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NEWELL-LITTLEWOOD NUMBERS

SHILIANG GAO, GIDON ORELOWITZ, AND ALEXANDER YONG

ABSTRACT. The Newell-Littlewood numbers are defined in terms of their cel-
ebrated cousins, the Littlewood-Richardson coefficients. Both arise as tensor
product multiplicities for a classical Lie group. They are the structure co-
efficients of the K. Koike-I. Terada basis of the ring of symmetric functions.
Recent work of H. Hahn studies them, motivated by R. Langlands’ beyond
endoscopy proposal; we address her work with a simple characterization of
detection of Weyl modules. This motivates further study of the combinatorics
of the numbers. We consider analogues of ideas of J. De Loera-T. McAllister,
H. Derksen-J. Weyman, S. Fomin—W. Fulton-C.-K. Li-Y.-T. Poon, W. Fulton,
R. King-C. Tollu-F. Toumazet, M. Kleber, A. Klyachko, A. Knutson-T. Tao,
T. Lam-A. Postnikov-P. Pylyavskyy, K. Mulmuley-H. Narayanan-M. Sohoni,
H. Narayanan, A. Okounkov, J. Stembridge, and H. Weyl.
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1. INTRODUCTION

1.1. Overview. The Newell-Littlewood numbers [31,35] are defined as

_ § : (LN 0\
(1) NHW)\ - Ca,ﬁca,'ycﬁ,'yv
a,Byy
where the indices are partitions in

Par, = {(A1, A2y An) €220 A1 > Ao > .. > Ao

Here, c’;’ s is the Littlewood-Richardson coefficient. The latter numbers are of inter-
est in combinatorics, representation theory and algebraic geometry; see, e.g., the
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6332 SHILIANG GAO ET AL.

books [9,10,41]. We study N, ., » by analogy with modern research on their better
known constituents.

For an n-dimensional complex vector space V over C and A € Par,, the Weyl
module (or Schur functor) Sx(V') is an irreducible GL(V)-module ([10, Lectures 6
and 15] is our reference). The Littlewood-Richardson coefficient is the tensor prod-
uct multiplicity

(2) Su(V)@8,(V) = @ Sa(V)®r.

A€Par,

The Newell-Littlewood numbers arise in a similar manner, where GL(V') is re-
placed by one of the other classical Lie groups G. That is, suppose W is a com-
plex vector space, with a nondegenerate symplectic or orthogonal form w, where
dimW =2n+ 6 and 6 € {0,1}. Fix a basis {e1,e2,...,£2,45} such that

W(ek, Eant146-k) = Tw(€onp14s-k,ck) =1, if 1 <i<n44

(other pairings are zero). Let G be the subgroup of SL(W) preserving w. Then
G =S50241 f dimW = 2n + 1 and w is orthogonal. It is G = Sp,,, if dim W = 2n
and w is symplectic. Finally, G = SOg, if dimW = 2n and w is once again
orthogonal. These are, respectively, groups in the B, C,, D,, series of the Cartan-
Killing classification.

If X € Par,,, H. Weyl’s construction [47] (see also [10, Lectures 17 and 19]) gives
a G-module Sp5(W). In the stable range £(p) + £(v) < n,

(3) Sy (W) @Sy (W) = @D Sp(W)FNer;
A€Par,

this is [24, Corollary 2.5.3]. Sp»(W) is an irreducible G-module, except in type Dy,
where irreducibility holds if A, = 0 (otherwise it is the direct sum of two irreducible
G-modules).

For any semisimple connected complex algebraic group G there is an irreducible
G-module V) for each dominant weight A. Uniform-type combinatorial frameworks
for tensor product multiplicities (subsuming cx o and Ny, A) are central in combi-
natorial representation theory; see, e.g., the surveys [2,25] for details and references.
To compare and contrast, N, , » is itself independent of the choice of G [24, The-
orem 2.3.4].

Our thesis is that, like the Littlewood-Richardson coefficients, the Newell-
Littlewood numbers form a subfamily of the general multiplicities whose combina-
torics deserves separate study. Indeed, we reinforce the parallel with the Littlewood-
Richardson coefficients by developing the topic from first principles and symmetric
function basics.

1.2. Earlier work. Reading includes K. Koike-I. Terada’s [24] which cites
D. E. Littlewood’s book [32] and R. C. King’s [17,18]. In turn, [17, 18] refer-
ence the papers of M. J. Newell [35] and D. E. Littlewood [31]. The Schur function
sx, an element of the ring A of symmetric functions, is the “universal character” of
SA(V). By analogy, [24, Section 2] establishes universal characters of Spy(W) for
the other classical groups.

In addition, [24, Theorem 2.3.4] shows that, in the stable range, the tensor
product multiplicities coincide across the classical Lie groups (of types B, C, D).
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For definiteness, we discuss Sp. It has a universal character basis {s(y} of A such
that

(4) s1usel = D NuwAsp,
A

where i, v, \ are arbitrary partitions; we call this the Koike-Terada basis.! This
basis specializes to the characters for fixed Sp,,,, just as the specialization

(5) s,\»—>s)\(xl,xg,...,xn,0,0,...)

does for GL,. Their work discusses “modification rules” (cf. [17,18]) to non-
positively compute multiplicities outside the stable range. See [27] for recent work
connecting the stable range combinatorics to crystal models in combinatorial rep-
resentation theory.

This paper does not focus on the Koike-Terada basis per se. It is devoted to the
inner logic of the Newell-Littlewood numbers. We were inspired by H. Hahn’s [13]
which concerns the case p = v = \; we engage her work in Section 4.

1.3. Summary of results. Section 2 collects elementary facts about N, , x
(Lemma 2.2). We will need a Pieri-type rule (Proposition 2.4). This appears as
S. Okada’s [36, Proposition 3.1] with a short derivation from (1) (which we include
for completeness); see also earlier work of A. Berele [3] and S. Sundaram [44].

In Section 3, we derive our initial result:

(I) Theorem 3.1 describes the “shape” of (4). It characterizes the sizes of A
that appear in (4) and gives a comparison result for partitions of different
sizes. This result suggests the Unimodality Conjecture 3.7.

Section 4 is about the original stimulus for our work. We address a combinatorial
question of H. Hahn [13] (who was motivated by R. Langlands’ beyond endoscopy
proposal [30] towards his functoriality conjecture [29]). More specifically, we prove

(IT) Theorem 4.1, which is equivalent to showing
Nxax > 0if and only if [A] =0 (mod 2).

In [13], “=” was proved (see Lemma 2.2(V)) and the “<” implication was
established for three infinite families of A.

