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On Toric Orbits in the Affine Sieve
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ABSTRACT
We give a detailed analysis of a probabilistic heuristic model for the failure of “saturation” in
instances of the Affine Sieve having toral Zariski closure. Based on this model, we formulate
precise conjectures on several classical problems of arithmetic interest and test these
against empirical data.
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1. Introduction

The Fundamental Theorem of the Affine Sieve, intro-
duced by [Bourgain et al. 10] and proved by [Salehi
Golsefidy-Sarnak 13] extends the Brun sieve to orbits
of affine-linear group actions. The goal of this article
is to study the behavior of prime factors of orbits out-
side the scope of this theorem.

More precisely, let C<GLNðQÞ be a finitely gener-
ated group, that is, C ¼ hA1;A2; :::;Aki; fix a base
point v0 2 QN ; and let

O :¼ C � v0 � ZN

be the orbit of v0 under C, assumed to be integral.1

Let XðnÞ denote the number of primes dividing an
integer n, counted with multiplicity. Given R � 1; an
integer n with XðnÞ � R is called R-almost prime. Fix
a polynomial f ðx1; x2; :::; xNÞ 2 Q½x1; :::; xN � taking
integer values on O; and let

OR :¼ v 2 O : X f vð Þð Þ � R
� �

be the points in O taking R-almost prime values
under f. The pair ðO; f Þ is said to saturate if there
exists some R<1 so that

Zcl ORð Þ ¼ Zcl Oð Þ: (1–1)

Here, Zcl refers to Zariski closure in affine space.2

The saturation number is the least R for which (1–1)
holds; this can be determined exactly or at least well-
approximated in some special instances, see
[Kontorovich 14] for more discussion. Let V(f) be the
affine Q-variety given by f¼ 0. In general, we assume
that f is non-constant on (any irreducible component
of) ZclðOÞ: This is equivalent to

dim V fð Þ \ Zcl Oð Þ� �
< dimZcl Oð Þ; (1–2)

viewing the Zariski closure ZclðOÞ inside CN : Then,
the fundamental theorem of [Salehi Golsefidy and
Sarnak 13, Theorem 1] states the following.

Theorem 1.1 ([Salehi Golsefidy and Sarnak 13]). Let
C be a finitely generated subgroup of GLNðQÞ having
Zariski closure G ¼ ZclðCÞ in GLNðCÞ. Let v0 2 QN

and let O ¼ Cv0 � ZN be the C-orbit of v0. Suppose
that f ðxÞ 2 Q½x1; :::; xN � is such that f ðOÞ � Z and
(1–2) is satisfied.3 Then the pair ðO; f Þ saturates, as
long as no algebraic torus4 is a homomorphic image of
the connected component G0 of the identity of G:
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2Recall that this Zariski closure can be thought of as the common zero set of all polynomials pðx1; x2; :::; xNÞ 2 C½x1; :::; xN� inside affine space ANðCÞ ¼ CN

that vanish on O:
3We need not assume any restriction on the orbit like “primitivity” (that the gcdðfðOÞÞ ¼ 1) since the fixed prime factors, if any, can be accounted for in the
value of R.
4For example, ðC�Þn:
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In [Salehi Golsefidy and Sarnak 13, Appendix],
Salehi Golsefidy-Sarnak gave a heuristic argument,
based on the Borel-Cantelli lemma, that the condi-
tion of having no tori is necessary in certain cases.
Their model considered an algebraic torus (i.e., C is
a free abelian group of rank D with generators A1;

:::;AD 2 GLNðZÞ; and there is a g 2 GLNðCÞ so that
for all j, the matrices gAjg�1 are diagonal) and the

test polynomial f ðx1;1; :::; xN;NÞ ¼
Qk

j¼1 fjðxÞ; with

fjðxÞ ¼ jþPN
m;n¼1 x

2
m;n: This test polynomial f has

(at least) k irreducible factors over Q½x1;1; :::xN;N �; all
of the same degree (so they have roughly the same
“size” on points of O). Their heuristic was that the
prime factorizations of the k elements fjðxÞ eval-
uated at a point x 2 O ought to be “independent,”
at least at the level of the number of prime factors,
XðfjðxÞÞ; since they are just integer shifts of
each other.

In this article, we refine this heuristic and
make precise predictions on the failure of satur-
ation in the toric case, which we then test empir-
ically in a number of natural settings of
classical interest.

1.1. Main probabilistic model

We model the values of the k irreducible factors of f
as k randomly and independently chosen integers in
an exponentially growing interval, depending on a
parameter n. The parameter n is to be viewed as mod-
eling elements of a toral orbit, which grow
exponentially.

Theorem 1.2. Let k � 1 be a fixed integer. Fix a con-
stant C> 1 and for each n � 1, draw an integer vec-
tor

x1;n; x2;n; :::; xk;nð Þ 2 1;Cn½ �k

with uniform distribution. Then with probability
one,

lim inf
n�1

X x1;n � x2;n � � � xk;nð Þ
log n

¼ bk; (1–3)

where bk denotes the unique solution in ½0; k�1� to

bk 1� log bk þ log kð Þ ¼ k�1; (1–4)

with b1 ¼ 0 and bk>0 for k � 2:
The constants bk are absolute, in particular, inde-

pendent of C. The first few values of bk are

b2 ¼ 0:373365; b3 ¼ 0:913728;b4 ¼ 1:52961;

b5 ¼ 2:19252;:::; b10 ¼ 5:8754;:::

Note that the expected size5 of XðmÞ for a random
integer m is log logm; and of course

X x1;n � x2;n � � � xk;nð Þ ¼
X
j

X xj;nð Þ;

whence the expected size of this sum is k log logCn	k
log n: Thus, we may interpret (1–3) as showing that,
up to a multiplicative constant k=bk; one never sees
(asymptotically) a deficient number of prime factors.

