nature . . .
machine intelligence

PERSPECTIVE

https://doi.org/10.1038/s42256-021-00374-3

‘ '.) Check for updates

Towards neural Earth system modelling by
integrating artificial intelligence in Earth system
science

Christopher Irrgang ©'¢, Niklas Boers?3*#, Maike Sonnewald>¢’, Elizabeth A. Barnes?,
Christopher Kadow®, Joanna Staneva' and Jan Saynisch-Wagner'

Earth system models (ESMs) are our main tools for quantifying the physical state of the Earth and predicting how it might change
in the future under ongoing anthropogenic forcing. In recent years, however, artificial intelligence (Al) methods have been
increasingly used to augment or even replace classical ESM tasks, raising hopes that Al could solve some of the grand challenges
of climate science. In this Perspective we survey the recent achievements and limitations of both process-based models and Al
in Earth system and climate research, and propose a methodological transformation in which deep neural networks and ESMs
are dismantled as individual approaches and reassembled as learning, self-validating and interpretable ESM-network hybrids.
Following this path, we coin the term neural Earth system modelling. We examine the concurrent potential and pitfalls of neural
Earth system modelling and discuss the open question of whether Al can bolster ESMs or even ultimately render them obsolete.

describe geophysical and climate processes and to construct

deterministic computer simulations that allow for the analysis
of such processes. Until recently, process-based models had been
considered irreplaceable tools that helped us to understand the
complex interactions in the coupled Earth system and provided
the only tools with which to predict the Earth system’s response to
anthropogenic climate change.

Earth system models (ESMs)' combine process-based models
of the different subsystems of the Earth system into an integrated
numerical model that for a given state of the coupled system at time
tyields a prediction of the system state for time ¢+ 1. The individual
model components, or modules, describe subsystems including the
atmosphere, the oceans, the carbon cycle and other biogeochemi-
cal cycles, and radiation processes, as well as land surface and veg-
etation processes and marine ecosystems. These modules are then
combined by a dynamic coupler to obtain a consistent state of the
full system for each time step.

The inclusion of a vastly increasing number of processes, together
with continuously rising spatial resolution, haveled to the development
of comprehensive ESMs to analyse and predict the state of the Earth
system. From the First Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC) in 1990 to the Fifth Phase of the
Climate Model Intercomparison Project (CMIP5)* and the associated
Fifth Assessment Report of the IPCC in 2014, the spatial resolution
has increased from around 500km to as high as 70km. In accordance,
the CMIP results show that over the course of two decades the models
have greatly improved in their accuracy in reproducing crucial char-
acteristics of the Earth system, such as the evolution of global mean
temperatures since instrumental data became available in the second

For decades, scientists have used mathematical equations to

half of the nineteenth century, or the average present-day spatial dis-
tribution of temperature or precipitation®*.

The provocative thought that ESMs might lose their fundamen-
tal importance in the advent of novel artificial intelligence (AI) tools
has sparked both a gold-rush feeling and caution in scientific com-
munities. On the one hand, deep neural networks have been devel-
oped that complement and aim to match the skill of process-based
models in various applications, ranging from numerical weather
prediction to climate research. On the other hand, most neural
networks are trained for isolated applications under simplified
conditions and lack true process knowledge. Regardless, the daily
increasing data streams from Earth system observations (ESOs),
increasing computational resources, and the availability and acces-
sibility of powerful AI tools—particularly in machine learning
(ML)—have led to numerous innovative developments that aim to
resolve persistent shortcomings of current ESMs.

In the following, we survey the current state, recent achieve-
ments and recognized limitations of both process-based modelling
and Al in Earth and climate research. On the basis of this survey,
we draw an overview of an imminent and profound methodologi-
cal transformation, hereafter named neural Earth system modelling
(NESYM), that aims for a deep and interpretable integration of Al
into Earth system modelling. We discuss emerging challenges of
this approach and highlight the necessity of new transdisciplinary
collaborations between the involved communities.

