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NEWELL-LITTLEWOOD NUMBERS

SHILIANG GAO, GIDON ORELOWITZ, AND ALEXANDER YONG

Abstract. The Newell-Littlewood numbers are defined in terms of their cel-
ebrated cousins, the Littlewood-Richardson coefficients. Both arise as tensor

product multiplicities for a classical Lie group. They are the structure co-
efficients of the K. Koike-I. Terada basis of the ring of symmetric functions.
Recent work of H. Hahn studies them, motivated by R. Langlands’ beyond
endoscopy proposal; we address her work with a simple characterization of
detection of Weyl modules. This motivates further study of the combinatorics
of the numbers. We consider analogues of ideas of J. De Loera-T. McAllister,
H. Derksen-J. Weyman, S. Fomin–W. Fulton-C.-K. Li–Y.-T. Poon, W. Fulton,
R. King-C. Tollu-F. Toumazet, M. Kleber, A. Klyachko, A. Knutson-T. Tao,
T. Lam-A. Postnikov-P. Pylyavskyy, K. Mulmuley-H. Narayanan-M. Sohoni,
H. Narayanan, A. Okounkov, J. Stembridge, and H. Weyl.
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1. Introduction

1.1. Overview. The Newell-Littlewood numbers [31, 35] are defined as

(1) Nμ,ν,λ =
∑

α,β,γ

cμα,βc
ν
α,γc

λ
β,γ ,

where the indices are partitions in

Parn = {(λ1, λ2, . . . , λn) ∈ Zn
≥0 : λ1 ≥ λ2 ≥ . . . ≥ λn}.

Here, cμα,β is the Littlewood-Richardson coefficient. The latter numbers are of inter-
est in combinatorics, representation theory and algebraic geometry; see, e.g., the
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6332 SHILIANG GAO ET AL.

books [9,10,41]. We study Nμ,ν,λ by analogy with modern research on their better
known constituents.

For an n-dimensional complex vector space V over C and λ ∈ Parn, the Weyl
module (or Schur functor) Sλ(V ) is an irreducible GL(V )-module ([10, Lectures 6
and 15] is our reference). The Littlewood-Richardson coefficient is the tensor prod-
uct multiplicity

(2) Sμ(V )⊗ Sν(V ) ∼=
⊕

λ∈Parn

Sλ(V )⊕cλμ,ν .

The Newell-Littlewood numbers arise in a similar manner, where GL(V ) is re-
placed by one of the other classical Lie groups G. That is, suppose W is a com-
plex vector space, with a nondegenerate symplectic or orthogonal form ω, where
dimW = 2n+ δ and δ ∈ {0, 1}. Fix a basis {ε1, ε2, . . . , ε2n+δ} such that

ω(εk, ε2n+1+δ−k) = ±ω(ε2n+1+δ−k, εk) = 1, if 1 ≤ i ≤ n+ δ

(other pairings are zero). Let G be the subgroup of SL(W ) preserving ω. Then
G = SO2n+1 if dimW = 2n+ 1 and ω is orthogonal. It is G = Sp2n if dimW = 2n
and ω is symplectic. Finally, G = SO2n if dimW = 2n and ω is once again
orthogonal. These are, respectively, groups in the Bn, Cn, Dn series of the Cartan-
Killing classification.

If λ ∈ Parn, H. Weyl’s construction [47] (see also [10, Lectures 17 and 19]) gives
a G-module S[λ](W ). In the stable range ℓ(μ) + ℓ(ν) ≤ n,

(3) S[μ](W )⊗ S[ν](W ) ∼=
⊕

λ∈Parn

S[λ](W )⊕Nμ,ν,λ ;

this is [24, Corollary 2.5.3]. S[λ](W ) is an irreducible G-module, except in type Dn,
where irreducibility holds if λn = 0 (otherwise it is the direct sum of two irreducible
G-modules).

For any semisimple connected complex algebraic group G there is an irreducible
G-module Vλ for each dominant weight λ. Uniform-type combinatorial frameworks
for tensor product multiplicities (subsuming cνλ,μ and Nμ,ν,λ) are central in combi-

natorial representation theory; see, e.g., the surveys [2,25] for details and references.
To compare and contrast, Nμ,ν,λ is itself independent of the choice of G [24, The-
orem 2.3.4].

Our thesis is that, like the Littlewood-Richardson coefficients, the Newell-
Littlewood numbers form a subfamily of the general multiplicities whose combina-
torics deserves separate study. Indeed, we reinforce the parallel with the Littlewood-
Richardson coefficients by developing the topic from first principles and symmetric
function basics.

1.2. Earlier work. Reading includes K. Koike-I. Terada’s [24] which cites
D. E. Littlewood’s book [32] and R. C. King’s [17, 18]. In turn, [17, 18] refer-
ence the papers of M. J. Newell [35] and D. E. Littlewood [31]. The Schur function
sλ, an element of the ring Λ of symmetric functions, is the “universal character” of
Sλ(V ). By analogy, [24, Section 2] establishes universal characters of S[λ](W ) for
the other classical groups.

In addition, [24, Theorem 2.3.4] shows that, in the stable range, the tensor
product multiplicities coincide across the classical Lie groups (of types B,C,D).
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For definiteness, we discuss Sp. It has a universal character basis {s[λ]} of Λ such
that

(4) s[μ]s[ν] =
∑

λ

Nμ,ν,λs[λ],

where μ, ν, λ are arbitrary partitions; we call this the Koike-Terada basis.1 This
basis specializes to the characters for fixed Sp2n, just as the specialization

(5) sλ �→ sλ(x1, x2, . . . , xn, 0, 0, . . .)

does for GLn. Their work discusses “modification rules” (cf. [17, 18]) to non-
positively compute multiplicities outside the stable range. See [27] for recent work
connecting the stable range combinatorics to crystal models in combinatorial rep-
resentation theory.

This paper does not focus on the Koike-Terada basis per se. It is devoted to the
inner logic of the Newell-Littlewood numbers. We were inspired by H. Hahn’s [13]
which concerns the case μ = ν = λ; we engage her work in Section 4.

1.3. Summary of results. Section 2 collects elementary facts about Nμ,ν,λ

(Lemma 2.2). We will need a Pieri-type rule (Proposition 2.4). This appears as
S. Okada’s [36, Proposition 3.1] with a short derivation from (1) (which we include
for completeness); see also earlier work of A. Berele [3] and S. Sundaram [44].

In Section 3, we derive our initial result:

(I) Theorem 3.1 describes the “shape” of (4). It characterizes the sizes of λ
that appear in (4) and gives a comparison result for partitions of different
sizes. This result suggests the Unimodality Conjecture 3.7.

Section 4 is about the original stimulus for our work. We address a combinatorial
question of H. Hahn [13] (who was motivated by R. Langlands’ beyond endoscopy
proposal [30] towards his functoriality conjecture [29]). More specifically, we prove

(II) Theorem 4.1, which is equivalent to showing

Nλ,λ,λ > 0 if and only if |λ| ≡ 0 (mod 2).

In [13], “⇒” was proved (see Lemma 2.2(V)) and the “⇐” implication was
established for three infinite families of λ.

In Section 5, suggested by the simplicity of (II), we develop a broader framework
by investigating “polytopal” aspects of (1).

(III) Theorem 5.1 shows that Nμ,ν,λ counts the number of lattice points in a
polytope Pμ,ν,λ that we directly construct (avoiding use of [4]). Its Corol-
lary 5.3 says that

NLn := {(μ, ν, λ) ∈ Par3n : Nμ,ν,λ > 0}

is a semigroup.
(IV) We state two logically equivalent saturation conjectures about NLn, i.e.,

Conjectures 5.5 and 5.6. We prove special cases (Corollary 4.5, The-
orem 5.8, Corollary 5.16). While saturation holds for the Littlewood-
Richardson coefficients [22], it does not hold for the general tensor prod-
uct multiplicities (although it is conjectured for simply-laced types). The

1[24] defines another basis, for SO. It also has Nμ,ν,λ as its structure coefficients [24, Theo-
rem 2.3.4 (3)]. Hence, for our purposes, discussing Sp rather than the SO basis is merely a matter
of choice.
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6334 SHILIANG GAO ET AL.

aforementioned results and conjectures provide a new view on this subject
(compare, e.g., [16, 26] and the references therein).

(V) Among the Horn inequalities [14] are the Weyl inequalities [46]. Our “ex-
tended Weyl inequalities” hold whenever Nμ,ν,λ > 0; this is Theorem 5.13.
Theorem 5.15 is our justification of the nomenclature; it establishes that
the (extended) Weyl inequalities are enough to characterize NL2. Our proof
uses a generalizable strategy; we will return to this in a sequel.

(VI) We also discuss limits of the analogy with cλμ,ν . Theorem 5.27 shows that
R. C. King-C. Tollu-F. Toumazet’s Littlewood-Richardson polynomial con-
jecture [19] (proved by H. Derksen-J. Weyman [7]) has no näıve Newell-
Littlewood version.

(VII) Section 5.5 sketches the computational complexity implications of Theo-
rem 5.1.

The “nonvanishing” results of Section 5 are related to Section 6, where we prove:

(VIII) Theorem 6.1, which characterizes pairs (λ, μ) such that (4) is multiplicity-
free. This is an analogue of J. R. Stembridge’s [42, Theorem 3.1] for Schur
functions, with a similar, self-contained proof.

Section 7 gathers some miscellaneous items. This includes two open problems,
and

(IX) Theorem 7.4, which generalizes the results of T. Lam–A. Postnikov–
P. Pylyavskyy [28] that solved conjectures of A. Okounkov [37] and of
S. Fomin-W. Fulton-C.-K. Li-Y.-T. Poon [8].

The appendix gives a list of decompositions (4) for the reader’s convenience.

2. Preliminaries

2.1. The Littlewood-Richardson rule. Let Par be the set of all partitions (with
parts of size 0 being ignored). Identify λ ∈ Par with Young diagrams of shape λ
(drawn in English convention). Let ℓ(λ) be the number of nonzero parts of λ and

let |λ| :=
∑ℓ(λ)

i=1 λi be the size of λ, that is, the number of boxes of λ. If μ ⊆ λ,
the skew shape λ/μ is the set-theoretic difference of the diagrams when aligned by
their northwest most box.

A semistandard filling T of λ/μ assigns positive integers to each box of λ/μ such
that the rows are weakly increasing from left to right, and the columns are strictly
increasing from top to bottom. The content of T is (c1, c2, . . .) where ci = #{i ∈ T}.
Let

rowword(T ) = (w1, w2, . . . , w|λ/μ|)

be the right to left, top to bottom, row reading word of T . We say rowword(T ) is
ballot if for each i, k ≥ 1 we have

#{wj = i : j ≤ k} ≥ #{wj = i+ 1 : j ≤ k}.

T is ballot if rowword(T ) is ballot. The Littlewood-Richardson coefficient cλμ,ν is the
number of ballot, semistandard tableaux of shape λ/μ and content ν; we will call
these LR tableaux.
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Example 2.1. If μ = (3, 1), ν = (4, 2, 1), λ = (5, 4, 2) then cλμ,ν = 2 because of
these two tableaux:

T1 = 1 1
1 2 2

1 3

and T2 = 1 1
1 1 2

2 3

Here rowword(T1) = (1, 1, 2, 2, 1, 3, 1) and rowword(T2) = (1, 1, 2, 1, 1, 3, 2). �

The Littlewood-Richardson rule implies that Nμ,ν,λ is well-defined for μ, ν, λ ∈
Par.

2.2. Facts about Nμ,ν,λ. We gather some simple facts we will use; we make no
claims of originality:

Lemma 2.2 (Facts about the Newell-Littlewood numbers).

(I) Nμ,ν,λ is invariant under any S3-permutation of the indices (μ, ν, λ).
(II) Nμ,ν,λ = cλμ,ν if |μ|+ |ν| = |λ|.
(III) Nμ,ν,λ = 0 unless |μ|, |ν|, |λ| satisfy the triangle inequalities (possibly with

equality), i.e., |μ|+ |ν| ≥ |λ|, |μ|+ |λ| ≥ |ν|, and |λ|+ |ν| ≥ |μ|.2

(IV) Nμ,ν,λ = 0 if |ν ∧ λ|+ |μ ∧ ν| < |ν|.3

(V) Nμ,ν,λ = 0 unless |λ|+ |μ|+ |ν| ≡ 0 (mod 2).
(VI) Nμ,ν,λ = Nμ′,ν′,λ′ where μ′ is the conjugate partition of μ, etc.

Proof. (I) is immediate from (1).
By (1), Nμ,ν,λ = 0 unless there exist α, β, γ ∈ Par such that cμα,β , c

ν
α,γ , c

λ
β,γ >

0. Henceforth we will call α, β, γ a witness for Nμ,ν,λ > 0. These Littlewood-
Richardson coefficients are zero unless

|α|+ |β| = |μ|, |α|+ |γ| = |ν|, |β|+ |γ| = |λ| (respectively).

Therefore

(6) 2|α|+ |λ| = |μ|+ |ν|,

which implies |λ| ≤ |μ|+ |ν|. Now apply (I) to get (III). If |λ| = |μ|+ |ν| then (6)
implies the only witness is α = ∅, β = μ, γ = ν, hence Nμ,ν,λ = cλμ,ν , as asserted by
(II).

For (IV), any such γ satisfies γ ⊆ ν, λ. Hence |γ| ≤ |ν∧λ|. Similarly, |α| ≤ |μ∧ν|.
Now combine these inequalities with the fact that |α|+ |γ| = |ν|.

(V) holds by (6).