To test the validity of this model empirically, it will
be useful to understand how large n should be to
experimentally observe the behavior (1–3). Naively we
may expect from this equation that the largest n ¼
nmax for which x1;n � � � xk;n is R-almost prime satisfies:

R
logn


 bk;

or

n
 exp R=bkð Þ: (1–5)

It turns out that the probabilistic model sometimes
makes a different prediction.

Theorem 1.3. Fix k � 2, C> 1, and for each n � 1,
draw a vector

xn ¼ x1;n; x2;n; :::; xk;nð Þ 2 1;Cn½ �k

uniformly. Let X ¼ ðx1; x2; :::Þ be a random variable
consisting of a sequence of independent such draws,
one for each n. For any fixed R � k, consider the ran-
dom variable

n ¼ n R;Xð Þ :¼ max n : X x1;n � � � xk;nð Þ � R
� �

;

with n ¼ 0 if there are no such n, and n ¼ 1 if the
event occurs infinitely often. Then

(1) with probability one,

n<1; (1–6)

and moreover,
(2) for all m � k�1, the m-th moment of n

diverges,

E nm½ � ¼ 1: (1–7)

Remark 1. In the case k¼ 1 not covered in Theorem
1.3, one has instead that with probability
one, n ¼ þ1:

5For example, in the normal order sense of the [Hardy and Ramanujan
17] theorem, further refined in the Erd}os-Kac theorem.
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Remark 2. In many natural examples treated below
we have k¼ 2, where Theorem 1.3 for m¼ 1 asserts
the expected value of nðRÞ is infinite for all R � 2: In
such examples, one should not expect nðRÞ to behave
nicely like exp ðR=b2Þ; as suggested naively by (1–5).
One may interpret the infinite expected value as say-
ing that for k¼ 2 there may exist extremely large
“sporadic” solutions to Xðx1;n; :::; xk;nÞ ¼ R:

Remark 3. The proofs of Theorems 1.2 and 1.3 apply
and give the same result in the more general case of
xn chosen from non-identically growing intervals, that
is ðx1;n; :::; xk;nÞ 2 ½1;Cn

1 � � ½1;Cn
2 � � � � � ½1;Cn

k �; for
fixed constants C1; :::;Ck>1:

1.2. The Toral Affine Sieve Conjecture

The probabilistic model above motivates a heuristic
prediction concerning the number of prime factors of
certain sequences associated with toric orbits, namely
the (rank one) “Toral Affine Sieve Conjecture” stated
below. We will derive as consequences of this conjec-
ture other predictions in several settings of clas-
sical interest.

Conjecture 1.1. (Toral Affine Sieve Conjecture). Let c
2 GL2ðQÞ be a hyperbolic matrix, that is, one having
two distinct real eigenvalues; equivalently

tr cð Þ2�4det cð Þ>0:

Let C ¼ hciþ :¼ fcn : n � 0g be the semigroup gen-
erated by c, and suppose that v0 2 Q2 n ð0; 0Þ is a non-
zero vector such that the orbit O :¼ C � v0 � Z2 is
integral and infinite. Then

lim inf
x;yð Þ2O

X xyð Þ
log log jxyj � b2 
 0:373365: (1–8)

Since the Zariski closure of C in GLð2;CÞ is an
algebraic torus, and since the orbit O is assumed
to be infinite, it is a one-dimensional torus, so it
follows that the Zariski closure of O in C2 has
dimðZclðOÞÞ ¼ 1 in (1–2). We have taken the test
function f ðx; yÞ ¼ xy; whence Vðf Þ \ ZclðOÞ
is finite, having dimension 0. The points in
ðxn; ynÞ :¼ cnv0 2 O grow exponentially, that is,
there are C>c>1 so that

cn< jxnynj ¼ jf cnv0ð Þj<Cn:

In consequence, the factor log log jxyj in (1–8) can
be replaced by log n; that is, (1–8) is equivalent to

lim inf
n!1

X xnynð Þ
log n

� b2:

The conjecture is based on applying the model of
Theorem 1.2 with k¼ 2 having two “independent” fac-
tors ðxn; ynÞ for f ðcnv0Þ: In the “generic” situation, we
might have equality in these limits. However, there
are cases of orbits whose limiting values involve bk for
larger k, see the examples in §2.

Remark 4. We did not need to assume in Conjecture
1.1 any coprimality condition (e.g., gcdðOÞ ¼ 1) on
the orbit. Indeed, if all entries of v ¼ ðx; yÞ 2 O have
a common factor, then this factor, divided by
log log jxyj; is irrelevant in the lim inf in (1–8).