In Section 5, suggested by the simplicity of (IT), we develop a broader framework
by investigating “polytopal” aspects of (1).
(IIT) Theorem 5.1 shows that N, ,  counts the number of lattice points in a
polytope P, . x that we directly construct (avoiding use of [4]). Its Corol-
lary 5.3 says that

NLn = {(,LL,Z/, A) € Pari : NIMVA > O}

is a semigroup.

(IV) We state two logically equivalent saturation conjectures about NL,, i.e.,
Conjectures 5.5 and 5.6. We prove special cases (Corollary 4.5, The-
orem 5.8, Corollary 5.16). While saturation holds for the Littlewood-
Richardson coefficients [22], it does not hold for the general tensor prod-
uct multiplicities (although it is conjectured for simply-laced types). The

1[24] defines another basis, for SO. It also has N, ,, x as its structure coefficients [24, Theo-
rem 2.3.4 (3)]. Hence, for our purposes, discussing Sp rather than the SO basis is merely a matter
of choice.
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aforementioned results and conjectures provide a new view on this subject
(compare, e.g., [16,26] and the references therein).

(V) Among the Horn inequalities [14] are the Weyl inequalities [46]. Our “ex-
tended Weyl inequalities” hold whenever N, , » > 0; this is Theorem 5.13.
Theorem 5.15 is our justification of the nomenclature; it establishes that
the (extended) Weyl inequalities are enough to characterize NLy. Our proof
uses a generalizable strategy; we will return to this in a sequel.

(VI) We also discuss limits of the analogy with cl’)’y. Theorem 5.27 shows that
R. C. King-C. Tollu-F. Toumazet’s Littlewood-Richardson polynomial con-
jecture [19] (proved by H. Derksen-J. Weyman [7]) has no naive Newell-
Littlewood version.

(VII) Section 5.5 sketches the computational complexity implications of Theo-
rem 5.1.

The “nonvanishing” results of Section 5 are related to Section 6, where we prove:

(VIII) Theorem 6.1, which characterizes pairs (A, 1) such that (4) is multiplicity-
free. This is an analogue of J. R. Stembridge’s [42, Theorem 3.1] for Schur
functions, with a similar, self-contained proof.

Section 7 gathers some miscellaneous items. This includes two open problems,
and

(IX) Theorem 7.4, which generalizes the results of T. Lam-A. Postnikov—
P. Pylyavskyy [28] that solved conjectures of A. Okounkov [37] and of
S. Fomin-W. Fulton-C.-K. Li-Y.-T. Poon [8].

The appendix gives a list of decompositions (4) for the reader’s convenience.

2. PRELIMINARIES

2.1. The Littlewood-Richardson rule. Let Par be the set of all partitions (with
parts of size 0 being ignored). Identify A € Par with Young diagrams of shape A
(drawn in English convention). Let £(\) be the number of nonzero parts of A and
let |A| == Zf(:‘l) A; be the size of A, that is, the number of boxes of A. If 4 C A,
the skew shape \/p is the set-theoretic difference of the diagrams when aligned by
their northwest most box.

A semistandard filling T of \/u assigns positive integers to each box of A/ such
that the rows are weakly increasing from left to right, and the columns are strictly
increasing from top to bottom. The content of T is (c1, ¢o, . . .) where ¢; = #{i € T'}.
Let

rowword(T) = (w1, w2, ..., W) u|)
be the right to left, top to bottom, row reading word of T. We say rowword(T) is
ballot if for each i,k > 1 we have
#Hw;j=i:j<k}>#{wj=i+1:5<k}

T is ballot if rowword(T) is ballot. The Littlewood-Richardson coefficient cﬁ’,, is the
number of ballot, semistandard tableaux of shape A/ and content v; we will call
these LR tableauz.
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Example 2.1. If 4 = (3,1),v = (4,2,1), X = (5,4,2) then ¢, = 2 because of
these two tableaux:

T = 1] and 7= 1]1]
1122 111)2
13 213
Here rowword(T}) = (1,1,2,2,1,3,1) and rowword(T3) = (1,1,2,1,1, 3,2). O

The Littlewood-Richardson rule implies that N, , » is well-defined for u,v, A €
Par.

2.2. Facts about N, , . We gather some simple facts we will use; we make no
claims of originality:

Lemma 2.2 (Facts about the Newell-Littlewood numbers).
(I) Ny is invariant under any Ss-permutation of the indices (p,v, \).
() Ny =, if [l + 7] = AL
(IIT) Nypx = 0 unless ||, V], |A| satisfy the triangle inequalities (possibly with
equality), i.c., |u] + ] > \], 6 + N 2 v, and [X] + [v] > |u]2
(IV) Nawr = 0 if Jp AN + [ A 0] <[]
(V) Ny =0 unless A + |u| + |v| =0 (mod 2).
(VI) Nyux = Ny where pi is the conjugate partition of p, etc.

Proof. (I) is immediate from (1).

By (1), N, ,.a = 0 unless there exist «, 3,7 € Par such that cgﬁ,cgﬁ,cgﬁ >
0. Henceforth we will call o, 3, a witness for N, , » > 0. These Littlewood-
Richardson coefficients are zero unless

la| + 18] = |ul, |l + |7 = [v], |B] + |7] = |A] (vespectively).
Therefore
(6) 2|l + Al = |u| + v,

which implies |A| < |u| + |v|. Now apply (I) to get (III). If || = |p| + |v| then (6)
implies the only witness is @ =0, 3 = p,y = v, hence N, , \ = ¢ as asserted by

v
(II).
For (IV), any such v satisfies v C v, A. Hence |y| < [vAA|. Similarly, |a| < |uAv|.
Now combine these inequalities with the fact that |a| + |y| = |v|.

(V) holds by (6).
/Finally, (VI) holds by the standard fact ¢, 5, = cl, g,c , = cﬁ’yl,ﬁ, and ¢y, =
céh'y" |

2.3. Symmetric functions. Let A be the ring of symmetric functions in x, za, . . ..
Define the (skew) Schur function

Su/a(T1,20,...) 1= ZmT,
T
where the sum is over semistandard Young tableaux of skew shape p/A.

2In the case of reduced Kronecker coefficients §ﬁ’y these are called Murnaghan’s inequalities.
3Recall v A X is the partition whose i-th part is min(v;, \;).
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It is true that s,y € A. Moreover, the {sy : A € Par, [\| = N} is a basis of A(Y),
the degree N homogeneous component of A = @ AN In fact,

(7) Sx/u = Zcfl,usy,

(8) S8, = ZC!);=VS>"
A

There is an inner product (-,-) : A x A — Q such that (sx,s,) = dx ,; see [41,
Chapter 7].
We will make use of the following asymmetric formula for N, ,, »

Proposition 2.3. N, ,x =Y (Su/a50/as5x), where the sum is over o C p A v.

