scallop, and CLASS2 on the HEK293T dataset, and improves 79.6%, 36.8%, and 94.9% com-79

paring with these three methods respectively on the Mouse-Fibroblast dataset. An aligned comparison in80

adjusted precision at the level of individual cells is illustrated in Supplementary Figure 3.81

Scallop2 also achieves the highest sensitivity and the highest precision on Illumina paired-end RNA-seq82

data (Figure 1c). Averaged over the ENCODE10 data, Scallop2 produces 23.4%, 9.6% and 43.3% more83

matching transcripts than StringTie2, Scallop and CLASS2 when these samples are aligned with HISAT2,84

and produces 25.2%, 6.5% and 40.2% more matching transcripts than them with STAR. In terms of pre-85

cision, Scallop2 improves 1.1%, 4.1% and 31.1% comparing with StringTie2, Scallop and CLASS2 with86

HISAT2, and improves 4.1%, 4.3% and 15.6% than them with STAR.87

When comparing Scallop2 with each of the other three methods at the same level of sensitivity (Figure 1d),88

Scallop2 improves 46.6%, 27.4%, and 105.7% in adjusted precision than StringTie2, Scallop, and CLASS289

averaged over the ENCODE10 data aligned by HISAT2, and improves 50.9%, 20.0%, and 89.6% than the90

three methods respectively when aligned with STAR.91

A comparison at individual samples is given in Figure 1e, with the precision-sensitivity curves for Scallop292

illustrated. (The curves are drawn by gradually filtering out the lowly-expressed transcripts assembled by93

Scallop2; see Supplementary Note 3.) These curves always lie to the right of the points corresponding to94

other methods, suggesting that Scallop2 always achieves higher precision at the same level of sensitivity.95

The CPU time and peak memory of the 4 methods is reported in Supplementary Table 1 and Supplementary96

Table 2. StringTie runs the fastest on Illumina data and on the Mouse-Fibroblast dataset; Scallop leads on97

the HEK293T dataset. In memory footprint, StringTie2 significantly outperforms other methods in all cases.98

We argue that Scallop2 runs reasonably fast and uses acceptable memory. For example, on average over the99

ENCODE10 data aligned with HISAT2, Scallop2 takes about 60 minutes (while StringTie2 takes about 8100

minutes) and uses about 6GB memory (while StringTie2 uses 148MB).101

Above experimental results evaluate all assembled transcripts, including single-exon transcripts. The accu-102

racy solely about multi-exon transcripts are illustrated in Supplementary Figures 4–7: similar improvement103
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of Scallop2 over other methods are observed in assembling multi-exon transcripts. To compare these meth-104

ods in assembling different types of transcripts, we illustrate their accuracies in assembling transcripts with105

different numbers of exons (Supplementary Figure 8 and Supplementary Note 4) and transcripts expressed106

at different levels (Supplementary Figure 9 and Supplementary Note 5). We then evaluate their accuracies107

with varying parameters (Supplementary Figures 10–12 and Supplementary Note 6). Finally, to illustrate108

the effects of the heuristics used in Scallop2, we describe how the heuristics lead to the correct assembly109

with examples (Supplementary Figure 13 and Supplementary Note 7); we also compare the accuracy of full-110

length transcripts and non-full-length transcripts assembled by Scallop2 to demonstrate the effectiveness of111

determining false vertices (Supplementary Figure 14 and Supplementary Note 8).112

Scallop2 can be further improved in accuracy and running time. Current version of Scallop2 does not distin-113

guish reads sampled from the exact locations and PCR duplicates, but we will explore statistical models that114

account for PCR duplicates and coverage bias, which will lead to more accurate estimation of weights of115

vertices and edges of the splice graph. Scallop2 is slower largely due to the consensus approach that decom-116

poses the splice graph multiple times. We observe that a substantial number of vertices will be decomposed117

the same in multiple runs; we therefore will experiment algorithms that only decompose “volatile” vertices118

in different runs to speedup Scallop2.119
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Methods120

We focus on reference-based transcript assembly. The RNA-seq reads will be first aligned to the reference121

genome using splice-aware aligners such as TopHat19, STAR20, or HISAT221. Scallop2 takes the reads122

alignment, in standard sam/bam format, as input. Scallop2 is able to assemble both strand-specific and non-123

strand-specific RNA-seq data. Users can either specify the “library-type” of the protocol (first or second,124

corresponding to fr-firststrand or fr-secondstrand options in TopHat, or unstreanded), or Scallop2 can auto-125

matically detect the library type based on the XS tag available in the alignment. Given the reads alignment,126

Scallop2 first assigns all aligned reads to either the forward strand or the reverse strand. If the protocol127

is strand-specific, Scallop2 can infer which strand (i.e., either forward strand or the reverse strand) a read128

originates from by using the 0x10, 0x20, 0x40, and 0x80 bits of FLAG field available in the reads alignment129

together with the given or inferred library type. If the protocol is not strand-specific (i.e., unstranded), the130

originating strand of reads that contain junctions are usually inferred by the aligner based on the canonical131

splicing patterns and available to Scallop2 through the XS tag; reads without junctions will be assigned to132

the strand with existing overlapping reads that contain junctions. After assigning reads to strands, reads on133

the same strand and overlapping in genomic coordinates are then partitioned as gene loci. Individual gene134

locus will be assembled independently. The assembled transcripts will be written into a file in the stan-135

dard gtf format, where a “+” or “-” will be coped with each assembled transcript to indicate its originating136

strand (“+” for forward strand and “-” for reverse strand).137

Below, we describe the data structures we use to organize all splicing signals and multi-end constraints in the138

alignments, followed by the formulation of the multi-end assembly problem and our algorithm for solving139

this formulation. Prior to these, we first elucidate the difference between Scallop2 and Scallop. In construct-140

ing the data structures, Scallop2 uses the same weighted splice graph as in Scallop, but Scallop2 represents141

the long-range signals in the data as multi-end phasing paths while Scallop represents such information as142

(single-end) phasing paths. The problem formulation used in Scallop2 (i.e., multi-end transcript assembly)143

extends the formulation of Scallop; the difference is that Scallop2 requires to preserve all multi-end phas-144

ing paths while Scallop preserves all (single-end) phasing paths. The algorithmic framework and the three145

components are all new to Scallop2, which also constitute the major algorithmic innovations of Scallop2.146
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Constructing the splice graph and multi-end phasing paths147

For each gene locus, we build a weighted splice graph G = (V,E,w) to organize the inferred exons and148

junctions in the alignments and a set of multi-end phasing paths C to keep the long-range information in149

multi-end read (see Extended Data Figure 1). Note that the construction of the weighted splice graphs in150