1.3. Consequences

The basic Conjecture 1.1 implies other striking predic-
tions, of which we present two below; The first applies
to integer points on affine quadrics, and the second
applies to the continued fraction convergents of quad-
ratic surds.

Theorem 1.4. Let Qðx; yÞ ¼ Ax2 þ Bxyþ Cy2 be an
indefinite (i.e., D ¼ B2�4AC is positive), non-degener-
ate (D is not a square) binary quadratic form over Z.
Fix a square-free t 2 Z so that the set VðZÞ of Z

points of the affine quadric V ¼ VQ;t given by

V : Q x; yð Þ ¼ t

is non-empty. Then, assuming Conjecture 1.1,

lim inf
x; yð Þ 2 V Zð Þ
jxyj ! 1

X xyð Þ
log log jxyj � b2:

Theorem 1.5. Let a be a real quadratic irrational, and
let pn=qn denote the n-th convergent of its ordinary
continued fraction expansion. Then, assuming
Conjecture 1.1,

lim inf
n

X pnqnð Þ
log n

� b2:

These two theorems will not be surprising to
experts, but the (conditional) conclusions, particularly
the appearance of the precise number b2 
 0:373365;
are unexpected.

1.4. Organization

In §2, we give a number of illustrative examples and
numerics which, one may argue, provide support for
the heuristic provided by the probabilistic model in
the context of Conjecture 1.1. We prove Theorem 1.2
in §3, followed by Theorem 1.3 in §4. In the final §5,
we sketch proofs of Theorems 1.4 and 1.5.
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1.5. Notation

We use the following standard notation. We use the
symbol f	g to mean f =g ! 1: The symbols f � g
and f ¼ OðgÞ are used interchangeably to mean the
existence of an implied constant C> 0 so that f ðxÞ �
CgðxÞ holds for all x> C; moreover f � g means f �
g � f : Unless otherwise specified, implied constants
depend at most on k, which is treated as fixed. The
letter e>0 is an arbitrarily small constant, not neces-
sarily the same at each occurrence. The Gamma func-
tion is denoted CðzÞ; and a product

Q
p denotes a

product over primes. The floor function, b�c; returns
the largest integer not exceeding its argument.

2. Examples and numerics

It should be clear that running decent numerics to
test Conjecture 1.1 is a daunting task. Indeed, toric
orbits increase exponentially in size and hence become
ever more difficult to factor. Thankfully, others have
already exerted tremendous effort in tabulating prime
factorizations for certain sequences of classical inter-
est, in particular, the Fibonacci, Lucas, and Mersenne
numbers. We mine their factorization data to test our
predictions for Conjecture 1.1 and its consequences.
We have made the raw data and Mathematica file
used to construct the figures available at http://sites.
math.rutgers.edu/	alexk/files/AllOmegasData.nb.

2.1. Fibonacci and Lucas numbers
factorization statistics

Let Fn and Ln denote the nth Fibonacci and Lucas
numbers, respectively. Recall that both sequences are
defined by the same recursive relation, Fnþ1 ¼
Fn þ Fn�1 and Lnþ1 ¼ Ln þ Ln�1; but differ in the ini-
tialization, namely, F1 ¼ F2 ¼ 1; while L1 ¼ 1; L2 ¼ 3:

They are related by

F2n ¼ FnLn: (2–1)

Both sequences have been completely factored for
1 � n � 1 000 and partially factored for n going up
to 10 000; see the Website [Mer].

In the following calculations, when we encounter
in the (incomplete) factorization data a composite
number having no known prime factors, we treat that
number as a product of exactly two primes (which
may be an undercount in X). We use this data to
study orbits giving several different combinations of
Fibonacci numbers and Lucas numbers.

Example 2.1. One can easily verify that, if one takes

c ¼ 1=2 1=2
5=2 1=2

� �
; C ¼ hciþ; v0 ¼ 1; 1ð Þt;

then the orbit O ¼ C � v0 ¼ fðFn; LnÞ : n � 1g: A plot
of n versus

X FnLnð Þ
log log FnLnð Þ (2–2)

appears in Figure 1. This plot seems to give rather
good evidence for equality with b2 
 0:37 in (1–8).

The data in Figure 1 exhibit several interest-
ing features.

i. The plot in Figure 1 appears to be a union of curves,
and a moment’s thought reveals that these are
roughly the level sets of y ¼ R= log x for various
integer values of R. Conjecture 1.1 predicts that the
number of elements on each curve is finite, since
each curve eventually dips below the line y ¼ b2:

ii. From Figure 1, one notices a single value of n<
10 000 for which (2–2) seems to dip below b2 

0:37: This occurs at n ¼ 8 467; for which Ln is
prime and Fn is composite, with each number
spanning 1 770 decimal digits. Since we do not
know any factors of Fn, we follow our protocol,
declaring that XðFnLnÞ ¼ 3: But the true value
could perhaps be higher, in which case there
may be no values of n up to 10 000 of (2–2) dip-
ping below b2. Since Conjecture 1.1 only predicts
a lim inf ; it is not inconsistent that infinitely
many points in the plot dip below b2, as long as
the amount by which they dip below decreases.

iii. The data in Figure 1 also provide an instance of
(the conditional) Theorem 1.4, since the pairs
(Fn, Ln) are integer solutions to the Pellian bin-
ary quadratic form

x2�5y2 ¼ 64:

Figure 1. A plot of n< 10 000 vs. XðFnLnÞ= log log ðFnLnÞ:
Also shown is the horizontal line y ¼ b2 
 0:37:
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iv. While Figure 1 may seem promising toward
Conjecture 1.1, this computation is limited to the
humble scale n ¼ 10 000; where log n
 log log ðFn
LnÞ
 10: With current computing technology, it
would be difficult to go significantly farther.