Finally, (VI) holds by the standard fact cμα,β = cμ
′

α′,β′ , cνα,γ = cν
′

α′,γ′ and cλβ,γ =

cλ
′

β′,γ′ . �

2.3. Symmetric functions. Let Λ be the ring of symmetric functions in x1, x2, . . ..
Define the (skew) Schur function

sμ/λ(x1, x2, . . .) :=
∑

T

xT ,

where the sum is over semistandard Young tableaux of skew shape μ/λ.

2In the case of reduced Kronecker coefficients gλμ,ν these are called Murnaghan’s inequalities.
3Recall ν ∧ λ is the partition whose i-th part is min(νi, λi).
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It is true that sμ/λ ∈ Λ. Moreover, the {sλ : λ ∈ Par, |λ| = N} is a basis of Λ(N),

the degree N homogeneous component of Λ =
⊕

N Λ(N). In fact,

(7) sλ/μ =
∑

ν

cλμ,νsν ,

and

(8) sμsν =
∑

λ

cλμ,νsλ.

There is an inner product 〈·, ·〉 : Λ × Λ → Q such that 〈sλ, sμ〉 = δλ,μ; see [41,
Chapter 7].

We will make use of the following asymmetric formula for Nμ,ν,λ:

Proposition 2.3. Nμ,ν,λ =
∑

α〈sμ/αsν/α, sλ〉, where the sum is over α ⊆ μ ∧ ν.

Proof. Combine (7), (8) and (1) with the fact that sμ/α = 0 unless α ⊆ μ and
sν/α = 0 unless α ⊆ ν. �

Although we will not need it in this paper, we recall the definition of s[λ] from [24,
Definition 2.1.1]. Let ht = s(t) be the homogeneous symmetric function of degree t.
If t < 0 then by convention ht = 0. Then if λ ∈ Parn, let λ

∗ = (λ1, λ2 − 1, . . . , λn −
(n − 1)). Below, hλ∗ denotes the column vector (hλ1

, hλ2−1, . . . , hλn−(n−1))
t and

hλ∗+j(1n) + hλ∗−j(1n) means the column vector

(hλ1+j+hλ1−j , hλ2−1+j+hλ2−1−j , . . . , hλi−(i−1)+j+hλi−(i−1)−j , . . . , hλn−(n−1)+j

+ hλn−(n−1)−j)
t.

With this notation,

s[λ] :=
∣∣hλ∗ hλ∗+(1n) + hλ∗−(1n) · · · hλ∗+j(1n) + hλ∗−j(1n) · · · hλ∗+(n−1)(1n)

+hλ∗−(n−1)(1n)

∣∣ .
Hence, for example

s[4,2,1] =

∣∣∣∣∣∣

h4 h5 + h3 h6 + h2

h1 h2 + 1 h3

0 1 h1

∣∣∣∣∣∣
= s4,2,1 − s4,1 − s3,2 − s3,1,1 + s3 + s2,1.

2.4. Pieri rules. The Pieri rule for Schur functions [41, Theorem 7.5.17] states
that

(9) sμs(p) =
∑

λ

sλ,

where the sum is over all λ such that λ/μ consists of p boxes, none of which are in
the same column. We need the Newell-Littlewood analogue. It was known, and we
include a proof which is the same as [36, Proposition 3.1] for completeness:

Proposition 2.4 (Pieri-type rule; Theorem 13.1 of [44] and Proposition 3.1 of

[36]). Nμ,(p),λ equals the number of ways to remove |μ|+p−|λ|
2 boxes from μ (all

from different columns), then add |λ|+p−|μ|
2 boxes (all to different columns) to make

λ. In other words,

(10) s[μ]s[(p)] =
∑

λ

s[λ],
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where the sum is over the multiset of λ obtained from μ by removing a horizontal
strip of j boxes where 0 ≤ j ≤ p and then adding a horizontal strip of length p− j
boxes.

Proof. Consider any α, β, γ such that cμα,βc
(p)
α,γcλβ,γ > 0. By (6), 2|α| = |μ|+ p− |λ|,

so |α| = |μ|+p−|λ|
2 and similarly |γ| = |λ|+p−|μ|

2 . Since α, γ ⊆ (p), we have that

α = ( |μ|+p−|λ|
2 ) and γ = ( |λ|+p−|μ|

2 ). Moreover, by (9), c
(p)
α,γ = 1. Therefore,

(11) Nμ,(p),λ =
∑

β

cμ
(
|μ|+p−|λ|

2 ),β
cλ
β,( |λ|+p−|μ|

2 )
.

By (9), cμ
( |μ|+p−|λ|

2 ),β
∈ {0, 1}. It is 1 if and only if one can remove |μ|+p−|λ|

2 boxes

from different columns of μ to get β. Similarly, cλ
β,( |λ|+p−|μ|

2 )
∈ {0, 1}, and is 1 if

and only if one can add |μ|+p−|λ|
2 boxes to different columns of β to get λ. We are

done proving the Nμ,(p),λ claim by (11). The assertion (10) is a straightforward
rephrasing of the first claim. �

Example 2.5. We have

s[2,1]s[3] = s[1,1]+s[2]+s[2,1,1]+s[2,2]+2s[3,1]+s[4]+s[3,2,1]+s[4,1,1]+s[4,2]+s[5,1].

For example, λ = (3, 1) can be obtained in two ways from μ = (2, 1) using j = 1:

→ → and → → .

This explains the multiplicity in the computation. �

Proposition 2.4 immediately implies a special case that we also use.

Corollary 2.6. s[(1)]s[ν] =
∑

λ s[λ], where the sum is over all partitions λ obtained

by adding a box to ν or removing a box from ν.4

3. Shape of s[μ]s[ν]

We describe some salient features of s[μ]s[ν]. Let μΔν = (μ \ ν) ∪ (ν \ μ) be the
symmetric difference of λ and μ.

Theorem 3.1. Fix μ, ν ∈ Par.

(I) There exists λ ∈ Par with |λ| = k and Nμ,ν,λ > 0 if and only if

k ≡ |μΔν| (mod 2) and |μΔν| ≤ k ≤ |μ|+ |ν|.

(II) If Nμ,ν,λ > 0 with |λ| > |μΔν|, there exists λ↓↓ such that Nμ,ν,λ↓↓ > 0,

λ↓↓ ⊂ λ and |λ↓↓| = |λ| − 2.
(III) If Nμ,ν,λ > 0 with |λ| < |μ| + |ν|, there exists λ↑↑ such that Nμ,ν,λ↑↑ > 0,

λ ⊂ λ↑↑ and |λ↑↑| = |λ|+ 2.

4Let (Y,≤) be Young’s poset. Standard tableaux biject with walks in Y from ∅ to λ, where
each step is a covering relation. Iterating (9) shows sk

(1)
=

∑

λ fλsλ, where fλ counts standard

Young tableaux of shape λ. An oscillating tableau of shape λ and length k is a walk in Y starting
at ∅ and ending at λ with k edges such that each step θ → π either has π/θ or θ/π being a single

box. Let oλ,k be the number of these tableaux. It is known that oλ,k =
(

k
|ν|

)

(k− 1)!!fν . Iterating

Corollary 2.6 gives sk
[(1)]

=
∑

λ oλ,ks[λ]; see [3,36,44].
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Proof.
(I) By Proposition 2.3, Nμ,ν,λ > 0 if and only if there exists α ⊆ μ∧ ν such that

〈sμ/αsν/α, sλ〉 > 0. Now,

(12) sμ/αsν/α �= 0 ⇐⇒ α ⊆ μ ∧ ν

Thus, by (7) and (8) combined, it suffices to characterize the possible values of
deg(sμ/αsν/α). By taking α = ∅ we obtain that deg(sμ/αsμ/α) ≤ |μ|+ |ν|. Consid-
ering α = μ ∧ ν shows |μΔν| ≤ deg(sμ/αsμ/α). Also, it is clear that

(13) deg(sμ/αsν/α) ≡ deg(sμ/θsν/θ) (mod 2), ∀α, θ ⊆ μ ∧ ν.

Thus (I) follows.
(II) We need two claims.

Claim 3.2. Suppose cμα,β > 0 and α ⊂ α↑ ⊆ μ with |α↑/α| = 1. Then there exists

β↓ ⊂ β with |β/β↓| = 1 such that cμ
α↑β↓ > 0.

Proof of Claim 3.2. It is possible to prove this using the Littlewood-Richardson
rule, however for brevity, we will use a result [1, Proposition 2.1] which concerns
the equivariant generalization Cν

λ,μ of cνλ,μ. For our purposes, it suffices to know

that Cν
λ,μ is a polynomial that is nonzero only if |λ| + |μ| ≥ |ν| and moreover,

Cν
λ,μ = cνλ,μ if |λ|+ |μ| = |ν|.

Given cμα,β > 0, by part (A) of [1, Proposition 2.1] for any α ⊂ α↑ ⊂ μ (where

α↑ is α with a box added) we have Cμ
α↑,β

�= 0 (as a polynomial). However, by part

(B) of [1, Proposition 2.1], there exists β↓ ⊂ β (which is β with a box removed)
such that Cμ

α↑,β↓ �= 0. Since |α↑|+ |β↓| = |μ|, Cμ
α↑,β↓ = cμ

α↑,β↓ > 0. �

Claim 3.3. Suppose β, γ, β↑, γ↑ are partitions such that β ⊂ β↑ where |β↑/β| = 1,

and γ ⊂ γ↑ where |γ↑/γ| = 1. If cλβ↑,γ↑ > 0 then there exists λ
↓↓

⊂ λ with

|λ/λ
↓↓
| = 2 such that cλ

↓↓

β,γ > 0.

Proof of Claim 3.4. By Pieri’s rule (9),

sβs(1) = sβ↑ + (positive sum of Schur functions)

and

sγs(1) = sγ↑ + (positive sum of Schur functions).

Hence,

(14) sβsγs
2
(1) = sβ↑sγ↑ + (positive sum of Schur functions)

Expanding the lefthand side of (14) into the basis of Schur functions, gives

sβsγs
2
(1) =

∑

θ

cθβ,γ(sθs
2
(1)).

Hence, by Pieri’s rule (9),

[sκ]sβsγs
2
(1) �= 0

only if κ is obtained from θ with cθβ,γ > 0 with θ ⊂ κ and |κ/θ| = 2. Now, since the

righthand side of (14) is Schur positive the same must be true of any κ such that
[sκ]sβ↑sγ↑ . In particular this is true of κ = λ. �
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Since Nμ,ν,λ > 0, there exists (α, β, γ) such that cμα,βc
ν
α,γc

λ
β,γ > 0. Since |λ| >

|μΔν| we must have α � μ ∧ ν. Hence let

α � α↑ ⊆ μ ∧ ν

be α with a box added. By two applications of Claim 3.2, there exists β↓ and γ↓

which are respectively β and γ with a box removed such that cμ
α↑β↓ , c

ν
α↑γ↓ > 0. Now

apply Claim 3.3 with λ = λ and β↓, γ↓, β, γ. The conclusion is that (α↑, β↓, γ↓) is
a witness for Nμ,ν,λ↓↓ and λ↓↓ ⊂ λ of two smaller size, as desired.

(III) We need two additional claims.

Claim 3.4. Suppose cλβ,γ > 0. If γ↑ ⊃ γ with |γ↑/γ| = 1 then there exists λ↑ ⊃ λ

with |λ↑/λ| = 1 such that cλ
↑

β,γ↑ > 0.

Proof of Claim 3.4. Fix a rectangle R = ℓ×(m−ℓ) (for some positive integers ℓ,m)
sufficiently large to contain β, γ, λ. Given a Young diagram θ ⊆ R let θ∨ be the
180-degree rotation of R \ θ. A Schubert calculus symmetry for the Grassmannian
Grℓ(C

m) states that

(15) cλβ,γ = cβ
∨

λ∨,γ .

Choose ℓ,m sufficiently large so that γ↑ ⊂ β∨. By Claim 3.2, there exists (λ∨)↓

which is λ∨ with a box removed such that cβ
∨

(λ∨)↓,γ↑ > 0. By (15),

0 < cβ
∨

(λ∨)↓,γ↑ = c
((λ∨)↓)∨

β,γ↑ .

By definition of “∨”, ((λ∨)↓)∨ is of the form λ↑ such that cλ
↑

β,γ↑ > 0. �

Claim 3.5. Suppose cμα,β > 0. For any ∅ ⊆ α↓ ⊂ α with |α/α↓| = 1 there exists

β↑ ⊃ β with |β↑/β| = 1 such that cμ
α↓,β↑ > 0.

Proof of Claim 3.5. Since cμα,β > 0, there exists an LR tableau T of shape μ/α and

content β. We are done once we modify T to give an LR tableau T ′ of shape μ/α↓

and content β↑, as follows: Place 1 in b1 = α/α↓. Find the first 1 (if it exists, say
in b2) in the column reading (top to bottom, right to left) word order after b1 and
turn that into a 2. Next, find the first 2 (again, if it exists, say in b3) in the column
reading word order after b2 and change that to a 3. We terminate and output T ′

when, after replacing the k−1 in bk with k, there is no later k in the column reading
order.

Since the number of boxes of T is finite, this process does end. T ′ is clearly of
the desired shape. The content of T ′ is

β↑ := (β1, β2, . . . , βk + 1, βk+1, . . .).