Proof. Combine (7), (8) and (1) with the fact that s,/, = 0 unless @ C p and
Sy/a = 0 unless a C v. O

Although we will not need it in this paper, we recall the definition of spy; from [24,
Definition 2.1.1]. Let h; = s(;) be the homogeneous symmetric function of degree ¢.
If t < 0 then by convention h; = 0. Then if A € Par,,, let \* = (A, Ao —1,..., A\, —
(n —1)). Below, hy~ denotes the column vector (hx,,hay—1;--.,hx,—(n-1))" and
hysyj@ny + ha«—jan) means the column vector

(haygiFhoa—js g 14 Fhag 14, A —(i— 1)+ TRa—(i=1)—js -+ > P —(n=1)4j
+han-1)-5)"
With this notation,

A= [has haeqamy +has—amy o Baegiam) Fhas—jany o haspm-nan)
Fhx-—(m-1)(am)| -
Hence, for example
hy hs+hg hg+ hs
S[4,2,1] = hi  ha+1 h3 = 84,2,1 — S4,1 — 83,2 — S3,1,1 T 83 + S2,1-
0 1 hy

2.4. Pieri rules. The Pieri rule for Schur functions [41, Theorem 7.5.17] states
that

(9) SuS(p) = ZSA,
A

where the sum is over all A such that A/u consists of p boxes, none of which are in
the same column. We need the Newell-Littlewood analogue. It was known, and we
include a proof which is the same as [36, Proposition 3.1] for completeness:

Proposition 2.4 (Pieri-type rule; Theorem 13.1 of [44] and Proposition 3.1 of

[36]). N, (p),x equals the number of ways to remove mlﬂ;;IM bozxes from p (all

from different columns), then add w bozes (all to different columns) to make
A. In other words,

(10) S[u)S[(p)] = Z SIALs
A
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where the sum is over the multiset of A obtained from p by removing a horizontal
strip of j boxes where 0 < j < p and then adding a horizontal strip of length p — j
bozes.

Proof. Consider any «, 3,y such that cg)ﬁcg’,)ycgﬁ > 0. By (6), 2|a] = |u|+p— A,

|| +p—IA| A +p—u|
5 .

so |a| = and similarly |y| = Since a,y C (p), we have that

a= (I#Iﬂ;;IM) and v = (M) Moreover, by (9), c&p)y = 1. Therefore,

A
(11) Nu,(p))\ = ;C?mwg—\x\)7ﬁ051(lz\l+g—\u\ )’
By (9), C?Iquf\M)ﬁ € {0,1}. It is 1 if and only if one can remove w boxes

from different columns of p to get 8. Similarly, C?@Mﬂ;lm) € {0,1}, and is 1 if

and only if one can add W boxes to different columns of 5 to get A. We are
done proving the N, )\ claim by (11). The assertion (10) is a straightforward
rephrasing of the first claim. ]

Example 2.5. We have

512,118[3] = S[1,1] +S[2] 5[2,1,1] T 8[2,2] +-28[3,1] 5[4 +5[3,2,1] T 5[4,1,1] +5[4,2] T-5[5,1]-

For example, A = (3,1) can be obtained in two ways from u = (2,1) using j = 1:

|—>| | |—> | |and |—>H—> | |

This explains the multiplicity in the computation. ([l
Proposition 2.4 immediately implies a special case that we also use.

Corollary 2.6. s(1))s,] = > S[x], where the sum is over all partitions A obtained
by adding a box to v or removing a box from v.*

3. SHAPE OF S1u]S[v]

We describe some salient features of sp,jsp,). Let pAv = (u\v) U (v \ ) be the
symmetric difference of A and pu.

Theorem 3.1. Fizx u,v € Par.
(I) There exists X\ € Par with |\| =k and N, x > 0 if and only if

k = |uAv| (mod 2) and |pAv| <k <|u|+ |v|.

(I1) If Ny > 0 with [N > |uAv|, there exists A such that N, , x> 0,
A C A and MY =N - 2.

(II1) If Nywn > 0 with [X| < |u| + |v|, there exists AT such that N, , y++ > 0,
AC AT and MNT| = |\ + 2.

4Let (Y, <) be Young’s poset. Standard tableaux biject with walks in Y from @ to A, where
each step is a covering relation. Iterating (9) shows Sfl) => f*sx, where f* counts standard
Young tableaux of shape A\. An oscillating tableau of shape A and length k is a walk in Y starting
at 0 and ending at A with k edges such that each step § — 7 either has 7/6 or /7 being a single
box. Let 0** be the number of these tableaux. It is known that oM* = (Iﬁ\) (k—1)!1fY. Tterating

Corollary 2.6 gives sﬁl)] => o’\’ks[,\]; see [3,36,44].
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Proof.
(I) By Proposition 2.3, N, » > 0 if and only if there exists aw C 1 A v such that
<S,u/asy/o”8)\> > 0. Now,

(12) SujasSvja 70 = aC uAv

Thus, by (7) and (8) combined, it suffices to characterize the possible values of
deg(s,/a5v/a). By taking a = () we obtain that deg(s,/a5,/q) < |1 + |v|. Consid-
ering a = pu A v shows [uAv| < deg(s,/a5,/q)- Also, it is clear that

(13) deg(s,/a50/a) = deg(s,/95,/0) (mod 2), Vo,0 C pAv.

Thus (I) follows.
(IT) We need two claims.

Claim 3.2. Suppose ¢}, 5 >0 and o C ol C p with |a'/al = 1. Then there exists
B% C B with |3/8%| = 1 such that g > 0.

Proof of Claim 3.2. It is possible to prove this using the Littlewood-Richardson
rule, however for brevity, we will use a result [1, Proposition 2.1] which concerns
the equivariant generalization CK, L of ¢ - For our purposes, it suffices to know
that C} , is a polynomial that is nonzero only if [A[ + |u[ > |v| and moreover,
CX = X AL+ ] = [vl.

Given ¢, 5 > 0, by part (A) of [1, Proposition 2.1] for any o C ab C p (where
a' is a with a box added) we have nga # 0 (as a polynomial). However, by part

(B) of [1, Proposition 2.1], there exists 3+ C 3 (which is 8 with a box removed)
such that CgT,ﬁl # 0. Since |al| + |84 = |ul, CST#’” =chr 5 > 0. O

Claim 3.3. Suppose 3,7, 3",7" are partitions such that 3 C 8T where |31/8| = 1,
and v C AT where [yT/9] = 1. If ch 4+ > 0 then there exists M X with

\X/Xu| = 2 such that cgj > 0.
Proof of Claim 3.4. By Pieri’s rule (9),

585(1) = St + (positive sum of Schur functions)

and

545(1) = 8,1 + (positive sum of Schur functions).
Hence,
(14) sﬁs.ys%n = 53151 + (positive sum of Schur functions)

Expanding the lefthand side of (14) into the basis of Schur functions, gives
5859501 = D By (5050y)).
0
Hence, by Pieri’s rule (9),
[sﬁ]sﬂsvsfl) #0
only if k is obtained from 6 with cg ., >0 with § C s and |r/0| = 2. Now, since the

righthand side of (14) is Schur pos}tive the same must be true of any x such that
[sx]sgr5+. In particular this is true of kK = \. O
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Since N, ., » > 0, there exists (a, 5,7) such that cgﬁcgﬁcgﬁ > 0. Since |A| >
|uAv| we must have o C p A v. Hence let
o C ol C nwAv
be o with a box added. By two applications of Claim 3.2, there exists 4+ and
which are respectively 8 and v with a box removed such that ¢, ., ,¢”,_, > 0. Now
atp aT~

apply Claim 3.3 with A\ = X and %,~*, 3,~. The conclusion is that (af, 8+ %) is
a witness for N, , 11 and MM C X of two smaller size, as desired.
(IIT) We need two additional claims.