One may object to using the Fibonacci and Lucas
sequences to test Conjecture 1.1 on the grounds that
their factorizations have extra internal structure: They
are “strong divisibility sequences”; i.e., mjn ) amjan:
While it seems likely that this fact could affect some
statistics of total number of primes seen in individual
draws, (see, e.g., [Bugeaud et al. 05]), it appears not to
affect the predicted lim inf value of b2 in (2–2), exhib-
ited in Figure 1. In any case, the effect of strong div-
isibility should only be to increase the limiting value,
which Figure 1 suggests is not the case for FnLn:

Example 2.2. Next we consider the simpler setting of
consecutive Fibonacci numbers:

c ¼ 1 1

1 0

 !
; C ¼ hciþ; v0 ¼ 1; 0ð Þt;

O ¼ C � v0 ¼ Fnþ1; Fnð Þt
� �

:

Conjecture 1.1 predicts a lower bound for the lim-
inf of XðFnFnþ1Þ= log log ðFnFnþ1Þ of b2 
 0:37: But a
moment’s inspection of Figure 2 reveals that the truth
seems to be closer to b3 
 0:91: The increase occurs
because one of the indices n or nþ 1 is even, and
according to (2–1) a Fibonacci number of even index
splits into a Fibonacci number times a Lucas number.
Thus, this sequence FnFnþ1 behaves like the product
of three independent sequences, suggesting a predicted
lim-inf lower bound from Conjecture 1.1 with k¼ 3
of b3, not b2.

Example 2.2 illustrates that Conjecture 1.1 must be
stated with an inequality in (1–8); one cannot neces-
sarily determine a priori from the data of O whether
there is a “non-obvious” factorization. Indeed, if in
Example 2.2 we keep C as is but change v0 to v0 ¼
ð1; 2Þt; then the orbit O ¼ fðLnþ1; LnÞtg becomes con-
secutive Lucas numbers instead of Fibonacci numbers.
Lucas numbers do not exhibit an extra strong divisi-
bility factorization, and the liminf appears restored
(though now not very convincingly) to b2, see
Figure 3.

Example 2.3. The previous example suggests the fol-
lowing refinement of Example 2.1. One can easily pro-
duce orbits which separately capture the even and odd
index Fibonacci/Lucas pairs ðF2n; L2nÞ and ðF2nþ1;

L2nþ1Þ: These terms appear together inside the orbit
of Figure 1. Now in Figure 4, we show what happens
if the odd values are suppressed: The even values
exhibit an increased beta-value, again to b3.

Example 2.4. We consider pairs ðF2n; F2nþ2Þ of con-
secutive even-indexed Fibonacci numbers. This
sequence was already discussed in the initial
Bourgain-Gamburd-Sarnak article on the Affine Sieve,
see [Bourgain et al. 10, Section 2.1]. It is obtained by

taking c ¼ 3 1
�1 0

� �
; which has powers

cn ¼ 3 1
�1 0

� �n

¼ F2nþ2 F2n
�F2n �F2n�2

� �
;

and acting on v0 ¼ ð1; 0Þt to give the orbit O ¼
fðF2n; F2nþ2Þtg: Then

f cnv0ð Þ ¼ F2nF2n�2 ¼ FnLnFn�1Ln�1;

where we have again invoked the Fibonacci identity
(2–1). As a consequence, we expect four
“independent” factors, so the liminf in (1–8) should

Figure 2. A plot of n< 10 000 vs. XðFnFnþ1Þ= log log ðFnFnþ1Þ:
Also shown is the horizontal line y ¼ b3 
 0:91:

Figure 3. A plot of n< 10 000 vs. XðLnLnþ1Þ= log log ðLnLnþ1Þ:
Also shown is the horizontal line y ¼ b2:
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be no smaller than b4 
 1:52961: See Figure 5, which
agrees with this prediction. But on further inspection,
it turns out that the lim-inf here should be b5, not b4!
Indeed, one of the indices n or n–1 is even, so one of
the factors Fn or Fn�1 in f ðcnv0Þ should always
decompose further into a Fibonacci/Lucas pair. We do
not fully understand why the numerics do not agree
with this prediction, although it is plausible that the
under-estimation of X in inconclusive factorizations
may at this point be making a significant
contribution.

2.2. Mersenne number factorization statistics

For our last numerical example, we move to
Mersenne numbers, Mn :¼ 2n�1; whose factorizations
have also been extensively mined.

