
1. Introduction
Explainable neural networks have opened new doorways in Earth science research (Toms, Barnes, & 
Ebert-Uphoff, 2020), with applications ranging from the identification of climate change indicators (Barnes 
et al., 2020), hail detection within severe thunderstorms (Gagne et al., 2019), and the improvement of nu-
merical model parameterizations (Brenowitz et  al.,  2020), among other applications (Toms, Kashinath, 
et al., 2020). The specific usage of neural network interpretation techniques ranges substantially across such 
studies, however, the interpretations can be used as either direct or indirect tools for scientific discovery. 
For example, interpretation efforts can be either a secondary objective by ensuring a network's reasoning is 
consistent with existing physical theory (e.g., Brenowitz et al., 2020; Ebert-Uphoff and Hilburn, 2020; Toms, 
Kashinath, et al., 2020), or the primary objective, with their usage focused on discovering new patterns of 
Earth-system variability (e.g., Barnes et al., 2020; Toms, Barnes, & Ebert-Uphoff, 2020). Here, we focus on 
the latter application, whereby we use neural networks to identify predictable modes of Earth-system vari-
ability on decadal timescales in a fully coupled Earth-system model.

An extensive body of literature exists on theoretical and observed sources of decadal predictability, and 
more recently, on the development of operational decadal prediction systems (Yeager et al., 2018). Modes of 
regional and global-scale decadal variability within the ocean are well documented (e.g., Barnett et al., 1999; 
Kirtman and Schopf, 1998; Xie and Tanimoto, 1998), and these patterns have been found to contribute to 
atmospheric anomalies on decadal timescales via ocean-atmosphere feedbacks (e.g., Newman et al., 2016; 
Schneider et al., 2002; Wen et al., 2016). The discovery of this coupling has led to the usage of oceanic vari-
ability to make decadal predictions of atmospheric anomalies relevant to society. Recently, oceanic observa-
tions have been assimilated into Earth-system models to generate large ensembles of global decadal predic-
tions (Meehl et al., 2009; van Oldenborgh et al., 2012; Yeager et al., 2018), which have a reasonable amount 
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of prediction skill for variables such as continental temperature and precipitation (Smith et al., 2019) and 
ocean acidification (Brady et al., 2020). Additional efforts have created statistical decadal prediction models 
based on knowledge of specific modes of oceanic decadal variability (e.g., Simpson et al., 2019).

There are, however, limitations to decadal predictions that use dynamical Earth-system models, including 
how to initialize the observational fields (He et al., 2017; Kröger et al., 2018) and long-standing model bi-
ases in simulating known ocean-atmosphere and land-atmosphere interactions (Black et al., 1999; Chang 
et al., 1997; Simpson et al., 2019). It is, therefore, not clear whether regions that lack predictability in dec-
adal prediction ensembles have limited predictability in the observed world, or whether model limitations 
preclude accurate predictions. This uncertainty also exists for other timescales of Earth-system prediction, 
such as subseasonal-to-seasonal timescales (Jin et al., 2008; Kim et al., 2018, 2019; Koster et al., 2011; Toms, 
Barnes, et al., 2020). For statistical models, a complete knowledge of which patterns of oceanic variability 
offer predictability is important for the correct selection of model inputs and thereby a maximization of 
statistical prediction skill (e.g., DelSole and Banerjee, 2017; Simpson et al., 2019; Wilks, 2008).

Because of these uncertainties, it is useful to identify predictable patterns of Earth-system variability within 
both models and observations. Knowledge of such patterns may, for example, help guide efforts to improve 
the robustness of observational assimilation within dynamical decadal prediction systems, or inform which 
variables and regions to include within statistical models. To this end, we use a new method, namely ex-
plainable neural networks, to identify sources of decadal predictability within a fully coupled Earth-system 
model. We take a purely methodological approach and test whether the proposed method is viable for iden-
tifying such patterns of predictability, which opens opportunities for its application to a broader range of 
predictability problems in future studies.

