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ABSTRACT

We give a detailed analysis of a probabilistic heuristic model for the failure of “saturation” in
instances of the Affine Sieve having toral Zariski closure. Based on this model, we formulate
precise conjectures on several classical problems of arithmetic interest and test these

against empirical data.

1. Introduction

The Fundamental Theorem of the Affine Sieve, intro-
duced by [Bourgain et al. 10] and proved by [Salehi
Golsefidy-Sarnak 13] extends the Brun sieve to orbits
of affine-linear group actions. The goal of this article
is to study the behavior of prime factors of orbits out-
side the scope of this theorem.

More precisely, let I' < GLy(Q) be a finitely gener-
ated group, that is, I' = (A}, A,,...,Ax), fix a base
point vy € QV, and let

O:=T-vocCzZN

be the orbit of vy under I', assumed to be integral.1
Let Q(n) denote the number of primes dividing an
integer n, counted with multiplicity. Given R > 1, an
integer n with Q(n) <R is called R-almost prime. Fix
a polynomial f(x1,x2,...,xn) € Q[x1,...,xn] taking
integer values on O, and let

Op:={ve O0:Q(f(v)) <R}
be the points in O taking R-almost prime values

under f. The pair (O,f) is said to saturate if there
exists some R < 0o so that
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affine sieve; prime factors;
Fibonacci numbers; Lucas
numbers; Mersenne primes

Zc(OR) = Zcl(0). (1-1)

Here, Zcl refers to Zariski closure in affine space.2
The saturation number is the least R for which (1-1)
holds; this can be determined exactly or at least well-
approximated in some special instances, see
[Kontorovich 14] for more discussion. Let V(f) be the
affine Q-variety given by f= 0. In general, we assume
that f is non-constant on (any irreducible component
of) Zcl(O). This is equivalent to

dim(V(f) N Zcl(0)) < dimZcl(0), (1-2)

viewing the Zariski closure Zcl(O) inside CN. Then,
the fundamental theorem of [Salehi Golsefidy and
Sarnak 13, Theorem 1] states the following.

Theorem 1.1 ([Salehi Golsefidy and Sarnak 13]). Let
I" be a finitely generated subgroup of GLn(Q) having
Zariski closure G = Zcl(T') in GLy(C). Let vo € QY
and let O =T'vy C ZY be the T-orbit of vo. Suppose
that f(x) € Q[x1,...,xn]| is such that f(O) CZ and
(1-2) is satisfied.” Then the pair (O,f) saturates, as
long as no algebraic torus* is a homomorphic image of
the connected component Gg of the identity of G.

CONTACT Alex Kontorovich @ alex.kontorovich@rutgers.edu e Department of Mathematics, Rutgers University, New Brunswick, NJ 08901-

8554, USA.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uexm.
'One can work more generally with entries in the ring of S-integers Zs, but we restrict to Z for ease of exposition. Note that there exist T < GLy(Q) for

which no vector vy # (0, ..., 0) gives an integral orbit, e.g., I' = (A) with A =

1
= 0
2

0 1
2

?Recall that this Zariski closure can be thought of as the common zero set of all polynomials p(x;, Xy, ..., Xy) € C[x1, ..., xy] inside affine space AV(C) =C"

that vanish on O.

3We need not assume any restriction on the orbit like “primitivity” (that the gcd(f(©)) = 1) since the fixed prime factors, if any, can be accounted for in the

value of R.
“For example, (C*)".
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In [Salehi Golsefidy and Sarnak 13, Appendix],
Salehi Golsefidy-Sarnak gave a heuristic argument,
based on the Borel-Cantelli lemma, that the condi-
tion of having no tori is necessary in certain cases.
Their model considered an algebraic torus (i.e., I' is
a free abelian group of rank D with generators A,
..;Ap € GLy(Z), and there is a g € GLy(C) so that
for all j, the matrices gA;g~! are diagonal) and the
test polynomial f(x;1,....,xyN) = ijzlfj(x), with
fi(x) :j—l—zzjn:len?n. This test polynomial f has
(at least) k irreducible factors over Q[x; 1, ...xyn], all
of the same degree (so they have roughly the same
“size” on points of ). Their heuristic was that the
prime factorizations of the k elements f;(x) eval-
uated at a point x € O ought to be “independent,”
at least at the level of the number of prime factors,
Q(fi(x)), since they are just integer shifts of
each other.

In this article, we refine this heuristic and
make precise predictions on the failure of satur-
ation in the toric case, which we then test empir-
ically in a number of natural settings of
classical interest.

1.1. Main probabilistic model

We model the values of the k irreducible factors of f
as k randomly and independently chosen integers in
an exponentially growing interval, depending on a
parameter n. The parameter # is to be viewed as mod-
eling elements of a toral orbit, which grow
exponentially.