Example 2.5. To produce the orbit O ¼ fðMnþ1;MnÞg;
consider as before C ¼ hciþ andO ¼ C � v0; where:

c ¼ 3 �2
1 0

� �
; v0 ¼ 1; 0ð Þt; cnv0 ¼ Mnþ1;Mnð Þt:

The first 500 values of XðMnÞ appear in OEIS
(A046051), and the (sometimes partial) factorizations
up to 10 000 were kindly provided to us by Sean
Irvine using factordb.com. These were used to make
Figure 6, showing that the liminf of XðMnMnþ1Þ= log
log ðMnMnþ1Þ appears to be tending toward b3. This
is consistent with the fact that one of n or nþ 1 is
even, and for the even indices, Mersenne numbers
M2‘ factor as 22‘�1 ¼ ð2‘�1Þð2‘ þ 1Þ:

2.3. Extreme Fibonacci and Lucas values with a
fixed number of prime factors

Let us now consider Theorem 1.3 and the (naïve)
heuristic (1–5) in the case of the Fibonacci and Lucas
sequences, for fixed R¼ 2.

Example 2.6. Define the set

RFF :¼ n � 2 : X FnFnþ2ð Þ ¼ 2
� �

to be the indices n for which Fn and Fnþ2 are simul-
taneously prime. Applying (1–5) with R ¼ k ¼ 2
would suggest that

maxRFF 
? exp 2=b2ð Þ
 212: (2–4)

One can now examine the sequence [OEI a] of n
for which Fn are prime, to find that

3; 5; 11; 431; 569f g ¼ RFF \ 1; 1 000 000½ �: (2–5)

Similarly, consider the set

RLL :¼ n � 2 : X LnLnþ2ð Þ ¼ 2
� �

of indices n for which Ln and Lnþ2 are simultaneously
prime; presumably (2–4) should also hold for RLL. As
before, one can examine the sequence [OEI b] of n
for which Ln are prime, to find that

2; 5; 11; 17f g ¼ RLL \ 1; 1 000 000½ �: (2–6)

Both these results are compatible, at least to first
order, with the naive heuristic (2–4).

Example 2.7. Next define

RFL :¼ n � 2 : X FnLnð Þ ¼ 2
� �

to be the indices n for which the Fibonacci and Lucas
sequences are simultaneously prime. As aforesaid, the
naive heuristic (1–5) predicts maxRFL 
? exp ð2=b2Þ

212: Using the sequences [OEI a] and [OEI b] of n
for which Fn and Ln are primes, respectively, however,

Figure 5. A plot of n< 10 000 vs. XðF2nF2nþ2Þ= log log ðF2n
F2nþ2Þ: Also shown is the horizontal line y ¼ b4:

Figure 4. A plot of n< 10 000 vs. XðFnLnÞ= log log ðFnLnÞ;
with the even index values with large marks and the odd
index values with small marks. Also shown are the horizontal
lines y ¼ b2;b3: Compare to Figure 1.
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we find

4; 5; 7; 11; 13; 17; 47; 148 091f g¼
 RFL \ 1; 1 000 000½ �:
(2–7)

The “
” here is to note that for the largest index
n :¼ 148 091; the corresponding Fn and Ln (each
having around 30 000 decimal digits) have not been
certified prime.6 The pair ðFn; LnÞ; if indeed both
entries are prime, would have

X Fn; Lnð Þ
log log FnLnð Þ 


? 2
logn


 0:167988;

so if we extended Figure 1 to n< 150 000; we would
see a huge dip below b2 at n: In light of (2–4), this
certainly constitutes a massively “sporadic” solution to
(2–3). However, the existence of such a solution is not
shocking, as it is predicted to sometimes occur by the
probabilistic model of Theorem 1.3 (see Remark 2). It
seems likely to us (though again, this may be naïve)
that the left side of (2–7) is actually an equality
to RFL.

7

3. Proof of Theorem 1.2

3.1. Analysis of bk

Fix an integer k � 1 let bk solve (1–4). We first ana-
lyze this equation.

Lemma 3.1. For real k � 1 the function

fk tð Þ :¼ t 1� log t þ log kð Þ� k�1ð Þ
is increasing on 0< t< k. It has a unique
root t ¼ bk 2 ð0; k�1�:
Proof. The derivative of f is f 0kðtÞ ¼ � log t þ log k;
which is clearly positive on ð0; kÞ: For k¼ 1 it has by
inspection a root at b0 ¼ 0 ¼ k�1: For k> 1, near
the origin,

lim
t!0þ

fk tð Þ ¼ � k�1ð Þ< 0;

and at t ¼ k�1, we have

fk k�1ð Þ ¼ k�1ð Þ log k
k� 1

� �
>0:

Hence, fkðtÞ has a unique root in this interval.

Remark 5. One can solve for bk explicitly in terms of
the inverse function g(z) to z 7! zez on the positive
real axis. Namely, one finds

bk ¼
1�k

g 1�k
ek

� 	 ;

where e ¼ 2:718:::: We will not need this fact, nor the
fact that bk ¼ k�1�Oð1=kÞ for k large, which can be
shown in a variety of ways.

3.2. Analysis of the behavior of X

We next record a uniform asymptotic formula for

N r Tð Þ :¼ # x<T : X xð Þ ¼ r
� �

;

that is, the number of positive integers up to T having
exactly r prime factors, counted with multiplicity. For
fixed r, the formula

N r Tð Þ	 T
logT

log logTð Þr�1

r � 1ð Þ! ; T ! 1ð Þ

(3–1)

is well known, but we shall require an estimate when
r is an increasing function of T. Such an estimate can
be obtained based on a method of [Selberg 54]. A
treatment is given in Tenenbaum [Selberg 54, Chap.
II.6, Theorem 5], as stated below.