Scallop2 is the same as that in Scallop. The splicing positions are first extracted from the junctions (marked151

with ‘N’ in the CIGAR string of alignments) to obtain the boundaries of exons (or partial exons) and introns152

of the reference genome. For each inferred exon, we add a vertex v to vertex-set V . A directed edge e= (u,v)153

is added to edge-set E when there exists reads connecting exons u and v, where u occurs before v in the154

reference genome. We note that all splice graphs, no matter which strand this gene locus originates from,155

are constructed w.r.t. the forward strand (i.e., from 5’ to 3’): edges are always from left to right, i.e., from156

low genomic coordinates to high coordinates of the reference genome. (Again the strandness of the gene loci157

are available and will be revealed when writting the assembled transcripts into gtf file.) The weight of edge158

e, denoted as w(e), is calculated as the number of reads that connect u and v. Additionally, we add a source159

vertex s and sink vertex t to V ; for each vertex u 2 V \ {s, t} with in-degree of 0 (called starting vertices),160

we add a directed edge (s,u) with weight w(s,u) = Â(u,v)2E w(u,v), and for each vertex v 2 V \ {s, t} with161

out-degree of 0 (called ending vertices), we add a directed edge (v, t) with weight w(v, t) = Â(u,v)2E w(u,v).162

With the weighted splice graph G = (V,E,w) being constructed, each read r can be represented as a path in163

G, denoted as l(r), which is the list of vertices of G where r is aligned to. Let R be a set of reads from the164

same transcript/fragment; we call reads in R form a read group. In case of barcoding-based protocols like165

Smart-seq3, reads in group R include those attached with the same barcode; in case of paired-end RNA-seq166

protocols, the two ends of a pair form a group (i.e., |R|= 2); in case a read is not attached with any barcode,167

or its mate end is not aligned, then this read forms a group of its own. Notice that different reads in R might168

be aligned to the same path in G, i.e., l(r1) = l(r2) for two reads r1,r2 2 R; for example in Extended Data169

Figure 1, the 3rd read (in red) in the 2nd row and the 2nd read (in purple) in the 4th row are aligned to170

the same path of (2,4). We define the multi-end phasing path obtained from R, denoted as C(R), as the171

set of distinct paths collected from reads in R. Formally, C(R) := {l(r) | r 2 R}. Let {R1,R2, · · · ,Rk} be172

the collection of read groups in a gene locus. Again different groups of reads may correspond to the same173

multi-end phasing path, i.e., C(Ri) = C(R j) for some 1  i < j  k. We denote by C as the collection of174

distinct multi-end phasing paths in {C(R1),C(R2), · · · ,C(Rk)}. We note that Scallop represents reads as175
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single-end phasing paths, i.e., {l(r) | r 2 R1 [R2 [ ·· · [Rk}; it is in Scallop2 that we explicitly introduce176

multi-end phasing paths for representing long-range information in multi-end and paired-end RNA-seq data.177

To further elucidate these terms, a multi-end phasing path refers to multiple pieces of a single (unknown)178

path with possibly missing portions between consecutive (known) pieces. A single-end phasing path, on the179

other hand, refer to a (regular) path in the splice graph, which can either be obtained from the alignment of180

a single read, or from after filling up all missing portions of a multi-end phasing path (i.e., after bridging).181

Problem formulation182

For a gene locus, the above constructed weighted splice graph G together with the multi-end phasing paths183

C give a complete representation of the splicing information in the alignments and the long-range phasing184

information in the multi-end reads. The formulation takes G and C as input, and generates a set of s-t paths185

P of G and assigns an abundance f (p) for each s-t path p 2 P: each s-t path p infers an expressed transcript186

in this gene locus, and f (p) predicts its expression abundance. We note that the input and output stated here187

are the same with the formulation in Scallop, except that here the set of multi-end phasing paths is part of188

the input while in Scallop it is the set of single-end phasing paths.189

The optimization objectives of Scallop2 formulation also extend those used in Scallop. One key principle190

used in both formulations is to fully preserve the long-range information in the alignment. This principle is191

interpreted preserving all single-end phasing paths in Scallop but preserving all multi-end phasing paths in192

Scallop2; this constitutes the difference between the two formulations. First, since each multi-end phasing193

path is constructed from reads sampled from a single transcript, we expect that each multi-end phasing path194

appears in one of the reconstructed transcripts (i.e., in P). Formally, we say a multi-end phasing path C 2 C195

is covered by P, if there exists an s-t path p 2 P such that every path l 2 C appears in p. We require all196

multi-end phasing paths in C be covered by P. Second, for each edge e 2 E, we expect the abundance of197

the inferred s-t paths passing through e, i.e., Âp2P:e2p f (p), is as close to its observed read coverage w(e) as198

possible, which can be defined as to minimize the sum of the deviation between w(e) and Âp2P:e2p f (p) for199

all edges, denoted as d(P, f ) := Âe2E |w(e)�Âp2P:e2p f (p)|. Third, we aim to minimize |P| following the200

parsimony principle.201

Combining all the three objectives and the input and output, we informally describe the task of transcript202

assembly for multi-end RNA-seq data as follows.203
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Problem 1 (multi-end transcript assembly) Given weighted splice graph G = (V,E,w) and associated204

multi-end phasing paths C , to compute a set of s-t paths P of G and abundance f (p) for each p 2 P, such205

that P covers all multi-end phasing paths in C , and that both d(P, f ) and |P| are as small as possible.206

Algorithmic framework207

We propose a heuristic for above Problem 1, consisting of three steps, described below. This framework208

and the three techniques are particularly designed to improve assembly accuracy by fully leveraging the209

multi-end phasing information.210

Step 1: bridging multi-end phasing paths into single-end phasing paths. Let C = {l1, l2, · · · , ln} 2 C be211

a multi-end phasing path. All paths in C can be regarded as being sampled from a single (unknown) s-t path212

of the splice graph, representing the true transcript from which the reads used to construct C are generated.213

We propose to “bridge” all paths in C as a single-end phasing path, denoted as h(C), in the splice graph.214

This task amounts to filling the gaps (if any) between consecutive paths in C. The algorithm to infer the true215

path that connects a pair of consecutive paths is one major innovation in Scallop2.216

Step 2: determining false starting/ending vertices. We observe that failing to bridge a multi-end phasing217

path is mainly because the underlying splice graph is incomplete, such as certain junctions are missing due218

to low coverage or alignment errors. We design an algorithm to determine false starting and ending vertices219

in the splice graph (separately described below), which therefore improves the quality of the splice graph.220