2. Data and Methods
Our neural network architecture is designed to receive inputs of oceanic fields from an Earth-system model 
and output the predicted sign of a continental temperature anomaly at a given location. Figure 1 describes 
this neural network design, and the Appendix contains additional information about the training proce-
dure. It is important to note that we have opted to keep the neural network as simple as possible to both 
maximize explainability and to ensure our approach is valid before venturing into more complex networks 
in future studies. The neural network has one hidden layer of 32 nodes which is connected to two output 
nodes, both of which represent a different outcome associated with the input oceanic information. We use 
the rectified linear unit (ReLu; max(0, x)) activation function and apply a softmax operator to the output 
layer. The softmax operator transforms the neural network outputs into relative likelihoods of the two out-
put climate states.
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Figure 1. Schematic of the neural network design. The neural network receives a concatenated sequence of vectorized 
sea-surface temperature (SST) fields as input, passes the input forward to a single hidden layer of 32 nodes, and finally 
outputs a likelihood that the input is associated with surface temperature anomalies of a particular sign for a specified 
location. Note that the input samples include four SST maps that are vectorized and concatenated before being input 
into the neural network. The input includes the most recent SST map and the time-lagged 3-month, 6-month, and 
9-month SST maps.
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For our particular application, we input vectorized maps of global sea-surface temperature (SST) and the 
neural network is trained to output the associated likelihood that future continental surface temperatures 
across locations of North America will be anomalously warm or cold. The SST and continental surface 
temperature data are gathered from the Community Earth System Model Version 2 (CESM2; Danabasoglu 
et  al.,  2020) pre-industrial control simulation of the Coupled Model Intercomparison Project, Phase 6 
(CMIP6; Eyring et al., 2016). We remove the seasonal cycle from both fields and re-grid the SST field onto 
a 4° × 4° grid to reduce the number of inputs into the neural network. This grid spacing still permits the 
resolution of dominant patterns of oceanic variability, as we will show in Section 3. We also linearly detrend 
both fields by separately subtracting the linear trend from each grid point to reduce impacts of model drift 
during the control simulations. The input to the neural networks is a sequence of lagged SST maps that 
are vectorized and concatenated into a single vector, and includes the most recent SST map along with the 
3-month, 6-month, and 9-month time-lagged SST maps. We include the lagged SST information because we 
find that the neural networks converge on an accurate solution more accurately when we do so.

We also apply a 24-month running average to the SST anomalies and a 60-month running average to the 
continental surface temperature anomalies, such that for any time the corresponding SST field represents 
the precedent 24-month mean, and the continental surface temperature represents the future 60-month 
mean. We use these input and output smoothing durations to demonstrate the utility of the proposed 
methodology, and they can be changed for particular timescales or seasons of interest. The CMIP6 CESM2 
pre-industrial control simulation offers 1,200 years of monthly data, the first 900 of which we use to train 
the neural networks and the last 300 of which we use for validation. We omit the beginning and end of the 
time-series which are contaminated by the temporal smoothing. We note that because we train the neural 
networks using a pre-industrial control simulation, all estimates of predictability provided by the neural 
networks are for internal variability only and do not include information about any predictable response 
due to anthropogenic forcing.

After training the neural network, we use an interpretation method called layerwise relevance propagation 
(LRP; Montavon et al., 2018) to assess what the network has learned. We use a version of LRP implement-
ed by the creators of the method, which is open-source and available at the following link: https://github.
com/albermax/innvestigate. In brief, LRP traces the decision-making process of a neural network for each 
individual input sample. For each input sample, the network pathways through which information flows 
to arrive at the associated output is traced backwards and projected back onto the dimensions of the input. 
Computationally, LRP identifies which patterns within the input lead to increases in value for a particular 
output node. This projection enables an interpretation of which inputs are most important for making pre-
dictions on a case-by-case basis. Our usage of LRP, therefore, offers insights into which patterns of SST vari-
ability lend predictability of decadal surface temperature anomalies over continental North America within 
CESM2. A more detailed discussion of LRP and its applicability to Earth-system research is discussed in 
Toms, Barnes, and Ebert-Uphoff (2020), and additional applications are available in Barnes et al. (2020), 
Ebert-Uphoff and Hilburn (2020), and Toms, Kashinath, et al. (2020).