Figure 6. A plot of n< 10 000 vs. XðMnMnþ1Þ= log n: Also
shown is the horizontal line y ¼ b3:

6The probable primality of Fn was found by T. D. Noe while that of Ln by
de Water; see OEIS for further credits. Both numbers have passed
numerous pseudoprimality tests. Assuming GRH, one would need to run
about ð30 000Þ4 trials (that is, ð log FnÞ2 tests at a cost of ð log FnÞ2 each,
ignoring epsilons) of the Miller primality test to certify these entries
prime. Unconditionally, the exponent 4 would be replaced by a 6, see
[Lenstra and Pomerance 11]. One could alternatively try the elliptic curve
primality test, which is also unconditional and in practice runs faster,
though a worst-case execution time is currently unknown.
7In some very special cases, one can completely determine sets like RFL.
Indeed, see [Bober et al. 09], where all solutions to x2�3y2 ¼ 1 with
XðxyÞ � 3 are effectively listed.
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The result is given in terms of the function

� zð Þ :¼ 1
C z þ 1ð Þ

Y
p

1� z
p

� ��1

1� 1
p

� �z
 !

:

This infinite product converges on RðzÞ> 0; giving
in this region a non-vanishing meromorphic function
with simple poles at z¼ p for all primes p. Note also
that limz!0þ �ðzÞ ¼ 1; hence for real z 2 ½0; 3=2�; say,
�ðzÞ is bounded above and below by posi-
tive constants.

Proposition 3.1 ([Tenenbaum 95, eqn. (20), p. 205]).
For T � 3, we have uniformly in

1 � r � 3
2
log logT

that

N r Tð Þ¼ T
logT

log logTð Þr�1

r�1ð Þ!

�
r�1

log logT

� �
þO

r

log logTð Þ2
� � !

;

(3–2)

with an absolute implied constant.
This asymptotic continues to hold up to r< ð2��Þ

log logT; but not beyond this point, as � has a pole
at z¼ 2. A different asymptotic formula takes over at
r>ð2þ �Þ log logT; see [Nicolas 84], but it will not be
needed for our purposes.

For our application, we derive from (3–2) a simpli-
fied estimate.

Lemma 3.2. Let r ¼ c log logT with 1
log logT � c< 3

2.
Then as T ! 1;

P X xð Þ ¼ r½ � :¼ N r Tð Þ
T

� logTð Þc�c log c�1þo 1ð Þ
; (3–3)

with absolute implied constants.

Proof. First recall that, on ½0; 3=2�; the function �ð�Þ is
bounded above and below by positive constants. Then
inserting the Stirling’s formula estimate,

r�1ð Þ! � rr�1=2e�r; 1 � r<1ð Þ
into (3–2) yields

P X xð Þ¼ r½ �� 1
logT

log logT
r

� �r�1

r�
1
2er

¼ 1
logT

cð Þ�clog logT�1 clog logTð Þ�1
2 logTð Þc

¼c�
3
2 log logTð Þ�1

2 logTð Þ�1�clogcþc;

from which the estimate (3–3) follows,
since c�1=log logT: w

3.3. Estimate for a single draw

To prove Theorem 1.2, we first obtain upper and
lower bounds on the probability density function for a
single draw.

Theorem 3.1. Let k � 1 be fixed. For any integer
T � 2, draw a vector

x1; x2; :::; xkð Þ 2 1;T½ �k

uniformly. For any small e>0, there is a d ¼ dðeÞ>0 so
that for all T>T0ðeÞ;

P X x1x2 � � � xkð Þ � bk þ eð Þ log logT

 ��e

1

logTð Þ1�d
;

(3–4)

and, for k � 2;

P X x1x2 � � � xkð Þ � bk�eð Þ log logT

 ��e

1

logTð Þ1þd :

(3–5)

3.3.1. Proof of the lower bound (3–4)
Suppose k � 1 and write kc ¼ bk þ e; so that 0< c<
1; and let

r :¼ bc log logTc:
Then

P X x1:::xkð Þ � kc log logT

 � �Yk

j¼1

P X xjð Þ ¼ r

 �

:

Inserting (3–3) gives

P X x1:::xkð Þ � kc log logT

 �� logTð Þc�c log c�1þo 1ð Þ

h ik
:

Write a ¼ kc; then as T ! 1 the exponent of log
T approaches the limiting value

ck�ck log c�k ¼ a�a log aþ a log k�k ¼ fk að Þ�1:

By Lemma 3.1, since a ¼ kc ¼ bk þ e>bk; and
fkðbkÞ ¼ 0; we conclude that as T ! 1 the limiting
exponent exceeds –1 by the positive amount fkðaÞ>0:
Therefore, we can pick dðeÞ>0 and T0ðeÞ depending
on e (and k, which is fixed) so that (3–4) holds.