Overview of Earth system modelling and ESOs

For some parts of the Earth system, the primitive physical equations
of motion are known explicitly, such as the Navier-Stokes equa-
tions that describe the fluid dynamics of the atmosphere and oceans
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Fig. 1| Symbolic representation of Earth system components in terms of knowledge clusters. Arrows indicate exemplary exchange of information
between the clusters in terms of geophysical processes and coupling mechanisms. ML can take over different tasks depending on the cluster
application; for example, data exploration and analysis in case of poor process knowledge (green cluster), ESM enhancement by improving insufficient
parameterizations and other simplifications in process-based models (blue cluster) or emulation and acceleration of well-understood process-based
simulations (orange cluster). Similarly, ML can be applied to coupling mechanisms and interaction processes (arrows), utilizing adjacent clusters as

training data pools.

(Fig. 1). In practice, it is impossible to numerically resolve all rel-
evant scales of the dynamics and approximations have to be made.
For example, the fluid dynamical equations for the atmosphere
and oceans are integrated on discrete spatial grids, and all pro-
cesses that operate below the grid resolution have to be param-
eterized to assure a closed description of the system. Since the
multiscale nature of the dynamics of geophysical fluids implies
that the sub-grid-scale processes interact with the larger scales
that are resolved by the model, (stochastic) parameterization of
sub-grid-scale processes is a highly non-trivial, yet unavoidable,
part of climate modelling>~".

For other parts of the Earth system, primitive equations of motion,
such as the Navier-Stokes equations, do not exist. Essentially, this is
due to the complexity of the Earth system, in which many phenom-
ena that emerge at a macroscopic level are not easily deducible from
microscopic scales that may or may not be well understood. A typi-
cal example is given by ecosystems and the physiological processes
governing the vegetation that covers vast parts of the land surface,
as well as their interactions with the atmosphere, the carbon cycle
and other geochemical cycles. Approximations in terms of param-
eterizations of potentially crucial processes must also be made for
these cases.

Regardless of the specific process, such parameterizations induce
free parameters in ESMs for which suitable values have to be found
empirically. The size of state-of-the-art ESMs mostly prohibits sys-
tematic calibration methods such as, for example, the ones based on
Bayesian inference, and the models are therefore often tuned manu-
ally. The quality of the calibration, as well as the overall accuracy
of the model, can only be assessed with respect to relatively sparse
observations of the last 170 years, at most, and there is no way to
assess the models” skill in predicting future climate conditions®.
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Although necessary, parameterizations can cause biases or struc-
tural model errors. The example of the discretized spatial grid sug-
gests that the higher the spatial resolution of an ESM, the smaller
the potential errors. Likewise, it is expected that the models’ repre-
sentation of the Earth system will become more accurate the more
processes are resolved explicitly.

Despite the tremendous success of ESMs, persistent problems
and uncertainties remain:

1. A crucial quantity for the evaluation of ESMs is the equilib-
rium climate sensitivity, defined as the amount of equilibrium
global mean temperature increase that results from an instan-
taneous doubling of atmospheric CO, (ref.?). There remains
a large equilibrium climate sensitivity range in current ESMs.
From CMIP5 to CMIP6, the likely equilibrium climate sensitiv-
ity range has widened from 2.1-4.7°C to 1.8-5.6°C (refs.'®'").
Reducing these uncertainties, and hence the uncertainties of
future climate projections, is one of the key challenges in the
development of ESMs.

2. Both theoretical considerations and palaeoclimate data sug-
gest that several subsystems of the Earth system can abruptly
change their state in response to gradual changes in forcing'>".
There is concern that current ESMs will not be capable of pre-
dicting future abrupt climate changes, because the instrumental
era of less than two centuries has not experienced comparable
transitions, and model validation against palaeoclimate data for
such events remains impossible due to the length of the rele-
vant timescales'’. In an extensive search, many relatively abrupt
transitions have been identified in future projections of CMIP5
models’, but due to the nature of these rare, high-risk events,
the accuracy of ESMs in predicting them remains untested.
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3. Current ESMs are not yet suitable for assessing the efficacy or
the environmental impact of CO, removal techniques, which
are considered key mitigation options in pathways realizing the
Paris Agreement'S. Furthermore, ESMs are unable to adequate-
ly represent key environmental processes such as the carbon cy-
cle, water and nutrient availability or interactions between land
use and climate. This can impact the usefulness of land-based
mitigation options that rely on actions such as biomass en-
ergy with carbon capture and storage or nature-based climate
solutions'”'.