Claim 3.4. Suppose cgﬁ > 0. If v7 D 7 with |y7/7| = 1 then there exists AT D A
with |[AT/A| = 1 such that cgtﬁ > 0.

Proof of Claim 3.4. Fix arectangle R = ¢x (m—{) (for some positive integers ¢, m)
sufficiently large to contain 3,7, A. Given a Young diagram 6 C R let 6V be the
180-degree rotation of R\ 6. A Schubert calculus symmetry for the Grassmannian
Gry(C™) states that

(15) cgﬁ = cf\gvﬂ.

Choose ¢, m sufficiently large so that v7 C 8. By Claim 3.2, there exists (\V)+
which is AV with a box removed such that c'?)\v)l 4> 0. By (15),

A\ )\\/ Vv
0< C(ﬁkv)%'yT - C(ﬁ(ﬁﬁ) "
By definition of “V”, ((AY)¥)Y is of the form AT such that ch,yT > 0. O

Claim 3.5. Suppose ¢}, 5 > 0. For any ) C at C a with |a/at| = 1 there exists
BT > B with |37/B| =1 such that ", g > 0.

Proof of Claim 3.5. Since cgﬁ > 0, there exists an LR tableau T of shape p/a and

content 3. We are done once we modify T to give an LR tableau T" of shape u/a*
and content 37, as follows: Place 1 in by = a/a*. Find the first 1 (if it exists, say
in by) in the column reading (top to bottom, right to left) word order after b; and
turn that into a 2. Next, find the first 2 (again, if it exists, say in b3) in the column
reading word order after by and change that to a 3. We terminate and output 7"
when, after replacing the k—1 in b with k, there is no later k in the column reading
order.

Since the number of boxes of T is finite, this process does end. T’ is clearly of
the desired shape. The content of T” is

BT = (81, Bas- s B + 1, Brt1, - - )

It remains to check two things:

(T" is semistandard): Since T”(b;) = 1, we can only violate semistandardness if
the box d; directly below by has T'(d;) = 1. However, in that case T"(dy) = 2, by
construction. In general, since

the entry in b; of T” can only cause a problem with semistandardness with the box

d; directly below, or the box r; directly to the right. The former is only a concern
if T'(d;) = j, but in that case T'(d;) = j + 1.
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The latter concern occurs if T'(r;) = j — 1. If b;_; is in a column strictly to the
right of b; then T'(r;) = j — 1 cannot occur since the j — 1 in r; occurs strictly
between b;_; and b; in the column reading word. This contradicts the definition of
bj. So we may assume b;_; is in the same column as b;. Since

T(bj_1) :=j—2and T'(b;) =7 —1,

in fact, b;_; is immediately above b;, i.e., dj_1 = b;. Since we assume T'(r;) = j—1,
semistandardness of T implies T'(r;_1) = j—2, which by the same argument implies
bj_o is directly above b;_1 (otherwise we would contradict the definition of b;_;.
Repeating this logic tells us that by, bs,...,b; are consecutive boxes in the same
column with T'(by) := 1 and T'(r3) = 1. However, this forces b; to be in a column
strictly right of bs. Since T'(r2) = 1 and r9 is between by and bs, we contradict the
definition of bg. Thus, the situation T'(r;) = j—1 of this paragraph cannot actually
occur.

(T" is ballot): It is well-known that any semistandard tableau is ballot with
respect to the row reading if and only if it is ballot with respect to the column
reading. For j > 2, we need to show that T” is (j — 1, j)-ballot, that is, the number
of j — 1’s appearing at any given point of the column reading word exceeds the
number of j’s at the same point. If j > k+ 1 then the j — I’s and j’s in 77 and T
are in the exact same positions, and T” is (j — 1, j)-ballot since T is. If j = k+1 the
same is true except 7" has an additional j — 1 = k at by, and ballotness similarly
follows.

Now suppose j < k. The only boxes b; (1 <t < k) that contain j — 1 or j in
T or T are bj_1,b; and b; 1. Hence consider four regions of T": (i) strictly before
bj_1; (ii) starting from b;_; to before b;; (iii) starting from b; until before bj4q;
and (iv) bj11 and thereafter (in the column reading order). Below, let w[b] be a
partial reading word of T that ends at a box b. Let w’[b] be the word using the
same boxes of T".

In region (i), the j’s and (j — 1)’s are in the same positions in both T and
T’. Hence since w[b] is (j — 1,7)-ballot, the same is true of w'[b] for any b in (i).
For any b in (ii), w’[b] has one more j — 1 than w{b] (since T'(b;—1) = j — 2 and
T'(bj—1) = j — 1. Hence, w'[b] is (j — 1, j)-ballot because this is true of wb].

For any b in region (iii), w’[b] and w[b] have the same number of (j —1)’s but w’
has one more j. There are two cases.

Case 1 (bj41 exists, i.e., j < k and region (iv) exists). If w’[b] is not (j—1, j)-ballot,
then it follows w[b; 1] is not (j —1, j)-ballot, a contradiction. Finally, if b is in (iv),
w[b] and w[b’] have the same number of (7 — 1)’s and j’s, so we are again done.