It remains to check two things:
(T ′ is semistandard): Since T ′(b1) = 1, we can only violate semistandardness if

the box d1 directly below b1 has T (d1) = 1. However, in that case T ′(d1) = 2, by
construction. In general, since

T ′(bj) := T (bj) + 1(= j) for 2 ≤ j ≤ k,

the entry in bj of T ′ can only cause a problem with semistandardness with the box
dj directly below, or the box rj directly to the right. The former is only a concern
if T (dj) = j, but in that case T ′(dj) = j + 1.
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The latter concern occurs if T (rj) = j − 1. If bj−1 is in a column strictly to the
right of bj then T (rj) = j − 1 cannot occur since the j − 1 in rj occurs strictly
between bj−1 and bj in the column reading word. This contradicts the definition of
bj . So we may assume bj−1 is in the same column as bj . Since

T (bj−1) := j − 2 and T (bj) := j − 1,

in fact, bj−1 is immediately above bj , i.e., dj−1 = bj . Since we assume T (rj) = j−1,
semistandardness of T implies T (rj−1) = j−2, which by the same argument implies
bj−2 is directly above bj−1 (otherwise we would contradict the definition of bj−1.
Repeating this logic tells us that b2, b3, . . . , bj are consecutive boxes in the same
column with T (b2) := 1 and T (r2) = 1. However, this forces b1 to be in a column
strictly right of b2. Since T (r2) = 1 and r2 is between b1 and b2, we contradict the
definition of b2. Thus, the situation T (rj) = j−1 of this paragraph cannot actually
occur.

(T ′ is ballot): It is well-known that any semistandard tableau is ballot with
respect to the row reading if and only if it is ballot with respect to the column
reading. For j ≥ 2, we need to show that T ′ is (j − 1, j)-ballot, that is, the number
of j − 1’s appearing at any given point of the column reading word exceeds the
number of j’s at the same point. If j > k + 1 then the j − 1’s and j’s in T ′ and T
are in the exact same positions, and T ′ is (j−1, j)-ballot since T is. If j = k+1 the
same is true except T ′ has an additional j − 1 = k at bk, and ballotness similarly
follows.

Now suppose j ≤ k. The only boxes bt (1 ≤ t ≤ k) that contain j − 1 or j in
T or T ′ are bj−1, bj and bj+1. Hence consider four regions of T ′: (i) strictly before
bj−1; (ii) starting from bj−1 to before bj ; (iii) starting from bj until before bj+1;
and (iv) bj+1 and thereafter (in the column reading order). Below, let w[b] be a
partial reading word of T that ends at a box b. Let w′[b] be the word using the
same boxes of T ′.

In region (i), the j’s and (j − 1)’s are in the same positions in both T and
T ′. Hence since w[b] is (j − 1, j)-ballot, the same is true of w′[b] for any b in (i).
For any b in (ii), w′[b] has one more j − 1 than w[b] (since T (bj−1) = j − 2 and
T ′(bj−1) = j − 1. Hence, w′[b] is (j − 1, j)-ballot because this is true of w[b].

For any b in region (iii), w′[b] and w[b] have the same number of (j− 1)’s but w′

has one more j. There are two cases.

Case 1 (bj+1 exists, i.e., j < k and region (iv) exists). If w′[b] is not (j−1, j)-ballot,
then it follows w[bj+1] is not (j−1, j)-ballot, a contradiction. Finally, if b is in (iv),
w[b] and w[b′] have the same number of (j − 1)’s and j’s, so we are again done.

Case 2 (bj+1 does not exist, i.e., j = k and region (iv) does not exist). This case
means there are no j’s in T after bj . Hence if w′[b] fails to be (j − 1, j)-ballot for
any b weakly after bj , in fact w′[bj ] is not (j − 1, j)-ballot. By definition, w[bj ]
has the same number of (j − 1)′s but one less j than w′[bj ]. Since w′[bj ] is not
(j−1, j)-ballot, it must be that w[bj ] has the same number of (j−1)’s and j’s. Let
b◦ be the box immediately before bj in the reading order. Since T (bj) = j − 1 we
conclude w[b◦] is not (j − 1, j)-ballot, a contradiction. �

Since Nμ,ν,λ > 0 there exists (α, β, γ) such that cμα,βc
ν
α,γc

λ
β,γ > 0. Remove any

corner from α to obtain α↓. By two applications of Claim 3.5 there exists β↑ and
γ↑ such that cμ

α↓,β↑ , c
ν
α↓,γ↑ > 0. By two applications of Claim 3.4, there exists λ↑↑
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(as in the theorem statement) such that cλ
↑↑

β↑,γ↑ > 0. Hence (α↓, β↑, γ↑) witnesses

that Nμ,ν,λ↑↑ > 0. �

Example 3.6. If μ = (3) and ν = (2, 1) then |μΔν| = 2 and |μ| + |ν| = 6. We
compute:

s[3]s[2,1] = s[1,1]+s[2]+s[2,1,1]+s[2,2]+2s[3,1]+s[4]+s[3,2,1]+s[4,1,1]+s[4,2]+s[5,1].

The reader can check agreement with Theorem 3.1. �

There seems to be another “structural” aspect of (4). Define

hμ,ν
t =

∑

λ:|λ|=|μ∆ν|+2t

Nμ,ν,λ.

A sequence (ak)
N
k=0 is unimodal if there exists 0 ≤ m ≤ N such that

0 ≤ a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . aN−1 ≥ aN .

Conjecture 3.7 (Unimodality). The sequence {hμ,ν
t }

|μ∧ν|
t=0 is a unimodal sequence.

We checked Conjecture 3.7 for all s[μ]s[ν] where 0 ≤ |μ|, |ν| ≤ 7, and many larger
cases. Theorem 3.1 (II) and (III) suggest proving Conjecture 3.7 by constructing
chains in Young’s poset, each element λ appearing Nμ,ν,λ-many times, “centered”
at m:

Example 3.8. Continuing the previous example, {hμ,ν
t }3t=0 = 2, 5, 4. Here m = 1

and we are suggesting that the following chains demonstrate the unimodality:

(1, 1) ⊂(2, 2) ⊂ (4, 2)

(2) ⊂(2, 1, 1) ⊂ (4, 1, 1)

(3, 1)

(3, 1) ⊂ (3, 2, 1)

(4) ⊂ (5, 1)

There is choice in the chains; in the first and third chains we could interchange the
roles of (2, 2) and (3, 1). �

A sequence is log-concave if

a2t ≥ at−1at+1 for 0 < t < N .

Log-concavity implies unimodality. Thus, a warning against Conjecture 3.7 is this:

Example 3.9 (Log-concavity counterexample). {h
(2,2),(2,2)
t }4t=0 = 1, 2, 6, 8, 6 is uni-

modal but not log-concave. �

4. H. Hahn’s notion of detection

Our study of NLn was stimulated by work of H. Hahn [12, 13]. Suppose H is an
irreducible reductive subgroup of GLN . H. Hahn [12] defines that a representation

(16) ρ : GLN → GL(V )

detects H if H stabilizes a line in V . She initiates a study of detection, motivated
by R. Langlands’ beyond endoscopy proposal [30] towards proving his functoriality
conjecture [29] (see [12, 13] for elucidation and further references).
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The general question stated in [12] is to determine which algebraic subgroups
of GLN are detected by a representation (16). In [13], this question is studied
using the classical groups G = SO2n+1, Sp2n, SO2n (where in the latter case n is
assumed to be even) and where ρ : GLN → GLN3 is ρ = ⊗3, i.e., the corresponding
GLN -module is CN ⊗ CN ⊗ CN with the diagonal (standard) action of GLN where
g · (u⊗ v ⊗ w) = gu⊗ gv ⊗ gw.

In each case, H. Hahn considers the (irreducible) G-module S[λ](W ) from the in-
troduction (in typeDn she assumes λn = 0). If r : G → GLN is the G-representation
corresponding to S[λ](W ), then it makes sense to define H as the Zariski closure of
r(G) inside GLN . That is, in the notation of [13], H is the irreducible subgroup of
GLN of interest.

Theorem 1.5 of ibid. proves that if |λ| is odd then ρ = ⊗3 does not detect S[λ](W ).
Conversely, when |λ| is even. Theorem 1.6 of ibid. gives three infinite subfamilies
of Parn where ρ = ⊗3 detects S[λ](W ).

We give a short proof of a complete converse.

Theorem 4.1. Let λ ∈ Parn. Then ρ = ⊗3 detects S[λ](W ) if |λ| ≡ 0 (mod 2).5

Proof of Theorem 4.1. Hahn’s [13, Proposition 3.1] shows that

(17) ρ = ⊗3 detects S[λ](W ) if and only if Nλ,λ,λ > 0.

In ibid. this is used to prove (⇒).6 Therefore, (1) shows

Lemma 4.2. ρ = ⊗3 detects S[λ](W ) if there exists μ ∈ Parn such that cλμ,μ > 0.

Claim 4.3. For any λ ∈ Parn with |λ| = 2m, there exists μ ∈ Parn such that
cλμ,μ > 0.

Proof of Claim 4.3. Since |λ| is even, there are an even number of odd parts in λ.
Let

λi1 ≥ . . . ≥ λi2k

be the odd parts of λ.
Define μ = (μ1, μ2, . . . , μn) to be a partition of m, where

μj =

⎧
⎪⎨
⎪⎩

λj

2 λj is even
λj+1

2 λj is odd and j ≤ ik
λj−1

2 λj is odd and j > ik

We show cλμ,μ > 0 by giving an explicit ballot filling of λ/μ with content μ (see Sec-
tion 2.1).

For λi even, fill in the rightmost λi

2 boxes with i. For a row ij of λ with an odd

number of boxes, fill in the rightmost
λij

−1

2 boxes in the row with ij . There are
λij

−1

2 boxes in each of the top k rows with odd parts. Hence those boxes are entirely

filled. There are
λij

+1

2 boxes in each of the bottom k rows of odd parts. For these
rows, one box remains unfilled by the above step. Fill in the empty box in row ik+j

with ij ; for the purposes of discussion below, we will call this box extraordinary. It
will also be convenient to call indices j λ-even if λj is even, λ-top-odd if λj is odd

5One might compare this parity characterization to [13, Theorem 1.5] which shows that G :=
Symn−1(SL2) →֒ GLn is detected by ρ := Sym3 if and only if n ≡ 1 (mod 4).

6This follows from Proposition 2.2(IV), which just extends the argument made in [13].
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and j ≤ ik, and λ-bottom-odd otherwise. Let T be this filling. (See Example 4.4
below.) We must check three things:

(T is semistandard): By construction, T is row-semistandard. It remains to
show column strictness. This is clear when comparing adjacent rows j and j + 1
that are either λ-even, or λ-top-odd, since those only use those labels in their
respective rows. If either row is bottom-odd, notice that any extraordinary box
is either directly beneath an empty square or another extraordinary box. Since
extraordinary boxes are labeled in strictly increasing from top to bottom, we are
done.

(T has content μ): If j is λ-even, then μj =
λj

2 and there are that many j’s in
row j of T (and nowhere else). Otherwise, if j is λ-top-odd then we are deficient
one label of j in that row. By construction, this missing j appears in row ik+j .

(T is ballot): If j is λ-even, the ballotness holds since all j’s appear in row j and
all j + 1’s appear in the row j + 1 or further south, and since μj ≥ μj+1. Next,
suppose j + 1 (but not j) is λ-even. Hence λj+1 < λj and row j of T will contain
λj−1

2 ≥ λj+1

2 many j’s; these j’s will be read before the
λj+1

2 -many j + 1’s of T ,
which appear only in row j + 1. Similarly, we are done if j and j + 1 are both
λ-bottom-odd, or (since extraordinary boxes’ labels increase top-down) if both are
λ-top-odd. Finally, say j is λ-top-odd, j+1 is λ-bottom-odd. Then row j of T has
λj−1

2 many j’s and all
λj+1−1

2 (≤ λj−1
2 ) many j + 1’s appear in row j + 1 of T , so

ballotness follows. �

In view of Lemma 4.2, Claim 4.3 completes the proof of the theorem. �

Example 4.4. To illustrate the proof of Claim 4.3, let λ = (14, 11, 10, 8, 8, 7, 6, 6, 5,
5, 4, 3, 2, 1). Hence 2k = 6, (i1, i2, i3, i4, i5, i6) = (2, 6, 9, 10, 12, 14), and μ = (7, 6, 5,
4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0). In this case, T is

1 1 1 1 1 1 1
2 2 2 2 2

3 3 3 3 3
4 4 4 4
5 5 5 5
6 6 6

7 7 7
8 8 8
9 9

2 1010
1111

6 12
13

9

where we have boldfaced the labels in the exceptional boxes. �

Given a partition λ = (λ1, λ2, . . .) let kλ = (kλ1, kλ2, . . .). Theorem 4.1 com-
bined with (17) implies:

Corollary 4.5. If |λ| ≡ 0 (mod 2) then Nλ,λ,λ > 0 ⇐⇒ Nkλ,kλ,kλ > 0 for all
k ∈ Z≥1.

The simplicity of this “saturation” statement suggested the ideas of the next
section.

Licensed to Univ of Ill at Urbana-Champaign. Prepared on Mon May 23 20:22:29 EDT 2022 for download from IP 130.126.143.18.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6344 SHILIANG GAO ET AL.

5. Polytopal results

5.1. Newell-Littlewood polytopes. Fix λ, μ, ν ∈ Parn. Let aji , b
j
i , γ

j
i ∈ R for

1 ≤ i, j ≤ n and consider the linear constraints:

(1) Non-negativity : For all 1 ≤ i, j ≤ n, αj
i , β

j
i , γ

j
i ≥ 0

(2) Shape constraints : For all k,

(a)
∑

j α
j
k +

∑
i β

k
i = μk

(b)
∑

j γ
j
k +

∑
i α

k
i = νk

(c)
∑

j β
j
k +

∑
i γ

k
i = λk

(3) Tableau/semistandardness constraints : For all k, l:

(a)
∑

j α
j
k+1 +

∑
i≤l β

k+1
i ≤

∑
j α

j
k +

∑
i<l β

k
i

(b)
∑

j γ
j
k+1 +

∑
i≤l α

k+1
i ≤

∑
j γ

j
k +

∑
i<l α

k
i

(c)
∑

j β
j
k+1 +

∑
i≤l γ

k+1
i ≤

∑
j β

j
k +

∑
i<l γ

k
i

(4) Ballot constraints : For all k, l:
(a)

∑
i<k α

i
l ≥

∑
i≤k α

i
l+1

(b)
∑

i<k β
i
l ≥

∑
i≤k β

i
l+1

(c)
∑

i<k γ
i
l ≥

∑
i≤k γ

i
l+1

We define the Newell-Littlewood polytope in R3n2

by

Pμ,ν,λ = {(αj
i , β

j
i , γ

j
i ) ∈ R3n2

: (1)-(4) hold}.