Theorem 1.2. Let k > 1 be a fixed integer. Fix a con-
stant C> 1 and for each n > 1, draw an integer vec-
tor

(xl,nyxZ,na ~-->xk,n) S [17 Cn]k

with uniform distribution. Then with probability
one,

an'x.n"'x.n
lim fnf O X2 Fen) (1-3)
n>1 logn

= ﬁka

where [ denotes the unique solution in [0,k—1] to

pr(1—log By + logk) = k—1, (1-4)
with p, = 0 and >0 for k > 2.

The constants f; are absolute, in particular, inde-
pendent of C. The first few values of f; are

B, = 0.373365, B, = 0.913728, , = 1.52961,
Bs = 2.19252...., B,y = 5.8754,...

Note that the expected size’ of Q(m) for a random
integer m is log log m, and of course

Q(xl,n "Xt 'xk,n) = Z Q(xj,n)a
j

whence the expected size of this sum is klog log C"~k
logn. Thus, we may interpret (1-3) as showing that,
up to a multiplicative constant k/f5;, one never sees
(asymptotically) a deficient number of prime factors.
To test the validity of this model empirically, it will
be useful to understand how large n should be to
experimentally observe the behavior (1-3). Naively we
may expect from this equation that the largest n =
Nmax for which x, - - - xi , is R-almost prime satisfies:

or

n = exp (R/f). (1-5)

It turns out that the probabilistic model sometimes
makes a different prediction.

Theorem 1.3. Fix k> 2, C>1, and for each n > 1,
draw a vector
k
X, = (xm,xz’y,, ...,Xk_n) S [1, Cn]

uniformly. Let X = (x1,Xa,...) be a random variable
consisting of a sequence of independent such draws,
one for each n. For any fixed R > k, consider the ran-
dom variable

n=n(RX):= max{n P QX1 X)) < R},

with w = 0 if there are no such n, and w = oo if the
event occurs infinitely often. Then
(1) with probability one,

n < oo, (1-6)

and moreover,
(2) for all m>k—1, the m-th moment of m
diverges,

En"] = . (1-7)

Remark 1. In the case k= 1 not covered in Theorem
1.3, one has instead that with probability
one, N = +0o0.

°For example, in the normal order sense of the [Hardy and Ramanujan
17] theorem, further refined in the Erdds-Kac theorem.



Remark 2. In many natural examples treated below
we have k= 2, where Theorem 1.3 for m= 1 asserts
the expected value of n(R) is infinite for all R > 2. In
such examples, one should not expect n(R) to behave
nicely like exp (R/f,), as suggested naively by (1-5).
One may interpret the infinite expected value as say-
ing that for k= 2 there may exist extremely large
“sporadic” solutions to Q(x; , ..., Xk,) = R.

Remark 3. The proofs of Theorems 1.2 and 1.3 apply
and give the same result in the more general case of
X, chosen from non-identically growing intervals, that
is (X -y Xkn) € [1,CY] x [1,C5] -+ x [1,Cf], for
fixed constants Cy, ..., C>1.

1.2. The Toral Affine Sieve Conjecture

The probabilistic model above motivates a heuristic
prediction concerning the number of prime factors of
certain sequences associated with toric orbits, namely
the (rank one) “Toral Affine Sieve Conjecture” stated
below. We will derive as consequences of this conjec-
ture other predictions in several settings of clas-
sical interest.

Conjecture 1.1. (Toral Affine Sieve Conjecture). Let y
€ GL,(Q) be a hyperbolic matrix, that is, one having
two distinct real eigenvalues; equivalently

tr(y)2—4det(y)>0.

Let T = (y)* :={y" : n >0} be the semigroup gen-
erated by y, and suppose that vy € Q*\ (0,0) is a non-
zero vector such that the orbit O :=T -vy C Z* is
integral and infinite. Then

Q
lim inf ()

— 77 > f,20.373365.
(xy)0 log log |xy| — 2

(1-8)

Since the Zariski closure of I' in GL(2,C) is an
algebraic torus, and since the orbit O is assumed
to be infinite, it is a one-dimensional torus, so it
follows that the Zariski closure of O in C® has
dim(Zcl(O)) =1 in (1-2). We have taken the test
function  f(x,y) =xy, whence V(f)NZcl(O)
is finite, having dimension 0. The points in
(%n, yn) :=7"vo € O grow exponentially, that is,
there are C>c>1 so that

" <|xuyu| = [f(y"vo)| < C".
In consequence, the factor log log|xy| in (1-8) can
be replaced by logn, that is, (1-8) is equivalent to
Q(xnyn)

lim inf
logn

n—oo

> f,.
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The conjecture is based on applying the model of
Theorem 1.2 with k= 2 having two “independent” fac-
tors (x,,y) for f(y"vy). In the “generic” situation, we
might have equality in these limits. However, there
are cases of orbits whose limiting values involve f; for
larger k, see the examples in §2.