Case 2 (bj41 does not exist, i.e., j = k and region (iv) does not exist). This case
means there are no j’s in T after b;. Hence if w'[b] fails to be (j — 1, j)-ballot for
any b weakly after b;, in fact w'[b;] is not (j — 1, j)-ballot. By definition, wb;]
has the same number of (j — 1)’s but one less j than w’[b;]. Since w’[b;] is not
(7 —1, j)-ballot, it must be that w(b;] has the same number of (7 —1)’s and j’s. Let
b° be the box immediately before b; in the reading order. Since T'(b;) = j — 1 we
conclude w[b®] is not (j — 1, j)-ballot, a contradiction. O

174
«

Since N, ,,» > 0 there exists (a, 8,7) such that ¢ € ﬁcgﬁ > 0. Remove any
corner from o to obtain at. By two applications of Claim 3.5 there exists AT and

~T such that c& gt c, o> 0. By two applications of Claim 3.4, there exists AT

Licensed to Univ of IIl at Urbana-Champaign. Prepared on Mon May 23 20:22:29 EDT 2022 for download from IP 130.126.143.18.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NEWELL-LITTLEWOOD NUMBERS 6341

(as in the theorem statement) such that CEI} > 0. Hence (a*,3",7") witnesses

that Nlt,Va)\TT > 0. (Il
Example 3.6. If y = (3) and v = (2,1) then |pAv| = 2 and |u| + |v| = 6. We

compute:
SE1S[2,1) = S[1,1)F 52 T 5(2,1,1) F 52,21 253,11 F 5[4+ 53,2, 5[4, 1,1 T 5(4,2) F5(5,1)-
The reader can check agreement with Theorem 3.1. (Il

There seems to be another “structural” aspect of (4). Define
hi" = Z Nywa-
XA |=|pAv|+2t
A sequence (ay )R, is unimodal if there exists 0 < m < N such that
0<ay<ar £... <0y 2 py1 = ...aN-1 = aN.

Conjecture 3.7 (Unimodality). The sequence {h}"" Li%”‘ 1s a unimodal sequence.

We checked Conjecture 3.7 for all s1,;s7,; where 0 < |u/, || < 7, and many larger
cases. Theorem 3.1 (II) and (IIT) suggest proving Conjecture 3.7 by constructing
chains in Young’s poset, each element A appearing N, , x-many times, “centered”
at m:

Example 3.8. Continuing the previous example, {h}""}3_, = 2,5,4. Here m = 1
and we are suggesting that the following chains demonstrate the unimodality:

(1,1) €(2,2) C (4,2)
(2) c(21,1) c(4,1,1)

(3,1)

(3,1) C (3,2,1)

(4) C(5,1)
There is choice in the chains; in the first and third chains we could interchange the
roles of (2,2) and (3,1). O

A sequence is log-concave if
af > ap_1a441 for 0 <t < N.
Log-concavity implies unimodality. Thus, a warning against Conjecture 3.7 is this:
Example 3.9 (Log-concavity counterexample). {h§2’2)’(272)}%:0 =1,2,6,8,6is uni-
modal but not log-concave. O
4. H. HAHN’S NOTION OF DETECTION

Our study of NL,, was stimulated by work of H. Hahn [12,13]. Suppose H is an
irreducible reductive subgroup of GLy. H. Hahn [12] defines that a representation

(16) p:GLy — GL(V)
detects H if H stabilizes a line in V. She initiates a study of detection, motivated

by R. Langlands’ beyond endoscopy proposal [30] towards proving his functoriality
conjecture [29] (see [12,13] for elucidation and further references).
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The general question stated in [12] is to determine which algebraic subgroups
of GLy are detected by a representation (16). In [13], this question is studied
using the classical groups G = SOg;,11, Spa,,, SO2, (Where in the latter case n is
assumed to be even) and where p : GLy — GLys is p = ®3, i.e., the corresponding
GLy-module is CV @ CN @ CV with the diagonal (standard) action of GLy where
g (U®vRw)=guR gv guw.

In each case, H. Hahn considers the (irreducible) G-module Spyj(W) from the in-
troduction (in type D,, she assumes A,, = 0). If r : G — GLy is the G-representation
corresponding to Sy (W), then it makes sense to define H as the Zariski closure of
r(G) inside GLp. That is, in the notation of [13], H is the irreducible subgroup of
GLy of interest.

Theorem 1.5 of ibid. proves that if [A| is odd then p = ®* does not detect Sy (W).
Conversely, when |)| is even. Theorem 1.6 of ibid. gives three infinite subfamilies
of Par,, where p = ®? detects Sy (W).

We give a short proof of a complete converse.

Theorem 4.1. Let X € Par,. Then p = ®? detects S (W) if [A\| = 0 (mod 2).5
Proof of Theorem 4.1. Hahn’s [13, Proposition 3.1] shows that

(17) p=®° detects Sy (W) if and only if Ny > 0.

In ibid. this is used to prove (=).% Therefore, (1) shows

Lemma 4.2. p = ®® detects S;xj(W) if there exists p € Pary, such that ¢}, , > 0.

Claim 4.3. For any A\ € Par,, with |[\| = 2m, there exists p € Par, such that
cﬁ)# > 0.

Proof of Claim 4.3. Since |)| is even, there are an even number of odd parts in A.
Let
Aiy > .. > A

i2k
be the odd parts of A.
Define p = (u1, o, - - -, ftn) to be a partition of m, where

% A; is even
i = ’\’;1 Aj is odd and j < iy
il )\ is odd and j > ik

>

We show cf;) . > 0 by giving an explicit ballot filling of A/ with content  (see Sec-
tion 2.1).

For \; even, fill in the rightmost % boxes with 7. For a row i; of A with an odd
number of boxes, fill in the rightmost )\i’;l boxes in the row with ¢;. There are
Ai’;l boxes in each of the top k rows with odd parts. Hence those boxes are entirely
filled. There are /\ij;l boxes in each of the bottom k rows of odd parts. For these

rows, one box remains unfilled by the above step. Fill in the empty box in row iz ;
with 4;; for the purposes of discussion below, we will call this box extraordinary. It
will also be convenient to call indices j A-even if A; is even, A-top-odd if A\; is odd

50ne might compare this parity characterization to [13, Theorem 1.5] which shows that G :=
Sym™~1(SLy) < GL,, is detected by p := Sym? if and only if n = 1 (mod 4).
6This follows from Proposition 2.2(IV), which just extends the argument made in [13].
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and j < i, and A-bottom-odd otherwise. Let T be this filling. (See Example 4.4
below.) We must check three things:

(T is semistandard): By construction, T' is row-semistandard. It remains to
show column strictness. This is clear when comparing adjacent rows j and j + 1
that are either A-even, or A-top-odd, since those only use those labels in their
respective rows. If either row is bottom-odd, notice that any extraordinary box
is either directly beneath an empty square or another extraordinary box. Since
extraordinary boxes are labeled in strictly increasing from top to bottom, we are
done.

(T has content p): If j is A-even, then p; = % and there are that many j’s in
row j of T (and nowhere else). Otherwise, if j is Ad-top-odd then we are deficient
one label of j in that row. By construction, this missing j appears in row iy ;.