3.3.2. Proof of the upper bound (3–5)
The upper bound estimate (3–5) is more subtle and
requires k � 2: Again take a fixed e>0 and define c
by kc ¼ bk�e taking e small enough that 0< c< 1;
which is possible since bk>0: Since

X x1 � � � xkð Þ ¼ X x1ð Þ þ � � � þ X xkð Þ;
we have that
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P X x1:::xkð Þ � kc log logT

 �
¼

X
r1þ���þrk�kc log logT

P X x1ð Þ ¼ r1; :::X xkð Þ ¼ rk

 �

We upper bound the total number of summands
trivially byX

r1þ���þrk�kc log logT

1 � log logTð Þk ¼ logTð Þo 1ð Þ
:

It remains to upper bound the contribution of an
individual summand

max
r1þ���þrk�kc log logT

P X x1ð Þ ¼ r1; :::X xkð Þ ¼ rk

 �

:

Write each rj as

rj ¼ cj log logT;

so that

c1 þ � � � þ ck � kc<bk < k�1: (3–6)

On average, these cj’s are less than one, but indi-
vidually they could in principle be large, and we can
apply (3–3) only when cj < 3=2: Let ‘ � f1; :::; kg
denote the indices j for which cj < 3=2 is “low,” and
let h :¼ f1; :::; kg n ‘ be the “high” indices. Abusing
notation, we use the same symbol for their cardinal-
ities, e.g.,

‘þ h ¼ k:

We have that

kc �
X
j2h

cj �
3
2
h;

so

‘ � k 1� 2
3
c

� �
>
1
3
k;

and X
j2‘

cj ¼
X
j

cj�
X
j2h

cj � kc� 3
2
h: (3–7)

For j 2 h; we estimate P½XðxjÞ ¼ rj� � 1 trivially.
This gives a bound

P X x1ð Þ ¼ r1; :::X xkð Þ ¼ rk

 � �Y

j2‘
P X xjð Þ ¼ rj

 �

� logTð Þo 1ð ÞY
j2‘

logTð Þcj�cj log cj�1;

using (3–3). The exponent in this expression, subject
to (3–7), is maximized if, for all j 2 ‘; we set all values
equal cj ¼ g; in which case,

P X x1ð Þ ¼ r1; :::X xkð Þ ¼ rk

 �� logTð Þ‘ g�g log g�1ð Þþo 1ð Þ

:

(3–8)

Now, we have

g ¼ g c; k; ‘ð Þ :¼ kc
‘
� 3h
2‘

¼ 3
2
� k
‘

3
2
� c

� �
:

We bound the exponent (3–8), varying ‘: Viewing
‘ as a continuous variable, we have

g0 :¼ @g
@‘

¼ k

‘2
3
2
� c

� �
¼ 1

‘

3
2
� g

� �
:

The derivative of the exponent of logT in the
‘-variable is then

@

@‘
‘ g�g log g�1ð Þ½ � ¼ g�g log g�1�‘g0 log g

¼ g� 3
2
log g�1;

which by inspection is a positive function of g 2
ð0; 1Þ: It follows that the exponent is maximized at
the largest allowable value of ‘; namely the integer
‘ ¼ k; so h¼ 0. For this value of ‘; we have g ¼ c;
whence as T ! 1 the exponent of logT in (3–8)
approaches the limiting value

k c�c log c�1ð Þ ¼ a�a log aþ a log k�k ¼ fk að Þ�1:

where we have again set a ¼ kc ¼ bk�e: Again using
Lemma 3.1, this limiting exponent is less than –1
since a< bk gives fkðaÞ< 0: Thus, we can choose dðeÞ
and a T0ðeÞ so that (3–5) holds. This completes the
proof of Theorem 3.1.

3.4. Proof of Theorem 1.2

It is now a simple matter to deduce Theorem 1.2
from Theorem 3.1. Instead of a single draw, here we
have a sequence of independent draws, one for each
n ¼ 1; 2; :::; and with T ¼ Cn: By (3–5),

P
X x1;nx2;n � � � xk;nð Þ

log n
� bk � eð Þ 1þ log logC= log n

� �" #

�e
1

n1þd
;

and
P

n�1 1=n
1þd <1: Thus by the Borel-Cantelli

Lemma, the probability of these events occurring
infinitely often is zero; that is, with probability one,
we have

lim inf
n

X x1;nx2;n � � � xk;nð Þ
log n

� bk�e:
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Similarly, the independent events

X x1;nx2;n � � � xk;nð Þ
log n

� bk þ eð Þ 1þ log logC= log n
� �" #

occur with probability at least 1=n1�d; the sum of
which diverges. By the second Borel-Cantelli Lemma,
infinitely many occur with probability one, so

lim inf
n

X x1;nx2;n � � � xk;nð Þ
log n

� bk þ e:

This proves Theorem 1.2.

4. Proof of Theorem 1.3

Let k � 1; C> 1, and R � 1 be fixed throughout this
section (unlike the previous section, where R was
growing). In particular, the estimate (3–1) is perfectly
valid here and will be used regularly. In this section,
we allow implied constants to depend on k, C and R,
since they are fixed.

For each n � 1; we choose uniformly a vector xn ¼
ðx1;n; :::; xk;nÞ 2 ½1;Cn�k; and let

n ¼ n Rð Þ ¼ max n � 1 : X x1;n � � � xk;nð Þ � R
� �

;

with n ¼ 0 if this set is empty and n ¼ 1 if it
is unbounded.