4. The distributions of time series encoding Earth system dy-
namics typically exhibit heavy tails. Extreme events such as
heat waves and droughts—and extreme precipitation events
and associated floods—have always caused tremendous
socio-economic damage. With ongoing anthropogenic climate
change, such events are projected to become even more severe,
and the attribution of extremes poses another outstanding chal-
lenge in Earth system science'. Although current ESMs are
very skilful in predicting average values of climatic quantities,
there remains room for improvement in representing extremes.

In addition to the possible solutions to these fundamental
challenges, improvements of the overall accuracy of ESMs can be
expected from more extensive and more systematic integration of
the process-based numerical models with observational data. ESOs
are central to ESMs, serving a multitude of purposes; they are used
to evaluate and compare process-based model performance, to
generate model parameters and initial model states or as boundary
forcings of ESMs***!. ESOs are also used to directly influence the
model output by either tuning or nudging parameters that describe
unmodelled processes, or by the more sophisticated methods of data
assimilation that alter the model’s state variables to bring the model
output in better agreement with the observations®. Gradient-based
optimization, as in four-dimensional variational schemes, is the
current state of the art for efficiency and accuracy, but requires
time-consuming design and implementation of adjoint calcula-
tion routines tailored to each model. Ensemble-based Kalman filter
schemes are gradient-free but produce unphysical outputs and rely
on strong statistical assumptions that are often unsatisfied, lead-
ing to biases and overconfident predictions®. The main problems
of contemporary ESM data assimilation are (1) nonlinear dynam-
ics and non-Gaussian error budgets in combination with the high
dimensionality of many ESM components~® and (2) selecting
appropriate constraints on the governing processes over the differ-
ent spatiotemporal scales found in coupled systems .

ESOs cover a wide range of spatiotemporal scales and types,
ranging from a couple of centimetres to tens of thousands of kilo-
metres, and from seconds and decades to millennia. The types of
observation range from in situ measurements of irregular times and
spaces to global satellite-based data fields. Yet, the available obser-
vational data pool still contains large gaps in time and space that
prevent a holistic observation-driven picture of the coupled Earth
system being built as a result of insufficient data resolution, too
short observation time periods and largely unobserved compart-
ments of Earth systems such as the abyssal oceans. The combination
of these complex characteristics renders ESOs both challenging and
particularly interesting for Al applications.

From ML-based data exploration towards learning physics

In contrast to other research branches”, the usage of ML in Earth
and climate sciences is still in its infancy. Whereas current ML
applications are mostly found in explorative studies and are still
far away from operational usage, profound impact on research as
well as on the supercomputing industry is expected *. A key obser-
vation is that ML concepts from computer vision and automated
image analysis can be isomorphically transferred to ESO imagery

NATURE MACHINE INTELLIGENCE | VOL 3 | AUGUST 2021 667-674 | www.nature.com/natmachintell

PERSPECTIVE

and time series™”. Pioneering studies demonstrated the feasibil-
ity of ML for remote sensing data analysis, classification tasks and
parameter inversion as early as the 1990s%, and climate-model
emulation in the early 2000s*. The figurative Cambrian explo-
sion of Al techniques in Earth and climate sciences, however, only
began in the past 5years and will rapidly continue throughout the
coming decades.