(T is ballot): If j is A-even, the ballotness holds since all j’s appear in row j and
all j + 1’s appear in the row j 4+ 1 or further south, and since p; > pjy1. Next,
suppose j + 1 (but not j) is A-even. Hence A\j+1 < A; and row j of T will contain
/\]-2—1 > % many j’s; these j’s will be read before the /\jgl—many j+VUsof T,
which appear only in row j + 1. Similarly, we are done if j and j + 1 are both
A-bottom-odd, or (since extraordinary boxes’ labels increase top-down) if both are
A-top-odd. Finally, say j is A-top-odd, j + 1 is A-bottom-odd. Then row j of T has

% many j’s and all %(g ’\j2_1) many j + 1’s appear in row j 4+ 1 of T, so
ballotness follows. O
In view of Lemma 4.2, Claim 4.3 completes the proof of the theorem. O

Example 4.4. To illustrate the proof of Claim 4.3, let A = (14,11, 10,8,8,7,6,6, 5,
5,4,3,2,1). Hence 2k = 6, (i1, 12,13, 14,15,15) = (2,6,9,10,12,14), and u = (7,6, 5,
4,4,4,3,3,3,2,2,1,1,0). In this case, T is

L[1]1]1]1]1]1]
212121212
31313[3(3
41444
5(5[(5]5
666
T\T|7
81818
919
21(10[10
1111
6|12
13
9
where we have boldfaced the labels in the exceptional boxes. O

Given a partition A = (A1, Ag,...) let kA = (kX k)\g,...). Theorem 4.1 com-
bined with (17) implies:

Corollary 4.5. If |A] = 0 (mod 2) then Naxxx > 0 <= Npxragx > 0 for all
ke Zzl'

The simplicity of this “saturation” statement suggested the ideas of the next
section.
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5. POLYTOPAL RESULTS

5.1. Newell-Littlewood polytopes. Fix A, u,v € Par,. Let ag,bg,vg € R for
1 <14,7 < n and consider the linear constraints:
(1) Non-negativity: For all 1 <i,j < n, az,ﬁg,ﬁ >0
(2) Shape constraints: For all k,
(a) Zj a{c +2 B =
() 3,98+ X0k =
(c) Zj B+ 7= M
(3) Tableau/semistandardness constraints: For all k,[:
(a) 2250040+ 2 pitt < >t i By
: o /
(b) >, ’Y;H + i< aftt < > ’Y; X af
(c) Zj Bryr + Zigz %kﬂ < Zj B+ i oA
(4) Ballot constraints: For all k,
(a) 2ick o 2> Di<k 1
(b) > ick ﬂf > i<k 541+1
(c) Zi<k¢ v 2 Eigk Vi1

We define the Newell-Littlewood polytope in R37? by
Puvr= {(ag, f,’yf) c R . (1)-(4) hold}.
Theorem 5.1. N, , x = #(PuuaN z3n°).

Proof. By definition, N, , » is the number of LR tableaux T, U and V of shape p/«,
v/y and A/ respectively, and of content 3, «, and 7 respectively for any choice of
«, B, and «y in Par,,. Given such a triple (T, U, V) let Bf be the number of i’s in the
jt" row of the ballot filling of T'. Similarly, a{ and %j are defined with respect to
U and V respectively. It is straightforward that (a?, 7,~7) satisfies (1)-(4).
Conversely, suppose we are given (ozg, f,'yf) € Py For 1 <i<n,let

o ::Zaf, Bi 32255, and 7 :Z%j-
j J I

Notice o := (o, ...,an) € Par, by 4(a). Similarly we define 8,y € Par,. Now
construct T by placing Bf many i’s in row j (indented by «; many boxes), and
order the labels in the row to be in increasing from left to right. By 2(a), T is of
skew shape u/a. Conditions 3(a) and 4(b) guarantee that 7' is an LR tableau. In
the same way, we construct appropriate LR tableaux U and V using af , yg and f.
This correspondence (T, U, V) < (ag, z] ,'yg) is clearly bijective. O

Example 5.2. To illustrate the correspondence in the proof of Theorem 5.1, let
p=(2,1),v=(2,2), and A = (3,2). Let us write o, 3/ and v/ in terms of matrices
[a], [8] and [v] so that [a];; = a{, Bli; = Bg and [v];; = 727 Then P, N Z2
would be the two triples

= 0)- 0 o) (o 1)) (6 a)-(0 3)- 6 1)
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implying N, , » = 2. The first triple corresponds to the triple of LR tableaux
contributing, respectively, to c’;’,@, cy o and cg’7 where a = (1), 8 = (2),y = (2,1):

1] , 1]
1] 1] [1]2
Similarly, the second triple corresponds to these of LR tableaux
1 |, 7 1)1 |7
12] 1 2

which contribute, respectively, to ¢}, 5, ¢4 , and c’ﬁ\ﬁ where a = (1), 5 = (1,1),7

(2,1). O

That Ny, . counts lattice points in a polytope also follows from work of A. Beren-
stein—A. Zelevinsky [4, Section 2.2] on the more general tensor product multiplici-
ties, together with [24, Corollary 2.5.3]. Their polytopes are described in terms of
root-system datum. The above gives an ab initio approach, similar to one seen in
a preprint version of [33] for the Littlewood-Richardson coefficients.

5.2. Newell-Littlewood semigroups. The Littlewood-Richardson semigroup is
LR, = {(1, v, \) € Par) : ¢} , > 0};
see, e.g., [48]. We define the Newell-Littlewood semigroup by
NL, = {(u,, \) € Par® : N, ,» > 0}
Corollary 5.3. NL,, is a semigroup. LR, is a subsemigroup of NL,,.

Proof. Suppose (i, v,\) and (@i, 7,A\) € NL,,. By Theorem 5.1, there exist lattice
points ‘
(af, 8{,7]) € P and (agvﬂiﬁg) €Provx:
Observe )
o B
(053’ 147 ’Yzj) + (O[Z ) Bz ’ rﬂ) € P;J,Jrﬁ,quF,)\JrX;n
is a lattice point. By Theorem 5.1, N, 1> 0andso (u+m,v+7, A+ ) €
NL,,. Hence NL,, is a semigroup.

The remaining assertion follows from Lemma 2.2(1I). O

+E AT A

In turn, Corollary 5.3 immediately implies
Corollary 5.4. If N, x> 0 then Ny g x> 0 for every k > 1.
A. Knutson-T. Tao [22] established the saturation property of cﬁ)y. That is

(18) >0 = ¢y, >0, Vk€EZs.

w,v
Conjecture 5.5 (Newell-Littlewood Saturation I). Suppose A, u,v € Par such that
Al + || + [v] =0 (mod 2). If Ngpykwer > 0 for some k > 1 then Ny, \ > 0.

We checked Conjecture 5.5 exhaustively for A, p, v with 1 < ||, |ul, |v] < 8 and
k = 2,3 as well as many other examples. The necessity of the parity hypothesis is
Lemma 2.2(V).

