ANALYSIS ON LAAKSO GRAPHS WITH APPLICATION
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ABSTRACT. This article is a continuation of our article in [Canad. J.
Math. Vol. 72 (3), (2020), pp. 774-804]. We construct orthogonal
bases of the cycle and cut spaces of the Laakso graph £,. They are
used to analyze projections from the edge space onto the cycle space
and to obtain reasonably sharp estimates of the projection constant of
Lipy(Ly), the space of Lipschitz functions on £,. We deduce that the
Banach-Mazur distance from TC(L,), the transportation cost space of
Ly, to £ of the same dimension is at least (3n — 5)/8, which is the
analogue of a result from [op. cit.] for the diamond graph D,. We
calculate the exact projection constants of Lipy(Dn,k), where D, is
the diamond graph of branching k. We also provide simple examples
of finite metric spaces, transportation cost spaces on which contain ¢3,
and /%, isometrically.
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1. INTRODUCTION

1.1. Definitions and background. Let (X, d) be a metric space. Consider

a real-valued finitely supported function f on X with a zero sum, that is,

> vesuppf / (v) = 0. A natural and important interpretation of such a func-

tion, is considering it as a transportation problem: one needs to transport

certain product from locations where f(v) > 0 to locations where f(v) < 0.
One can easily see that f can be represented as

(1) f= al(]'l'l - ]‘yl) + a2(1x2 - 1y2) +ot an(lﬂcn - 1yn),

where a; > 0, z;,y; € X, and 1,(z) for u € X is the indicator function of u,
defined by

1 ifx=u,

0 ifz+#u.

We call each such representation a transportation plan for f, and it can

be interpreted as a plan of moving a; units of the product from x; to y;.

The cost of the transportation plan (1) is defined as Y | a;d(x;, ys).
1

1,.(z) =
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Remark 1. It is worth mentioning that in our discussion transportation
plans are allowed to be fake plans, in the sense that it can happen that
there is no product in z; in order to make the delivery to ;. To see what we
mean consider a metric space containing three distinct points z,y, z. Then
(1, -1,)+(1,—1,)+ (1., —1,) is a transportation plan for function 0 (null
transportation problem, nothing is needed or available), although there is
no product in x to be delivered to y. However, it is easy to show that the
defined below optimal transportation plans can be implemented.

We denote the real vector space of all transportation problems by TP (X).
We introduce the transportation cost norm (or just transportation cost)
| fllrc of a transportation problem f as the infimum of costs of transporta-
tion plans satisfying (1). Using the triangle inequality and compactness
it is easy to show that the infimum of costs of transportation plans for f
is attained. A transportation plan for f whose cost is equal to ||f|lrc is
called an optimal transportation plan. The completion of the normed space
(TP(X), | - |lrc) is called a transportation cost space and is denoted by
TC(X).

We use the standard terminology of Banach space theory [4], graph theory
[7], and the theory of metric embeddings [25].

Transportation cost spaces are of interest in many areas and are studied
under many different names (we list some of them in the alphabetical order:
Arens-Eells space, earth mover distance, Kantorovich-Rubinstein distance,
Lipschitz-free space, Wasserstein distance). We prefer to use the term trans-
portation cost space since it makes the subject of this work instantly clear
to a wide circle of readers and it also reflects the historical approach leading
to these notions (see [15, 16]). Interested readers can find a review of the
main definitions, notions, facts, terminology and historical notes pertinent
to the subject in [22, Section 1.6].

By a pointed metric space we mean a metric space (X,dx) with a base
point, denoted by O. For a pointed metric space X with a base point at O by
Lipp(X) we denote the space of all Lipschitz functions f : X — R satisfying
f(O) = 0. It is not difficult to check that Lipo(X) is a Banach space with
respect to the norm || f|| = Lip(f) (Lip(f) is the Lipschitz constant of f).
As is well known TC(X)* = Lipg(X) (see e.g. [25, Section 10.2]).

One of the main goals of this paper is to study the geometry of the spaces
TC(X). We are interested mostly in the case where X is finite. We would
like to mention that for finite X, the space TC(X) is an ¢;-like space in the

sense that is has three qualities which make it close to fllX‘fl.

(1) It has a 1l-complemented subspace isometric to EDXVﬂ, see [17] (a
weaker version was proved earlier in [8]).

(2) It admits a linear embedding into L;[0, 1] with distortion < C'ln|X],
see [, 9, 13]. Although this result is known since 2003, it seems that the

only source where one can find its published proof is [3, Theorem 15].
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(3) It is a quotient of ¢¢ with d < |X|?, see [23]. Another proof and a
more precise statement can be found in Section 7.

However, TC(X) is isometric to £|1X\—1 if and only if X is a weighted tree.
This result can be derived from the general result of [6]. Apparently the
finite case of this result can be considered as folklore, for convenience of the
readers we give a direct proof of the “only if” part (for finite case) in Section
7, the “if” part can be found in [8, Proposition 2.1].

One of the important problems about transportation cost spaces is the
following [8, Problem 2.6]:

Problem 2. It would be very interesting to find a condition on a finite
metric space M which is equivalent to the condition that the space TC(M)
s Banach-Mazur close to (7 of the corresponding dimension. It is not clear
whether it is feasible to find such a condition.

In [8] we investigated this problem for large recursive families of graphs
which include well-known families of diamond and Laakso graphs.

The main goal of this paper is further development of analysis in the space
of functions on diamond and Laakso graphs in order to sharpen results of
[8]. Let us remind the definitions of these families of graphs.

Definition 3 (Diamond graphs). Diamond graphs {D,}°, are defined
recursively: The diamond graph of level 0 has two vertices joined by an edge
of length 1 and is denoted by Dy. The diamond graph D,, is obtained from
D,,—1 in the following way. Given an edge uv € E(D,_1), it is replaced by
a quadrilateral u, a,v, b, with edges ua, av, vb, bu. (See Figure 1.)

Apparently Definition 3 was first introduced in [12].

Let us count some parameters associated with the graphs D,,. Denote
by V(D,) and E(D,) the vertex set and edge set of D,,, respectively. Note
that:

(a) |E(Dy)| =4
(b) ‘V(Dn+1)| = ’V(Dn” + 2|E(Dn)‘
Hence |V(D,,)] = 2(1 + Y1) 47).

Definition 4 (Multibranching diamonds). For any integer k£ > 2, we define
Dy i to be the graph consisting of two vertices joined by one edge. For any
n € N, if the graph D,,_; ; is already defined, the graph D,, ;, is defined as
the graph obtained from D,,_; ; by replacing each edge uv in D,,_; by a
set of k independent paths of length 2 joining u and v. We endow D, j, with
the shortest path distance. We call {D,, }>2, diamond graphs of branching
k, or diamonds of branching k.

Definition 4 was introduced in [20]. Note that:
(a) [E(Dpg)| = (2k)".
(b) [V (Dnirp)| = [V(Dni)| + k[E(Dp )l
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FI1GURE 1. Diamond Ds.

FicUre 2. Laakso graph L;.
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Hence |V(Dn)| = 2+ k Y1) (2k).

Definition 5. Laakso graphs {£,}52 are defined recursively: The Laakso
graph of level 0 has two vertices joined by an edge of length 1 and is denoted
Lg. The Laakso graph L, is obtained from L,,_; according to the following
procedure. Each edge uv € E(L,_1) is replaced by the graph £; exhibited
in Figure 2, the vertices u and v are identified with the vertices of degree 1
of ,Cl.