Theorem 5.1. Nμ,ν,λ = #(Pμ,ν,λ ∩ Z3n2

).

Proof. By definition, Nμ,ν,λ is the number of LR tableaux T, U and V of shape μ/α,
ν/γ and λ/β respectively, and of content β, α, and γ respectively for any choice of

α, β, and γ in Parn. Given such a triple (T, U, V ) let βj
i be the number of i’s in the

jth row of the ballot filling of T . Similarly, αj
i and γj

i are defined with respect to

U and V respectively. It is straightforward that (αj
i , β

j
i , γ

j
i ) satisfies (1)-(4).

Conversely, suppose we are given (αj
i , β

j
i , γ

j
i ) ∈ Pμ,ν,λ. For 1 ≤ i ≤ n, let

αi :=
∑

j

αj
i , βi :=

∑

j

βj
i , and γi :=

∑

j

γj
i .

Notice α := (α1, . . . , αn) ∈ Parn by 4(a). Similarly we define β, γ ∈ Parn. Now

construct T by placing βj
i many i’s in row j (indented by αi many boxes), and

order the labels in the row to be in increasing from left to right. By 2(a), T is of
skew shape μ/α. Conditions 3(a) and 4(b) guarantee that T is an LR tableau. In

the same way, we construct appropriate LR tableaux U and V using αj
i , γ

j
i and β.

This correspondence (T, U, V ) ↔ (αj
i , β

j
i , γ

j
i ) is clearly bijective. �

Example 5.2. To illustrate the correspondence in the proof of Theorem 5.1, let
μ = (2, 1), ν = (2, 2), and λ = (3, 2). Let us write αj

i , β
j
i and γj

i in terms of matrices

[α], [β] and [γ] so that [α]i,j = αj
i , [β]i,j = βj

i and [γ]i,j = γj
i . Then Pμ,ν,λ ∩ Z12

would be the two triples

(
[α], [β], [γ]

)
=

((
0 1
0 0

)
,

(
1 1
0 0

)
,

(
1 1
0 1

))
or

((
0 1
0 0

)
,

(
1 0
0 1

)
,

(
2 0
0 1

))
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implying Nμ,ν,λ = 2. The first triple corresponds to the triple of LR tableaux
contributing, respectively, to cμα,β , c

ν
γ,α and cλβ,γ where α = (1), β = (2), γ = (2, 1):

1
1

,
1
, 1

1 2
.

Similarly, the second triple corresponds to these of LR tableaux

1
2

,
1
, 1 1

2
,

which contribute, respectively, to cμα,β , c
ν
γ,α and cλβ,γ where α = (1), β = (1, 1), γ =

(2, 1). �

ThatNλ,μ,ν counts lattice points in a polytope also follows from work of A. Beren-
stein–A. Zelevinsky [4, Section 2.2] on the more general tensor product multiplici-
ties, together with [24, Corollary 2.5.3]. Their polytopes are described in terms of
root-system datum. The above gives an ab initio approach, similar to one seen in
a preprint version of [33] for the Littlewood-Richardson coefficients.

5.2. Newell-Littlewood semigroups. The Littlewood-Richardson semigroup is

LRn = {(μ, ν, λ) ∈ Par3n : cλμ,ν > 0};

see, e.g., [48]. We define the Newell-Littlewood semigroup by

NLn = {(μ, ν, λ) ∈ Par3n : Nμ,ν,λ > 0}.

Corollary 5.3. NLn is a semigroup. LRn is a subsemigroup of NLn.

Proof. Suppose (μ, ν, λ) and (μ, ν, λ) ∈ NLn. By Theorem 5.1, there exist lattice
points

(αj
i , β

j
i , γ

j
i ) ∈ Pμ,ν,λ and (αj

i , β
j

i , γ
j
i ) ∈ Pμ,ν,λ.

Observe
(αj

i , β
j
i , γ

j
i ) + (αj

i , β
j

i , γ
j
i ) ∈ Pμ+μ,ν+ν,λ+λ;n

is a lattice point. By Theorem 5.1, Nμ+μ,ν+ν,λ+λ > 0 and so (μ+μ, ν+ ν, λ+λ) ∈
NLn. Hence NLn is a semigroup.

The remaining assertion follows from Lemma 2.2(II). �

In turn, Corollary 5.3 immediately implies

Corollary 5.4. If Nμ,ν,λ > 0 then Nkμ,kν,kλ > 0 for every k ≥ 1.

A. Knutson-T. Tao [22] established the saturation property of cλμ,ν . That is

(18) cλμ,ν > 0 ⇐⇒ ckλkμ,kν > 0, ∀k ∈ Z≥1.

Conjecture 5.5 (Newell-Littlewood Saturation I). Suppose λ, μ, ν ∈ Par such that
|λ|+ |μ|+ |ν| ≡ 0 (mod 2). If Nkμ,kν,kλ > 0 for some k ≥ 1 then Nμ,ν,λ > 0.

We checked Conjecture 5.5 exhaustively for λ, μ, ν with 1 ≤ |λ|, |μ|, |ν| ≤ 8 and
k = 2, 3 as well as many other examples. The necessity of the parity hypothesis is
Lemma 2.2(V).

This is an a priori stronger version of Conjecture 5.5:

Conjecture 5.6 (Newell-Littlewood Saturation II). Under the hypotheses of Con-

jecture 5.5, if Nkμ,kν,kλ>0 then there exists α, β, γ∈Par such that ckμkα,kβc
kν
kα,kγc

kλ
kβ,kγ

> 0.
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Proposition 5.7. Conjectures 5.5 and 5.6 are equivalent.

Proof. (⇒) Suppose |λ| + |μ| + |ν| ≡ 0 (mod 2) and Nkμ,kν,kλ > 0. By Conjec-
ture 5.5, Nμ,ν,λ > 0. Hence by (1) there exists α, β, γ such that cμα,β , c

ν
α,γ , c

λ
β,γ

are all nonzero. By the semigroup property for Littlewood-Richardson coefficients

(Corollary 5.3), ckμkα,kβ, c
kν
kα,kγ , c

kλ
kβ,kγ are also nonzero, as asserted by Conjecture 5.6.

(⇐) This holds by (1) and saturation of the Littlewood-Richardson coefficients
(18). �

There has been significant interest in the saturation problem for tensor prod-
ucts of irreducibles for complex semisimple algebraic groups. Suppose μ, ν, λ are
dominant weights corresponding to the irreducible modules Vμ, Vν and Vλ. Let

Vμ ⊗ Vν =
⊕

λ

V
⊕mλ

μ,ν

λ .

The aformentioned problem is, if we assume μ+ ν − w0λ is in the root lattice, is

mλ
μ,ν �= 0 ⇐⇒ mkλ

kμ,kν �= 0, ∀k ≥ 1?

In type A, mλ
μ,ν is a Littlewood-Richardson coefficient, and (18) provides an

affirmative answer. The answer is negative for types B and C, and is conjectured
to be true for all simply-laced types, and in particular, type D. The state of the
art is that the type D conjecture is proved for type D4 by M. Kapovich-S. Kumar-
J. J. Milson [15] and more recently by J. Kiers for D5, D6 [16] (which we refer to
for more references).

Conjecture 5.5 suggests that saturation should hold in types B and C at least in
the stable range and under the parity hypothesis. In view of [24, Theorem 2.3.4], the
Dn conjecture should imply Conjecture 5.5 (taking into account the parity vs root-
lattice hypotheses); we thank J. Kiers for pointing this out (private communication).
We emphasize that Conjecture 5.6 permits a different approach than [15,16] for the
cases at hand. For example, in addition to the infinite family of cases provided by
Corollary 4.5, we have:

Theorem 5.8. Conjecture 5.6 is true if one of λ, μ, ν is a single row or a single
column.

Proof. Suppose one of λ, μ, ν is a single column. By Lemma 2.2(I), we may suppose

μ = (1t). By assumption, there exists α, β, γ such that c
(kt)
α,β , c

kν
α,γ , c

kλ
β,γ > 0. For

convenience, let [λ/μ]i be the number of boxes of the i-th row of the skew shape
λ/μ.

Lemma 5.9. If cλμ,ν > 0, then [λ/μ]i ≤ ν1 for all i.

Proof of Lemma 5.9. Since cλ
′

μ′,ν′ = cλμ,ν > 0, there is an LR tableau T of λ′/μ′

of content ν′. The labels of boxes in a given column C of T are distinct. Hence
#C ≤ ℓ(ν′) and the lemma follows. �

The fact c
(kt)
α,β > 0 implies that α, β ⊆ (kt) and hence α1, β1 ≤ k. So by Lemma

5.9,

(19) [(kλ)/γ]i, [(kν)/γ]i ≤ k, ∀i.

Since γ ⊆ kν ∧ kλ, by (19), for all i:

(20) [(kλ)/(kν ∧ kλ)]i ≤ [(kλ)/γ]i ≤ k, and [(kν)/(kν ∧ kλ)]i ≤ [(kλ)/γ]i ≤ k.
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Also, (20) and kν ∧ kλ = k(ν ∧ λ) combined imply

[λ/(ν ∧ λ)]i, [ν/(ν ∧ λ)]i ≤ 1, ∀i;

that is,

(21) |νi − λi| ≤ 1.

By Theorem 3.1 (I),

k|νΔλ| = |kνΔkλ| ≤ |(kt)| = kt,

and so |νΔλ| ≤ t. Since |νΔλ| ≡ |ν|+ |λ| (mod 2) and (by hypothesis)

|ν|+ |λ|+ |(1t)| = |ν|+ |λ|+ t ≡ 0 ( mod 2),

we have that t−|ν∆λ|
2 ∈ Z≥0.

Claim 5.10. There are at least t−|ν∆λ|
2 indices i such that νi = λi > 0.

Proof of Claim 5.10. By definition of α, β, and γ,

kt = |α|+ |β|

= |(kν)/γ|+ |(kλ)/γ|

= |(kν)/(kν ∧ kλ)|+ |(kν ∧ kλ)/γ|+ |(kλ)/(kν ∧ kλ)|+ |(kν ∧ kλ)/γ|

= |kνΔkλ| + 2|(kν ∧ kλ)/γ|.

This is equivalent to

(22) k

(
t− |νΔλ|

2

)
= |(kν ∧ kλ)/γ|.

By (19),

[(kν ∧ kλ)/γ]i ≤ [(kν)/γ]i ≤ k, ∀i.

Thus (22) and the Pigeonhole Principle shows

(23) #{i : [(kν ∧ kλ)/γ]i > 0} ≥
t− |νΔλ|

2
.

By (21), if νj �= λj then [kνΔkλ]j = k. By (19), kνj − γj , kλj − γj ≤ k. Hence

(24) k ≥ max{kνj , kλj} − γj = (max{kνj , kλj} −min{kνj , kλj})

+ (min{kνj , kλj} − γj) = k + (min{kνj , kλj} − γj).

Therefore min{kνj , kλj} − γj = 0. That is,

[(kν ∧ kλ)/γ]j = 0.

As a result, [(kν ∧ kλ)/γ]i > 0 only if νi = λi > 0. Hence by (23) there are at least
t−|ν∆λ|

2 many i with νi = λi > 0. �

By Claim 5.10, we may define γ to be ν ∧ λ with one box removed from the

southmost t−|ν∆λ|
2 rows i such that νi = λi > 0. It follows from (21) that ν/γ and
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λ/γ are vertical strips. Now, since |ν|+ |λ| = 2|ν ∧ λ|+ |νΔλ|,

|ν/γ| = |ν| − |ν ∧ λ|+
t− |νΔλ|

2

=
2|ν| − 2|ν ∧ λ|+ t− |νΔλ|

2

=
|ν| − |λ|+ t+ (|ν|+ |λ| − 2|ν ∧ λ| − |νΔλ|)

2

=
|ν| − |λ|+ t

2
.

Similarly, |λ/γ| = |λ|−|ν|+t
2 . Therefore, the (column version) of the classical Pieri

rule (9) shows that

((1(t+|ν|−|λ|)/2), (1(t+|λ|−|ν|)/2), γ)

is a witness for N(1t),ν,λ > 0.
The proof where one of μ, ν, λ is a single row is similar to the above argument,

except simpler. Therefore we only sketch the necessary changes and leave the details
to the reader. By Proposition 2.4, we have |ν′i−λ′

i| ≤ 1; this is the analogue of (21).

By the same reasoning, t−|ν∆λ|
2 ∈ Z≥0. The column version of Claim 5.10 states

that there are at least t−|ν∆λ|
2 indices i such that ν′i = λ′

i > 0; it is proved using a
different Pigeonhole argument. Given this claim, one defines γ̂ be removing a single

box from the eastmost t−|ν∆λ|
2 columns such that ν′i = λ′

i. Then one concludes in
the same way. �

5.3. Horn and (extended) Weyl inequalities. Let [n] := {1, 2, . . . n}. For any

I = {i1 < i2 < · · · < id} ⊆ [n]

define the partition

τ (I) := (id − d ≥ · · · ≥ i2 − 2 ≥ i1 − 1).

This bijects subsets of [n] of cardinality d with partitions whose Young diagrams
are contained in a d × (n− d) rectangle. The following combines the main results
of A. Klyachko [21] and A. Knutson–T. Tao [22].