Step 3: decomposing splice graph. Let H := {h(C) | C 2 C} be the set of bridged single-end phasing221

paths returned by Step 1. Let G0 be the refined splice graph returned by Step 2. We propose an algorithm222

for Problem 1 by decomposing G0 while preserving all bridged phasing paths in H. This improved graph-223

decomposition algorithm, separately described below, is the third algorithmic innovation of Scallop2.224

Bridging algorithm225

Let C = {l1, l2, · · · , ln} 2 C be a multi-end phasing path. We sort all paths {l1, l2, · · · , ln} in C in lexico-226

graphical order w.r.t. a topological ordering of all vertices of the splice graph (recall that the splice graph227

is a directed acyclic graph). See Extended Data Figure 2. We still write C = (l1, l2, · · · , ln) after sorting all228

the paths lexicographically. We aim to “bridge” consecutive pairs of paths in C. If li and li+1 overlap, i.e.,229

there exists a suffix of li that is also a prefix of li+1, then li and li+1 can be naturally merged into a single230
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path; otherwise, we will need to fill the gap by inferring a path connecting li to li+1 in the splice graph. After231

all n�1 pairs of consecutive paths in C, i.e., (l1, l2),(l2, l3), · · · ,(ln�1, ln), are bridged, we can then connect232

them together as a single-end phasing path, i.e., h(C). Below we focus on bridging non-overlapping pairs of233

paths.234

Let l = (a1,a2, · · · ,am), l0 = (b1,b2, · · · ,bn) be any two consecutive, non-overlapping paths in a multi-end235

phasing path. The problem of bridging li and li+1 amounts to find a path in the splice graph G from am to236

b1. Such path, called bridging path, infers the missing portion between li and li+1. We note that there might237

be multiple bridging paths due to alternative splicing and sequencing/alignment errors and we aim to infer238

the correct one. Below we first formulate the task of inferring the true bridging path as a new optimization239

problem and then design an efficient algorithm.240

Formulation. We explore what is a good formulation to find the true bridging path. The main signal we241

have is the coverage information, and intuitively a bridging path supported by most reads are most likely the242

true path. We determined that, a formulation that seeks a bridging path that maximizes bottleneck weight, is243

suitable for this bridging problem. Below we formally describe this formulation.244

We define a full ordering of all bridging paths. Let q1 and q2 be two arbitrary paths from am to b1 in G.245

Let w j
1 (respectively w j

2) be the jth smallest weight in path q1 (respectively q2). We say q1 is more reliable246

than q2, if there exists an integer k such that w j
1 = w j

2 for all 1  j < k, and wk
1 > wk

2. In other words,247

each bridging path is represented as the sorted list of its weights in ascending order, and all bridging paths248

are then (implicitly) sorted in lexicographical order. We formulate the problem of bridging as to find the249

most reliable path. Intuitively, we seek a path q from am to b1 in G such that the smallest weight in it is250

maximized; in case there are multiple paths with maximized smallest weight, among them we further seek251

the one whose second smallest weight is maximized, and so on.252

We believe this formulation is appropriate for RNA-seq bridging. First, by maximizing bottleneck weight,253

the bridging paths are supported strongest, and hence are more likely to be the true bridging path. Second,254

through this formulation, false paths which are usually due to sequencing/alignment errors and therefore255

exhibit low abundances, can be automatically and efficiently excluded.256

We note that this formulation satisfies the optimal substructure property: if am ! u1 ! u2 ! ·· · ! ul ! b1257

is the most reliable path from am to b1, then am ! u1 ! u2 ! ·· · ! ul is the most reliable path from am to258
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ul . This allows us to design a dynamic programming algorithm to find the most reliable bridging path.259

Dynamic programming algorithm. Let (v1,v2, · · · ,v|V |) be a topological sorting of all vertices of the splice260

graph G (this is possible because splice graph is a directed acyclic graph). Given a particular vi, we can use261

a single run to find the most reliable paths from vi to v j for every j > i. To compute the optimal path for v j,262

we examine all vertices vk that directly connects to v j, and compare all paths stored in these vertices (each263

vk already stores the most reliable paths from vi to vk at this time point). The optimal one will be kept and264

after concatenating v j they become the most reliable paths from vi to v j. We run this subroutine for all vi,265

1  i  |V |, which gives the most reliable paths for all pairs of vertices in G. The overall running time of266

this algorithm is O(|V |2 · |E|). To speed up, instead of maintaining the full list of the edge abundances for267

each path, whose length is O(|V |), we only store the smallest M edge abundances (M is a parameter with268

default value of 5). This gives an improved running time of O(M · |V | · |E|). Although optimality may not269

be guaranteed, experimental studies show that this heuristic rarely affects the overall accuracy.270

Determining whether or not to accept the most reliable path. In case of paired-end RNA-seq data,271

the distribution of fragment length provides another source of information to decide if the inferred path is272

correct. Scallop2 will estimate the distribution of fragment length by sampling trivially-bridged reads (i.e.,273

they overlap in the splice graph). Once we determine the most reliable path connecting l1 and l2 in a (paired-274

end) phasing path C = (l1, l2), we can calculate the fragment length, as the alignment of the entire fragment275

is fixed. If the resulting fragment length falls in a reasonable range (by default defined as the 0.5-percentile276

to 99.8-percentile) then the inferred path will be accepted; otherwise we mark C is failed to bridge.277

Determining false starting/ending vertices278

The constructed splice graph is usually erroneous due to missing junctions, sequencing and alignment errors.279

We observe that erroneous starting and ending vertices (i.e., those connected to the source and sink vertices,280

respectively) can be identified through reads that are failed to bridge. Extended Data Figure 3 gives an281

example: the two blue reads and the second and the third red reads cannot be bridged, as there is no edge282

connecting vertices 2 and 3; these suggest that vertices 2 and 3 are false starting and ending vertices (there283

is likely a missing junction between vertices 2 and 3 in this example).284

We design an algorithm that implements above observation. Let u and v be two consecutive vertices in the285

splice graph (i.e., there is no any other vertex between u and v). If u is an ending vertex (i.e., (u, t) 2 E)286
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and v is a starting vertex (i.e., (s,u) 2 E), then we will add a pseudo-edge (u,v) with weight of 0.5 to the287

splice graph. (In Extended Data Figure 3, edge (2,3) will be added as pseudo-edge.) The expanded splice288

graph (with pseudo-edges added) will be actually used for bridging all consecutive ends by the algorithm289

described above. Notice that any non-pseudo-edge will have a weight at least 1; therefore, if the bottleneck-290