Remark 4. We did not need to assume in Conjecture
1.1 any coprimality condition (e.g., gcd(O) =1) on
the orbit. Indeed, if all entries of v = (x,y) € O have
a common factor, then this factor, divided by
log log |xy|, is irrelevant in the liminf in (1-8).

1.3. Consequences

The basic Conjecture 1.1 implies other striking predic-
tions, of which we present two below; The first applies
to integer points on affine quadrics, and the second
applies to the continued fraction convergents of quad-
ratic surds.

Theorem 1.4. Let Q(x,y) = Ax* + Bxy + Cy* be an
indefinite (i.e, D = B*—4AC is positive), non-degener-
ate (D is not a square) binary quadratic form over Z.
Fix a square-free t € Z so that the set V(Z) of Z
points of the affine quadric V = Vq, given by

V:iQx,y)=t
is non-empty. Then, assuming Conjecture 1.1,

Q)
liminf ——22 > B,.
(x,y) € v(z) log log|xy|

ey| — o0

Theorem 1.5. Let o be a real quadratic irrational, and
let p,/qn denote the n-th convergent of its ordinary
continued  fraction  expansion. Then, assuming
Conjecture 1.1,

Q(pnd)
> b,
logn — &

lim inf

These two theorems will not be surprising to
experts, but the (conditional) conclusions, particularly
the appearance of the precise number f, ~0.373365,
are unexpected.

1.4. Organization

In §2, we give a number of illustrative examples and
numerics which, one may argue, provide support for
the heuristic provided by the probabilistic model in
the context of Conjecture 1.1. We prove Theorem 1.2
in §3, followed by Theorem 1.3 in §4. In the final §5,
we sketch proofs of Theorems 1.4 and 1.5.
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Figure 1. A plot of n<10 000 vs. Q(FnL,)/log log (FylLy).
Also shown is the horizontal line y = f§, ~0.37.

1.5. Notation

We use the following standard notation. We use the
symbol f~g to mean f/g — 1. The symbols f < g
and f = O(g) are used interchangeably to mean the
existence of an implied constant C> 0 so that f(x) <
Cg(x) holds for all x> C; moreover f < ¢ means f <
g < f. Unless otherwise specified, implied constants
depend at most on k, which is treated as fixed. The
letter £>0 is an arbitrarily small constant, not neces-
sarily the same at each occurrence. The Gamma func-
tion is denoted I'(z), and a product [], denotes a
product over primes. The floor function, ||, returns
the largest integer not exceeding its argument.

2. Examples and numerics

It should be clear that running decent numerics to
test Conjecture 1.1 is a daunting task. Indeed, toric
orbits increase exponentially in size and hence become
ever more difficult to factor. Thankfully, others have
already exerted tremendous effort in tabulating prime
factorizations for certain sequences of classical inter-
est, in particular, the Fibonacci, Lucas, and Mersenne
numbers. We mine their factorization data to test our
predictions for Conjecture 1.1 and its consequences.
We have made the raw data and Mathematica file
used to construct the figures available at http://sites.
math.rutgers.edu/~alexk/files/ AllOmegasData.nb.

2.1. Fibonacci and Lucas nhumbers
factorization statistics

Let F, and L, denote the nth Fibonacci and Lucas
numbers, respectively. Recall that both sequences are
defined by the same recursive relation, F,;; =
F,+F,_,and L,,1 =L, + L,_1, but differ in the ini-
tialization, namely, F; = F, = 1, while L; = 1,L, = 3.

They are related by

Fyp = F,L,. (2-1)

Both sequences have been completely factored for
1 <n <1000 and partially factored for n going up
to 10 000, see the Website [Mer].

In the following calculations, when we encounter
in the (incomplete) factorization data a composite
number having no known prime factors, we treat that
number as a product of exactly two primes (which
may be an undercount in ). We use this data to
study orbits giving several different combinations of
Fibonacci numbers and Lucas numbers.

Example 2.1. One can easily verify that, if one takes

12 1/2

1= (s 1a): =07 v=0u).

then the orbit O =T - vy = {(F,,L,) : n > 1}. A plot
of n versus

Q(F,L,)

—_— 2-2
log log (F,L,) @2

appears in Figure 1. This plot seems to give rather
good evidence for equality with , ~0.37 in (1-8).