Definition 5 was introduced in [19], where an idea of Laakso [18] was used.
Note that:

(a) |E(Ln)] = 6"

(0) [V(Lni1)| = [V(Ln)| + 4 E(Ln)].

Hence |V (£,)] = 24437, 6.

Diamond and Laakso graphs play important roles in Metric Geometry
as examples/counterexamples to many natural questions. One of the rea-
sons for interest in the families of graphs introduced in Definitions 3-5 is
that their bilipschitz embeddability characterizes non-superreflexive Banach
spaces [14, 24, 26]. In [21] it was shown that Laakso graphs are incompara-
ble with diamond graphs in the following sense: elements of none of these
families admit bilipschitz embeddings into the other family with uniformly
bounded distortions.

We need the following description of TC(X) in the case where X is
a vertex set of an unweighted graph with its graph distance. Let G =
(V(GQ),E(G)) = (V,E) be a finite graph. Let ¢1(E), ¢2(E), and s (E) be
the spaces of real-valued functions on E with the norms || f|[1 = > ..z |f(e)],

1

1fllz2 = (Xeer 1f(e)]?)?, and || f|loc = maxecp | f(e)], respectively. We also
consider the inner product (f,g) associated with || f||2.

We consider an arbitrary chosen orientation on F, so each edge of E is
a directed edge. We denote by et and e~ the head and tail of an oriented
edge e, respectively. The choice of orientation affects some of the objects
which we introduce, but does not affect the final results. Such orientation
is usually called reference orientation.

For a directed cycle C' in E (we mean that the cycle can be “walked
around” following the direction, which is not related with the orientation of
E) we introduce the signed indicator function of C' by

(2)

1 if e € C' and its orientations in C and G are the same
xc(e) =< —1 if e € C but its orientations in C' and G are different
0 ifedC.

The cycle space Z(G) of G is the subspace of ¢1(F) spanned by the signed
indicator functions of all cycles in G. The orthogonal complement of Z(G)
in /5(F) is called the cut space.
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We will use the fact ([25, Proposition 10.10]) that TC(G) for unweighted
graphs G is isometrically isomorphic to the quotient of ¢;(E) over Z(G):

(3) TC(G) =0(E)/Z(G)

The paper [23] contains a generalization of (3) for weighted graphs, and
thus for arbitrary finite metric spaces.
For convenience of the readers we give a simple proof of (3).

Proof. Observe that if G = (V, F) is endowed with a reference orientation,
each function f € ¢1(E) can be regarded as transportation plan given by

Z f(e)(le* - 1e+)7

ecE

and the cost of this plan is || f||1 (note that f(e) can be negative, so this
transportation plan is not necessarily in the form (1)).

In turn, each such transportation plan gives (after summation) the trans-
portation problem which it solves. Thus (for any fixed reference orienta-
tion) there is a natural linear map T : ¢;(E) — TP(G) = TC(G) (we
consider finite graphs). The statement in the previous paragraph implies
that [ Tfxc < |If]1.

It remains to show that for each transportation problem z € TC(G) there
is f € £1(E), such that T'f = = and || f|1 = ||z||Tc-

Let > ai(13,—1,,) be an optimal transportation plan for z. Since pairs
x;y; do not necessarily form edges, this optimal transportation plan does not
immediately and naturally correspond to a vector in ¢;(E). Nevertheless,
by the definition of a graph distance, for each such pair x;y;, we can find a
shortest path wg i, Ui, .., Ups), iIn G with ug; = @i, up;), = Yi, each pair
uj—14u5; (j =1,...,m(i)) being an edge in G, and m(i) = d(x;, y;).

Then, as is easy to see,

n m(i)

Z Z ai(]‘ujfl,i - ]‘Uj,i)’

i=1 j=1

is also an optimal transportation plan for 2 and this plan corresponds to a
vector f in £1(E) with || f]j1 = ||z|Tc.-

The correspondence is the following: f(e) = 0 is e is not of the form
uj—1,4u;,; for some i and j, and f(e) = 0(e, i, j)ay, if e is of the form w;_; ;u;;,
where 6(e,i,7) = 1 if uj_1; is the tail of e and (e, 4, j) = —1 if uj_1; is the
head of e. O

1.2. Results from [8] on iteratively defined graphs. Let us recall two
results from [8] which are relevant to the present work.

A directed graph B having two distinguished vertices which we call top
and bottom, generates a recursive family {B,}7°, as follows:

e The graph By consists of one directed edge.
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e For n > 1, B, is obtained from B, _1 by replacing each edge by a
copy of B, identifying bottom of B with the tail of the edge and top
of B with the head of the edge. Edges of B,, inherit their directions
from the corresponding copies of B.

In [8] we considered the recursive families corresponding to directed graphs
B satisfying certain natural conditions listed in [8, Section 4.1]), which in-
clude the multibranching diamond and Laakso graphs defined above.

Theorem A. [8, Theorem 4.2] If the directed graph B satisfies the condi-
tions of [8, Section 4.1] and { By} is the corresponding recursively defined

(n)

family then the Banach-Mazur distance to 6‘11 satisfies

d(n) > o
dpym (TC(Bp), 617) > o

for n > 2 and some absolute constant ¢ > 0, where d(n) is the dimension of
TC(By).

The Inn factor in Theorem A was removed for the case of multibranching
diamond graphs and an upper bound was also proved.

Theorem B. [8, Theorem 6.10] The Banach-Mazur distance dy, i from the
transportation cost space TC(D,, 1) to the ¢ space of the same dimension
satisfies
kE—1
2k

1.3. Statement of results. Our main goal is to investigate the analogue
of Theorem B for the Laakso graph £,,. In Section 5 we prove the lower
bound of (3n — 5)/8 for the Banach-Mazur distance from TC(L,) to ¢
(Corollary 17). This removes the Inn factor of Theorem A and is the ana-
logue of the lower bound in Theorem B. However, we have not succeeded in
proving a comparable (e.g. O(n®)) upper bound. The obstacle to proving
an analogue of the upper bound in Theorem B is explained in Section 7.

Our analysis of TC(L,,) is based on the fact (see (3)) that TC(G) is iso-
metrically isomorphic to E(G)/Z(G). In Section 3 we construct orthogonal
basis vectors for the cycle and cut spaces and in Section 2.3 we compute their
norms. They are used in Section 3 to construct a projection P, from the
edge space onto the cycle space of relatively small norm (Theorem 11). In
Section 4 we show that P, is close to being of minimal norm (Theorem 15).
To prove this, we use the method of invariant projections as in Griinbaum
[11], Rudin [27] and Andrew [2], and analyze projections that are invariant
with respect to a certain group of isometries of the edge space.

Let X be a finite-dimensional normed space and let X; be any subspace of
loo that is isometrically isomorphic to X. Recall that the projection constant
of X, denoted \(X), is defined by

AX) = inf{||P]|: P: lso — {x is a projection with range X1}.
(Note that A(X) is independent of the choice of Xj.)

dn+4>dyp > n.
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In Section 5 we deduce from Theorems 11 and 15 reasonably sharp esti-
mates of the projection constant of the space of Lipschitz functions on £,
(Theorem 16). We also present the results described above on the trans-
portation cost space of £,,. In Section 6 we sharpen the proof of Theorem B
from [8] to obtain the exact projection constant of the space of Lipschitz
functions on D, j.

In Section 7, for the convenience of the reader we give a direct proof in

the finite case that if TC(X) is isometric to E'lX‘fl then X is a weighted tree
and make a comment on the number of extreme points in the unit ball of
TC(M).