weight of the most reliable path p of a pair of ends (l, l0) equals to 0.5, then we know that p must cross at least291

one pseudo-edge and that (l, l0) cannot be bridged with non-pseudo-edges only. In this case, we will examine292

all pseudo-edges (u,v) in p, and assign a pseudo-score of value 1 to u and to v. We run this algorithm for293

all read groups, and the pseudo-score will be accumulated. (For example, in Extended Data Figure 3, both294

vertices 2 and 3 will have a pseudo-score of 2; the blue and the red reads contribute 1 each.) Intuitively, the295

larger pseudo-score is, the more likely the vertex is a false starting/ending vertex. Let x(v) be the pseudo-296

score of vertex v and let w(v) be the average coverage of v. We calculate z(v) := log(w(v)+1)� log(x(v)+1)297

and report v is a false vertex only if x(v) � 1 and z(v) is less than a threshold (by default 1.5). We do this298

to ensure that, starting/ending vertices with large coverage will be determined as false only if there exists a299

relatively significant number of supporting reads.300

The determined false starting and ending vertices will be kept in the splice graph for decomposition (Step301

3). A resulting s-t path that contains any false vertex will be classified as “transcript fragment” (as opposed302

to “full-length transcript”). We keep these transcript fragments as they explain the reads aligned to the false303

vertices (it’s that we have evidence to determine they are not full-length transcripts). In our implementation304

full-length transcripts and transcript fragments will be written to separate files. The accuracy of assemblies305

reported in the Main Section are for the full-length transcripts.306

Improved algorithm for phase-preserving graph decomposition307

The set of bridged single-end phasing paths H := {h(C) | C 2 C} obtained in Step 1 and the refined splice308

graph G0 obtained in Step 2 will be used as input by the algorithm described here to construct a set of s-309

t paths P and their associated abundance f (p) for any p 2 P. Since each multi-end phasing path C 2 C310

has been bridged as a single-end phasing path h(C) in the splice graph G0, the objective of preserving311

C in Problem 1 now becomes a simpler constraint of preserving h(C). In our previous work Scallop6,312

we designed an algorithm (hereinafter we refer to as the Scallop algorithm) that solves exactly the same313

problem of decomposing the splice graph in the presence of (single-end) phasing paths. Specifically, the314
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Scallop algorithm iteratively decomposes the vertices in the splice graph until it is fully decomposed: it first315

decomposes all unsplittable vertices, then all splittable vertices, and finally all trivial vertices. In Scallop316

algorithm, which unsplittable vertex is picked among all unsplittable ones is determined by calculating317

argminv: v is unsplittable z(v), where z(v) measures the coverage deviation between the existing edges and the318

resulting new edges. Which splittable vertex is picked among all splittable ones is determined by calculating319

argminv: v is splittable z0(v), where z0(v) measures the imbalancement of the resulting new vertices. All trivial320

vertices are picked and decomposed arbitrarily.321

We observed that, how vertices in each category are prioritized for decomposition is highly related to the322

assembly accuracy, but the measures used in the Scallop algorithm (i.e., z(·) and z0(·), described above) may323

not be able to always pick the optimal vertex. To mitigate this issue, Scallop2 uses an approach that calcu-324

lates and integrates multiple phase-preserving decompositions. Specifically, we decompose the splice graph325

N times (N is a parameter of Scallop2 with default value of 10), using the same phase-preserving algorithmic326

framework as in the Scallop algorithm but picking different vertices to decompose in each category. The327

first run in Scallop2 uses argminv: v is unsplittable z(v) to pick unsplittable vertex, and argminv: v is splittable z0(v)328

to pick splittable vertex, while the remaining (N�1) runs pick vertex uniformly at random in each category.329

This will return N sets of s-t paths. We then use a consensus method to select transcripts: an s-t path p will330

be kept if it appears in at least N/2 sets, and its abundance f (p) will be averaged over all its appearances.331

The pseudo-code that describes this algorithm is given in Supplementary Algorithm 1.332

Data availability333

Smart-seq3 is a single-cell protocol that generates multi-end RNA-seq data using barcoding technology.334

The Smart-seq3 data used in this study was published with Smart-seq3 protocol17, publically available335

at https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8735. We use two datasets downloaded from336

Smart-seq3, the first dataset, referred to as HEK293T, contains 192 human cells; the second dataset, referred337

to as Mouse-Fibroblast, includes 369 mouse cells. For Illumina platform, we use 10 human paired-end338

RNA-seq samples that were downloaded from ENCODE project22 and we refer to these 10 samples as339

ENCODE10. Their accession IDs are SRR307903, SRR307911, SRR315323, SRR315334, SRR387661,340

SRR534291, SRR534307, SRR534319, SRR545695, and SRR545723. The alignments of these samples341

are available at Penn State Data Commons repository23. Source data for Figure 1 is available with this342
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manuscript.343

Code availability344

Scallop2 is available at the Zenodo repository24 and on GitHub (https://github.com/Shao-Group/scallop2).345

Scripts and documentation that reproduce the experimental results are available at the Zenodo repository25
346

and on GitHub (https://github.com/Shao-Group/scallop2-test).347
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Figure Legends/Captions363

Figure 1: Comparison of assembly accuracy of the four methods (Scallop2, StringTie2, Scallop, and364

CLASS2). (a) The assembly accuracy of the four assemblers on two Smart-seq3 datasets, HEK293T (HE),365

contains 192 human cells, and Mouse-Fibroblast (MF), contains 369 mouse cells. The mean and standard366

deviation are reported over all cells in each dataset. (b) Comparison of adjusted precision (mean and standard367

deviation on two Smart-seq3 datasets, HEK293T (left) and Mouse-Fibroblast (right)) between Scallop2 and368

each of the other three methods at the same level of sensitivity. (c) The assembly accuracy of the four assem-369

blers on ENCODE10 data. The two groups of bars correspond to HISAT2 (HI) and STAR (ST) alignments,370

respectively. The error bars show the standard deviation over the 10 samples. (d) Comparison of adjusted371

precision (mean and standard deviation over HISAT2 (left) and STAR (right) alignments of ENCODE10)372

between Scallop2 and each of the other three methods at the same level of sensitivity. (e) Assembly accu-373

racy on ENCODE10 dataset at individual samples. The precision-sensitivity curves are drawn for Scallop2.374