3. Assessment of Decadal Predictability
We train a separate neural network for each location on a 5° × 5° grid across the globe, and assess the ac-
curacy using the validation data (the last 300 years of the CESM2 pre-industrial control simulation). We 
choose this resolution due to the computational expense of training a neural network for every location 
across the globe. Each neural network can then identify patterns of SST that lend predictability unique to 
each location, which is helpful for understanding if the predictability across different regions of the globe is 
sourced from different oceanic patterns. Figure 2 shows the resultant accuracy for each of these neural net-
works in predicting the 1-to-60-month average surface temperature using global maps of prior SSTs within 
the CESM2 pre-industrial control simulation. The accuracy varies across the globe, with southern Africa, 
southern Australia, the Maritime Continent, and parts of northeastern North America exhibiting the high-
est accuracy. It is important to note that we choose the neural network parameters to ensure the accuracy on 
the training and validation datasets are similar, the details of which are provided in the Appendix.
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We then use LRP to assess which modes of oceanic variability contribute to the predictability within the 
CESM2 pre-industrial control simulation. The following analysis is applicable to any region of the globe, 
although we choose North America as an example. We only assess the LRP interpretations for cases when 
the neural networks make accurate predictions within both the training and validation datasets, although 
for future use-cases it is likely that assessing the LRP interpretations for inaccurate predictions will also 
be useful. We further separate the interpretations into accurate predictions of positive and negative tem-
perature anomalies and only show the results for the positive anomalies, although the analysis for the 
negative anomalies is similar (see the supporting information). Also, while we input a sequence of lagged 
SST anomalies into the neural networks (as shown in Figure 1), the interpretations for each lag are nearly 
identical in spatial structure, but with the magnitude of LRP relevance decreasing with increasing lag (see 
the supporting information).

The composite LRP patterns for four regions across North America suggest that predictability is sourced 
from different oceanic patterns for different regions (Figure  3). Perhaps surprisingly, continental tem-
perature anomalies within Central America are most associated with SST anomalies off the east coast of 
Japan (Figure 3a), likely within the Kuroshio Extension (Qiu & Chen, 2005). SST anomalies within the 
North-Central Pacific Ocean are associated with continental temperature anomalies along the west coast 
(Figure 3b), while those within the tropical Pacific Ocean contribute to predictability across central North 
America (Figure 3c). The North Atlantic Ocean contributes predictability to the four locations, although 
its impacts are particularly prominent across the northeast portions of the continent (Figure 3d). These 
patterns of predictability occur in similar regions to known modes of oceanic variability, such as the El 
Niño-Southern Oscillation (Kirtman & Schopf, 1998; Kleeman et al., 1999; Newman et al., 2003), the Pacific 
Decadal Oscillation (Mantua & Hare, 2002; Newman et al., 2016), and the Atlantic Meridional Overturning 
Circulation (Knight et al., 2005; Medhaug et al., 2012). A mechanistic study is needed before it can be said 
whether the identified patterns within CESM2 are associated with any of these three observed modes of 
oceanic variability, although the regional similarities lend confidence that this may be the case.

A unique aspect of our approach is that LRP highlights which input patterns contribute to predictability on 
a case-by-case basis. So, we further analyze which patterns of oceanic variability lend continental temper-
ature predictability by using k-means clustering. The composite interpretation in Figure 3 risks averaging 
together spatially distinct patterns of predictability, and so the clustering approach allows us to analyze 
these potentially distinct patterns separately. We focus in particular on the west coast of North America in 
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Figure 2. Accuracy for the neural network approach using only the validation data (the last 300 years of the 
Community Earth System Model Version 2 pre-industrial control simulation). The accuracy is defined in a Boolean 
sense, and the output node with the highest likelihood is taken as the networks’ prediction. The accuracy values 
therefore represent the fraction of predictions for which the neural networks predict the correct sign of continental 
surface temperature anomalies. The values shown are the average of five different neural network trained for each 
location, as discussed within the Appendix.
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a region that exhibits high continental surface temperature predictability (according to Figure 2). We deter-
mine the optimal number of clusters by plotting the number of clusters against the mean Euclidian distance 
between each cluster, and selecting the number of clusters which falls in the inflection point of this curve 
(not shown). The inflection point denotes the number of clusters after which the addition of new clusters 
offers substantially less new information than the previous clusters. This technique is colloquially called the 
“elbow” technique (e.g., Dimitriadou et al., 2002).