The data in Figure 1 exhibit several interest-
ing features.

i. The plot in Figure 1 appears to be a union of curves,
and a moments thought reveals that these are
roughly the level sets of y = R/logx for various
integer values of R. Conjecture 1.1 predicts that the
number of elements on each curve is finite, since
each curve eventually dips below the line y = f3,.

ii. From Figure 1, one notices a single value of n <
10 000 for which (2-2) seems to dip below f3, ~
0.37. This occurs at n = 8 467, for which L, is
prime and F, is composite, with each number
spanning 1 770 decimal digits. Since we do not
know any factors of F,, we follow our protocol,
declaring that Q(F,L,) = 3. But the true value
could perhaps be higher, in which case there
may be no values of n up to 10 000 of (2-2) dip-
ping below f,. Since Conjecture 1.1 only predicts
a liminf, it is not inconsistent that infinitely
many points in the plot dip below f3,, as long as
the amount by which they dip below decreases.

ili. The data in Figure 1 also provide an instance of
(the conditional) Theorem 1.4, since the pairs
(Fn, L) are integer solutions to the Pellian bin-
ary quadratic form

=5y = *4.


http://sites.math.rutgers.edu/<alexk/files/AllOmegasData.nb
http://sites.math.rutgers.edu/<alexk/files/AllOmegasData.nb
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Figure 2. A plot of n <10 000 vs. Q(FpFni1)/ log log (FnFpi1)-
Also shown is the horizontal line y = 5 ~0.91.

iv. While Figure 1 may seem promising toward
Conjecture 1.1, this computation is limited to the
humble scale n = 10 000, where logn ~ log log (F,
L,)~10. With current computing technology, it
would be difficult to go significantly farther.

One may object to using the Fibonacci and Lucas

sequences to test Conjecture 1.1 on the grounds that

their factorizations have extra internal structure: They
are “strong divisibility sequences”; ie., m|n = a,|a,.

While it seems likely that this fact could affect some

statistics of total number of primes seen in individual

draws, (see, e.g., [Bugeaud et al. 05]), it appears not to
affect the predicted liminf value of f3, in (2-2), exhib-

ited in Figure 1. In any case, the effect of strong div-

isibility should only be to increase the limiting value,

which Figure 1 suggests is not the case for F,L,.

Example 2.2. Next we consider the simpler setting of
consecutive Fibonacci numbers:

y= (1 ;) r= ),

O =T -vo={(Fur1,Fn)'}.

Vo = (17 O)ta

Conjecture 1.1 predicts a lower bound for the lim-
inf of Q(F,F,.,)/log log (F,F,+1) of f,~0.37. But a
moment’s inspection of Figure 2 reveals that the truth
seems to be closer to 32 0.91. The increase occurs
because one of the indices n or n+1 is even, and
according to (2-1) a Fibonacci number of even index
splits into a Fibonacci number times a Lucas number.
Thus, this sequence F,F,;; behaves like the product
of three independent sequences, suggesting a predicted
lim-inf lower bound from Conjecture 1.1 with k=3

of f3, not f,.

0 2000 4000 6000 8000 10000

Figure 3. A plot of n <10 000 vs. Q(LyLn+1)/ log log (LnLni1).
Also shown is the horizontal line y = f3,.

Example 2.2 illustrates that Conjecture 1.1 must be
stated with an inequality in (1-8); one cannot neces-
sarily determine a priori from the data of O whether
there is a “non-obvious” factorization. Indeed, if in
Example 2.2 we keep I' as is but change vy to vo =
(1,2)", then the orbit @ = {(L,;1,L,)'} becomes con-
secutive Lucas numbers instead of Fibonacci numbers.
Lucas numbers do not exhibit an extra strong divisi-
bility factorization, and the liminf appears restored
(though now not very convincingly) to f, see
Figure 3.

Example 2.3. The previous example suggests the fol-
lowing refinement of Example 2.1. One can easily pro-
duce orbits which separately capture the even and odd
index Fibonacci/Lucas pairs (Fp,,Ly,) and (Fyue,
Lyy+1). These terms appear together inside the orbit
of Figure 1. Now in Figure 4, we show what happens
if the odd values are suppressed: The even values
exhibit an increased beta-value, again to f.

Example 2.4. We consider pairs (F,, F2,12) of con-
secutive even-indexed Fibonacci numbers. This
sequence was already discussed in the initial
Bourgain-Gamburd-Sarnak article on the Affine Sieve,
see [Bourgain et al. 10, Section 2.1]. It is obtained by

taking y = (_31

y”_<3 l>"_<an+z Py, )
-1 0 —Fy —Fu )’

and acting on vy = (1,0) to give the orbit O =
{(an, an_;,_z)t}. Then
f(V"Vo) = F2nF2n—2 = FnLnFn—an—h

é) , which has powers

where we have again invoked the Fibonacci identity
(2-1). As a expect four
“independent” factors, so the liminf in (1-8) should

consequence, we
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Figure 4. A plot of n<10 000 vs. Q(F,L,)/ log log (FslLy),
with the even index values with large marks and the odd
index values with small marks. Also shown are the horizontal
lines y = f,, f;. Compare to Figure 1.

be no smaller than f, ~1.52961. See Figure 5, which
agrees with this prediction. But on further inspection,
it turns out that the lim-inf here should be f5, not f,!
Indeed, one of the indices n or n-1 is even, so one of
the factors F, or F,_; in f(y"vo) should always
decompose further into a Fibonacci/Lucas pair. We do
not fully understand why the numerics do not agree
with this prediction, although it is plausible that the
under-estimation of Q in inconclusive factorizations
may at this point be making a significant
contribution.