Theorem 5.11 ([21], [22]). Let λ, μ, ν ∈ Parn such that |λ| + |μ| = |ν|. Then
cλμ,ν > 0 if and only if for every d < n, and every triple of subsets I, J,K ⊆ [n] of

cardinality d such that c
τ(K)
τ(I),τ(J) > 0,

(25)
∑

k∈K

λk ≤
∑

i∈I

μi +
∑

j∈J

νj .

The inequalities (25) are the Horn inequalities [14].

Proposition 5.12. Let μ, ν, λ ∈ Parn such that Nμ,ν,λ > 0. Then the Horn in-
equalities (25) hold.

Proof. Since Nμ,ν,λ > 0, there exists α, β, γ such that cμα,β , c
ν
α,γ , c

λ
β,γ > 0.

By Theorem 5.11, (μ, α, β) satisfies the Horn inequalities (25). Consider an arbi-
trary Horn inequality associated to a triple of subsets (I, J,K) as in Theorem 5.11.

∑

k∈K

λk ≤
∑

i∈I

βi +
∑

j∈J

γj .
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Since cνα,γ > 0, γ ⊆ ν and so in particular γj ≤ νj for all j, and similarly βi ≤ μi,
so ∑

k∈K

λk ≤
∑

i∈I

μi +
∑

j∈J

νj .

Hence (μ, ν, λ) satisfies (25), as desired. �

Among the Horn inequalities are the Weyl’s inequalities [46]. The latter inequal-
ities state that a necessary condition for cλμ,ν > 0 is

(26) λi+j−1 ≤ νi + μj for i+ j − 1 ≤ n;

we refer to [5] and the references therein for an expository account. When n = 2,
the Horn inequalities (25) and Weyl inequalities (26) coincide:

(27) λ1 ≤ μ1 + ν1, λ2 ≤ μ1 + ν2, λ2 ≤ μ2 + ν1.

Theorem 5.11 has been extended in a number of ways. For a recent example,
see work of N. Ressayre [38], who gave inequalities valid whenever the Kronecker
coefficient gμ,ν,λ > 0.

Theorem 5.13 (Extended Weyl inequalities). Let μ, ν, λ ∈ Parn and 1 ≤ k ≤ i <
j ≤ l ≤ n, let m = min(i− k, l − j) and M = max(i− k, l − j). If Nμ,ν,λ > 0 then

(28) μi − μj ≤ λk − λl + νm−p+1 + νM+p+2 where 0 ≤ p ≤ m.

Proof. Since Nμ,ν,λ > 0, there exists α, β, γ such that cμα,β , c
ν
α,γ , c

λ
β,γ > 0. By The-

orem 5.11, (μ, α, β), (ν, α, γ), (λ, β, γ) all satisfy the Horn inequalities. Therefore,
by Weyl’s inequalities (26), we have that

(29) μi ≤ αi−k+1 + βk and λl ≤ βj + γl+1−j .

Additionally,

c
τ([n]\{j})
τ([n]\{j}),τ([n−1]) = c

(1n−j)
(1n−j),(0) = 1,

so by Theorem 5.11 applied to cμα,β > 0,

(30)
∑

a 
=j

μa ≤
∑

b
=n

αb +
∑

c
=j

βc.

Subtracting (30) from ∑

a

μa =
∑

b

αb +
∑

c

βc,

gives

(31) μj ≥ αn + βj .

By the same logic,

(32) λk ≥ βk + γn.

Also, by treating α, γ, and ν as partitions of n + 1 rows with αn+1 = γn+1 =
νn+1 = 0, we have that

c
τ([n+1]\{m−p+1,M+p+2})
τ([n+1]\{i−k+1,n+1}),τ([n+1]\{l−j+1,n+1}) = c

(2n−1−M−p)∪(12p+M−m)

(1n−1−(i−k)),(1n−1−(l−j))
= 1.

Thus, Theorem 5.11 applied to cνα,γ > 0 gives

(33)
∑

a 
∈{m−p+1,M+p+2}

νa ≤
∑

b
∈{i−k+1,n+1}

αb +
∑

c
∈{l−j+1,n+1}

γc.
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Subtracting (33) from ∑

a

νa =
∑

b

αb +
∑

c

γc

gives

(34) αi−k+1 + γl−j+1 = αi−k+1 + αn+1 + γl−j+1 + γn+1 ≤ νm−p+1 + νM+p+2

Therefore, combining (29), (31) and (32) gives the first inequality below:

μi − μj + λl − λk ≤ (αi−k+1 + βk)− (αn + βj) + (βj + γl+1−j)− (βk + γn)

= αi−k+1 − αn + γl+1−j − γn

≤ αi−k+1 + γl+1−j

≤ νm−p+1 + νM+p+2,

where we have just applied (34). This completes the derivation of (28). �

Corollary 5.14. The inequalities (25) and (28), where the roles of (μ, ν, λ) are
interchanged under all S3-permutations, also hold whenever Nμ,ν,λ > 0.

Proof. Combine Lemma 2.2(I) with Proposition 5.12 and Theorem 5.13. �

Just as the Weyl inequalities are necessary and sufficient to characterize LR2, we
now show that the (extended) Weyl inequalities (together with symmetries given
by Corollary 5.14) are necessary and sufficient to describe NL2.

Theorem 5.15. Suppose λ, μ, ν ∈ Par2 satisfies |λ|+ |μ|+ |ν| ≡ 0 (mod 2) and the
triangle inequalities. Then (μ, ν, λ) ∈ NL2 if and only if this list of linear inequalities
holds:

(35) λ1 ≤ μ1 + ν1, ν1 ≤ λ1 + μ1, μ1 ≤ λ1 + ν1

(36) λ2 ≤ μ1 + ν2, ν2 ≤ λ1 + μ2, μ2 ≤ λ1 + ν2

(37) λ2 ≤ μ2 + ν1, ν2 ≤ λ2 + μ1, μ2 ≤ λ2 + ν1

ν1−ν2 ≤ μ1+μ2 + λ1 − λ2, μ1 − μ2≤λ1+λ2+ν1−ν2, λ1 − λ2 ≤ ν1 + ν2 + μ1−μ2

(38)

λ1 − λ2 ≤ μ1 + μ2 + ν1−ν2, μ1 − μ2≤ν1+ν2+λ1−λ2, ν1 − ν2 ≤ λ1 + λ2 + μ1−μ2.

Above, (35), (36), (37) are the n = 2 Horn/Weyl inequalities (27) and their
symmetric analogues. (38) represents (up to symmetry) the unique inequality of
the form (28) for this case.

Theorem 5.15 implies another case of Conjectures 5.5 and 5.6:

Corollary 5.16. Conjectures 5.5 and 5.6 hold when n = 2.

Proof. Suppose that |λ|+|μ|+|ν| ≡ 0 (mod 2) andNkμ,kν,kλ > 0. By Theorem 5.15,
(kμ, kν, kλ) satisfies (35), (36), (37) and (38) after the substitution

μ �→ kμ, ν �→ kν, λ �→ kλ.

These inequalities are homogeneous in λi, μi, νi. Hence (μ, ν, λ) satisfies (35), (36),
(37) and (38). Therefore by the “⇐” direction of Theorem 5.15, Nμ,ν,λ > 0, as
required. �
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The classical Weyl inequalities do not characterize LR3. Analogously, the ex-
tended Weyl inequalities (combined with Proposition 5.12 and Corollary 5.14) are
not sufficient to characterize NL3. An example is μ = (6, 0, 0), ν = (4, 2, 2) and
λ = (4, 4, 0). However, we have an additional list of inequalities that should close
the gap in this case. We plan to address this issue (and more) in a sequel. For now,
we restrict to proving Theorem 5.15, to illustrate a general strategy.

Proof of Theorem 5.15. The “⇒” direction is by Proposition 5.12, Theorem 5.13,
and Corollary 5.14. To prove the converse, let (λ, μ, ν) ∈ Par2 be such that |λ| +
|μ|+ |ν| ≡ 0 (mod 2) and Nμ,ν,λ = 0. We now show that either one of the triangle
inequalities, or an inequality from (35)-(38), is violated.

Claim 5.17. If |λ| < |μΔν|, either a triangle inequality or an inequality from (38)
is violated.

Proof of Claim 5.17. By Lemma 2.2(I), we may assume without loss that ν1 ≥ μ1.
If ν2 ≥ μ2, then |μΔν| = |ν| − |μ|. Combining this with the hypothesis |λ| < |μΔν|
we obtain a failure of the triangle inequality |λ|+ |μ| ≥ |ν|. If ν2 < μ2, then

|μΔν| = ν1 − μ1 + μ2 − ν2.

Now, |λ| < |μΔν| implies that

ν1 − ν2 > λ1 + λ2 + μ1 − μ2

which violates the sixth equation of (38). �

By Claim 5.17, we may henceforth assume that

(39) |μΔν| ≤ |λ| ≤ |μ|+ |ν|.

Let

(40) k =
|μ|+ |ν| − |λ|

2
≥ 0;

k ∈ Z by the hypothesis that |λ|+ |μ|+ |ν| ≡ 0 (mod 2). For future use, we record
this rewriting of (40):

(41) λ1 + λ2 = μ1 + μ2 + ν1 + ν2 − 2k.

A pair (μ↓k, ν↓k) ∈ Par2 is valid if there exists α ∈ Par2 with |α| = k such that
cμ
α,μ↓k > 0 and cνα,ν↓k > 0 (equivalently, μ↓k ⊂ μ, ν↓k ⊂ ν with |μ/μ↓k| = |ν/ν↓k| =

k, and the two skew shapes μ/μ↓k and ν/ν↓k each have an LR tableau of the same
content α).

Claim 5.18. A valid pair (μ↓k, ν↓k) exists. Moreover,

(42) k ≤ |μ ∧ ν| = min(μ1, ν1) + min(μ2, ν2).

Proof of Claim 5.18. By (39), |λ| ≥ |μΔν|. Thus existence follows from Theo-

rem 3.1(I) combined with (1). (42) holds since |μ∧ν| = |μ|+|ν|−|μ∆ν|
2 ≥ |μ|+|ν|−|λ|

2
:=

k. �

For i = 1, 2, let ki and li be, respectively, the number of boxes in row i of the
skew shapes μ/μ↓k and ν/ν↓k.
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Claim 5.19. If (μ↓k, ν↓k) is valid then at least one of the following inequalities holds:

(43) λ1 > μ1 + ν1 − k1 − l1

(44) λ2 > μ1 + ν2 − k1 − l2

(45) λ2 > μ2 + ν1 − k2 − l1.

Proof of Claim 5.19. By (1), Nμ,ν,λ = 0 ⇐⇒ cλμ↓kν↓k = 0 whenever (μ↓k, ν↓k) is a

valid pair. Now the claim holds by the n = 2 case of Theorem 5.11 (see (27)). �

Claim 5.20. Suppose μ↓k = (μ1 − k1, μ2 − k2), ν
↓k = (ν1 − l1, ν2 − l2) and α =

(α1, α2) ∈ Z2. Then (μ↓k, ν↓k) is a valid pair of content α if and only if

(I) μ↓k, ν↓k ∈ Par2;
(II) α ∈ Par2;
(III) k1, k2, l1, l2 ∈ Z≥0;
(IV) k1 + k2 = l1 + l2 = α1 + α2 = k;
(V) k1, k2 ≥ α2 and l1, l2 ≥ α2; and
(VI) α2 + (μ1 − μ2) ≥ k1 and α2 + (ν1 − ν2) ≥ l1.

Proof of Claim 5.20. (⇐) We construct an LR tableau T of shape μ/μ↓k of content
α. Conditions (I), (III) guarantee this is a skew-shape. Fill the k1 boxes of the first
row of μ/μ↓k with 1’s. Since by (V), k2 ≥ α2, we can fill the rightmost α2 boxes of
the second row of μ/μ↓k with 2’s. Then fill the remaining boxes of that row with
1’s. T is clearly row semistandard. It is column semistandard because of (VI). It
is ballot by (II) and the condition k1 ≥ α2 of (V). Finally the content of T is α by
(IV). Thus cμ

μ↓k,α
> 0. Similarly, we show cνν↓k,α > 0.

(⇒) If (μ↓k, ν↓k) is a valid pair of content α then there exists LR tableaux T, U
of shapes μ/μ↓k and ν/ν↓k (respectively), and of common content α. Now the
conditions follow by reversing the reasoning in the above paragraph. �

Claim 5.21. If (43) holds for every valid pair (μ↓k, ν↓k) then an inequality from
(35)-(38) is violated.

Proof of Claim 5.21. By Lemma 2.2(I), we may assume, without loss, that μ2 ≥
ν2. In each case below, it is straightforward to verify the conditions (I)-(VI) of
Claim 5.20, so this is left mostly to the reader.

Case 1 (min(μ2, ν1, k) = ν1). Consider μ↓k = (μ1 − (k − ν1), μ2 − ν1) and ν↓k =
(ν1 − (k− ν2)). We point out that, here and elsewhere, (42) is relevant to checking

Claim 5.20; in this case condition (I). Specifically, μ↓k
1 , ν↓k1 ≥ 0 by (42). In addition

μ↓k
1 ≥ μ↓k

2 since

μ1 − (k − ν1)− (μ2 − ν1) ≥ μ1 − μ2 + |ν| − k ≥ 0

(again by (42)). It follows that (μ↓k, ν↓k) is a valid pair of content α = (ν1, k− ν1).
In this case we have k2 = ν1 and l2 = ν2 and thus k2 + l2 = |ν|. Now by (41), (43),
and Claim 5.20(IV),

(46) λ2 < μ2 + ν2 − k2 − l2.