ML has been applied across various spatial and temporal
scales, ranging from short-term regional weather prediction to
Earth-spanning climate phenomena. Considerable progress has
been made in developing purely data-driven weather prediction
networks, aiming to explore alternative approaches to process-based
model forecasts*~* or to emulate and accelerate computationally
demanding components of weather forecasting systems such as
the parameterization of gravity wave drag* and the simulation of
cloud processes”. However, current global data-driven ML weather
forecasts operate on much lower resolutions than state-of-the-art
process-based models*® and the lack of available training data will
probably prevent a closure of this gap in the near future”. Yet,
ML for emulation and acceleration tasks could play an even more
important role in this context (orange knowledge cluster in Fig. 1),
particularly during the advent of exascale computing*® and when the
related computational challenges and bottlenecks are addressed®.
ML contributed to the pressing need to improve the predictability of
natural hazards, for instance, by uncovering global extreme-rainfall
teleconnections™ and by improving long-term forecasts of the El
Nifo/Southern Oscillation®*>. ML-based image filling techniques
were used to reconstruct missing climate information, allowing pre-
vious global temperature records to be corrected”. Furthermore,
ML was applied to analyse climate data sets to extract specific
forced signals from natural climate variability"**, for example, or
to predict clustered weather patterns®. In these applications, the
ML tools function as highly specialized agents that help to uncover
and categorize patterns in an automated way, which is particu-
larly useful for observable processes that are only poorly described
through physical laws or parameterizations (green knowledge clus-
ter in Fig. 1). A key methodological advantage of ML in compari-
son with covariance-based spatial analysis lies in the possibility of
mapping nonlinear processes’*. At the same time, such trained
neural networks lack actual physical process knowledge, as they
solely function through identifying and generalizing statistical rela-
tions by minimizing predefined loss measures for a specific task™.
Consequently, research on ML in Earth and climate science differs
fundamentally from the previously described efforts of advancing
ESMs in terms of methodological development and applicability.

Concepts of using ML not only for physics-blind data analyses
but also as surrogates and methodological extensions for ESMs have
only recently started to take shape®. Scientists started pursuing the
aim of ML methods learning aspects of Earth and climate physics,
or at least plausibly relating cause and effect. The combination of
ML with process-based modelling is the essential distinction from
previous ESO data exploration (blue knowledge cluster in Fig. 1).
Lifting ML from purely diagnosis-driven usage towards the predic-
tion of geophysical processes will also be crucial to aid in climate
change research and the development of mitigation strategies®’.

Following this reasoning, ML methods can be trained with
process-based model data to inherit a specific geophysical causa-
tion or even emulate and accelerate entire forward simulations. For
instance, ML has been used in combination with ESMs and ESOs
to invert space-borne oceanic magnetic field observations to deter-
mine the global ocean heat content™. Similarly, a neural network
has been trained with a continental hydrology model to recover
high-resolution terrestrial water storage from satellite gravimetry®.
ML plays an important role in upscaling unevenly distributed car-
bon flux measurements to improve global carbon monitoring sys-
tems®. The eddy covariance technique was combined with ML to
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measure the net ecosystem exchange of CO, between ecosystems
and the atmosphere, offering a unique opportunity to study eco-
system responses to climate change®. ML has successfully been
applied in representing sub-grid-scale processes and other param-
eterizations of ESMs, providing that sufficient training data were
available. As such, neural networks were applied to approximate
turbulent processes in ocean models®® and atmospheric sub-grid
processes in climate models®’. Here, substantial computational sav-
ings could be achieved***, freeing up resources that in turn could
be used to improve the model simulations, for example, by raising
ensemble sizes or improve the resolution of the numerical model.
Several studies highlight the potential for ML-based parameteriza-
tion schemes®®", helping step-by-step to gradually remove numeri-
cal and human-induced simplifications and other biases of ESMs”*.
Nevertheless, most ML parameterization schemes are still applied
under idealized conditions such as coarse model resolution, sim-
plified physics or reduced prognostic model variables. Transferring
and testing these achievements on more complex ESM configura-
tions remains an ongoing and open challenge’.

Although some well-trained ML tools and simple hybrids have
shown higher predictive power than traditional process-based
models, only the surface of new possibilities, but also of new scien-
tific challenges, has been scratched. So far, ML, ESMs and ESO have
largely been independent tools. Yet, we have reached the under-
standing that applications of physics-aware ML and model-net-
work hybrids offer huge benefits by filling up niches where purely
process-based models persistently lack reliability”.

Fusion of process-based models and Al

The idea of hybrids of process-based and ML models is not new’,
but an understanding of how ML can enhance process-based mod-
elling has evolved following the recent advances. The long-term goal
will be to consistently integrate the recently discovered advantages
of ML into the already decade-long source of process knowledge in
Earth system science (Fig. 2). However, this evolution does not come
without methodological caveats, which need to be investigated care-
fully. For the sake of comparability, we distinguish between weakly
coupled NESYM hybrids (in which an ESM or Al technique benefits
from information from the respective other) and strongly coupled
NESYM hybrids (in which fully coupled model-network combina-
tions dynamically exchange information).