This is an a priori stronger version of Conjecture 5.5:

Conjecture 5.6 (Newell-Littlewood Saturation II). Under the hypotheses of Con-
jecture 5.5, if Ny kv kx>0 then there exists o, B,y € Par such that czgvk/ﬁ.c%’mc%’kV
> 0.
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Proposition 5.7. Conjectures 5.5 and 5.6 are equivalent.

Proof. (=) Suppose |A| + |u| + |v| = 0 (mod 2) and Ny kver > 0. By Conjec-
ture 5.5, N, x» > 0. Hence by (1) there exists «, 3,7 such that cgvﬁ,cgw,cgfy
are all nonzero. By the semigroup property for Littlewood-Richardson coefficients
(Corollary 5.3), ciiw, C%,kw c%’kv are also nonzero, as asserted by Conjecture 5.6.

(<) This holds by (1) and saturation of the Littlewood-Richardson coefficients
(18). |

There has been significant interest in the saturation problem for tensor prod-
ucts of irreducibles for complex semisimple algebraic groups. Suppose pu, v, A are
dominant weights corresponding to the irreducible modules V,,, V,, and Vy. Let

fa A
VoV, = @@V
A
The aformentioned problem is, if we assume p + v — wgA is in the root lattice, is

ml)LV 75 0 = mg;);,ku 7& 07 Vk Z 1?

In type A, mf;)l, is a Littlewood-Richardson coefficient, and (18) provides an

affirmative answer. The answer is negative for types B and C, and is conjectured
to be true for all simply-laced types, and in particular, type D. The state of the
art is that the type D conjecture is proved for type Dy by M. Kapovich-S. Kumar-
J. J. Milson [15] and more recently by J. Kiers for Ds, Dg [16] (which we refer to
for more references).

Conjecture 5.5 suggests that saturation should hold in types B and C' at least in
the stable range and under the parity hypothesis. In view of [24, Theorem 2.3.4], the
D,, conjecture should imply Conjecture 5.5 (taking into account the parity vs root-
lattice hypotheses); we thank J. Kiers for pointing this out (private communication).
We emphasize that Conjecture 5.6 permits a different approach than [15,16] for the
cases at hand. For example, in addition to the infinite family of cases provided by
Corollary 4.5, we have:

Theorem 5.8. Conjecture 5.6 is true if one of A\, u,v is a single row or a single

column.

Proof. Suppose one of A, i, v is a single column. By Lemma 2.2(I), we may suppose
t

pu = (1'). By assumption, there exists a, 3,7 such that k ),ck” kKX > 0. For

a8 Cayr €8y
convenience, let [A/u]; be the number of boxes of the i-th row of the skew shape

A .
Lemma 5.9. If c;\w > 0, then [A/p]; < vy for alli.

Proof of Lemma 5.9. Since cl);:’y, = ¢}, > 0, there is an LR tableau T of \'/u’

v

of content v/. The labels of boxes in a given column C of T are distinct. Hence

#C < (V') and the lemma follows. O
The fact cgf;) > 0 implies that «, 3 C (k') and hence ay, 81 < k. So by Lemma

5.9,

(19) [(kX) /)i, [(kv) /Als < K, Vi

Since v C kv A kA, by (19), for all i:
(20) [(BX)/(kv ARN)i < [(RA)/7]i <k, and [(kv)/(kv A RN)] < [(BX)/7]i < k.
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Also, (20) and kv A kXA = k(v A ) combined imply
A (AN, v/ (v AN <1,V
that is,
(21) lvi — i < 1.
By Theorem 3.1 (1),
klvAN = [kvARN < [(K")] = kt,
and so |[vAA| < t. Since |vAN| = |v| + |A| (mod 2) and (by hypothesis)
v+ A+ 1(19)] = [o] + ]A| + £ = 0 ( mod 2),
we have that %AM € Z>o.

Claim 5.10. There are at least —t_‘l;A’\l

indices i such that v; = \; > 0.
Proof of Claim 5.10. By definition of «, 3, and =,
kt = |af + B

= |(kv) /4] + [(kA) /4]

= |(kv)/(kv ANEN)| + |(kv AEXN) /o] + | (kX)) (kv AEX)| + [(kv AKX /|

= |kv Ak + 2|(kv A kX)) /).

This is equivalent to

(22) 2 (#) — (kv AR A

By (19),
(kv ARA) )i < [(Rv)/2]i < k. Vi,
Thus (22) and the Pigeonhole Principle shows

t— VAN

(23) i (b AR > 0} > 0

By (21), if vj # A; then [kvAkA]; = k. By (19), kvj —v;,kXj —v; < k. Hence

(24) k Z HlaX{,Z{iI/j7 kAj} - = (max{k:yj, k)\j} — min{kyj, k)\]})

6347

+ (min{kv;, kA;} — ;) = k + (min{kv;, EX;} — ;).

Therefore min{kv;, k\;} —~,; = 0. That is,
(kv A X)) = 0.

As a result, [(kv AkN)/~]; > 0 only if v; = A\; > 0. Hence by (23) there are at least

w many 7 with v; = \; > 0.

O

By Claim 5.10, we may define 7 to be v A X\ with one box removed from the

southmost #
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A/7 are vertical strips. Now, since |v| + |A| = 2|v A A| + |[VAN],

_ t— VA

/31 = I~ v A+ A
C 2] = 2lu AN+t — VAN
N 2
|y = At (] A =20 AN = [VAX])
B 2
_ =+t
= 5 _

Similarly, |\/7| = W Therefore, the (column version) of the classical Pieri

rule (9) shows that
((1(t+lu\f\kl)/2)7 (1(t+|/\\flu\)/2)77)

is a witness for Njs), \ > 0.

The proof where one of p, v, A is a single row is similar to the above argument,
except simpler. Therefore we only sketch the necessary changes and leave the details
to the reader. By Proposition 2.4, we have |v] —\;| < 1; this is the analogue of (21).

By the same reasoning, % € Z>o. The column version of Claim 5.10 states

that there are at least =122l indices i such that v, = A, > 0; it is proved using a

different Pigeonhole argument. Given this claim, one defines 4 be removing a single

box from the eastmost w columns such that v/ = Al. Then one concludes in

the same way. (Il

5.3. Horn and (extended) Weyl inequalities. Let [n] := {1,2,...n}. For any
I={iy <ig<--<ig} Cn]
define the partition
()= (la—d>--->ip—2>1i —1).

This bijects subsets of [n] of cardinality d with partitions whose Young diagrams
are contained in a d x (n — d) rectangle. The following combines the main results
of A. Klyachko [21] and A. Knutson—T. Tao [22].

Theorem 5.11 ([21], [22]). Let A\, pu,v € Par,, such that |\ + |u| = |v|. Then
cl/)’,/ > 0 if and only if for every d < n, and every triple of subsets I, J, K C [n] of
T (K)
cardinality d such that Cr(D)r () > 0,
(25) ZMSZ#H‘ZW-
keK iel jeJ
The inequalities (25) are the Horn inequalities [14].