Hence, λ2 + ν1 < (μ2 + ν2 − k2 − l2) + ν1 = μ2 + ν2 − |ν|+ ν1 = μ2. This violates
the third inequality of (37).
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Case 2a (min(μ2, ν1, k) = k and ν2 ≥ k). μ↓k = (μ1, μ2 − k) and ν↓k = (ν1, ν2 − k)
is a valid pair of content α = (k). Here k1 = l1 = 0. Hence (43) states λ1 > μ1+ν1,
violating (35).

Case 2b (min(μ2, ν1, k) = k and k ≥ ν2). μ
↓k = (μ1, μ2−k) and ν↓k = (ν1−(k−ν2))

is a valid pair with α = (k). Here k1 = 0, k2 = k, l1 = k − ν2 and l2 = ν2. By (43)
and (46),

λ1 − λ2 > (μ1 + ν1 − k1 − l1)− (μ2 + ν2 − k2 − l2)

= μ1 + ν1 − (k − ν2)− μ2 − ν2 + k + ν2

= ν1 + ν2 + μ1 − μ2

which violates the third inequality from (38).

Case 3 (min(μ2, ν1, k) = μ2). Let μ↓k = (μ1 − (k − μ2)), ν
↓k = (ν1 − (k − ν2)).

By (42), μ2 ≥ ν2 ≥ k − min{μ1, ν1}. Using this, one checks (μ↓k, ν↓k) is valid of
content α = (min{μ1, ν1}, k −min{μ1, ν1}). Here, k2 = μ2 and l2 = ν2. Hence by
(46), λ2 < μ2 + ν2 − k2 − l2 = 0 contradicts that λ ∈ Par2. �

Introduce the quantity

Δ(μ↓k, ν↓k) := (μ1 + ν2 − k1 − l2)− (μ2 + ν1 − k2 − l1).

Claim 5.22. Suppose (μ↓k, ν↓k) is a valid pair such that |Δ(μ↓k, ν↓k)| ≤ 1. Then
(44) and (45) are violated.

Proof of Claim 5.22. If (44) holds, by (41) and Claim 5.20(IV) we obtain

λ1 ≤ μ2 + ν1 − k2 − l1 − 1 ≤ μ1 + ν2 − k1 − l2 < λ2,

which is a contradiction of λ ∈ Par2. Similarly, if (45) holds then

λ1 ≤ μ1 + ν2 − k1 − l2 − 1 ≤ μ2 + ν1 − k2 − l1 < λ2,

giving the same contradiction. �

Claim 5.23. Suppose (μ↓k, ν↓k) and (μ̃↓k, ν̃↓k) are valid pairs of content α and α̃,
respectively. There is a sequence of valid pairs

(μ↓k
(0), ν

↓k
(0)) = (μ↓k, ν↓k), (μ↓k

(1), ν
↓k
(1)), . . . (μ

↓k
(m), ν

↓k
(m)) = (μ̃↓k, ν̃↓k)

of contents α(0) = α, α(1), . . . , α(m) = α̃ (respectively) such that for all i ∈ [m],

(47) |Δ(μ↓k
(i), ν

↓k
(i))−Δ(μ↓k

(i−1), ν
↓k
(i−1))| ≤ 2.

Proof of Claim 5.23. First suppose that α= α̃. By exchanging the roles of (μ↓k, ν↓k)

and (μ̃↓k, ν̃↓k) if necessary, we may assume that k1 − k̃1 = j ≥ 0. Define

μ↓k
(i+1) = (μ↓k

(i)1 + 1, μ↓k
(i)2 − 1)

0 ≤ i < j. Also, set ν↓k(i) = ν↓k(0) for all 0 < i ≤ j. By definition of j, μ↓k
(j) = μ̃↓k.

Moving a single box at a time, we construct ν↓k(i) similarly for i > j such that when

i = m we obtain ν↓k (and we set μ↓k
i = μ̃↓k for j < i ≤ m). More precisely if l1 = l̃1

then j = m. If l1 > l̃1 then set ν↓k(i+1) = (ν↓k(i)1 + 1, ν↓k(i)2 − 1) for j ≤ i < m. Finally

if l1 < l̃1 we set ν↓k(i+1) = (ν↓k(i)1 − 1, ν↓k(i)2 + 1) for j ≤ i < m.
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Set α(i) = α = α̃ for 0 ≤ i ≤ m. It is a straightforward induction argument to

see that each (μ↓k
(i), ν

↓k
(i)) is valid of content α(i). Finally, by construction,

(48) |(k
(i)
2 − k

(i)
1 + l

(i)
1 − l

(i)
2 )− (k

(i−1)
2 − k

(i−1)
1 + l

(i−1)
1 − l

(i−1)
2 )| = 2,

which implies (47).
Now suppose that α �= α̃. We assume without loss of generality that α2 > α̃2.

Let m⋆ := α2 − α̃2 > 0. Then, for 0 ≤ i ≤ m⋆ − 1 set

(49) α(i+1) = (α
(i)
1 + 1, α

(i)
2 − 1),

(50) μ↓k
(i+1) =

⎧
⎨
⎩
μ↓k
(i) if cμ

μ↓k
(i)

,α(i+1)
> 0

(μ↓k
(i)1 + 1, μ↓k

(i)2 − 1) otherwise,

and

(51) ν↓k(i+1) =

⎧
⎨
⎩
ν↓k(i) if cν

ν↓k
(i)

,α(i+1)
> 0

(ν↓k(i)1 + 1, ν↓k(i)2 − 1) otherwise.

It is straightforward to check

|(k
(i)
2 − k

(i)
1 + l

(i)
1 − l

(i)
2 )− (k

(i−1)
2 − k

(i−1)
1 + l

(i−1)
1 − l

(i−1)
2 )| ∈ {0, 2}

and hence (47) holds.

Thus, it remains to show that (μ↓k
(i+1), ν

↓k
(i+1)) is a valid pair of content α(i+1). By

definition, the only concern is if μ↓k
(i+1) (respectively, ν

↓k
(i+1)) is obtained by applying

the second case of (50) (respectively, (51)). Now, suppose we applied the second

case of (50) to obtain μ↓k
(i+1). Since, by induction, (μ↓k

(i), ν
↓k
(i)) is valid of content

α(i), there exists an LR tableau T of shape μ/μ↓k
(i) of content α

(i). The assumption

α2 > α̃2 implies α1 < α̃1. This combined with the induction hypothesis, the fact

that μ↓k
(i),2 + α

(i)
1 = μ1 holds when cμ

μ↓k
(i)

,α(i+1)
= 0, and μ1 ≥ α̃1 > α

(i)
1 , shows

(μ↓k
(i)1 + 1, μ↓k

(i)2 − 1) ∈ Par2.

Now, define T ′ by modifying T as follows: Move the leftmost 1 in the first row
and place it to the left of the leftmost entry of the second row. Then change the
leftmost 2 in the second row into a 1.

By definition of m⋆, and the existence of T , there exists a (leftmost) 1 in the
first row and a 2 in the second row. Hence the modification is well-defined for
0 ≤ i < m. Moreover, it is clear T ′ is semistandard, of content α(i+1) and has

shape μ/μ↓k
(i+1). That T

′ is ballot follows easily from the fact T is ballot. Hence T ′

is an LR tableau of the desired type.

In the same way, if ν↓k(i+1) is obtained from ν↓k(i) using the second case of (51), we

can modify an LR tableau U of shape ν/ν↓k(i) of content α
(i) into an LR tableau of

shape ν/ν↓k(i+1) and content α(i+1).

Summarizing, irregardless of which cases of (50) and (51) are used at each stage,

by induction, (μ↓k
(i+1), ν

↓k
(i+1)) is valid of content α(i+1). Moreover when i+ 1 = m⋆,

we arrive at (μ↓k
(m⋆), ν

↓k
(m⋆)) of content α̃. We have therefore reduced to the α = α̃
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case above. Applying the argument of that case we continue this sequence to
(μ̃↓k, ν̃↓k). �

Claim 5.24. No valid pair (μ↓k, ν↓k) can satisfy (44) and (45) simultaneously.

Proof of Claim 5.24. If some valid pair (μ↓k, ν↓k) satisfies both (44) and (45), then

λ2 > μ↓k
1 + ν↓k2 and λ2 > μ↓k

2 + ν↓k1 .

Therefore we have
|λ| ≥ 2λ2 > |μ↓k|+ |ν↓k| = |λ|,

a contradiction. �

Claim 5.25. If all valid pairs (μ↓k, ν↓k) satisfy (44) or (45) then one of the inequal-
ities from (35)-(38) is violated.

Proof of Claim 5.25. Claim 5.22 says that |Δ(μ↓k, ν↓k)| ≤ 1 cannot occur.
If we have two valid pairs (μ↓k, ν↓k), (μ̃↓k, ν̃↓k) satisfying

Δ(μ↓k, ν↓k) < −1 and Δ(μ̃↓k, ν̃↓k) > 1,

then by Claim 5.23 there is a sequence (μ↓k
(0), ν

↓k
(0)) = (μ↓k, ν↓k), (μ↓k

(1), ν
↓k
(1)), . . . ,

(μ↓k
(m), ν

↓k
(m)) = (μ̃↓k, ν̃↓k) such that |Δ(μ↓k

(i), ν
↓k
(i)) − Δ(μ↓k

(i−1), ν
↓k
(i−1))| ≤ 2 for all

i ∈ [m]. Hence for some j, Δ(μ↓k
(j), ν

↓k
(j)) ∈ {−1, 0, 1}. However, in that case,

(μ↓k
(j), ν

↓k
(j)) contradicts our hypothesis, by Claim 5.22.

Since Δ(μ↓k, ν↓k) = −Δ(ν↓k, μ↓k), by Lemma 2.2(I), we may assume Δ(μ↓k, ν↓k)
< −1. By definition this means μ1+ ν2−k1− l2 < μ2+ ν1−k2− l1. If furthermore
λ2 > μ2+ν1−k2− l1 then λ2 > μ1+ν2−k1− l2. That is, if (μ

↓k, ν↓k) satisfies (45)
then (μ↓k, ν↓k) satisfies (44). Now by Claim 5.24 we get a contradiction. Thus,
henceforth we assume (μ↓k, ν↓k) satisfies

(52) Δ(μ↓k, ν↓k) < −1 and (44).

We have four cases, depending on k. We appeal to Claim 5.20 in each case.

Case 1 (k ≤ μ2, ν1−ν2). Notice that μ↓k = (μ1, μ2−k), ν↓k = (ν1−k, ν2) is a valid
pair with content α = (k). We have k1 = l2 = 0 and hence (44) says λ2 > μ1 + ν2
violating (36).

Case 2 (μ2 < k ≤ μ1, ν1−ν2). Observe that μ↓k = (μ1−(k−μ2)), ν
↓k = (ν1−k, ν2)

is a valid pair with content α = (k). By (44) combined with (41),

(53) λ1 < μ2 + ν1 − k2 − l1.

We will use this inequality here and in the cases below. In the present case, k2 =
0, l1 = k and thus (53) says λ2 > μ1 + ν2 − k + μ2. Combining with (44) gives

λ1 − λ2 < ν1 − ν2 − μ1 − μ2,

which violates (38).

Case 3 (μ1 < k ≤ ν1 − ν2). Since ν2 ≥ α2 ≥ k − μ1 and μ1 ≤ ν1 − ν2 + k − μ1, we
have a valid pair μ↓k = (μ1 − (k− μ2)), ν

↓k = (ν1 − μ1, ν2 − (k− μ1)) with content
α = (μ1, k − μ1). We have k2 = μ2 and l1 = μ1 and thus by (53),

λ1 < μ2 + ν1 − μ2 − μ1 = ν1 − μ1,

which violates (35).
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Case 4 (k > ν1 − ν2). Let

α =

(
ν1 − ν2 +

⌈
k − ν1 + ν2

2

⌉
,

⌊
k − ν1 + ν2

2

⌋)
, and

ν↓k =

(
ν2 −

⌊
k − ν1 + ν2

2

⌋
, ν2 −

⌈
k − ν1 + ν2

2

⌉)
.

One can check that there is an LR tableau of shape ν/ν↓k and content α by
verifying the conditions (I)-(VI) of Claim 5.20. In particular α ⊆ ν. If α ⊆ μ as
well then since sμ/α �= 0, by (7) we can find μ↓k such that (μ↓k, ν↓k) is valid of
content α. However, in that case

(ν1 − l1)− (ν2 − l2) = ν↓k1 − ν↓k2 ≤ 1,

and hence

Δ(μ↓k, ν↓k) :=μ1 + ν2 − k1 − l2 − (μ2 + ν1 − k2 − l1)

=μ1 − k1 − (μ2 − k2) + ν2 − ν1 + l1 − l2

=(μ↓k
1 − μ↓k

2 )− [(ν1 − l1)− (ν2 − l2)]

≥− 1.

This would contradict the assumption Δ(μ↓k, ν↓k) < −1. Therefore we may assume
either μ1 < α1 or μ2 < α2.

First suppose μ1 < α1. Using this assumption, and the definition of α1 one
verifies the conditions (II) and (VI) Claim 5.20. It follows that

μ↓k
(1) = (μ1 − k + μ2), ν

↓k
(1) = (ν1 − μ1, ν2 − (k − μ1))

is a valid pair with content α = (μ1, k − μ1). Now we have k2 = μ2 and l1 = μ1

and thus (53) states

λ1 < μ2 + ν1 − μ2 − μ1 = ν1 − μ1.

This violates the second inequality of (35).
Now suppose μ2 < α2. Using this assumption,

μ↓k
(2) = (μ1 − k + μ2), ν

↓k
(2) = (ν1 − [ν1 − ν2 + μ2], ν2 − [ν2 − ν1 + k − μ2])

gives a valid pair of content α = (k − μ2, μ2). Now we have k2 = μ2 and l1 =
ν1 − ν2 + μ2 and so here (53) is

λ1 < μ2 + ν1 − (μ2)− (ν1 − ν2 + μ2) = ν2 − μ2.