Section 8 is devoted to simple examples of finite metric spaces, trans-
portation cost spaces on which contain 3 and ¢4 isometrically. Earlier,
more complicated finite spaces with this property were provided in [17]. It
is an open question whether there exist a finite metric space M such that
TC(M) contains £3_ isometrically.

2. PRELIMINARIES

2.1. Definitions and notation needed for the proofs. Let us fix some
notation for the Laakso graph £,. We denote the edge, cycle, and cut spaces
of L, by E,, Z, and C,, respectively. The usual ¢1,¢5, and £, norms on FE,,
are denoted ||-[|1, ||+ ||2, and || - ||oc- The usual inner product is denoted (-, -).

The edges of £; are labelled as in Figure 3. We shall fix the reference
orientation indicated by the arrows.

For the induction arguments which are used it will be convenient to label
the 6 sub-L,,_1’s of £, as A,..., F as shown in Figure 4. For n > 2, the
edges of L,, inherit a reference orientation from £; as indicated by the arrows
in Figure 4. The edges of £,, are oriented from ‘bottom’ to ‘top’ in Figure 4.

For each 1 < j < n, we shall use the term ‘sub-L;’ to refer to any of the
copies of £; contained in L,.

2.2. The cycle and cut spaces of £,,. For each 1 < j < n and for each
given sub-L;, Z, contains the signed indicator function of the outer cycle
(see Figure 3) contained in the given sub-L;. The collection of all such signed
indicator functions is easily seen to be an algebraic basis of Z,,. Counting
the total number of sub-L;’s , it follows that dim Z, = (6" — 1)/5, and
hence dimC,, = (4 - 6" + 1)/5 since C,, is the orthogonal complement of
Z,. However, this basis of Z, is difficult to work with because it is not
orthogonal.

We shall now construct orthogonal bases for Z, and C,, which will be
used later to analyze projections onto Z,.

n = 1: A vector in the edge space will be denoted by a vector

[a;l To T3 T4 Ts 336]7

where z; denotes the coefficient on the edge labelled ¢ (see Figure 3).
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FI1GURE 4. The Laakso graph £,

Note that dim Z; = 1 and dim C; = 5. It is easily seen that Z; is spanned
by

(4) =011 -1 -1 0].
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C', which is the orthogonal complement of Z7, is easily seen to be spanned
by the row vectors (which are orthogonal) of the following matrix:

-1 1 1 1 1 -1
1 0 0 0 0 -1
0 1 -1 0 0 0
o 0 0 1 -1 0
1 1/2 1/2 1/2 1/2 1

()

Note that these 6 vectors form an orthogonal basis of Fj.

n = 2: L9 is formed from £; by replacing each edge of £ by a copy of L.
Similarly, the edge vectors of Ly are obtained by replacing each coefficient
x; of an edge vector of £ by the entries of a 6-dimensional vector.

In this way a vector in Ej generates a vector in Fs according to the
following replacement rule: for each x € R,

z [z x/2 x/2 x/2 /2 z].

We will describe this process of replacement as ‘propagation’.
Define f1 € C as follows:

fi=[1 1/2 1/2 1/2 1/2 1].

Note that

1 1

=g 11 00 1]+3

which expresses f1 as the average of 2 indicator functions of paths connecting

the bottom vertex of £ to the top vertex. Hence hi propagates to an average

of two signed indicator functions of cycles in L£o. In particular, iy propagates
to a vector hg in Zs.

In addition to this vector, each of the 6 copies of £; supports a ‘new’
cycle vector given by

100 1 1 1],

011 -1 -1 0].

(Its coefficients on the other five copies of £; are all zero.) Note that this
vector is orthogonal to the propagated vector since it is orthogonal to f;.

The 5 basis vectors of C propagate to form basis vectors of Cs. In addi-
tion, supported on each of the six copies of £; we obtain 4 ‘new’ orthogonal
cut vectors given by the row vectors of the following matrix:

-11 1 1 1 -1
1 0 0 0 0 -1
0 1 -1 0 0 O
0 0 01 -1 O

Note that the row vectors are orthogonal to fi. Hence the new cut vectors
are orthogonal to the propagated cut vectors. The 5 propagated cut vectors
and the 24 new cut vectors together form an orthogonal basis of the cut
space Cy.
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fn—l
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éfn—\ /;fn—l

fn—l

FIGURE 5. f, defined on each copy of £,_1 in £,

n > 3: This is similar to the case n = 2. The orthogonal bases of Z,_1
and Cp_1 propagate to collections of orthogonal vectors in Z, and C,. In
addition, each of the 6"~ ! copies of £; supports one new cycle vector and 4
new cut vectors as above.

Let us check these claims. The claimed bases of Z, and C,, are orthog-
onal and have the correct cardinality. So it suffices to check they they are
contained in Z,, and C,, respectively. For n > 2, let h,, be the propagation
of h,—1 and let f, be the propagation of f,_1 (see Figure 5). It suffices to
check that h,, € Z,,. A straightfoward induction shows that f,, is the average
of 2™ indicator functions of paths joining the bottom and top vertices of £,,.
Hence (see Figure 6) h,, is the average of 2"~! signed indicator functions of
large cycles in £,,. In particular, h,, € Z, as desired.

Recalling that C,, is the orthogonal complement of Z,,, the orthogonality
of the basis guarantees that the claimed basis of C), is indeed contained in
Ch.

2.3. Norms of cycle and cut vectors. Note that

£l = 4, 1715 = 3.
For n > 2, define f,, € E, inductively as shown in Figure 5. Note that
£l = 4ll fa-1lly = 47, [ fall3 = 3]l fa-1]13 = 3"
Recall from (4) that hy € Z; was defined by
hi=[0 11 -1 -1 0].
Now define g; € C] by
g=[-111 11 -1],
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_fn—l

o N/ e
N N

_fn—l

FIGURE 6. g, and h,, defined on each copy of £,,_1 in L,

and, for n > 2, define g,, € C,, and h,, € Z,, inductively as shown in Figure 6.
Note that h,, is the cycle vector obtained from h; by repeated propagation,
gn is the cut vector obtained from g; by repeated propagation,

3
lgnll = 6l fa-1llr = 54", lgnll3 = 6l fa1ll3 =2 3",
and
n 2 2 4 n
hnlls = 4l fa-ille = 4% lhnlz = 4 fa-rllz = 5 - 3"
Hence, in particular,

lgnlls _ [Pnllt _ 4 5
(6) = = (=)L
lgnll3  lIhaly 3

Note that each sub-£; supports a unique Z,, basis vector H; of the form
hj and a unique C,, basis vector G of the form g;. To justify this claim,
let L; be a sub-L; of £,. For j = 1, Gy and H; are the ‘new’ g; and hq
basis vectors supported on L; arising in the passage from Z,, 1 to Z, and
Cp—1 to (), described above. For j > 1, note that L; evolves from a unique
sub-Ly of L,_1_;, L say. Let G| and H] be the g; and hy basis vectors
supported on L. Propagating G| and H| repeatedly (j —1) times produces
basis vectors G; and H; of the form g; and h; that are supported on L; as
claimed.

The next two lemmas will be used in Section 3.

Lemma 6. Let 1 < j < n and let H; and G; be supported in some sub-L;,
L;, say. Then, for every edge vector e belonging to L;, we have

(1) <eaHj> =0 <87Gj> <.