2.2. Mersenne number factorization statistics

For our last numerical example, we move to
Mersenne numbers, M,, := 2"—1, whose factorizations

have also been extensively mined.

Example 2.5. To produce the orbit O = {(M,1,M,)},
consider as before I' = (7)™ and O = T - vy, where:

3 =2
Y= (1 0 )7 Vo = (170>t7 "/nVo = (Mn-HaMn)t'

The first 500 values of Q(M,) appear in OEIS
(A046051), and the (sometimes partial) factorizations
up to 10 000 were kindly provided to us by Sean
Irvine using factordb.com. These were used to make
Figure 6, showing that the liminf of Q(M,M,.,)/log
log (M,M,.+,) appears to be tending toward f5;. This
is consistent with the fact that one of n or n+1 is
even, and for the even indices, Mersenne numbers
My factor as 2% —1 = (2°~1)(2° + 1).

0 2000 4000 6000 8000 10000

Figure 5. A plot of n<10 000 vs. Q(FanFan+2)/ log log (Fan
Fant2)- Also shown is the horizontal line y = §,.

2.3. Extreme Fibonacci and Lucas values with a
fixed number of prime factors

Let us now consider Theorem 1.3 and the (naive)
heuristic (1-5) in the case of the Fibonacci and Lucas
sequences, for fixed R= 2.

Example 2.6. Define the set
g = {n>2: Q(F,F,) =2}
to be the indices n for which F, and F,,, are simul-

taneously prime. Applying (1-5) with R=k=2
would suggest that

maxZer ~ exp (2/f,) ~212. (2-4)

One can now examine the sequence [OEI a] of n
for which F,, are prime, to find that

{3,5,11,431,569} = Zg N [1, 1 000 000].  (2-5)

Similarly, consider the set
= {n>2:Q(L,Lys2) =2}

of indices n for which L, and L,;, are simultaneously
prime; presumably (2-4) should also hold for X;;. As
before, one can examine the sequence [OEI b] of n
for which L,, are prime, to find that

{2,5,11,17} = £, N [1, 1 000 000]. (2-6)

Both these results are compatible, at least to first
order, with the naive heuristic (2-4).

Example 2.7. Next define
g o= {n>2:Q(F,L,) =2}

to be the indices n for which the Fibonacci and Lucas
sequences are simultaneously prime. As aforesaid, the
naive heuristic (1-5) predicts maxXg, ~ exp (2/f,) ~
212. Using the sequences [OEI a] and [OEI b] of n
for which F, and L, are primes, respectively, however,



we find

{4,5,7,11,13,17,47,148 091} =X N [1, 1 000 000].
(2-7)

The “«” here is to note that for the largest index
n := 148 091, the corresponding F, and L, (each
having around 30 000 decimal digits) have not been
certified prime.® The pair (F,,L,), if indeed both
entries are prime, would have

Q(Fy,La) 7
log log (FyL,) logn

~0.167988,

so if we extended Figure 1 to n< 150 000, we would
see a huge dip below f, at n. In light of (2-4), this
certainly constitutes a massively “sporadic” solution to
(2-3). However, the existence of such a solution is not
shocking, as it is predicted to sometimes occur by the
probabilistic model of Theorem 1.3 (see Remark 2). It
seems likely to us (though again, this may be naive)
that the left side of (2-7) is actually an equality
to Tpr.”

3. Proof of Theorem 1.2
3.1. Analysis of [

Fix an integer k > 1 let fi; solve (1-4). We first ana-
lyze this equation.

Lemma 3.1. For real k > 1 the function
fi(t) == t(1—logt + logk)—(k—1)

is increasing on 0<t<k. It has a
root t = B € (0,k—1].

unique

Proof. The derivative of f is fi(t) = —logt + logk,
which is clearly positive on (0, k). For k=1 it has by
inspection a root at f{y =0 =k—1. For k> 1, near
the origin,

lim fi(t) = —(k—1) <0,

t—0F

and at t = k—1, we have

®The probable primality of F,, was found by T. D. Noe while that of L,, by
de Water; see OEIS for further credits. Both numbers have passed
numerous pseudoprimality tests. Assuming GRH, one would need to run
about (30 000)* trials (that is, (log Fy)” tests at a cost of (logFy)* each,
ignoring epsilons) of the Miller primality test to certify these entries
prime. Unconditionally, the exponent 4 would be replaced by a 6, see
[Lenstra and Pomerance 11]. One could alternatively try the elliptic curve
primality test, which is also unconditional and in practice runs faster,
though a worst-case execution time is currently unknown.