Using this approach, we find three dominant patterns of oceanic variability within CESM2 that lend pre-
dictability at the chosen location along the west coast of North America (Figure  4). These patterns are 
located in regions also impacted by known modes of oceanic decadal variability. The first mode occurs in a 
region commonly associated with the Kuroshio Extension (Qiu & Chen, 2005), while the second and third 
clusters occur in similar regions to the Atlantic Meridional Overturning Circulation (Knight et al., 2005; 
Knight et al., 2006) and Pacific Decadal Oscillation (Newman et al., 2016), respectively (Figures 4a–4c). 
A mechanistic study is needed to tie the patterns identified within CESM2 to the aforementioned known 
modes of variability, although our analysis at least suggests that decadal predictability within CESM2 can be 
sourced independently from spatially distinct patterns of oceanic variability. The clustering analysis iden-
tifies the most spatially distinct patterns of variability, so it is likely that there are also situations where the 
identified patterns of variability lend predictability in tandem.

It is worth a quick note that the one-point correlation map of the non-lagged SST anomalies and the surface 
temperature at the red dot in Figure 4 highlights most of the globe as correlated with the surface tempera-
ture at the west coast location (Figure S4). The neural network, however, identifies very localized regions as 
the best predictors, although some of these locations align with hot spots also seen in the one-point correla-
tion map, for example, the eastern Pacific and the North Atlantic.
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Figure 3. Composite (i.e., simple average) of layerwise relevance propagation interpretations for the non-lagged sea-
surface temperature (SST) field for accurate predictions of positive surface temperature anomalies at four locations 
across North America. The continental locations associated with the composites are denoted by the red dots in each 
panel. The layerwise relevance propagation (LRP) interpretation for each sample is normalized between a value of 0 
and 1 before compositing to ensure each prediction carries the same weight in the composite. The number of samples 
used in each composite (N) is shown within each sub-figure. Relevance values below the 95th percentile confidence 
bounds (0.08) are not shown. Confidence bounds were determined using a null hypothesis of no predictability by 
randomly shuffling the order of the input sea-surface temperature maps, and calculating the 95th percentile values of 
the associated LRP composites. An example of LRP heatmaps for the lagged SST fields is provided in the supporting 
information.
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Along with the predictions, the neural networks output likelihoods that the input SST fields will lead to 
positive or negative continental temperature anomalies. We, therefore, use these likelihoods to assess the 
oceanic state for highly confident (i.e., high likelihood) accurate predictions, and compare those cases to 
accurate predictions with lower confidence. In doing so, we find that higher confidence predictions for the 
west coast of North America are made when non-lagged SST anomalies are of greater magnitude within 
the northern Atlantic and Pacific oceans (Figure 5). Anomalies within the North Pacific Ocean and North 
Atlantic Ocean are most magnified in the high confidence predictions. According to LRP, the non-lagged 
SST anomalies within the North Pacific Ocean are particularly relevant for the high confidence scenarios. 
While the LRP composites in Figure 5 tend to highlight regions of greatest SST anomaly, LRP heatmaps for 
individual samples identify both high and low magnitude SST anomaly regions as relevant while ignoring 
some regions of high SST anomaly magnitude (Figure S5). The interpretations are spatially similar for the 
lagged SST fields, but with decreased amplitude of differences in SST and LRP values between the high and 
low confidence predictions (not shown).

4. Discussion
We demonstrate that neural networks can identify patterns of oceanic variability that lend predictability on 
decadal timescales within Earth-system models. In particular, the neural networks identify known patterns 
of decadal oceanic variability as sources of predictability for continental surface temperature anomalies 
across North America within the CMIP6 CESM2 pre-industrial control simulation. The identified patterns 
of oceanic variability each offer distinct sources of predictability, at least across the west coast of North 
America where the useful oceanic regimes occur in regions also impacted by known modes of decadal oce-
anic variability such as the Atlantic Meridional Overturning Circulation, Pacific Decadal Oscillation, and 
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Figure 4. K-means clusters of the layerwise relevance propagation interpretations for the non-lagged SST field for 
accurate predictions of positive surface temperature anomalies at the red dot. The percentage of cases corresponding 
to each cluster is listed in the bottom left of each subpanel and sum to 100%. The layerwise relevance propagation 
(LRP) values for each sample are normalized between a value of 0 and 1 before compositing to ensure each prediction 
carries the same weight in the composite. The number of samples used in each composite (N) is also shown. Relevance 
values below the 95th percentile confidence bounds (0.08) are not shown. Confidence bounds were determined using 
a null hypothesis of no predictability by randomly shuffling the order of the input sea-surface temperature maps, and 
calculating the 95th percentile values of the associated LRP composites.
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Kuroshio Extension. A mechanistic study is needed to assess whether the patterns identified within CESM2 
are truly associated with these known modes, or if they simply occur in a similar location.