The emergent development of weak hybrids is predominantly
driven by the aim of resolving the previously described ESM limi-
tations, particularly unresolved and sub-grid-scale processes (left
branch of Fig. 2). Neural networks can emulate such processes after
careful training with simulation data from a high-resolution model
that resolves the processes of interest, or with relevant ESO data.
The next methodological milestone will be the integration of such
trained neural networks into ESMs for operational usage. The first
tests have indicated that the choice of the AI technique (for exam-
ple, neural networks versus random forests) seems to be crucial for
the implementation of learning parameterization schemes, as they
can greatly diminish the ESM’s numerical stability””. Thus, it is not
only important to identify how neural networks can be trained to
resolve ESM limitations, but also how such ML-based schemes can
be stabilized in the model physics context and how their effect on
the process-based simulation can be evaluated and interpreted”.
The limitations of ML-based parameterization approaches can
vary widely for different problems or utilized models and, conse-
quently, should be considered for each learning task individually”.
Nevertheless, several ideas have been proposed to stabilize ML
parameterizations, for example, by enforcing physical consistency
through customized loss functions in neural networks and spe-
cific network architectures”* or by optimizing the high-resolution
model training data™. In addition, an ESM blueprint has been pro-
posed in which learning parameterizations can be targeted through
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searching for an optimal fit of statistical measures between ESMs,
observations and high-resolution simulations®. Although this is
not strictly applying ML, the approach is well suited to exploring
parameterizations suitable for smooth climate solutions, avoiding
the problems of the ensemble-based Kalman filter techniques. In
such a context, further efforts have been made to enhance an ESM
not with ML directly, but in combination with a data assimilation
system *2. For instance, emulating a Kalman filter scheme with ML
has been investigated®>*’, an ML-based estimation of atmospheric
forcing uncertainties used as error covariance information in data
assimilation has been proposed®* and ML for nudged hindcasts™,
as well as further types of Kalman-network hybrid®>*. Despite the
demonstrated potential for combining data assimilation and ML, it
should be highlighted that many current challenges of data assimi-
lation need to be solved for respective ML approaches as well, such
as robust quantification of model and observation uncertainties and
the optimal use of sparse observations®.

In the second class of weak hybrid, the model and AI tasks are
transposed such that the information flow is directed from the
model towards the Al tool (right branch of Fig. 2). Here, neural
networks are trained directly with model state variables, their tra-
jectories or with more abstract information such as seasonal sig-
nals, interannual cycles or coupling mechanisms (knowledge cluster
connections in Fig. 1). The goal of the ML application might not
only be model emulation but also inverting nonlinear geophysical
processes®, learning geophysical causation® or predicting extreme
events*>”. In addition to these inference and generalization tasks, a
key question in this subdiscipline is whether a neural network can
learn to outperform the utilized process-based trainer model in
terms of physical consistency or predictive power. ESOs play a vital
role in this context, as they can serve as additional training con-
straints for neural network training, allowing the network to build
independent self-evaluation measures®.

These examples generally work well for validation and pre-
diction scenarios within the given training data distribution.
Out-of-distribution samples, in contrast, pose a huge challenge for
supervised learning, which renders the ‘learning from the past’ prin-
ciple possibly ill-suited to prediction tasks in NESYM. Because of
both the naturally and anthropogenically induced non-stationarity
of the climate and Earth system, it will be very challenging—and
in many cases impossible—for purely data-driven AI methods to
perform accurate climate projections on their own. Nevertheless,
some hope for purely data-driven AI approaches may remain for
problems for which it can be convincingly argued that, for instance,
the data distributions for colder-climate training conditions and
warmer-climate projections overlap. But in practice it will be hard
to guarantee that the unseen domains of the data distributions cor-
responding to a warmer climate are not relevant for a given process
under study. Moreover, in specific cases the scales of the processes
under study may to a first approximation be separable from the
scales relevant in the context of anthropogenic climate change;
guaranteeing this in practice, however, will again be very difficult.