CLASS2 did not finish running in 11 days on sample SRR387661.375

Extended Data Figure 1: Illustrating the construction of the splice graph G and the associated multi-376

end phasing paths C from read alignments of a gene locus. Inferred splice positions in the reference377

genome are marked with black bars. Exons and partial exons are labeled with numbers above the reference378

genome. Alignment reads with the same color represent they form a group (i.e., attached with the same379

barcode or being the two ends of a pair in paired-end reads); we use gray color to represent reads forming380

groups of their own. The read alignments are used as input to construct the splice graph and the associated381

multi-end phasing paths. From the given alignments 5 (partial) exons (numbered 1–5) are identified. A382

source vertex s and a sink vertex t are added to the splice graph. Each numbered arrow represents a directed383

edge and its weight.384

Extended Data Figure 2: Illustration of bridging a multi-end phasing path into a single-end phasing385

path. Each numbered arrow represents a directed edge and its weight. Vertices and edges in the multi-end386

phasing path C are blue circled and arrowed respectively. Inferred bridging paths for (l1, l2) and (l2, l3) are387

marked red. The single-end phasing path h(C) = (1,2,3,4,6) is bridged using the splice graph and multi-end388

phasing path C = (l1 = (1,2), l2 = (4), l3 = (6)) as input.389

Extended Data Figure 3: Illustration of identifying false starting/ending vertices. Inferred splice posi-390
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tions in the reference genome are marked with black bars. Exons and partial exons are labeled with numbers391

above the reference genome. Alignment reads with the same color represent they form a group (i.e., at-392

tached with the same barcode or being the two ends of a pair in paired-end reads); we use gray color to393

represent reads forming groups of their own. The read alignments are used as input to construct the splice394

graph and the associated multi-end phasing paths. From the given alignments 4 partial-exons (numbered395

1–4) are identified. A source vertex s and a sink vertex t are added to the splice graph. Each numbered396

arrow represents an directed edge and its weight. The circled vertex with number 2 (respectively 3) is clas-397

sified as ending (respectively starting) vertex as there is no departing (respectively entering) junction. An398

pseudo-edge from the circled vertex with number 2 to the circled vertex with number 3 (2,3) will be added399

to the splice graph for bridging. The bridging of blue reads and red reads (the second and the third ones)400

will cross this pseudo-edge, giving a pseudo-score of 2 for both vertices.401
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Supplementary Figures1

Supplementary Figure 1: Assembly accuracy at individual cells of HEK293T (left panel) and Mouse-
Fibroblast (right panel).
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Supplementary Figure 2: Assembly accuracy at individual cells on two Smart-seq3 datasets, HEK293T
(HE) and Mouse-Fibroblast (MF). In each panel, cells are sorted in ascending order w.r.t. the accuracy of
Scallop2 (so the curves for Scallop2 are monotonic).
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Supplementary Figure 3: Comparison of adjusted precision between Scallop2 and each of the other three
methods at the same level of sensitivity on two Smart-seq3 datasets, HEK293T (HE) and Mouse-Fibroblast
(MF). In each panel, cells are sorted in ascending order w.r.t. the accuracy of Scallop2 (so the curves for
Scallop2 are monotonic).
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Scallop2 (SC2) StringTie2 (ST2) Scallop (SC) CLASS2 (CL2) HISAT2 (HI) STAR (ST)

Supplementary Figure 4: Comparison of assembly accuracy for the multi-exon transcripts assembled by
the four methods (Scallop2, StringTie2, Scallop, and CLASS2). (a) The assembly accuracy for multi-exon
transcripts on two Smart-seq3 datasets, HEK293T (HE) and Mouse-Fibroblast (MF). The mean and standard
deviation are reported over all cells in each dataset. (b) Comparison of adjusted precision (mean and standard
deviation on two Smart-seq3 datasets, HEK293T (left) and Mouse-Fibroblast (right)) between Scallop2 and
each of the other three methods at the same level of sensitivity. (c) The assembly accuracy for multi-exon
transcripts on 10 paired-end RNA-seq samples (named ENCODE10). The two groups of bars correspond
to HISAT2 (HI) and STAR (ST) alignments, respectively. The error bars show the standard deviation over
the 10 samples. (d) Comparison of adjusted precision (mean and standard deviation over HISAT2 (left) and
STAR (right) alignments of ENCODE10) between Scallop2 and each of the other three methods at the same
level of sensitivity. (e) Assembly accuracy for multi-exon transcripts on ENCODE10 at individual samples.
The precision-sensitivity curves are drawn for Scallop2.
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Supplementary Figure 5: Assembly accuracy for multi-exon transcripts at individual cells of HEK293T (left
panel) and Mouse-Fibroblast (right panel).
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Supplementary Figure 6: Assembly accuracy for multi-exon transcripts at individual cells on two Smart-
seq3 datasets, HEK293T (HE) and Mouse-Fibroblast (MF). In each panel, cells are sorted in ascending
order w.r.t. the accuracy of Scallop2 (so the curves for Scallop2 are monotonic).
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Supplementary Figure 7: Comparison of adjusted precision for multi-exon transcripts between Scallop2
and each of the other three methods at the same level of sensitivity on two Smart-seq3 datasets, HEK293T
(HE) and Mouse-Fibroblast (MF). In each panel, cells are sorted in ascending order w.r.t. the accuracy of
Scallop2 (so the curves for Scallop2 are monotonic).
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Supplementary Figure 8: Comparison of assembly accuracy for transcripts with different number of exons.
Predicted transcripts and ground-truth transcripts are all partitioned into 3 categories, namely transcripts
with 2–3, 4–6, and at least 7 exons, respectively. The accuracy of each category is then evaluated sepa-
rately. All assemblers are running with minimum coverage set to 0.001. (a) Comparison of the number of
matching transcripts and precision (left to right: HEK293T dataset, Mouse-Fibroblast dataset, ENCODE10
aligned with HISAT2, ENCODE10 aligned with STAR). (b) Comparison of adjusted precision on Smart-
seq3 HEK293T dataset. (c) Comparison of adjusted precision on Smart-seq3 Mouse-Fibroblast dataset.
(d) Comparison of adjusted precision on HISAT2 alignments on ENCOEDE10 dataset. (e) Comparison of
adjusted precision on STAR alignments on ENCOEDE10 dataset.
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Supplementary Figure 9: Comparison of assembly accuracy for transcripts at different expression levels.
The ground-truth transcripts are partitioned into 3 categories, namely low, middle, and high levels, and
the predicted sets of transcripts are then evaluated using each category. All assemblers are running with
minimum coverage set to 0.001. (a) Comparison of the number of matching transcripts and precision (left
to right: HEK293T dataset, Mouse-Fibroblast dataset, ENCODE10 aligned with HISAT2, ENCODE10
aligned with STAR). (b) Comparison of adjusted precision on Smart-seq3 HEK293T dataset. (c) Compari-
son of adjusted precision on Smart-seq3 Mouse-Fibroblast dataset. (d) Comparison of adjusted precision on
HISAT2 alignments on ENCOEDE10 dataset. (e) Comparison of adjusted precision on STAR alignments
on ENCOEDE10 dataset.
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Scallop2 StringTie2 Scallop