We propose the methodology in this study through its application to a single Earth-system model (CESM2), 
although the method can be applied to a collection of climate models to assess the similarities of predictable 
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Figure 5. Differences in sea-surface temperature (SST) anomalies and layerwise relevance propagation (LRP) relevance for the 10% highest and 10% lowest 
confidence correct predictions for (a, c, and e) positive surface temperature anomalies and (b, d, and f) negative surface temperature anomalies at the red 
dot. The non-lagged SST anomalies are shown in fill, and LRP is shown in open contours. For subpanels a, b, c, and d, the black (white) contour denotes an 
LRP value of 0.3 (0.6). For subpanels e and f, the black (white) contour denotes an LRP difference of +0.1 (+0.2). Negative LRP relevance differences are also 
allowed to be shown, although none exist with magnitudes of −0.1 or greater.
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climate modes across different models. Additionally, while we applied the proposed methods to decadal pre-
diction, the methods are also likely viable for other timescales. Subseasonal-to-seasonal prediction may par-
ticularly benefit from such an approach, as these timescales lie at the intersection of predictable processes 
in the atmosphere, land, and ocean (Koster et al., 2011; Kumar & Hoerling, 1998; Woolnough et al., 2007). 
Explainable neural networks may therefore be useful in determining coincident patterns of predictability 
within each domain.

The complexity of the proposed method can be varied as necessary, although we introduce it here with in-
tentional simplicity. For example, the neural networks can be made more nonlinear through the addition of 
more nodes and hidden layers, additional temporal information can be included within the inputs and out-
puts, and numerous Earth-system variables can be input rather than sea surfacen temperature alone. The 
method may also be applicable to observational data, particularly cases for which an extensive observational 
record exists (e.g., subseasonal-to-seasonal prediction). Our formulation also only tasks the neural network 
with predicting positive or negative temperature anomalies without regard to magnitude, so the addition 
of more categories of output temperature anomalies can help separate anomalies of different magnitudes. 
From a broader perspective, this study contributes to the growing body of evidence that interpretable neural 
networks can be used to advance geoscientific knowledge.

Appendix A: Neural Network Details
Each neural network was trained using the Adam optimizer, with an initial learning rate of 1E-4. We do 
not change the learning rate throughout training. The single hidden layer of neurons is regularized with 
combined L1 (lasso) and L2 (ridge) regularization coefficients of 0.02 and 1, respectively. We find the com-
bination of L1 and L2 regularization ensures the neural network uses information from sufficiently broad 
spatial regions while still limiting the number of locations the network can use, both of which improve 
network interpretability. We selected regularization parameters that led to similar accuracy for the training 
and validation datasets at one location of the globe in far southwestern Canada. We did not further tune the 
regularization parameter for other grid points. The validation data set is therefore relatively uncontaminat-
ed by this hyperparameter tuning process for other locations of the globe. For this reason, we opted to split 
the data set into training and validation without a third split for testing.

The networks were allowed to train for 100 epochs, which was sufficient for convergence in all cases. The 
model iteration that resulted in the highest accuracy on the validation data was selected and used for anal-
ysis. We train five neural networks for each location because it is possible that each network will find a 
different optimal solution, and so training numerous networks increases the likelihood that we capture the 
full range of optimal solutions. The accuracy values presented in Figure 2 represent the mean accuracy from 
the five networks. The interpretations presented in Figures 3–5 are similar across each of the five network 
iterations, and so we randomly select one of the five neural networks and use this network for rest of the 
analysis. We find that the networks converge on similar optimal solutions based on the LRP interpretations, 
and so training five models is sufficient for our purposes.

Data Availability Statement
Data from the CMIP6 CESM2 pre-industrial control simulation can be found on various CMIP6 archives, 
one of which is the Lawrence Livermore National Laboratory node of the Earth System Grid Federation 
domain: https://esgf-node.llnl.gov/projects/cmip6/.
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