Overcoming the overall limitations posed by the non-stationarity
of the climate system requires a deeper holistic integration in terms
of strongly coupled hybrids and the consideration of other, less
constrained training techniques such as unsupervised training”
and generative Al methods®®*®. For example, the problems of
pure AI methods with non-stationary training data can be atten-
uated by combining them with physical equations describing the
changing energy balance of the Earth system due to anthropogenic
greenhouse-gas emissions™. A key distinction of strongly coupled
hybrids is that the ML component can be further improved by
continued training. As such, the dynamic exchange of information
means that the ML part is not only repeatedly called after being
trained for usage in a weak hybrid, but can further evolve on the
basis of the current model state, newly available observations and
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Contains persistent error sources
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as learning hybrid models
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Data-driven ML
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combined those of ML models
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Fig. 2 | Successive stages of the fusion process of ESMs and Al towards NESYM. The left and right branches visualize the current efforts and goals for
building weakly coupled hybrids (blue and yellow), which converge towards strongly coupled hybrids with support from XAl. More details of weak and

strong hybrids are provided in the text.

so on. In addition, first steps towards physics-informed AI have
been made by the ML-based and data-driven discovery of physical
equations™ and by the implementation of neural partial differential
equations’®” in the context of climate modelling®.

Continuous development of the methodological fusion process
will allow hybrids of neural networks, ESMs and ESOs that dynami-
cally exchange information to be built. ESMs will soon use output
from supervised and unsupervised neural networks to optimize their
physical consistency and, in turn, feed back improved information
content to the ML component. ESOs form another core element and
function as the constraining ground truth of the Al-infused process
prediction. Similar to the adversarial game of generative networks”,
or coupling mechanisms in an ESM'%, strongly coupled NESYM
hybrids will also require innovative interfaces that control the
exchange of information that are as yet unavailable. As the methodi-
cal range of weak and strong hybrids is too large to be summarized
through a single overarching definition, we formulate key charac-
teristics and define goals of NESYM:

1. Hybrids can reproduce and predict out-of-distribution samples
and extreme events

2. Hybrids perform constrained and consistent simulations that
obey physical conservation laws despite potential shortcomings
of the hybrids’ individual components

3. Hybridsinclude integrated adaptive measures for self-validation
and self-correction

4. NESYM allows replicability and interpretability

Whereas most studies implemented neural networks for ML in
this context, NESYM includes all AI techniques that help to achieve
these goals. The ultimate goal of NESYM is to help scientists
improve the current forecast limits of geophysical processes and
contribute towards understanding the Earth’s susceptible state in a
changing climate. Consequently, it is not only the fusion of ESM and

Al that will be a focus of research, but also Al interpretability and
the resolution of the common notion of a black box.

Peering into the black box
ML has emerged as a set of methods based on the combination of
statistics, applied mathematics and computer science, but it comes
with a unique set of hurdles. Peering into the black box and explain-
ing the decision-making process of ML methods, termed explain-
able AI (XAI), is critical to the use of ML tools. In the physical
sciences, adaptation of ML is hampered by a lack of interpretabil-
ity, particularly of supervised ML. In contrast, and in addition to
XAl there is the call for interpretable AI (IAI)—that is, building
specifically interpretable ML models from the beginning, instead
of explaining ML predictions through post-process diagnostics'"'.
Ensuring that what is ‘learned’ by the machine is physically trac-
table or causal, and not due to trivial coincidences'">'”*, is important
before ML tools are used, for example, in an ESM setting targeted at
decision-making. Thus, interpretability and explainability provides
the user with trust in the ML output, improving its transparency.
This is critical for the use of ML in the policy-relevant area of climate
science, as society is making it increasingly clear that understand-
ing the source of Al predictive skill is of crucial importance'**'*.
By analysing the decision-making process, climate scientists will
be able to better incorporate their own physical knowledge into
the ML method, ultimately leading to greater confidence in predic-
tions. Perhaps least appreciated in geoscientific applications thus far
is the use of IAI and XAI to discover new science'*>'* and assist in
theoretic advances'””. For example, when an ML model is capable of
making skilful predictions, XAI allows us to ask ‘what did it learn?’.
In this way, ML models can act as investigative tools for discovery.
The power of XAI for climate, ocean and weather applications
has very recently been demonstrated'*>'*-''. Tools for developing
XAI models are referred to as additive feature attribution'’. For
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example, neural networks coupled with the XAl attribution method
known as layerwise relevance propagation'’*'"” have revealed
modes of variability within the climate system, sources of predict-
ability across a range of timescales and indicator patterns of climate
change®'*. There is also evidence that XAI methods can be used to
evaluate climate models against observations, identifying the most
important climate model biases for the specific prediction task''.
However, these methods are in their infancy and there is vast room
for advancements in their application, making it explicitly appropri-
ate to employ them within the physical sciences'*''. In the context
of the above, however, we emphasize that IAI and XAI approaches
should go hand-in-hand with well-posed physical research hypoth-
eses. Also in this regard, we again highlight the importance of
combining recent methods from AI with domain-specific physical
understanding and the state of the art in process-based modelling.