’In some very special cases, one can completely determine sets like Z.
Indeed, see [Bober et al. 09], where all solutions to )(2—3y2 =1 with
Q(xy) < 3 are effectively listed.
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Figure 6. A plot of n<10 000 vs. Q(M,Mp41)/logn. Also
shown is the horizontal line y = f3;.

filk=1) = (k=1)log (%) ~0.

Hence, fi(t) has a unique root in this interval.

Remark 5. One can solve for fi; explicitly in terms of
the inverse function g(z) to z+— ze* on the positive
real axis. Namely, one finds

=

— 1-
ﬁk—g(le_kk),

where e = 2.718.... We will not need this fact, nor the
fact that ff;, = k—1—0O(1/k) for k large, which can be
shown in a variety of ways.

3.2. Analysis of the behavior of

We next record a uniform asymptotic formula for
NAT) :=#{x<T:Q(x) =r},

that is, the number of positive integers up to T having
exactly r prime factors, counted with multiplicity. For
fixed r, the formula

T (loglog T)F1

NAT)~ logT (r—1)!

(T — o)

(3-1)

is well known, but we shall require an estimate when
r is an increasing function of T. Such an estimate can
be obtained based on a method of [Selberg 54]. A
treatment is given in Tenenbaum [Selberg 54, Chap.
I1.6, Theorem 5], as stated below.
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The result is given in terms of the function

(o) = ﬁg«l_;)l(l_;y).

This infinite product converges on $R(z) > 0, giving
in this region a non-vanishing meromorphic function
with simple poles at z= p for all primes p. Note also
that lim, o+ v(2z) = 1; hence for real z € [0,3/2], say,
v(z) is bounded above and below by posi-
tive constants.

Proposition 3.1 ([Tenenbaum 95, eqn. (20), p. 205]).
For T > 3, we have uniformly in

3
lgrgiloglogT

T (loglogT)"™"
ClogT  (r—1)!

((erer) *© (gt )

with an absolute implied constant.

This asymptotic continues to hold up to r < (2—¢)
log log T, but not beyond this point, as v has a pole
at z= 2. A different asymptotic formula takes over at
r>(2+€)log log T, see [Nicolas 84], but it will not be
needed for our purposes.

For our application, we derive from (3-2) a simpli-
fied estimate.

(3-2)

Lemma 3.2. Let r=yloglogT with 17 <7<3
Then as T — oo,

- ( IOg T)}'*“,'log"/71+0<1>7 (3_3)

PQ(x) =r] == N’—%{T)

with absolute implied constants.

Proof. First recall that, on [0,3/2], the function v(-) is
bounded above and below by positive constants. Then
inserting the Stirling’s formula estimate,

(r—1)! < r~12e7,

into (3-2) yields

1 (loglogT\"™" .,
P[Q(X)IT]X@< " > r 2e

(1<r<o0)

1 —7yloglogT— -3 y
:@(7}) 7loglogT 1(yloglogT) 2(logT)

= ﬁf%(log logT) 7%(log T) ~1logyty

from  which the  estimate (3-3) follows,
since y>1/loglogT. O

3.3. Estimate for a single draw

To prove Theorem 1.2, we first obtain upper and
lower bounds on the probability density function for a
single draw.

Theorem 3.1. Let k> 1 be fixed. For any integer
T > 2, draw a vector

(X1, X2, - X¢) € [1,T]k

uniformly. For any small >0, there is a 6 = 6(¢)>0 so
that for all T>Ty(¢),

P|Q(x1xp - - - xx) < +¢)log log T|>, ————,
[ (12 k) (ﬁk ) g g ] (logT)l—()

(3-4)
and, for k > 2,
1
P[Q(x1x; - xx) < (Br—e) log log T| <<EW-
(3-5)

3.3.1. Proof of the lower bound (3-4)
Suppose k > 1 and write ky = f; + ¢, so that 0 <y <
1, and let

r:=|yloglogT]|.
Then

P[Q(x1...x¢) < kylog log T| > H]P’[Q(xj) =r1].
=1

Inserting (3-3) gives
k
P[Q(x1...x¢) < kylog log T| > [(log T)V_7’1°g7_1+0(1)} .