Supplementary Figure 10: Comparison of assembly accuracy on multi-exon transcripts of the three methods
(StringTie2, Scallop, and Scallop2) with different settings of parameters. We vary two parameters, minimum
coverage and minimum gap, and report the average accuracy over all cells or samples in each dataset. The
results for each dataset consists of four subfigures (from left to right), corresponding to 4 different minimum
gap thresholds {20, 50, 100, 200}. Each curve connects 15 points, corresponding to 15 different minimum
coverage thresholds {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10}. (a) Assembly accuracy on Smart-
seq3 HEK293T dataset. (b) Assembly accuracy on Smart-seq3 Mouse-Fibroblast dataset. (c) Assembly
accuracy on HISAT2 alignments of ENCODE10 dataset. (d) Assembly accuracy on STAR alignments of
ENCODE10 dataset.
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Scallop2 StringTie2 Scallop

Supplementary Figure 11: Comparison of adjusted precision on multi-exon transcripts with varying param-
eters (the same with Supplementary Figure 10). The mean and standard deviation of adjusted precision
are showed over all cells/samples in each dataset. The results of each dataset consists of four subfigures,
corresponding to the 4 different minimum gap thresholds {20, 50, 100, 200}. Each subfigure consists of
15 groups, corresponding to the 15 different minimum coverage thresholds {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4,
4.5, 5, 6, 7, 8, 9, 10}. (a) The comparison of adjusted precision on Smart-seq3 HEK293T dataset. (b) The
comparison of adjusted precision on Smart-seq3 Mouse-Fibroblast dataset.
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Scallop2 StringTie2 Scallop

Supplementary Figure 12: Comparison of adjusted precision on multi-exon transcripts with varying param-
eters (the same with Supplementary Figure 10). The mean and standard deviation of adjusted precision
are showed over all cells/samples in each dataset. The results of each dataset consists of four subfigures,
corresponding to the 4 different minimum gap thresholds {20, 50, 100, 200}. Each subfigure consists of 15
groups, corresponding to the 15 different minimum coverage thresholds {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5,
6, 7, 8, 9, 10}. (a) The comparison of adjusted precision on HISAT2 alignments of ENCODE10 dataset. (b)
The comparison of adjusted precision on STAR alignments of ENCODE10 dataset.
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Supplementary Figure 13: Two gene loci visualized using IGV showing the alignment, coverage, junctions,
and assembled transcripts by StringTie2, Scallop, Scallop2 (both full-length and non-full-length ones). (a)
Reads highlighted in the same color are from the same read group. The bridging algorithm used in Scallop2
helps to fill the gap in the 5th and 6th exons which lead to the correct assembly. (b) Scallop2 identifies the
two middle exons (with highest coverage) as false boundary vertices and therefore mark them as non-full
length transcripts.
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Full length Non-full length

Supplementary Figure 14: Distribution of the classifications (by gffcompare) of the predicted full-length and
non-full-length transcripts by Scallop2 (run with default parameters). The mean and standard deviation are
reported over all cells/samples in each dataset. The results of each dataset consists of 9 groups, correspond-
ing to the 9 major classification codes {=, c, m, n, j, x, i, u, and other}. (a) The comparison on Smart-seq3
HEK293T dataset; the averaged number of full-length and non-full-length transcripts are 4167 and 3312, re-
spectively. (b) The comparison on Smart-seq3 Mouse-Fibroblast dataset; the averaged number of full-length
and non-full-length transcripts are 4451 and 2889, respectively. (c) The comparison on HISAT2 alignments
of ENCODE10 dataset; the averaged number of full-length and non-full-length transcripts are 57256 and
15788, respectively. (d) The comparison on STAR alignments of ENCODE10 dataset; the averaged number
of full-length and non-full-length transcripts are 54695 and 22804, respectively.
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Supplementary Figure 15: Pipeline of evaluating the performance of four compared assemblers, StringTie2,
Scallop, CLASS2, and Scallop2.
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Supplementary Tables2

Supplementary Table 1: Comparison of CPU time and peak memory of the 4 methods on Smart-seq3 data.
For each dataset, mean and standard deviation over all cells are reported.

HEK293T Mouse-Fibroblast
assembler running time (s) memory (MB) running time (s) memory (MB)
Scallop2 43.1±21.3 49.1±25.9 49.4±15.3 73.2±30.7

StringTie2 8.0±3.7 15.4±5.0 10.3±2.8 29.5±10.3
Scallop 7.7±4.5 45.8±25.3 10.8±4.6 63.2±27.9

CLASS2 141.2±51.3 545.8±19.4 102.3±22.9 543.7±8.6
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Supplementary Table 2: Comparison of CPU time and peak memory of the 4 methods on the ENCODE10
dataset. For each aligner used, mean and standard deviation over the 10 samples are reported.

HISAT2 alignments STAR alignments
assembler running time (s) memory (MB) running time (s) memory (MB)
Scallop2 3665±3808 6123±5069 3135±3184 6041±4773

StringTie2 482±195 148±64 475±208 250±112
Scallop 949±937 8475±9426 776±545 7839±7960

CLASS2 360869±433733 2429±1108 8596±7305 2045±478
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Supplementary Notes3

Supplementary Note 1: Methods compared. We compare Scallop2 (version 1.1.2) with three other recent4

reference-based transcript assemblers, StringTie2 (version 2.1.7), Scallop (version 0.10.5), and CLASS2 (ver-5

sion 2.1.7). All methods were run with their default parameters, except that on the Smart-seq3 data Scallop6

were run with --min num hits in bundle 5 which allows Scallop to assemble gene loci with 5 or more7

reads aligned (Scallop2 also has this parameter and its default value is 5; the default value of this parameter8

used by Scallop is 20). This is because Smart-seq3 admits lower coverage and it is favorable to use a small9

value to capture more transcripts.10
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Supplementary Note 2: Pipeline and evaluation. We use the pipeline illustrated in Supplementary Fig-11

ure 15 to evaluate the performance of all compared assemblers. For Smart-seq3 data, the raw sequencing12

data will be demultiplexed and preprocessed using zUMIs tool, in which STAR will be called to generate13

reads alignments. The 10 paired-end Illumina RNA-seq samples are aligned with two popular aligners,14