(2) If (e, H;) # 0 then (e,G;) > 0 and |(e, H;)| = (e, G}).
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Proof. (1) From Figure 6, note that (e, H;) = 0 if and only if e belongs to
the A or F' sub-L;_1 of L; if and only if (e,G;) < 0.

(2) If (e, H;) # 0 then e belongs to the B,C,D or E sub-£;_;. From
Figure 6, note that (e,G;) > 0 and |(e, H;)| = (e, G}). O

To state the next lemma, let us first fix some notation. For 1 < j < n,
let L; be a sub-£; of L, such that (L;)}_; is an increasing chain, ie.,
LiCcLyC---CLy,=L, LetS;be the set of edge vectors contained in
Lj, so that (Sj)?zl is also increasing. Finally, for 1 < j < n, let G; and H;
be the cut and cycle basis vectors corresponding to L; (of the form g; and
h;).

Lemma 7. Let 1 < j <n. Then for every e € 51, we have
1., 1.,..
(e,Gj) = (5)% senlle. Gy)) and (e, H;) = (5) sen((e, Hy),

where a1 = 0 and, for j > 2, a; is the cardinality of the set {1 < r <
j: Sr—1 Csupp(H,)} (here sgn(0) =0).

Proof. The result clearly holds for j = 1. So suppose that the result holds
for j = jo, where 1 < jo < n. For 1 < j < n, let F; be the vector of the
form f; corresponding to L;. From Figure 6, we have

|<6, Gj0+1>‘ = <67 Fjo>'

If Sj,—1 C supp(Hj,), then ajo41 = aj, + 1 and, from Figure 5,

1 1
(e, Fj0> = §<€7Fjo—1> = §|<67Gj0>‘7

(where (e, Fy) = 1 by convention in the case jo = 1). So by the inductive
hypothesis,

(e, Gins1) = 316, Gl snlle, Gii1)) = (3)%0% sgu(le, G 1)

as desired. On the other hand, if Sj _; is disjoint from supp(Hj,), then
ajo+1 = o, and from Figure 5,

<€a Fj0> = <67F}0*1> = |<6a Gj0>|'
So by the inductive hypothesis,
1.,
<€, Gj0+1> = ‘<€7 Gj0>‘ Sgn(<€v Gj0+1>) = (7)%0+1 sgn((e, Gj0+1>)
2

as desired. The stated result for (e, H;) follows from the result for (e, G;)
and Lemma 6. g
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3. A PROJECTION ONTO THE CYCLE SPACE

In this section we define a projection P, from E,, onto its cycle space Z,
which has relatively small (linear in n, i.e., logarithmic in dim(F,)) norm

on (Ep, || - [[1)- -
Let us first observe that the orthogonal projection P, of E, onto Z, has
large (exponential in n) norm on (E,, | - ||1).

Proposition 8.
_ 4
Pl 2 (5"

Proof. Let e be the edge vector in Z,, corresponding to the ‘lowest’ edge
(with respect to the ‘bottom’ to ‘top’ orientation) in the sub-L,_; labelled
as B. Then (e, h,) =1 and (e, h) = 0 if h # h,, is any other basis vector of
Z,. Hence, using (6),

[1Fon 1

1Palli = [[Pa(e)ll = (e, hn) 5 = ()"
172

O

The definition of P, is inductive. P; is the orthogonal projection.

Suppose n > 2. We start the definition of P, by setting P,(g,) = 0 and
P, (g) = 0 for every cut vector g in the orthogonal basis of C,, which is not
of the form g; for some sub-£; (1 < j < n —1). This is to be expected as
we shall show in the next section that this holds for any projection which
is invariant with respect to a natural group of isometries of E,. Thus, to
complete the definition, it suffices to define P,(g;) for each sub-L;.

We shall label the six sub-£,_1’s as A, ..., F as shown in Figure 4. On
A and F we define P, to be a copy of P,,_1. So it suffices to define P,(g;)
for all g; supported on a a sub-£; contained in B,C, D or E. The definition
of P,(g;) will proceed backwards from j =n —1to j = 1.

Let S,—1 be the set of edge vectors of any one of B,C, D or E. Now let
Sn—2 be the set of edge vectors of any one of the 6 sub-L,_o’s supported
in S,_1. Continue in this way to obtain a chain S,,_1 D S,_2 D --- D S57.
Finally, let e be one of the 6 edge vectors contained in S;. Note that S
uniquely determines the chain (Sj)?;ll and that every edge vector e in the
support of B,C, D, or E determines a unique choice of .57.

For each 1 < j <n—1, let G; denote the g; cut vector and let H; denote
the h; cycle vector corresponding to the sub-£; supported on S;. We shall
define P, (G;) inductively along the chain (Sj)g‘:_ll starting with j = n—1. By
varying the chain we define P,(G;) for every cut vector in the orthogonal
basis of C, which is of the form G, for some sub-£; (1 < j < n —1).
Since each sub-L; occurs in several different chains, we must also check that
P, (Gj) is well-defined.

The motivating idea behind this definition is a ‘balancing’ of certain norms
which is described in (iv) below. However, since the proof is lengthy and
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not particularly intuitive, we will describe the strategy before going into the
details. The definition of P, (G;) will involve a sequence of vectors (X;)7_,
and sequences of scalars (z;)7_; and (a;)}_;, which are defined inductively.
The strategy behind the definition of P, and the proof of Theorem 11 below

is as follows:

(i) X; is completely determined by S;_; and is defined inductively as a
linear combination of Hj, Hjy1,..., hy.

(ii) The definition of X; given by (10) has two cases, depending on
whether or not S;_; is contained in the support of H; (equivalently,
whether or not e € supp(H;)).

(iii) The choice of a; as defined by (9) ensures that X; has roughly the
same || - [|1 norm in both cases.

(iv) Hence P,(G;), as defined by (8), has roughly the same norm in both
cases of the definition of X; ;. It is this balancing which ultimately
leads to a projection of relatively small norm. (Note also that P,(G})
is a certain linear combination of Hj 1, Hjt2,..., hy.)

(v) The choice of a; ensures that || X;|1 < x;j :== (1 —aj)zj41.

(vi) It is shown in Lemma 9 that X; = P, (e), and hence ||P,(e)||1 < z1.
This is the key estimate in the proof of Theorem 11.

(vil) (z;)7_, satisfies a recurrence relation which is solved in Lemma 10.
This leads to the estimate ||P,|1 < (n + 1)/2, which is proved in
Theorem 11.

Let us now go through the details of the definition of P,(G;) starting
with j =n — 1. Set

hn 4.,
(7) Xn = sgn({e, hn)) 5 and 1z, = [Xnll = (3) 17
1713 3
where sgn(a) is the sign of a. Define
Gn—l
Pn(i) = an—an7
1Gn-1l3
where a,_1 is defined by the equation
4. 1 4., 4.,
(1= an-1)(3)" ' = (5 +an-0)(R)" '+ (3)" 2

3 2 3 3

(Note that, in fact, a,—1 = —1/8.) Now set
X o (% + an—l)Xn + Sgn(<67 Hn—1>)”1711—]:7:11”§, e c Supp(Hn_l),
1=
! (1— an-1)Xn, e ¢ supp(Hp—1).
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1
Since 1 — ap—1 = 9/8 > 0 and 3 + an—1 = 3/8 > 0, the triangle inequality
and (6) give

I¥umal < [+ nm) Xl + JEEE Y (= a) Xl
= (5 + o) (3" + (Y (1 - an ) (5
— (=)

= (1 = an-1)[[ Xnll1-

Set Tp—-1 = (1 - an,l)HXnHl. Then ||Xn,1||1 S Tp—1-

Let us now turn to the inductive step, which is similar to the case j = n—1.
Suppose that 1 < j <n —1 and that X1, xj41, and P,(G;4+1) have been
defined with ||Xj+1”1 < Tj41- Now define

(8) Pn(HCC;jo%) = a;Xj41,
where a; is defined by the equation
1 44
(9) (1—aj)zjp = (5 + aj)Tis1 + (g)J '
Set
(10) X, = {(% +aj) X 11 +sgn({e, Hj)) IIIijIIE’ e € supp(H,), .
(1 —a;) X1, e ¢ supp(H;).