This gives a violation of the second equation of (36). �

Conclusion of the proof of Theorem 5.15: If all valid pairs satisfy (44) or (45), we
are done by Claim 5.25. Since by Claim 5.19, at least one of (43), (44) or (45)
holds for valid pairs, we may assume there is a valid pair (μ↓k, ν↓k) such that (43)
holds. If in fact, all valid pairs satisfy (43), we are done by Claim 5.21. Hence we
may also suppose there is a valid pair (μ̃↓k, ν̃↓k) that does not satisfy (43).

Let us consider the sequence of valid pairs

(μ↓k
(0), ν

↓k
(0)) := (μ↓k, ν↓k), (μ↓k

(1), ν
↓k
(1)), . . . , (μ

↓k
(m), ν

↓k
(m)) := (μ̃↓k, ν̃↓k)

where (μ↓k
(i), ν

↓k
(i)) �→ (μ↓k

(i+1), ν
↓k
(i+1)) by Claim 5.23’s construction.
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Combining the fact that (μ↓k
(0), ν

↓k
(0)) = (μ↓k, ν↓k) is a valid pair satisfying (43)

with (41) and Claim 5.20(IV),

λ2 < μ↓k
(0)2 + ν↓k(0)2 − 2k + k1 + l1 < μ↓k

(0)2 + ν↓k(0)2.

Hence

(54) λ2 < μ↓k
(0)2 + ν↓k(0)2 ≤ min{μ↓k

(0)1 + ν↓k(0)2, μ
↓k
(0)2 + ν↓k(0)1}.

By examining Claim 5.23’s construction (for both α = α̃ and α �= α̃), it is
straightforward to see that

(55) |min{μ↓k
(i)1+ν↓k(i)2, μ

↓k
(i)2+ν↓k(i)1}−min{μ↓k

(i+1)1+ν↓k(i+1)2, μ
↓k
(i+1)2+ν↓k(i+1)1}| ≤ 1.

Inductively, if (43) holds for (μ↓k
(i), ν

↓k
(i)), then by the same reasoning as for (54),

λ2 ≤ μ↓k
(i)2 + ν↓k(i)2 − 1

≤ min{μ↓k
(i)1 + ν↓k(i)2, μ

↓k
(i)2 + ν↓k(i)1} − 1.

Combining with (55), we get

λ2 ≤ min{μ↓k
(i+1)1 + ν↓k(i+1)2, μ

↓k
(i+1)2 + ν↓k(i+1)1}.

This means (μ↓k
(i+1), ν

↓k
(i+1)) violates (44) and (45); consequently, (43) holds for this

valid pair. Therefore by induction, (μ↓k
(m), ν

↓k
(m)) satisfies (43), which contradicts the

choice of (μ↓k
(m), ν

↓k
(m)). �

�

5.4. Refinements? A conjecture of W. Fulton (proved in [23]) states that

cλμ,ν = 1 =⇒ ckλkμ,kν = 1, ∀k ≥ 1.

Example 5.26 (Counterexample to analogue of W. Fulton’s conjecture). One
checks that

N(1,1),(1,1),(1,1) = (c
(1,1)
(1),(1))

3 but N(2,2),(2,2),(2,2) = (c
(2,2)
(1,1),(1,1))

3 + (c
(2,2)
(2),(2))

3 = 2

Hence, the analogue of Fulton’s conjecture for Nν,μ,λ is false. �

Define a function

c
λ
μ,ν : Z≥1 → N by k �→ ckλkμ,kν .

A conjecture of R. C. King-C. Tollu-F. Toumazet [19] asserts that this function
is interpolated by a polynomial with nonnegative rational coefficients. The poly-
nomiality property was proved by H. Derksen-J. Weyman [7]. Consequently, cλμ,ν
is called the Littlewood-Richardson polynomial. (The positivity conjecture remains
open in general.)

Similarly, let us define the Newell-Littlewood function:

Nμ,ν,λ : Z≥1 → N by k �→ Nkμ,kν,kλ.

The following shows that Nμ,ν,λ(k) cannot always be interpolated by a single poly-
nomial.

Theorem 5.27 (Non-polynomiality). There exist λ, μ, ν such that Nμ,ν,λ(k) �∈
R[k].
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Proof. We will show N(1,1),(1,1),(1,1)(k) =
⌈
k+1
2

⌉
, which is clearly non-polynomial.

Let μ, ν, λ=(1, 1) and suppose α, β, γ satisfy ckμα,βc
kν
α,γc

kλ
β,γ>0, i.e., c

(k,k)
α,β c

(k,k)
α,γ c

(k,k)
β,γ

> 0. The claim is that the only possible (α, β, γ) are

(56) α = β = γ = (j, k − j) where

⌊
k + 1

2

⌋
≤ j ≤ k,

and in this case the contribution to (1) is (c
(k,k)
(j,k−j),(j,k−j))

3 = 1. This would com-

plete the proof as there are ⌈k+1
2 ⌉ such j. That c

(k,k)
(j,k−j),(j,k−j) = 1 follows easily

from the Littlewood-Richardson rule. Hence it only remains to rule out other

possible (α, β, γ). Indeed, given such a triple, since c
(k,k)
α,β > 0 we must have

|α| + |β| = 2k. Similarly, we obtain |α| + |γ| = 2k and |β|+ |γ| = 2k which to-
gether imply |α| = |β| = |γ| = k. To conclude, we apply another fact about
Littlewood-Richardson coefficients that has a Schubert calculus provenance. That

is, c
(m−ℓ)ℓ

α,β = δβ,α∨ where α∨ is the 180-degree rotation of (m− ℓ)ℓ \ β (as used in

Claim 3.4).7 In our case ℓ = 2 and m = k + 2; moreover (j, k − j)∨ = (j, k − j).
From this, the result follows. �

Example 5.28. Let Nμ,ν,λ(k) := N
λ
μ,ν(2k−1), Ñμ,ν,λ(k) := Nμ,ν,λ(2k). By Propo-

sition 5.27,

N(1,1),(1,1),(1,1) = k and Ñ(1,1),(1,1),(1,1) = k + 1.

For another example, it seems that

N(2,1,1),(2,1,1),(1,1,1,1) =
1

3
k(k + 2)(k + 1)

and

Ñ(2,1,1),(2,1,1),(1,1,1,1) =
1

6
(2k + 3)(k + 2)(k + 1).

This would suggest Nμ,ν,λ, Ñμ,ν,λ ∈ Q≥0[k]. However, when λ = μ = ν = (2, 1, 1),
the values of Nμ,ν,λ(k) for k = 1, 2, . . . , 11 are 4, 18, 51, 141, 315, 676, 1288, 2370,

4047, 6720, 10605. None of Nμ,ν,λ,Nμ,ν,λ, Ñμ,ν,λ seem to have a nice interpolation,
although it is possible we do not have sufficiently many values.8 �

5.5. Complexity of computing Nμ,ν,λ. Following H. Narayanan [34],
T. McAllister–J. De Loera [6], and K. D. Mulmuley-H. Narayanan-M. Sohoni [33],
Theorem 5.1 and Conjecture 5.5 have some implications about the complexity of
computing Nμ,ν,λ. For brevity, we limit ourselves to a sketch.

Given input (λ, μ, ν) ∈ Parn (measured in terms of bit-size complexity) there is
the counting problem NLvalue which outputs Nμ,ν,λ. By Lemma 2.2(II), a sub-
problem is LRvalue (computation of cνλ,μ). H. Narayanan [34] shows LRvalue ∈
#P -complete (thus, in particular, no polynomial time algorithm exists for this prob-
lem unless P = NP ). This implies NLvalue is #P -hard. Theorem 5.1 shows that

7Let σα denote the Schubert class for α ⊂ (m−ℓ)ℓ. The underlying Schubert calculus statement
is that if |α|+ |β| = dimGrℓ(C

m)(= ℓ× (m− ℓ)) then σα ∪ σβ = δβ,α∨σ(m−ℓ)ℓ ∈ H∗(Grℓ(C
m)).

8After posting this work to the arXiv, R. C. King (private communication) informed us that

this sequence of numbers fit the coefficients of the generating series
(1+x+5x2+4x3+8x4+x5+x6)

(1−x)3(1−x2)4
.

From this he conjectures that N(2,1,1),(2,1,1),(2,1,1)(k) = (k+2)(k+4)(7k4+57k3+212k2+492k+

480)/3840 if k is even and N(2,1,1),(2,1,1),(2,1,1)(k) = (k+ 1)(k+ 3)(7k4 + 71k3 + 305k2 + 697k+

840)/3840 if k is odd. On the basis of this and other examples, he conjectures more generally that
Nλ,μ,ν(k) is a quasi-polynomial in k.
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the problem is in #P since the vectors (αj
i , β

j
i , γ

j
i ) provide an efficient encoding of

elements of a set counted by Nμ,ν,λ. Summarizing,

NLvalue ∈ #P -complete.

The decision problem NLnonzero decides if Nμ,ν,λ > 0. Theorem 5.1 implies
NLnonzero ∈ NP . In [6, 33] it is shown that the analogous problem LRnonzero

(deciding cνλ,μ > 0) can be done in polynomial time. Their proof relies on the
Saturation Theorem for cνλ,μ.

Conjecture 5.5 implies NLnonzero ∈ P as well. In brief, Conjecture 5.5 actually
shows

Nμ,ν,λ �= 0 ⇐⇒ Pμ,ν,λ �= ∅.

The “⇒” implication is by Theorem 5.1. For “⇐”, we may assume, by Lemma
2.2(V), that |λ| + |μ| + |ν| ≡ 0 (mod 2). Then Pμ,ν,λ �= ∅ implies Pμ,ν,λ contains
a rational point �p. Then choose k ∈ Z>0 such that k · �p ∈ kPμ,ν,λ is a lattice
point. By construction, kPμ,ν,λ = Pkμ,kν,kλ and so by Theorem 5.1, Nkμ,kν,kλ > 0.
Conjecture 5.5 then says Nμ,ν,λ > 0. Finally, the inequalities defining the Newell-
Littlewood polytope are of the form Ax ≤ b where the entries of A are 0,±1
whereas the entries of b are integers. Hence the polytope is combinatorial, and one
can appeal É. Tardos’ algorithm [11, 45] to decide if Pμ,ν,λ is feasible in strongly
polynomial time. This completes the conditional argument.

6. Multiplicity-freeness

In Section 5 we studied when Nλ,μ,ν = 0. We now look at a related problem,
proving an analogue of J. R. Stembridge’s [42, Theorem 3.1] which characterizes
pairs (μ, ν) ∈ Par such that (8) is multiplicity-free, i.e., cλμ,ν ∈ {0, 1} for all λ ∈ Par.

Call a pair (μ, ν) ∈ Par2 NL-multiplicity-free if (4) contains no multiplicity, i.e.,
each Nμ,ν,λ ∈ {0, 1} for all λ ∈ Par.

Theorem 6.1. A pair (μ, ν) ∈ Par2 is NL-multiplicity-free if and only if

(I) μ or ν is either a single box or ∅;
(II) μ is a single row and ν is a rectangle (or vice versa); or
(III) μ is a single column and ν is a rectangle (or vice versa).

Before the proof, we pause to compare and contrast Theorem 6.1 with [42, The-
orems 3.1, 4.1], and with J. R. Stembridge’s later work [43]. Theorem 6.1 is an
analogue of [42, Theorem 3.1] in the sense that the Schur functions {sλ} are uni-
versal characters for GL, whereas {s[λ]} are universal characters for Sp (we repeat
that by [24, Theorem 2.3.4], Theorem 6.1 holds without change for SO). A gen-
eralization of [42, Theorem 3.1] is [42, Theorem 4.1], which characterizes when a
product of Schur polynomials sμ(x1, . . . , xn)sν(x1, . . . , xn) is multiplicity-free. This
is a generalization since (5) preserves multiplicity-freeness.

Since sμ(x1, . . . , xn) is the character of the (finite) GL(V )-module Sλ(V ), [43]
provides the appropriate generalization to all other Weyl characters (associated
to an irreducible representation of a complex semisimple Lie algebra). However,
unlike the GL story, the modification rules are non-positive (see the discussion and
references of Section 1.2). Nevertheless, by invoking [24, Corollary 2.5.3], it should
be possible to derive Theorem 6.1 from [43] by translating the root-system language
to partitions (we have not actually done this). That said, our proof is different
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and self-contained, starting from (1). It is relatively short, and has a component
(Lemma 6.2) which might be of some independent interest.

Proof. (⇐) Suppose we are in case (I). If μ = ∅, then cμα,β > 0 if and only if

α = β = ∅, in which case cμα,β = 1. Hence, cνα,γ = δγ,ν . Therefore N∅,ν,λ = δν,λ.

As a result, s[∅]s[ν] = s[ν] is multiplicity-free. Thus we may suppose μ = (1). This
case is NL-multiplicity-free by Corollary 2.6.

(III) follows from (II) by Lemma 2.2(VI).
Thus suppose we are in case (II). Without loss, let μ = (k) and let ν = (cd).

We apply Proposition 2.4, and specifically (10). Since ν is a rectangle, for any
0 ≤ j ≤ k there is at most one way to remove a horizontal strip of size j from ν.
The result is a shape θu = (cd−1, u) where 0 ≤ u ≤ c. Straightforwardly, if u �= u′

then one cannot add a horizontal strip of k − j boxes to θu and separately to θu′

and obtain the same λ. NL-multiplicity-freeness follows from this analysis.
(⇒) Our argument is similar to (and uses) the one used in J. Stembridge’s work

[42]. If α, β ∈ Par, by α∪β we mean the partition obtained by sorting the (nonzero)
parts in the multiset union of α and β.