STAR1 and HISAT22. The read alignments of each individual cell or sample will be piped to the compared15

assemblers.16

The accuracy of the assembled transcripts will be evaluated using gffcompare3. We use the annotated17

transcriptomes as reference (Ensembl GRCh38.104 for human data and Ensembl GRCm39.104 for mouse18

data). We use the “transcript level” metrics defined by gffcompare: an assembled multi-exon transcript19

is considered as “matching” if its intron-chain exactly matches that of a transcript in the reference; an20

assembled single-exon transcript is defined as “matching” if there is a significant overlap (80% by default)21

with a single-exon transcript in the reference. We use two metrics calculated by gffcompare: the total22

number of matching transcripts, which is proportional to sensitivity, and precision, defined as the ratio23

between the total number of matching transcripts and the total number of assembled (predicted) transcripts.24

The multi-exon accuracy reported in Supplementary Figures 4–7 only consider multi-exon transcripts.25

We note that above metrics measured w.r.t. the current transcriptome underestimates the accuracy, as novel26

transcripts that are correctly assembled will be considered as “not-matching” because they do not yet exist27

in the reference. Nevertheless, we believe such metrics are fair for the compared assemblers, as they reflect28

their relative accuracy, and yet we do not know the true expressed transcripts in these biological samples.29
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Supplementary Note 3: Comparison at the same level of sensitivity. We note that the idea of comparing30

different methods at the same level of sensitivity was first used in Scallop4 and the approach of computing31

adjusted precision was also described in the Scallop paper. Here we reiterate them to make the content self-32

inclusive. Notice that one method might give higher number of matching transcripts but lower precision, or33

vise versa, on certain samples. To enable comparing in these cases, we first balance them in sensitivity and34

then compare them using a measure called adjusted precision. Specifically, let k1 and k2 be the number of35

matching transcripts obtained by two methods X1 and X2, and p1 and p2 be their corresponding precision.36

Assume that k1 > k2. We sort the assembled transcripts obtained by X1 based on the expression abundance,37

and gradually filter out assembled transcripts with lowest abundance. In this way, the matching transcripts38

of X1 will decrease while its precision will likely increase (as lowly-expressed ones are more likely to be39

false positive transcripts). We calculate the corresponding new measures of X1, denoted as k
0
1 and p

0
1, as40

filtering goes, and stop when k
0
1 = k2. We then report p

0
1 at this time as the adjusted precision of X1 (now41

the number of matching transcripts of X1 becomes k
0
1 = k2). Note that the relationship between p

0
1, and p

0
242

can therefore reflect the overall performance of the two methods, as they are comparing at the same level of43

sensitivity.44

The precision-sensitivity curves of Scallop2 illustrated in Figure 1e and Supplementary Figure 4e are also45

obtained by gradually filtering out the assembled transcripts with the lowest abundance. Therefore, the46

adjusted precision of Scallop2 w.r.t. another method is the x coordinate of the point on the curve whose y47

coordinate is equal to the point corresponding to the compared method.48

20



Supplementary Note 4: Comparison on assembling transcripts with different number of exons. We49

evaluate the accuracies of the three methods (StringTie2, Scallop, and Scallop2) on assembling transcripts50

with different number of exons. We divide the reference transcriptome (for human it is Ensembl GRCh38.10451

and for mouse it is Ensembl GRCm39.104) into three disjoint subsets corresponding to transcripts with 2-352

exons, 4-6 exons, and 7 or more exons. We use the above subsets as ground-truth transcripts. We then divide53

the predicted transcripts assembled by each method into three subsets with the same criterion. We then use54

gffcompare to compute the assembly accuracy of each predicted subset using its corresponding ground truth55

subset, and report the number of matching transcripts (proportional to sensitivity) and precision.56

The results are illustrated in Supplementary Figure 8. Scallop2 identifies more matching transcripts with 457

or more exons, especially on Smart-seq3 single-cell datasets. Averaged over 561 Smart-seq3 single cells,58

Scallop2 identifies 12.9% and 21.5% more matching transcripts than StringTie2 and Scallop in the set of59

transcripts with 7 or more exons; 5.7% and 11.3% more matching transcripts than StringTie2 and Scallop60

in the set of transcripts with 4-6 number of exons. Compared at the same level of sensitivity, Scallop261

keeps the highest adjusted precision on all groups on all datasets. Averaged over 561 cells in two Smart-62

seq3 datasets, Scallop2 improves 84.0% and 52.9% in adjusted precision compared with StringTie2 and63

Scallop on transcripts with 2-3 exons; Scallop2 improves 93.8% and 69.5% in adjusted precision compared64

with StringTie2 and Scallop on transcripts with 4-6 exons; Scallop2 improves 58.9% and 57.0% in adjusted65

precision compared with StringTie2 and Scallop with 7 or more exons. Averaged over 10 Illumina RNA-66

seq samples, in adjusted precision Scallop2 improves 89.9% and 19.7%, 27.3% and 23.8%, and 29.4% and67

19.1% compared with StringTie2 and Scallop on transcripts with 2–3 exons, 4–6 exons, and 7 or more68

exons, respectively.69
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Supplementary Note 5: Comparison on assembling transcripts at different expression levels. For each70

cell or sample, we first use Salmon5 to quantify it using the reference transcriptome (Ensembl GRCh38.10471

for human, Ensembl GRCm38.104 for mouse); we then collect all multi-exon transcripts (in reference an-72

notation) with quantified abundance larger than a threshold (TPM � 0.1) and divide them into three equal73

subsets corresponding to low, middle, high expression levels. Thus, we have three subsets of multi-exon74

transcripts for each cell or sample, and we use these three subsets as ground-truth for evaluation. The as-75

sembled multi-exon transcripts by each method will be evaluated against each of the ground-truth subset76

using gffcompare. Note that, when evaluated against one ground-truth subset, say the middle level, an as-77

sembled transcript will be classified as not matching (i.e., false transcript) if it is not in this middle-level78

ground-truth subset, even if it exists in other two ground-truth subsets. This will result in low precision but79

we think still reflect the relative performance of the compared methods. To get the highest sensitivity, the80

minimum coverage of all three methods are set as 0.001.81

The results are illustrated in Supplementary Figure 9. While Scallop2 achieves higher sensitivity than82

StringTie2 and Scallop at all expression levels, the largest improvements are obtained at low expression83

levels. Averaged over 561 Smart-seq3 single cells, Scallop2 identifies 13.0% and 28.7% more matching84

multi-exon transcripts than StringTie2 and Scallop at low level, 8.9% and 19.3% more at middle level, and85