Unsupervised ML can be intuitively IAI through the design of
experiments. For example, applying clustering on closed model
budgets of momentum ensures all relevant physics are represented,
and can be interpreted in terms of the statistically dominant bal-
ances between terms'">. Similarly, ‘equation driven’ ML can be used
to determine the salient terms given an array of mathematical oper-
ations, and suggest interpretable sub-grid-scale parameterization
developments on this basis®*””. In this manner, dominant physi-
cal mechanisms or equation terms can be determined, generating
new knowledge in physics and beyond’"''>!**. Knowledge of domi-
nant regimes can subsequently be used to engineer features for a
well-posed XAI application where the source of predictive ML skill
is transparent''®. Adversarial learning has been an effective tool for
generating super-resolution fields of atmospheric variables in cli-
mate models”. Furthermore, unsupervised ML approaches have
been proposed for discovering and quantifying causal interdepen-
dencies and dynamical links inside a system, such as the Earth’s
climate®®'”. Another example of an ML application that can be
termed IAI is equation discovery, for example using relevance vec-
tor machines, which has been applied for ocean eddy parameteriza-
tions™. It is also worth noting that a revolution of analysis tools has
been called for to evaluate climate models, and ML is poised to be
part of this change®*!'&1,

Given the importance of both explainability and interpretability
for improving ML generalization and scientific discovery, promot-
ing collaborations between climate and Al scientists can help to
develop methods that are tailored to the field’s needs. This is not just
an interesting exercise—it is essential for the proper use of Al for
the development and use of NESYM. Earth and climate scientists
can aid the development of consistent benchmarks that allow evalu-
ation of both stand-alone ML and hybrids in terms of geophysical
consistency'”’. However, the help of the AI community is needed to
resolve other recently highlighted ML pitfalls. For example, identify-
ing and avoiding shortcut learning'? in hybrid models, developing
ESM concepts of adversarial examples and deep learning artifacts'*,
and developing additive feature attribution'* tools appropriate for
physical applications such as within XAT'"°. Only through combined
efforts and the continuous development of both ESMs and AI can
NESYM emerge.

Concluding remarks

Our Perspective should not only be seen as the outline of a prom-
ising scientific pathway to achieving a better understanding of the
Earth’s present and future state, but also as an answer to the recent
call for collaboration from the AT community'*. It can be seen from
current applications of Al to Earth system and climate sciences that
further exploration of the full potential and, equally, the limits of
Al in this field are important. Yet, this line of research is a high-risk
venture with many potential pitfalls and dead ends. At this point,
there is no guarantee that AI will be the key to overcoming the
grand challenges of Earth and climate sciences, some of which were
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described at the beginning of this Perspective. In its current stage,
it also seems unlikely that AI alone can solve the climate predic-
tion problem. In the coming years, AI will necessarily need to rely
on clear, physically meaningful research hypotheses, the geophysi-
cal determinism of process-based modelling and careful human
evaluation against domain-specific knowledge. Along such lines,
we believe that lasting progress beyond the current hype in applying
Al to Earth system science will be possible. However, once we find
solutions to the foreseeable limitations described above and can
build interpretable and geophysically consistent Al tools, this next
evolutionary step will seem much more likely.
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