It is worth observing that, for j > 2, X; does not depend on the particular
choice of e from S;. Hence, for j > 1, P,(G;) defined by (8) is also inde-
pendent of the choice of e as required. But we prove below (Lemma 9) that
X1 = P,(e), which does depend on the choice of e.

1
We prove in Lemma 10 below that 3 +a; > 0and 1—a; > 0. Hence, by
the triangle inequality and (6),
AR

1
1650 < 1(5 + el Xl 4250
1 Hjll3

2

JV (1= ap)l[Xjln

< 15+ adayo + GP IV (- g

= (1 — aj)xjH.
Finally, set ; = (1 — a;)xj4+1 to complete the inductive step.

To check that P,(G;) as given by (8) is well-defined, we need to check that
it depends only on supp(G;) = S;. To see this, note that S; determines its
‘ancestors’ Sji1,...,S,—1 uniquely. Moreover, the definition of X;,; (see
(10) and replace j by j+1) actually depends only on S; since sgn({e, Hj41))
is simply the (constant) sign of H;;1 on Sj. Hence P,(G;) is indeed well-
defined.
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By considering every chain S,—1 D Sp—2 D --- D S1, we define S(g) for
every cut vector g of the form g; for some sub-L;.

The definition of P, is now complete. (Recall that we started the defini-
tion by setting P,(g,) = 0 and P,(g) = 0 for all other cut vectors g in the
orthogonal basis of ), described above.)

Lemma 9. P,(e) = X;.
Proof. Using Lemma 6 and the fact (see (8)) that

G
P( . ):(I'X'+1,
"MG;13 Y

we can combine the two cases in the definition (10) of X as follows:

Po(G;) ) H,
iz el B e

X; = (5)% X1+ sen((e,Gy))

where
1, Sj_1 Csupp(H;),
€ =
0, Sj—1Nsupp(H;)=10
and setting sgn(0) = 0. After repeated application of this formula, starting
at j = 1 and ending at j = n — 1, and then substituting (see (7))

I,
X, = sgn(<evhn>)m’
we obtain
n—1 .
X = 35 sl Go) B semle ) bl sl ) .
j=1

where a1 = 0 and, for j > 2, «; is the cardinality of the set {1 < r <
j: Sp—1 Csupp(H,)}. By Lemma 7, for 1 < j <n-—1,

(e,Gy) = (5)" sen(le, )

and

(e, Hj) = (5)% sgn((e, Hj))
and

(e, hn) = (5)"" sgn((e, hn))
Hence

n—1 ) )
X1 = S e, G NG e py iy e,y
j_

— 1G513 I1H;]13 13
n—1
G; G H; H; h h
_ Pn([ < J J + e, J > J ]+ e, n n
=Gl G2 [ Hjll2" 1 Hj]2 [Pl [| ]2
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To see the last line of the above, note that if (e, g) # 0, for g belonging
to the othogonal basis of C),, then either g = G; for some 1 < j < n —1
or P,(g) = 0. This is because we began the definition of P, by setting
P,(gn) = 0 and P,(g) = 0 for every cut vector g in the orthogonal basis of
(), which is not of the form g; for some sub-£;. On the other hand, if g is
of the form g; and (e, g) # 0 then supp(g) = 5j, i.e., ¢ = G;. Similarly, if
(e, h) # 0, for h belonging to the orthogonal basis of Z,,, then either h = H;
or h = hy. So the above expression for X; is simply P, applied to the
expansion of e with respect to the othogonal basis of F,,.

O

1
Lemma 10. a:lzn andmin(l—aj,%—kaj)>0fo7"1§j<n—1.

Proof. Recall that x, = (4/3)"! (see (7)) and that, for 1 < j <n—1, z;
satisfies the recurrence

1 4.
zj = (1= aj)zj01 = (5 + aj)zjrn + (3) '

which serves to define a; for 1 < j <mn — 1. Hence

2y = 50— @i + (5 + )z + ()7

= S+ 5y

The solution to this recurrence is
T = W(g)j—l'

Note that

AjTjp1 = Tjp1 — Tj = (g)j[—i + = g 7).
Hence a,—1 = —é,an_g =0,and 0 <aj <1forl<j<n-—3. Inallcases
min(lfaj,%+aj) > 0. O

n+1

Theorem 11. ||P,|; < 5

Proof. Recall that P is the orthogonal projection onto Zi:

{il(eg—i—eg—ezl—eg,), 1=2,3,4,5

P 2 ) =
(ei) 0, i=1,6.

Clearly, ||P1]]1 = 1. Now suppose n > 2. If e is an edge vector belonging to
the A or F sub-L,,_1, then, by the inductive hypothesis,
n

1Pu@)ll < [Pl <
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On the other hand, if e belongs to the B,C, D or E sub-L,,_1, then P,(e) =
X, for the chain (Sj)?;ll with e € S7, so by Lemma 10,

n+1

1Pa(e)ll = 1X1ll < 21 = —;

Hence

n—+1
[Pnfl1 = max [ P(e)[[1 < :

4. INVARIANT PROJECTIONS

In this section we prove that the projection P, constructed in the previ-
ous section is close to being optimal. First we show that we may restrict
attention to projections that are ‘invariant’ with respect to a certain group
of isometries of F,,. Then we show that P, is close to being optimal in the
sense that its operator norm is of the same order.

First, let us define a group of isometries of (E,, || - ||2). To that end, let
us say that a cut vector g belonging to the orthogonal basis of the cut space
Cy, is special if g is of the the form g; for some sub-£; for 1 < j <n. We
shall say that g is non-special if g is not of the form g; and g is not the
unique cut vector propagated by [1 1/2 1/2 1/2 1/2 1].

If g is a non-special cut vector then there will be a smallest sub-£; (1 <
J < n) which contains its support. Let us call this the support sub-L; of g.
Let 14 be the natural isometry of E,, induced by interchanging {g > 0} and
{g < 0}. Since there are three types of non-special vector, namely those
cut vectors propagated by the second, third, and fourth rows of (5), vy is
effectuated by either (a) interchanging the B and C sub-L£;_; of its support
(using the inductively defined isomorphism between B and C' and £;_1), or
(b) interchanging the D and E sub-L;_1, or (c) interchanging the A and F
sub-L;_1. Note that Z,, and C,, are ¢4-invariant subspaces.

Similarly, each Z, basis vector h has a support sub-L;. Let ¢; be the
natural isometry induced by interchanging {h > 0} and {h < 0}. Then ¢y,
is effectuated by interchanging the B and E sub-£;_; and the C and D
sub-L;_1 of the support sub-£; of h. Note that Z, and C,, are ¢p-invariant
subspaces.

Note that ¢; = ¢, = ¢~ ! and Yy = Yy = w;l when considered as
isometries of the Euclidean space (E,, || - [|2).