Write o = ky; then as T — oo the exponent of log
T approaches the limiting value

vk—vyklogy—k = o—aloga + ologk—k = fi(a)—1.

By Lemma 3.1, since o =ky= f; +¢&>pf, and
fk(Pr) =0, we conclude that as T — oo the limiting
exponent exceeds -1 by the positive amount fi(a)>0.
Therefore, we can pick d(¢)>0 and Ty(¢) depending
on ¢ (and k, which is fixed) so that (3-4) holds.

3.3.2. Proof of the upper bound (3-5)
The upper bound estimate (3-5) is more subtle and
requires k > 2. Again take a fixed ¢>0 and define y
by ky = py—¢ taking ¢ small enough that 0 <y <1,
which is possible since ,>0. Since

Q(xy - xx) = Q(x1) + -+ + Q(xx),

we have that



P[Q(x;...xx) < kylog log T|
= Z P[Q(xl) =T, Q(xk) = T’k}

ri4-+re<kylog log T

We upper bound the total number of summands
trivially by

1 < (log log T)* = (log T)°".
ri+-+rc<kylog log T

It remains to upper bound the contribution of an
individual summand

max ]P’[Q(xl) =r1,..Q(x) = rk}.

ri+-+r<kylog log T
Write each r; as

=7 log log T,
so that

P+ S ky < B <k—1 (3-6)

On average, these yj’s are less than one, but indi-
vidually they could in principle be large, and we can
apply (3-3) only when y;<3/2. Let £C{1,...,k}
denote the indices j for which y; <3/2 is “low,” and
let h:={1,....,k} \ ¢ be the “high” indices. Abusing
notation, we use the same symbol for their cardinal-
ities, e.g.,

{+h=k.
We have that

3
kp=) 0> sh,
jeh

2 1
0> k(l——y)>—k,
3 3

3
Zw=2}jw—2w < ky—5h.

jel jeh

SO

and

(3-7)

For j € h, we estimate P[Q(x;) =] <1 trivially.
This gives a bound
P[Q(xl) =71, Q(x) = rk] < H]P’[Q(xj) = rj]
jet
< (log T)O(l) H (log T)"/j—“/j log‘/j_l’
je
using (3-3). The exponent in this expression, subject

to (3-7), is maximized if, for all j € £, we set all values
equal y; = 5, in which case,
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P[Q(x1) = r1,..Q(xx) = k] < (log T)[(”fnlog”fl)”(l).
(3-8)

Now, we have

ky 3h 3 k(3
n=n(p,k0) .7—2757(__/)_

We bound the exponent (3-8), varying ¢. Viewing
¢ as a continuous variable, we have

g _On_ k(3 N _1(3_ )
"=~ T\ ")

The derivative of the exponent of logT in the
l-variable is then

)
g l{(=nlogn—1)] = n—nlog n—1—{n'logn

31 1
= ——10 —_
n 2 gn—1i,

which by inspection is a positive function of 5 €
(0,1). It follows that the exponent is maximized at
the largest allowable value of ¢, namely the integer
£ =k, so h= 0. For this value of ¢, we have n =7y,
whence as T — oo the exponent of logT in (3-8)
approaches the limiting value

k(y—ylogy—1) = a—alogo + alogk—k = fi(a)—1.

where we have again set o = ky = f;—¢. Again using
Lemma 3.1, this limiting exponent is less than -1
since o < f3; gives fy(o) <0. Thus, we can choose J(¢)
and a Ty(e) so that (3-5) holds. This completes the
proof of Theorem 3.1.

3.4. Proof of Theorem 1.2

It is now a simple matter to deduce Theorem 1.2
from Theorem 3.1. Instead of a single draw, here we
have a sequence of independent draws, one for each
n=1,2,..., and with T = C". By (3-5),

Q(xl,an,n T xk,n)

< —
ogn < (B — &) (1 + log log C/logn)

1
<<sm>

and ,.,1/n'™ <oco. Thus by the Borel-Cantelli

Lemma, the probability of these events occurring

infinitely often is zero; that is, with probability one,

we have

lim ian(anxzﬂ M)
n logn

> Pr—e.
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Similarly, the independent events

Q(xl,an,n v 'xk,n)

logn

< (Bx +¢)(1+ log logC/ logn)]

occur with probability at least 1/n'~%, the sum of

which diverges. By the second Borel-Cantelli Lemma,
infinitely many occur with probability one, so

Q(xl,nxz,n o 'xk,n>

lim inf

< .
n logn < Pt

This proves Theorem 1.2.

4, Proof of Theorem 1.3

Let k> 1, C> 1, and R > 1 be fixed throughout this
section (unlike the previous section, where R was
growing). In particular, the estimate (3-1) is perfectly
valid here and will be used regularly. In this section,
we allow implied constants to depend on k, C and R,
since they are fixed.