First note that (1–6) follows immediately from
Theorem 1.2. Indeed, if nðRÞ ¼ 1; then Xðx1;n � � �
xk;nÞ ¼ R occurs for infinitely many n’s. But then

lim inf
n�1

X x1;n � � � xk;nð Þ
log n

¼ 0;

contradicting (1–3). Hence, this event has probabil-
ity zero.

To prepare for the proof of (1–7), we record the
following computations. Recall that implied constants
in this section may depend on k, C, and R.

Lemma 4.1. Let k � 1 and R � 1 be fixed. Then for
t � 1;

P X x1;t � � � xk;tð Þ � R

 �� log tð Þk R�1ð Þ

tk
: (4–1)

Assuming further that R � k; we have that

P X x1;t � � � xk;tð Þ � R

 �� log tð ÞR�k

tk
: (4–2)

Proof. The event Xðx1;t � � � xk;tÞ � R is contained inside
the intersection of the events Xðxj;tÞ � R; for all j ¼
1; 2; :::; k: Thus, using (3–1) gives

P X x1;t � � � xk;tð Þ � R

 � �Yk

j¼1

P X xj;tð Þ � R

 �

� 1
logCt

log logCt
� �R�1

R� 1ð Þ!

" #k
;

from which (4–1) follows immediately.
Now assume that R=k � 1: Then, the event Xðx1;t

� � � xk;tÞ � R contains the intersection over all j ¼
1; 2; :::; k of the nonempty events Xðxj;tÞ � R=k: So

P X x1;t � � � xk;tð Þ � R

 � �Yk

j¼1

P X xj;tð Þ �
R
k

� 


� 1
logCt

log logCt
� �R

k�1

R
k � 1
� �

!

" #k
;

which implies (4–2).

Lemma 4.2. If R � k � 1 are fixed, then for all suffi-
ciently large t,

P n Rð Þ ¼ t½ � � log tð ÞR�k

tk
:

Proof. Consider the event nðRÞ ¼ t: This occurs if
and only if Xðx1;t � � � xk;tÞ � R and, for all larger inte-
gers s> t, we have that Xðx1;s � � � xk;sÞ>R: That is,

P n Rð Þ ¼ t½ � ¼ P X x1;t � � � xk;tð Þ � R

 �

�
Y
s>t

1�P X x1;s � � � xk;sð Þ � R

 �� �

� log tð ÞR�k

tk
�
Y
s>t

1�K
log sð Þk R�1ð Þ

sk

 !
;

where we used (4–2) and (4–1). (Here, K> 0 is a con-
stant depending at most on k, C, and R.) Since s � 2;
the infinite product converges absolutely. It bounds
the result below by a uniform positive constant for all
sufficiently large t that avoid possible nonpositive
terms for small s in the infinite product.

Proof of Theorem 1.3. Assume that R � k � 1 and let
m � k�1: Consider the m-th moment of n; namely,

E nm½ � ¼
X
t�0

tm P n Rð Þ ¼ t½ � �
X
t�0

tm
log tð ÞR�k

tk
;

where we used Lemma 4.2. Since m�k � �1; this
sum diverges.

Note the case R ¼ k ¼ 1 gives divergence of the
m¼ 0-th moment; that is, if k¼ 1 then n ¼ 1 with
probability 1.)
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5. Proofs of theorems 1.4 and 1.5

Assume Conjecture 1.1 in this section.

Proof of Theorem 1.4. Let V : Q ¼ t have VðZÞ 6¼ ;:
As is well known and in this case essentially goes
back to Gauss, VðZÞ decomposes into a finite number
of C-orbits,

V Zð Þ ¼ tm
j¼1C � vj;

where C ¼ OQðZÞ is the orthogonal group fixing Q
(see, e.g., [Cassels 78] or [Kontorovich 16, §2]). Since
Q is indefinite, the Zariski closure of C is a torus,

G ¼ Zcl Cð Þ ¼ O 1; 1ð Þ:
Thus, up to finite index, C ¼ hci for some hyper-

bolic matrix c. By Conjecture 1.1, each orbit Oj ¼
C � vj has

lim inf
x;yð Þ2Oj

X xyð Þ
log log jxyj � b2;

and hence the same holds for all of VðZÞ:
Proof of Theorem 1.5. Let a be a quadratic surd having
ordinary continued fraction expansion a ¼ ½a0; a1; a2;
:::� with partial quotients pn=qn; given in matrix form
by

0 1
1 0

� �
0 1
1 a0

� �
0 1
1 a1

� �
��� 0 1

1 an

� �
0
1

� �
¼ pn

qn

� �
:

Now, a has an eventually periodic continued frac-
tion expansion

a ¼ a0; a1; :::ak; akþ1; :::; akþ‘½ �:
After the first few terms, the sequence ðpn; qnÞt

decomposes into finitely many C-orbits, where

C ¼ hci; c ¼ M
0 1
1 akþ1

� �
� � � 0 1

1 akþ‘

� �
M�1;

with

M ¼ 0 1
1 0

� �
0 1
1 a0

� �
0 1
1 a1

� �
� � � 0 1

1 ak

� �
:

The base points of the orbits are given by

vj :¼M
0 1
1 akþ1

� �
��� 0 1

1 akþj

� �
0
1

� �
; 0� j�‘�1:

We may apply Conjecture 1.1 to each orbit, since
they are infinite, and use the asymptotic log log pnqn	
log n: This establishes the claim. w
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