Let G be the (finite) group generated by the collection of all 1, and ¢y,
isometries. Let () be any projection form E, onto Z,. Then

1
P=ic > 67'Q6
e
satisfies | P||1 < ||@Q]]1, and P8 = 6P for all # € G. Moreover, P is also a

projection onto Z, since Z,, and C,, are #-invariant for each 6 € G.
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Lemma 12. If g is non-special or if g is the (unique) cut vector propagated
by [1 1/2 1/2 1/2 1/2 1] then P(g) = 0.

Proof. Since P(g) € Z, it suffices to show that (P(g),h) = 0 for every h
belonging to the basis of Z,. If supp(g) C supp(h) then 14(g9) = —g and
thg(h) = h. So

(P(9), h) = (P(9); ¥g(h)) = (bg(P(9)), h) = (P(ibg(9)), h) = —(P(g), h).
On the other hand, if supp(h) C supp(g) or supp(h) Nsupp(g) = 0 t
¢n(h) = —h and ¢p,(g) = g. So

(P(9), h) = (P(¢n(9)), h) = (¢n(P(9)), h) = (P(9), ¢n(h)) = =(P(g), h).
Hence, in both cases, (P(g), h) = 0. O

hen

Lemma 13. If g is a special cut vector then

P(g) € span{h: supp(g) C supp(h)}.
In particular, P(gy) = 0.

Proof. If supp(h) C supp(g) or supp(h) N supp(g) = 0, then, as above,
(P(g),h) = 0, which gives the result. O

The following lemma will be needed in the proof of Theorem 15 below.

Lemma 14. Let (Hj)?zl be a chain of cycle vectors such that H; is of type
hj and supp(H;) C supp(H;+1) for each 1 < j <mn. Then

n n
3
1" a;Hylh > 1 > a1 Hjlly
=1 =1
n

Jj=r
Proof. Note that, for each 2 < 57 < n,

for all scalars (aj)

1
||Hj|supp(H]'_1)||1 = gHH]”l

Hence
n n—1
” Z ajHjHl = |an|HHn|supp(Hn)\supp(Hn,1) ”1 + ” Z ajHj + aan|supp(Hn,1 ||1
j=1 Jj=1
n—1
> Jag || Halls + 11D agHjll = 2lan] | Halsupp(r, 1l
j=1
3 n—1
= lanlllHnll1 + 1] > aHjlh.
j=1
Iterating this calculation yields the result. O

Theorem 15. Let QQ be any projection from E, onto Z,. Then ||Q|1 >

g(n—i-l).
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Proof. Let P be the invariant projection associated to ). We shall prove
3
that || Py > g(n + 1), which implies the result since || P||; < ||Q||1-
The analysis of P is very similar to the analysis of P, in the previous

section. In particular, we will define an auxiliary sequence of vectors (X;)"

j=1
and an aux1hary sequence of scalars (x;)” The goal is to construct a

j=1
chain (S; )] > with Sy = {e}, such that ||P(e)||; is large, i.e., comparable to
| Pu|l1. This is a chain which (roughly speaking) maximizes || X;|[; at each
bifurcation.

To that end, we shall inductively define a chain of cycle vectors (H j)?:1
such that H; is of type h; and supp(H;) C supp(H,1) for each 1 < j < n.
To start the induction, set H,, = h,. To simplify the calculation of the norm
we define an equivalent norm || - || on span(H;)7_; which is easier to work

with:
n n
1Y " aiHjll = lagl|| Hjllx
p j=1

By Lemma 14

n n n
4
1Y " aiHjll < 1D aHill < 5l > a;Hjl.
7j=1 7j=1 7j=1

Inductively, we define vectors (X ) ', and a decreasing chain Sy,—1 D Sy—2 D
- D 51 such that S; is the support of a sub-£;. To start the inductive
definition, set
H
X, = n 5
[ Hnll3
and let S,,—1 C {h, > 0}. Set

Gn Gn-1 H,_
ALY \H + P )+ Il
IGn-)I3 1Gnall3” 1 Hn- 1H2

Averaging the two vectors above and using convexity of | - ||,

1 H,
)
2||Hn, 12
M1
2" Hys !!2 '
3 14,

4 5(5)

4.,
and -y = [ Xa]| = [|Xn]1 = (3)"

= [|Xn = P

Tn-12 I3 iS5\

H!X I+ H

Gn-1 H,_

Xn
Y )+ Il
IGnall3™ 1 Hn- 1!!2

tn1 = 15"+ P

set
Xn

G-

G l3

Hn—l
1 Hn a3

)+
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and choose S,,_2 C {H,—1 > 0}. Otherwise, set
Gn—l
G 7)

1Gn-1ll3

and choose S,,_o C S,,_1 disjoint from supp(H,,—1).

We now describe the inductive step which is similar to the case j = n—1.
Suppose that 1 < j < n — 1 and that S;, X; and x; have been defined for
i=j4+1,...,n with §; C Sj41 C --- C Sy, and with X; € span{Hj: i <
kE <n}. Set z; = || Xi||

Let G; and H; be the cut and cycle vectors whose support sub-£; is 5.
Note that, by Lemma 13,

P(G;) e span{H;: j+1<i<n}

Xp1 =X, — P(

and hence
G, Xii G, H;
zj = | X1 — P2V =5 + P(57m) + I
’ ’ 1G53 2 IG5113"  11H; H2
is well-defined. Moreover, by convexity,
1 Hj
Tj > W 1+ 5 I
’ ’ 2 [|H; H2
1| Hjlx
*||| il + 5
’ 2 || Hyll3
(since X1 € span{Hy: :j+ 1<k <n})
3 1.4
= gt + 2(3) -
If o H,
2y = |22 4 P 4 ],
IG5113"  11H; ||2
et X G H
Xj = =00+ P(m) +
7T IG513" - 11H;113
and choose Sj_1 C {H; > 0}. Otherwise, set
G
Xj=Xjr1 — P(757m)
T IGHI3

and choose S;_1 C S; disjoint from supp(H;). Note that in both cases we
have X; € span{Hj: j < k < n} as required. This completes the inductive
deﬁnition. Note that Sy = {e} for some edge vector e. Moreover, using
Lemma 6 we can combine both cases to obtain, for 1 < j <n —1,
P,(Gj) H;

+sgn((e, Hj)) "5
I1G513 TNH; I

Xj = (5)% X1+ sen((e, G) T

where

o 1, Sj-1 Csupp(Hj),
! 0, Sj—1Nsupp(H,;) =0.
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Arguing as in the proof of Lemma 9 it follows that

n—1
P(G)) H; H,
Xl = [<67G> J + <67H'> 2 ] + <€>Hn>7
Z Meyig T a2 AL
n—1
G G H; H H. H
=P() [{e,—2 I+ (e, 2 L]+ (e, —" =
;[ R TEE T TR T T TaL T
= P(e)

To see this, note that P(g,) = 0 by Lemma 13 and P(g) = 0 by Lemma 12
unless g is a special cut vector of the form g; for some sub-£;. Note also that
if h is of the form h; and g is of the form g; for some sub-L;, then (e, h) # 0
only if h = H; (1 <j <n)and (e,9) #0onlyif g =G; (1 <j<n). So
the above expression for X is simply P applied to the expansion of e with
respect to the othogonal basis of E,,.

Finally,

3 3 3 n+1
1Pl 2 1Pe)h = Xl 2 S1%l = S > S,

The last inequality follows from the solution of the recurrence in Lemma 10
since

3 14, 4
72 o+ 5 e =5

2(3 3)71—1.