1.6% and 5.1% more at high level. Averaged over 10 Illumina RNA-seq samples, Scallop2 identifies 77.0%86

and 17.1% more matching multi-exon transcripts than StringTie2 and Scallop at low level, 43.1% and 8.5%87

more at middle level, and 12.6% and 2.8% more at high expression level. Compared at the same level of88

sensitivity, Scallop2 keeps the best adjusted precision at all expression levels on all datasets. Averaged over89

561 cells in two Smart-seq3 datasets, Scallop2 improves 120.2% and 109.7%, 111.5% and 100.7%, and90

67.0% and 49.3%, in adjusted precision compared with StringTie2 and Scallop at low, middle, and high91

expression levels, respectively. Averaged over 10 Illumina RNA-seq samples, Scallop2 improves 21.9%92

and 15.1%, 50.7% and 25.2%, and 98.5% and 41.7% in adjusted precision compared with StringTie2 and93

Scallop at low, middle, and high expression levels, respectively.94

22



Supplementary Note 6: Comparison of assembly accuracy with varying parameters. All three methods95

(StringTie2, Scallop, and Scallop2) support specifying two parameters, the minimum coverage threshold,96

to control the minimum expression abundance of a predicted transcript, and the minimum gap, to control97

the minimum gap of read mappings to start a gene loci for assembly. The default values of the minimum98

coverage used by StringTie2, Scallop, and Scallop2 are 1.0, 1.0 and 1.5, respectively. The default values99

of minimum gap used by StringTie2, Scallop, and Scallop2 are 50, 50, 100, respectively. Since highly100

expressed transcripts are easier to assemble, adjusting the parameter of the minimum coverage provides101

a trade-off of sensitivity and precision. In general, the sensitivity decreases while the precision increases102

when the minimum coverage gets higher. We run these three methods on different thresholds and draw the103

precision-sensitivity curve to see their capability to balance sensitivity and precision.104

The results are illustrated in Supplementary Figures 10-12. The sensitivity-precision curves (Supplementary105

Figure 10) for Scallop2 were the highest for all datasets over all values of minimum gap. This indicates the106

improvement of Scallop2 over other two methods in a broad range of selected parameters. Also, at the same107

level of sensitivities Scallop2 constantly obtains higher adjusted precision than StringTie2 and Scallop over108

all combinations of parameters (Supplementary Figures 11–12).109
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Supplementary Note 7: Case study. To illustrate the effectiveness of the algorithmic heuristics used in110

Scallop2, we showcase two examples in Supplementary Figure 13 and describe how the Scallop2 algo-111

rithms lead to the correct assemblies. We use IGV6 to visualize reads and assembled transcripts. The112

example BAM file using in the case study is a demultiplexed Smart-seq3 RNA-seq data with cell barcode113

AAGAGACGCATGCTTC in HEK293T dataset. The GTF files compared in the case study are reconstructed114

transcripts assembled by the three methods (StringTie2, Scallop, and Scallop2) using the example BAM file115

as input. To illustrate the ability of determines false starting/ending vertices, we visualize both full-length116

and non-full-length transcripts assembled by Scallop2.117

In Supplementary Figure 13a, we show an example where there are gaps (i.e., regions not covered by any118

reads) in the 5th and the 6th exons. Both Scallop and StringTie2 interpret them as boundary exons and119

consequently the predictions are not full-length transcripts. The bridging algorithm used in Scallop2 bridges120

these multi-end reads (such as orange ones) as a single-end phasing path, and the bridged path span the 5th121

and the 6th exon which fills the gaps and also (partially) corrects the coverage of these two exons. Bridging122

algorithm helps to fill the gap using long-range information from paired-end/multi-end reads. Scallop2123

therefore predicts only one transcript and it is a matching transcript.124

In Supplementary Figure 13b, we show an example where Scallop2 successfully determines false start-125

ing/ending vertices. Both Scallop and StringTie2 assemble two transcripts. However, the paired-end/multi-126

end information (see the long gray thin lines which indicate paired-end reads not junctions) suggest that127

the two boundary exons (with highest coverage) are actually false boundary exons. The algorithms used128

in Scallop2 successfully determine them as false vertices and consequently label them as non-full-length129

transcripts.130
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Supplementary Note 8: Effectiveness of determining false starting/ending vertices. Scallop2 deter-131

mines false starting/ending vertices in the splicing graph, and classifies the decomposed s-t paths as non-132

full-length transcripts if the path contains false vertex and otherwise as full-length transcripts. Here we133

evaluate the effectiveness of this approach. The hypothesis is that non-full-length transcripts exhibit low134

accuracy. To test this hypothesis, we use gffcompare to annotate each of the predicted transcript using the135

reference transcriptome. Gffcompare will label a transcript with one of the 15 classification codes (see doc-136

umentation of GFF utilities3). Among them, code ‘=’ represents complete, exact match of intron chains;137

this code is also used in this work to define if a predicted transcript is considered as matching or not. Code138

‘c’ represents the predicted transcript is contained in a known transcript in the reference transcriptome;139

transcripts labeled as ‘c’ are most likely transcript fragments (i.e., non-full-length transcripts).140

The distribution of the classifications of full-length transcript and non-full-length transcript assembled by141

Scallop2 is illustrated in Supplementary Figure 14. Non-full-length admits much lower accuracy (indicated142

by the much lower percentage of the ‘=’ code). Additionally, a much larger portion of non-full-length143

transcripts are labeled as ‘c’, indicating that they are indeed transcript fragments. These two observations144

proves the effectiveness of the approach of determining false vertices.145
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Supplementary Algorithm146

Supplementary Algorithm 1: Improved algorithm for phase-preserving graph decomposition.147

Algorithm Consensus-Decompose (G0, H, N)
01. for k = 1 ! N

02. while G
0 contains unsplittable vertices

03. if (k = 1): pick argminv: v is unsplittable z(v) and decompose it;
04. else: pick an unsplittable vertex randomly and decompose it;
05. end while
06. while G

0 contains splittable vertices
07. if (k = 1): pick argminv: v is splittable z

0(v) and decompose it;
08. else: pick a splittable vertex randomly and decompose it;
09. goto line 02;
10. end while
11. while G

0 is not fully decomposed
12. pick a (trivial) vertex randomly and decompose it;
13. goto line 02;
14. end while
15. save the resulting s-t paths as Pk and their abundances as fk(p) for each p 2 Pk;
16. end for
17. calculate r(p) = ÂN

k=1 d(p 2 Pk) for every p 2 [N

k=1Pk, and d represents the indication function;
18. return P = {p 2 [N

k=1Pk | r(p)� N/2} and f (p) = ÂN

k=1 fk(p)/r(p) for each p 2 P;

148
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