Lemma 6.2. For all triples of partitions μ, ν, λ and t ∈ Z≥0,

Nμ∪(t),ν,λ∪(t) ≥ Nμ,ν,λ and Nμ+(1t),ν,λ+(1t) ≥ Nμ,ν,λ.

Proof of Lemma 6.2. We will only prove the first assertion; the second follows by
Lemma 2.2(VI). By [42, Lemma 2.2],

(57) c
κ∪(t)
σ∪(t),π ≥ cκσ,π.

Compare

(58) Nμ,ν,λ =
∑

α•,β•,γ•

cμα•,β•c
ν
α•,γ•cλβ•,γ•

with

(59) Nμ∪(t),ν,λ∪(t) =
∑

α◦,β◦,γ◦

c
μ∪(t)
α◦,β◦c

ν
α◦,γ◦c

λ∪(t)
β◦,γ◦ .

Notice that if (α•, β•, γ•) is a witness for Nμ,ν,λ then by (57), (α◦, β◦, γ◦) :=
(α•, β•∪(t), γ•) is a witness for Nμ∪(t),ν,λ∪(t), and moreover Nμ∪(t),ν,λ∪(t) ≥ Nμ,ν,λ,
as desired. �

Suppose (μ, ν) ∈ Par2 that do not fall into (I), (II), or (III). We break the
argument into two cases, depending on whether either of μ or ν is a rectangle.

Case 1 (One of μ or ν is not a rectangle). Say that ν is not a rectangle. Since μ
is not a single box, it has at least two rows or at least two columns. In view of
Lemma 2.2(VI), we may assume without loss of generality that μ has at least two
columns. We first establish:

Claim 6.3. For ν not a rectangle and k ≥ 2, N(k),ν,ν+(k−2) ≥ 2.

Proof of Claim 6.3. Since ν is not a rectangle, it has two corners, so let α = (1),
β = (k − 1), and γ and γ each be ν with a different corner removed. By (9),

c
(k)
(1),(k−1) = cνγ,(1) = cνγ,(1) = 1,
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and since (ν + (k − 2))/γ and (ν + (k − 2))/γ are horizontal strips of k − 1 boxes,

c
ν+(k−2)
γ,(k−1) = c

ν+(k−2)
γ,(k−1) = 1.

Therefore,

N(k),ν,ν+(k−2) ≥ c
(k)
(1),(k−1)c

ν
γ,(1)c

ν+(k−2)
γ,(k−1) + c

(k)
(1),(k−1)c

ν
γ,(1)c

ν+(k−2)
γ,(k−1) = 2,

as asserted. �

In general, consider μ and ν such that μ1 ≥ 2, and ν is not a rectangle. Let
λ = (ν + (μ1 − 2)) ∪ (μ2, μ3, . . . ). By repeated application of Lemma 6.2, followed
by Claim 6.3:

Nμ,ν,λ = Nμ,ν,(ν+(μ1−2))∪(μ2,μ3,... )

≥ N(μ1,μ3,μ4,... ),ν,(ν+(μ1−2))∪(μ3,... ) ≥ · · · ≥ N(μ1),ν,ν+(μ1−2) ≥ 2.

Hence (μ, ν) is not NL-multiplicity-free.

Case 2 (μ and ν are both rectangles with at least two rows and columns). We first
consider the special case μ = (k2) and ν = (cd):

Claim 6.4. For k, c, d ≥ 2, N(k2),(cd),((c+k−2)2)∪(cd−2) ≥ 2.

Proof of Claim 6.4. Let α = (1, 1), β = (k − 1, k − 1), γ = (cd−2) ∪ ((c − 1)2). By
the Littlewood-Richardson rule,

c
(k2)
α,β = cνα,γ = c

((c+k−2)2)∪(cd−2)
β,γ = 1.

Similarly, letting α = (2), β = (k, k − 2), γ = (cd−1) ∪ (c− 2), we obtain

c
(k2)

α,β
= cνα,γ = c

((c+k−2)2)∪(cd−2)

β,γ
= 1.

Therefore,

N(k2),(cd),((c+k−2)2)∪(cd−2) ≥ c
(k2)
α,β cνα,γc

((c+k−2)2)∪(cd−2)
β,γ

+ c
(k2)

α,β
cνα,γc

((c+k−2)2)∪(cd−2)

β,γ
= 2,

as needed. �

Consider arbitrary rectangles μ = (kp) and ν = (cd) that both contain at least
two rows and columns; hence k, p, c, d ≥ 2. Let λ = ((c+ k− 2)2)∪ (kp−2)∪ (cd−2).
By repeatedly applying Lemma 6.2, followed by Claim 6.4:

Nμ,ν,λ = N(kp),(cd),((c+k−2)2)∪(kp−2)∪(cd−2) ≥ N(kp−1),(cd),((c+k−2)2)∪(kp−3)∪(cd−2)

≥ · · · ≥ N(k2),(cd),((c+k−2)2)∪(cd−2) ≥ 2.

Hence (μ, ν) is not NL-multiplicity-free in this case, either.
These two cases cover all possibilities for μ and ν not satisfying (I), (II), or (III).

In both cases we established multiplicity. �
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7. Final remarks

7.1. The associativity relation. Since Nμ,ν,λ are the structure constants for the
Koike-Terada basis of Λ, the associativity relation

(s[μ]s[ν])s[λ] = s[μ](s[ν]s[λ]),

implies for any μ, ν, λ, τ ∈ Par that:

(60)
∑

θ

Nμ,ν,θNθ,λ,τ =
∑

θ

Nν,λ,θNμ,θ,τ .

Problem 7.1. Give a bijective proof of (60) using the definition (1).

Now, cλμ,ν also “associative” in that it satisfies a relation of the form (60). How-
ever, (60) does not formally follow from this fact. To explain, we considered other
associative structure coefficients wλ

μ,ν studied in algebraic combinatorics. For each
of these one can define a “Newell-Littlewood” analogue:

Oμ,ν,λ :=
∑

α,β,γ

wμ
α,βw

ν
α,γw

λ
β,γ .

Specifically, we looked at the K-theoretic Littlewood-Richardson coefficients for
Grassmannians, the shifted Littlewood-Richardson coefficients for multiplication of
Schur P− or SchurQ− functions, and the structure coefficients for Schubert polyno-
mials (here we replace partitions with permutations). Small examples show Oμ,ν,λ

is not associative. Under what conditions/natural examples is Oμ,ν,λ associative?

7.2. An analogue of M. Kleber’s conjecture. Fix a rectangle a×b and consider
all products sλsλ∨ where λ ⊆ a× b and λ∨ is the 180-degree rotation of (a× b) \λ.
M. Kleber [20, Section 3] conjectured that these products, ranging over unordered
pairs (λ, λ∨) are linearly independent in Λ.

Problem 7.2. Are the products s[λ]s[λ∨], indexed over unordered pairs of partitions
(λ, λ∨) contained in a× b, linearly independent in Λ?

By Lemma 2.2(II), M. Kleber’s conjecture implies an affirmative answer to Prob-
lem 7.2. However, the extra terms in s[λ]s[λ∨] versus sλsλ∨ might make Problem 7.2
more tractable. (The interested reader can test ideas for a = b = 2 using the data
in the Appendix.)

7.3. Version of T. Lam-A. Postnikov-P. Pylyavskyy’s theorems. We give
another implication of Proposition 2.3. This concerns results of T. Lam-A. Postnikov-
P. Pylyavskyy [28]. Their paper solves (and generalizes) conjectures of A. Ok-
ounkov [37] and S. Fomin-W. Fulton-C.-K. Li-T.-Y. Poon [8]. It builds on work of
B. Rhoades-M. Skandera [39, 40].

If α, β ∈ Par then α∨ β ∈ Par has parts max(αi, βi) (where we have adjoined 0’s
to α or β as necessary). For any two skew shapes ν/α and μ/β, define

(ν/α) ∧ (μ/β) := (ν ∧ μ)/(α ∧ β) and (ν/α) ∨ (μ/β) := (ν ∨ μ)/(α ∨ β).

Let
sort1(ν, μ) := (ρ1, ρ3, ρ5, . . .) and sort2(ν, μ) := (ρ2, ρ4, ρ6, . . .),

where (ρ1, ρ2, ρ3, . . .) := ν ∪ μ. Below, ν+μ
2 means coordinate-wise addition and

division. Also ⌊·⌋ and ⌈·⌉ are taken coordinate-wise.
If f ∈ Λ then f is said to be Schur nonnegative if f =

∑
λ aλsλ with aλ ≥ 0 for

all λ ∈ Par.
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Theorem 7.3 ([28]). Let ν/α and μ/β be skew shapes. The following are Schur
nonnegative:

(1) s(ν/α)∧(μ/β)s(ν/α)∨(μ/β) − sν/αsμ/β
(2) s⌊ ν+μ

2 ⌋/⌊α+β
2 ⌋s⌈ ν+μ

2 ⌉/⌈α+β
2 ⌉ − sν/αsμ/β

(3) ssort1(ν,μ)/sort1(α,β)ssort2(ν,μ)/sort2(α,β) − sν/αsμ/β

Define f ∈ Λ to be Koike-Terada nonnegative if f =
∑

λ bλs[λ] has bλ ≥ 0 for
every λ ∈ Par.

Theorem 7.4. The following are Koike-Terada nonnegative:

(1) s[ν∧μ]s[ν∨μ] − s[ν]s[μ]
(2) s[⌊ ν+μ

2 ⌋]s[⌈ ν+μ
2 ⌉] − s[ν]s[μ]

(3) s[sort1(ν,μ)]s[sort2(ν,μ)] − s[ν]s[μ]

Proof. We only prove the first statement; the others are similar. Fix any λ. Then

Nμ,ν,λ = [sλ]
∑

α

sμ/αsν/α (Proposition 2.3)

≤ [sλ]
∑

α

sμ∧ν/αsμ∨ν/α (Theorem 7.3(1))

= Nμ∧ν,μ∨ν,λ (Proposition 2.3)

and the result follows. �

Example 7.5. Let μ = (2), ν = (1, 1). Then

s[μ]s[ν] = s[2]s[1,1] = s[1,1] + s[2] + s[2,1,1] + s[3,1],

and
s[μ∧ν]s[μ∨ν] = s[1]s[2,1] = s[1,1] + s[2] + s[2,1,1] + s[3,1] + s[2,2].

Hence s[μ∧ν]s[μ∨ν] − s[μ]s[ν] = s[2,2], which is s-positive, as asserted by Theo-
rem 7.4(1). The reader can verify that, in this case,

s[μ∧ν]s[μ∨ν] = s[⌊ ν+μ
2 ⌋]s[⌈ ν+μ

2 ⌉] = s[sort1(ν,μ)]s[sort2(ν,μ)].

Therefore the above also agrees with parts (2) and (3) of Theorem 7.4, as well. �

Appendix A. A list of products s[μ]s[ν]

We compute (4) for ∅ �= μ, ν ⊆ 2× 2.

s2[1] = s[0] + s[1,1] + s[2]

s[1]s[2] = s[1] + s[2,1] + s[3]

s[1]s[1,1] = s[1] + s[1,1,1] + s[2,1]

s[1]s[2,1] = s[1,1] + s[2] + s[2,1,1] + s[2,2] + s[3,1]

s[1]s[2,2] = s[2,1] + s[2,2,1] + s[3,2]

s2[2] = s[0] + s[1,1] + s[2] + s[2,2] + s[3,1] + s[4]

s[2]s[1,1] = s[1,1] + s[2] + s[2,1,1] + s[3,1]

s[2]s[2,1] = s[1] + s[1,1,1] + 2s[2,1] + s[3] + s[2,2,1] + s[3,1,1] + s[3,2] + s[4,1]

s[2]s[2,2] = s[2] + s[2,1,1] + s[2,2] + s[3,1] + s[2,2,2] + s[3,2,1] + s[4,2]

s2[1,1] = s[0] + s[1,1] + s[2] + s[1,1,1,1] + s[2,1,1] + s[2,2]

s[1,1]s[2,1] = s[1] + 2s[2,1] + s[3] + s[2,1,1,1] + s[2,2,1] + s[3,1,1] + s[3,2]
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s[1,1]s[2,2] = s[1,1] + s[2,1,1] + s[2,2] + s[3,1] + s[2,2,1,1] + s[3,2,1] + s[3,3]

s2[2,1] = s[0]+2s[1,1]+2s[2]+s[1,1,1,1]+3s[2,1,1]+2s[2,2]+3s[3,1]+s[4]+s[2,2,1,1]+s[2,2,2]

+ s[3,1,1,1] + 2s[3,2,1] + s[3,3] + s[4,1,1] + s[4,2]

s[2,1]s[2,2] = s[1]+s[1,1,1]+2s[2,1]+s[3]+s[2,1,1,1]+2s[2,2,1]+2s[3,1,1]+2s[3,2]+s[4,1]

+ s[2,2,2,1] + s[3,2,1,1] + s[3,2,2] + s[3,3,1] + s[4,2,1] + s[4,3]

s2[2,2] = s[0] + s[1,1] + s[2] + s[1,1,1,1] + s[2,1,1] + 2s[2,2] + s[3,1] + s[4] + s[2,2,1,1]

+ s[2,2,2] + s[3,1,1,1] + 2s[3,2,1] + s[3,3] + s[4,1,1] + s[4,2] + s[2,2,2,2] + s[3,2,2,1] + s[3,3,1,1]

+ s[4,2,2] + s[4,3,1] + s[4,4]

The computation s[2]s[2,2] matches the multiplication (2, 2)Sp × (2)Sp in [24, pg.
509]. This calculation is coincides with the tensor products in Sp2n for any n ≥ 3.
However, when n = 2, as shown in loc. cit. the expansion differs from the one above
(and from each other, among the classical groups).
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