5. APPLICATIONS TO THE TRANSPORTATION COST SPACE OF L,

Theorem 16. The projection constant of Lipg(Ly) satisfies

T2 < A Lipg(£a) < 1
Proof. Note that Lipy(L,) = (TC(L,,))* is isometrically isomorphic to (Cy, ||-
loo) C (En, |l - [loo) by (3), since C,, = Z;-. Let P, be the projection from
(En, | - 1) onto Z, constructed in Section 3. Then I — P} is a projection
from (Ep, || - [|eo) onto Z;- = C,. Thus,

. . n+1 n+3
MLipg(La) < 1= Pill < 1+ [Pl < 1+ 0= = 222

Now suppose @ is any projection from (E,, || - |loc) onto C,. Then I — Q*
is a projection from (E,,| - ||1) onto Z,. So, by Theorem 15,

lRI =T - -1>Z(n+1) -1 =——.

So A(Lipg(£Ln)) > (3n — 5)/8. O

Corollary 17. The Banach-Mazur distance from TC(L,) to ¢V, where
N(n) = (4-6"+1)/5 is the dimension of TC(L,), satisfies

dpar(TC(L,), ) > (3n —5)/8.
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Proof. By duality,
3n—5

dpar(TC(Ln), 41') = dpar (Lipg(Ln), £50) = A(Lipg(La)) > g

O

Remark 18. The interpretation of this corollary in terms of transportation
costs is as follows. For each 1 < j < N, let z; be any transportation plan
on L, of unit cost. Then there exists an absolutely convex combination

N N
> ojm1 4z (3252 [aj| = 1) such that

al 8
ST < > 2).
1Y aasle < 5o (022
7j=1
In contrast to the diamond graphs D,, [8, Theorem 6.5], we have not
been able to prove a good upper bound for the Banach-Mazur distance from
TC(L,) to £Y. However, we have the following matching upper bound for
a linear embedding of TC(L,,) into ¢;.

Corollary 19. There exists X,, C (En, ||-]]1) such that dgp(TC(Ly), X,) <
(n+3)/2.

Proof. Let P, be the projection constructed in Section 3. Then, setting
X, = ker P,,, Theorem 11 yields

+3
st (TC (L) Xn) = dpar (Ba/Zo, |- 1), Xa) < 1T = Puly < 5 O

Remark 20. Actually, as we remarked in the Introduction, for ever finite
metric space X, TC(X) admits a linear embedding into L;[0, 1] with dis-
tortion < C'ln | X|, see [5, 9, 13]. Corollary 19 is just a slightly more precise
statement of this fact for TC(L,,).

For the diamond graph D,,, the transportation cost space TC(D,,) has a
natural monotone Schauder basis which leads to a matching upper bound
for the Banach-Mazur distance. The difficulty in obtaining the same result
for TC(L,,) stems from the fact that the orthogonal basis of C,, constructed
above is not a Schauder basis in the TC(L,,) norm. In fact, the collection of
special cut vectors g; in (Cp, || - ||rc) does not admit a bounded biorthogonal
system (uniformly in n).

To make this precise, for each 1 < j < n — 1, let gj- (1 <i<6"7)be
an enumeration of the 6"~/ basis vectors supported on a sub-L;. Note that
TC(L,) is isometrically isomorphic to (Cy, || - |[tc), where || - || rc denotes
the quotient norm of (Ey, || - ||1)/Zn-

Proposition 21. Suppose g}, € (Cp, | - ||co) satisfies
9n(gn) = llgnlltc  and gi(g5) =0  (1<j<n—-11<i<6"7).
Then ||glloc = (4/3)" 1.
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Proof. Note that ||g,|ltc = ||gn||1- This follows easily from convexity since
each h € Z,, has a symmetric distribution relative to g, (see Figure 6) and
80 |lgn + h|l1 = |lgnll1- (In fact, one can show that Hg;-HTC = ||9;H1 for all 4, j
but this is not needed for the proof.) Note also that (see Figures 5 and 6)

[ fn — gn||1 ||fn||1-

Applying this to each sub-L,,_; of £,, (see Figure 6) gives
lgn = 5 32 2haghall = Sl
(]
for some choice of signs !, _; = 1. Repeating this argument, we get
lgn — 5[5 chrgis + 3 S choaghallh = ()?lonll
i i

for some choice of 5;'. € {-1,0,1}. In general, we get foreach 1 <k <n-—1,

n—1

1 _
lon = 5136 “”Zs M = G lgalls

j=k

for some choice of 53. € {—1,0,1}. Hence

n—1
1 3 - 3 - 3
(1) flgn — 51" Zejg] Ire < ()" Hlgnll = ()" llgnllre:
Jj=1
The desired result follows. O

Remark 22. The proof shows that the collection of special cut vectors g;
does not admit a bounded biorthogonal system (uniformly in n) for its span
in (Cp,|| - |l1) - In particular, the orthogonal basis of C), constructed above
is not a Schauder basis (uniformly in n) in (Cy, || - [|1)-

Moreover, (11) show that the equivalence constant of the basis of || - ||1-
normalized (or || - [|rc-normalized) special cut vectors with the unit vector
basis of ¢; is at least (4/3)" L.

On the other hand, the orthogonal basis of Z,, constructed above is a
monotone Schauder basis for (Z,,| - ||1). This allows an estimate from
above for dBM(Zn,K{V).

Proposition 23. d((Z,, |- |l1), #) < 2n, where N = dim(Z,,) = (6" —1)/5.

Proof. For 1 < j <mn,let H; = (h;)?i? be an enumeration of the Z,, basis
vectors of the form h; for some sub-L;. Since each hj is symmetric on its
support sub-L; it follows by convexity that U" 1H _j is a monotone basis
of (Z,] - ||). Moreover, {h;/||h3\|1 1<i<6m J} is 1-equivalent to the unit

vector basis of E?j since these vectors have disjoint supports. Let z € Z,
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and write x = ZZ;& x, where zj, € span(H,,_x). Then, by monotonicity of
the basis,

n—1 1 1 n—1
> > — >
>l > lell > 3 guae ol > 5037

Hence U?;&Hn_j is 2n-equivalent to a suitably scaled standard basis of /7,
which gives the result. ([

6. MULTI-BRANCHING DIAMOND GRAPHS

In this section we sharpen some of the results of [8, Section 6].

Theorem 24. For each k> 2 andn > 1,

_ 2k—2 +4k2—6k+3+ 2k—2 1
Tok— 1" (2k—12 | (2k—12 2k
In particular, for k=2 and n > 1,

A(Lipy (D))

A(Lipy(Dy)) = %n + g + gzr”.