For each n > 1, we choose uniformly a vector x, =
(X1 sty ey X)) € [I,C”]k, and let

n=u(R) = max{n >1: QX1 X)) < R},

with nw =0 if this set is empty and n =o0 if it
is unbounded.

First note that (1-6) follows immediately from
Theorem 1.2. Indeed, if n(R) = oo, then Q(x;,---
Xkn) = R occurs for infinitely many »’s. But then

lim inf O o) o
n>1 logn
contradicting (1-3). Hence, this event has probabil-
ity zero.

To prepare for the proof of (1-7), we record the
following computations. Recall that implied constants
in this section may depend on k, C, and R.

Lemma 4.1. Let k> 1 and R > 1 be fixed. Then for
t>1,

(log t)k(R_l)

P[Q(xu S Xpr) < R] < " (4-1)
Assuming further that R > k, we have that
log t)**
PlQ(x1 - xie) <R > (gtik). (4-2)

Proof. The event Q(x;;---xx,) < R is contained inside
the intersection of the events Q(x;;) <R, for all j =
1,2,...,k. Thus, using (3-1) gives

]P’[Q(xl,t T Xpr) < R} < HIP)[Q(xN) < R]

k
(log log Ct)k1
(R—1)! ’

1
< Log c

from which (4-1) follows immediately.
Now assume that R/k > 1. Then, the event Q(x;;

---xk¢) <R contains the intersection over all j=
1,2,...,k of the nonempty events Q(x;,;) < R/k. So

PQ@o 3 < R] > HP[Q(xj,t) < B]

i1 k
k
S 1 (log log Ct)%_l
log C! ’

=)

which implies (4-2).

Lemma 4.2. If R > k > 1 are fixed, then for all suffi-
ciently large t,

(logt)**

Pn(R) =t > ¥
Proof. Consider the event n(R) =t. This occurs if
and only if Q(x;;---xx¢) <R and, for all larger inte-
gers s> t, we have that Q(x; ;- - - xxs)>R. That is,

Pn(R) =t = P[Q(x1, - - xks) < R]
I (-PQ@ ) < R])

s>t

(log t)R_k (log s)lc(R_1>
>>t—k.H 1-K-—— ),

s>t

where we used (4-2) and (4-1). (Here, K> 0 is a con-
stant depending at most on k, C, and R.) Since s > 2,
the infinite product converges absolutely. It bounds
the result below by a uniform positive constant for all
sufficiently large t that avoid possible nonpositive
terms for small s in the infinite product.

Proof of Theorem 1.3. Assume that R > k > 1 and let
m > k—1. Consider the m-th moment of n, namely,

E[nm} — Ztm IP’[n(R) _ t] > Ztm(l%?lzk,

t>0 t>0

where we used Lemma 4.2. Since m—k > —1, this
sum diverges.

Note the case R=k =1 gives divergence of the
m= 0-th moment; that is, if k= 1 then n = oo with
probability 1.)



5. Proofs of theorems 1.4 and 1.5
Assume Conjecture 1.1 in this section.

Proof of Theorem 1.4. Let V:Q =1t have V(Z) # 0.
As is well known and in this case essentially goes
back to Gauss, V(Z) decomposes into a finite number
of I'-orbits,

V(Z) = u]”ill" . Vj7
where I' = Og(Z) is the orthogonal group fixing Q

(see, e.g., [Cassels 78] or [Kontorovich 16, §2]). Since
Q is indefinite, the Zariski closure of I" is a torus,

G = Z(I') = O(1,1).
Thus, up to finite index, I' = (y) for some hyper-

bolic matrix y. By Conjecture 1.1, each orbit O; =
I' - v; has

o Q)

liminf ————> f,,
()€0; log log [xy|

and hence the same holds for all of V(Z).

Proof of Theorem 1.5. Let o be a quadratic surd having
ordinary continued fraction expansion o = [ag, aj, a,
...] with partial quotients p,/q,, given in matrix form

by

01\ /0 1\/0 1\ (0 1\(0\_/(pn
10/\1a)\1a lLa, J\1) \aqn)
Now, a has an eventually periodic continued frac-

tion expansion

&= [a0§ Ay, -Gy A1 -+ akJr[]'

After the first few terms, the sequence (py,q,)"
decomposes into finitely many I'-orbits, where

B a0 1Y (0 1 .
=, /—M<1 ak+1> <1 ak+£>M ,
with

=0 D0 D))

The base points of the orbits are given by

0 1 0 1 0
Se— < i< p—
v: M<1 k) (1 ak+j>(1>, 0<j<i—1.

We may apply Conjecture 1.1 to each orbit, since
they are infinite, and use the asymptotic log log p,g,~
logn. This establishes the claim. O
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