Proof. Let us recall the representation of D, j, used in [8]. We identify the
edge space of D,, ; with a subspace of L]0, 1] as follows. For n = 1 and
1 < j < k we identify the pair of edge vectors of the j** path of length
2 from the ‘top’ to the ‘bottom’ vertex with the Lji-normalized indicator
functions 2k1(j—1)/k,(2j—1)/(2k)] and 2]?1((2]'_1)/(2],3)7]-/]{3]. For n > 2, the edge
space of D, ;. is obtained from that of D, j_; by subdividing the intervals
corresponding to edge vectors of D,, 1 into 2k subintervals each of length
(2k)~™. Each of the k consecutive disjoint pairs of Lj-normalized indicator
functions of the subintervals corresponds to each pair of edge vectors of the k
paths of length 2 from the top and bottom vertices of the copy of D ; which
replaces the edge vector of D, corresponding to the interval of length
(2k)"~1 which is subdivided. We have now identified the edge vectors of
D,, ;. with the Li-normalized indicator functions

eng = (2K)"1(—1y/ 2k j/km) (1< 5 < (2k)7).
A basis for the cycle space corresponds to the Loo-normalized system
U {gij: 1 < j < (2k)1(k — 1)}, where, setting j = a(k — 1) + b with
0<a< (k)" '—land1<b<k-—1,

Gij = (2k)_l<ei7a2k+2b—1 + € a2k 425 — € a2k 42041 — ez‘,a2k+2b+2)'
For k > 3, note that g; ; owverlaps with g; ;11 when b < k — 2, and hence
this is not an orthogonal basis.
An orthogonal basis for the cut space corresponds to the Log-normalized
system {ho} UUI {h;;: 1 < j < (2k)'}, where hg = 1jg ), and

hij = (2k)""(ei2j—1 — €i2;)-
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Let G be the group of automorphisms of the edge space generated by those
automorphisms which interchange (by translations) the intervals {g; ; > 0}
and {g;; < 0} or the sets {h;; > 0} and {h;; < 0}. Then (as observed in
[8]) arguing as in Lemma 12, the orthogonal projection P, j onto the cut
space is the unique G-invariant projection onto the cut space. First, let us
compute the || - ||1- norm of P, ;. Note that

1 ,
Pn,k(en,l) =ho + 5 Z;(Qk)lhz,l

An elementary calculation which we omit yields

2k — 2 4k? — 6k + 3 2%k—2 1

P, n = :
IPnsen)le = =3n T 5= 12 T @k 12 @y

Now suppose 1 < j < (2n)k. For 1 < i < n, let supp(en ;) C supp(hi (i)
Then
1 :
Pn,k(en,j) =ho+ ) Z sgn(<en,j, hi,r(i)>)(2k)lhi,r(i)'
i=1
So P, i(en,j) has the same distribution as P, (e 1). In particular, | P, x(en ;)1 =
| Prk(€n1)|l1. Hence

| Pk

1= max [Py k(en;)lli = [Pok(ena)l
1<j<(2n)k

Finally, since P, is the unique G-invariant projection onto the cut space
and is self-adjoint,
2k — 2 +4k2—6k+3+ 2k—2 1

n .
2k — 1 (2k —1)2 (2k — 1)2 (2k)™

O

ALip(Dn k) = || Pr g

oo — HPn,kHl -

As a corollary, we get an improvement on [8, Theorem 6.10].

Corollary 25. For each n > 1 and k > 2, the Banach-Mazur distance d,, j
from the transportation cost space TC(Dy, 1) to the ¢Y space of the same
dimension satisfies
S 2%k -2 +4k2—6k+3+ 2k—2 1
n .
mh = ok — 1 (2k—1)2 ' (2k—1)2 (2k)"

d

7. CHARACTERIZATION OF FINITE TREES IN TERMS OF THEIR
TRANSPORTATION COST SPACES

The following result is well known.

Proposition 26. Let M be a finite metric space with n elements. The space
TC(M) is isometric to E?il if and only if M is a weighted tree (the weight
of an edge is the distance between its ends) with its shortest path distance.
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Apparently for finite metric spaces it is folklore. The earliest proof of the
“if” part we are aware of is [10, Corollary 3.6]. Its more general version for
infinite metric spaces was proved in [6]. Our goal is to give a direct proof of
the “only if” part. A simple direct proof of the “if” part can be found in [8,
Proposition 2.1].

Proof. We suppose that TC(M) is isometric to E’f_l and prove that this
implies that T is isometric to a weighted tree.

We may and shall identify the metric space M with a complete weighted
graph, whose vertex set is M and for which the weight of an edge is the
distance between its ends. In such a case the metric of M coincides with
the weighted graph distance of this graph.

An edge uv in this weighted graph is called essential if and only if d(u,v) <
d(u,w) + d(w,v) for every w € M\{u,v}, or, equivalently, if the weighted
graph distance of this graph will change if the edge uv is deleted.

It is well known (and easy to check) that for a finite metric space a
vector f is an extreme point of the unit ball of TC(M) if and only if f =
(1, —1,)/d(u,v) for some essential edge uv in the described weighted graph
(this result is known in a more general form [1], in which it is far from being
easy).

Since €§L—1 has (n — 1) symmetric pairs of extreme points, we conclude
that the weighted graph corresponding to M has (n — 1) essential edges.
Since it is clear that the set of essential edges has to connect the graph, we
get that the set of essential edges in M forms a spanning tree. Recalling the
definition of essential edges, we derive that the metric of M is the distance
of the weighted tree formed by essential edges. U

Corollary 27. The space TC(M) with |M| = n has between (n — 1) and

% symmetric pairs of extreme points and thus is a quotient of Eil for

n(n—1
(n—1)<d<2od)

Proof. In fact, the number of essential edges in a weighted connected simple
graph with n vertices can be any number between (n — 1) and "("T_l) This
follows from the following easy observations: (a) All edges in an unweighted
(equivalently, a weighted graph with all weights equal to 1) connected sim-
ple graph are essential, and the number of such edges can be any number
between (n—1) and w (b) Essential edges induce a connected spanning
graph, and thus there should be at least (n — 1) of them. O

8. ISOMETRIC COPIES OF £3, AND (4 IN TC(M) ON FINITE METRIC
SPACES

One of the results of [17] is a construction of finite metric spaces for which
TC(M) contains isometric copies of £3, and £2_. The goal of this last section
is to provide a simpler constructions of such spaces. We show that
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(1) There exists a 6-point set T such that TC(T') contains £3_ isometri-
cally.
(2) There exists an 8-point set F' such that TC(F) contains ¢4 isomet-
rically.
Below we describe the metric spaces and the transportation problems
spanning ¢3_ and ﬁéo, respectively. We leave it as an exercise the straight-
forward verification of the equality

k
> 0ifi|| =1
i=1
for k=3 or k=4, and 6; = +1.
The description of the metric space 1"

a b ¢ d e f
0 1 1 1 11/2]1/2
1 0 1 1 [1/2]1/2
1 1 0 1 11/2]1/2

1T |1 [ 1]0 [1/2]1)2
121217211721 0 | 1
12(1/2]1/2]1/2] 1 [ 0

O |0 |T

TABLE 1. Distances

The description of three transportation problems on T spanning £3_:

a b C d |el|f
Ali2(-12]1/2-1/2[0]0
fol1/2(1/2 |-1/2|-1/2|10]0
fs] O 0 0 0 |1]-1

TABLE 2. Values of transportation problems
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The description of the metric space F:

d e f g h

1 [1/2]1/2]1/2]1/2
12[1/211/2]1/2
1 [1/2]1/2]1/2]1/2
1 0 [1/2]1/2]1/2|1/2
12(1/2[1/2(1/2] 0 | L | 1 | 1

12121121121 1 | 0
1/201/211/211/2] 1 1
12(121211/2] 1 | 1

el Rl Bl Y

= o~

| = =0
—_

SR | o |0 |T o
—_
—_

= O
O = =

TABLE 3. Distances

. . . . 4 .
The description of four transportation problems on F' spanning £ :

a b ¢ d e f g h
fill/21-1/2]1/2|-1/2| 0 0 0 0
fol1/2]1/2 |-1/2|-1/2| O 0 0 0
f3| O 0 0 0 |1/2(-1/2|1/2 |-1/2
fa] O 0 0 0 [1/2]1/2 |-1/2]-1/2

TABLE 4. Values of transportation problems
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