Proposition 5.12. Let pu,v, A € Par, such that N, > 0. Then the Horn in-
equalities (25) hold.

Proof. Since N, ,, » > 0, there exists a, 3,y such that cgﬁ, Coys cgﬂ > 0.

By Theorem 5.11, (u, «, 3) satisfies the Horn inequalities (25). Consider an arbi-
trary Horn inequality associated to a triple of subsets (I, J, K) as in Theorem 5.11.

ZM SZ@'-FZ%%

keK i€l jeJ
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Since ¢y, , > 0, v C v and so in particular v; < v; for all j, and similarly 3; < p;,

s0
S s Y Y
keK icl jed
Hence (p, v, \) satisfies (25), as desired. O

Among the Horn inequalities are the Weyl s inequalities [46]. The latter inequal-
ities state that a necessary condition for Cu , > 0is
(26) Aivjo1 Svitpjforit+j—1<mn
we refer to [5] and the references therein for an expository account. When n = 2,
the Horn inequalities (25) and Weyl inequalities (26) coincide:
(27) A Spr v, A2 Spp e, A < gt

Theorem 5.11 has been extended in a number of ways. For a recent example,
see work of N. Ressayre [38], who gave inequalities valid whenever the Kronecker
coefficient g, x> 0.

Theorem 5.13 (Extended Weyl inequalities). Let p,v,\ € Par,, and 1 <k <i <
J<U<n,letm=min(i—k, 1 —j) and M = max(i — k,l — j). If Ny ,x > 0 then
(28) ti — g <A — AN+ Um—pt1 + Vnmgpr2  where 0 < p <m.

Proof. Since N, » > 0, there exists a, 3, such that cgﬁ, cgﬁ,cgﬁ > 0. By The-

orem 5.11, (u, o, B), (v, ,7), (A, B,) all satisfy the Horn inequalities. Therefore,
by Weyl’s inequalities (26), we have that

(29) pi < ipy1 + B and N < B+ Y1

Additionally,

~([n)\{s}) AT
(TP (1) = Can-3),(0) =

so by Theorem 5.11 applied to ¢, 5 > 0,

(30) Zﬂaﬁzab+25c.

aj b#n c#j

Zﬂazzab""Zch
a b c

Subtracting (30) from

gives

(31) Ky = om + Bj.
By the same logic,

(32) Ak > Br + n.

Also, by treating «, «, and v as partitions of n 4+ 1 rows with a1 = Y41 =
Vpt+1 = 0, we have that

([n+1\{m—p+1,M+p+2}) e Il

T([n+ U\ {i—k+ L+ 11, r([n+ DN {i—j+ Lt 1)) = C1n-1-G-k) (1n-1-=3)) = 1

Thus, Theorem 5.11 applied to ¢, , > 0 gives

(33) Z Vg < Z ap + Z Ye-

ag{m—p+1,M+p+2} bg{i—k+1,n+1} c{l—j+1,n+1}
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Subtracting (33) from
Z Vg = Z ap + Z Ve
a b c
gives
(34)  i—pg1 +Vi—j+1 = Cickt1 + Qg1 F Vi—jr1 T Yntl < Vmepti + UMapt2
Therefore, combining (29), (31) and (32) gives the first inequality below:
pi = g+ M= M < (Qigr + Br) = (an + B5) + (85 + mv1-5) = (Be + )

= Qj—k+1 — Qn + V41— — In

< Qg1+ Vi1

< Vm—pt+1 + VM4p+2,

where we have just applied (34). This completes the derivation of (28). O

Corollary 5.14. The inequalities (25) and (28), where the roles of (u,v, A) are
interchanged under all G3-permutations, also hold whenever N, , x > 0.

Proof. Combine Lemma 2.2(I) with Proposition 5.12 and Theorem 5.13. O

Just as the Weyl inequalities are necessary and sufficient to characterize LRy, we
now show that the (extended) Weyl inequalities (together with symmetries given
by Corollary 5.14) are necessary and sufficient to describe NLs.

Theorem 5.15. Suppose \, i, v € Pary satisfies |A|+ |u| +|v| =0 (mod 2) and the
triangle inequalities. Then (u, v, \) € NLa if and only if this list of linear inequalities

holds:

(35) M St vi St S A+
(36) Ao S pptva, vo S AL+ 2, pe S At
(37) A2 <o+, va< Aot pe <A+
(38)

v1—ve S prtpe + A1 — A2, g1 — p2 <At Aetri—va, A — Ao Svp e+ —pe
A=A Sy pg v —va, py — e Syt A=A, v — va <A Ao g — .

Above, (35), (36), (37) are the n = 2 Horn/Weyl inequalities (27) and their
symmetric analogues. (38) represents (up to symmetry) the unique inequality of

the form (28) for this case.
Theorem 5.15 implies another case of Conjectures 5.5 and 5.6:

Corollary 5.16. Conjectures 5.5 and 5.6 hold when n = 2.

Proof. Suppose that |A|+|u|+|v| = 0 (mod 2) and Ny, kv xx > 0. By Theorem 5.15,
(kp, kv, k)) satisfies (35), (36), (37) and (38) after the substitution

w— kv kv, A — kA

These inequalities are homogeneous in A;, u;, ;. Hence (u, v, A) satisfies (35), (36),
(37) and (38). Therefore by the “<” direction of Theorem 5.15, N, , » > 0, as
required. O
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The classical Weyl inequalities do not characterize LR3. Analogously, the ex-
tended Weyl inequalities (combined with Proposition 5.12 and Corollary 5.14) are
not sufficient to characterize NLs. An example is © = (6,0,0),v = (4,2,2) and
A = (4,4,0). However, we have an additional list of inequalities that should close
the gap in this case. We plan to address this issue (and more) in a sequel. For now,
we restrict to proving Theorem 5.15, to illustrate a general strategy.

Proof of Theorem 5.15. The “=" direction is by Proposition 5.12, Theorem 5.13,
and Corollary 5.14. To prove the converse, let (A, u, ) € Parg be such that |A| +
|p| + |v] =0 (mod 2) and N, , » = 0. We now show that either one of the triangle
inequalities, or an inequality from (35)-(38), is violated.

Claim 5.17. If |\| < |pAv|, either a triangle inequality or an inequality from (38)
is violated.

Proof of Claim 5.17. By Lemma 2.2(I), we may assume without loss that vy > p;.
If vy > po, then |pAv| = |v| — |u|. Combining this with the hypothesis [A| < |pAv|
we obtain a failure of the triangle inequality |A| + |p| > |v|. If vo < pg2, then

|pAV| = vy — p1 4 po — vo.
Now, |A\| < |pAv| implies that
v — Ve > A+ A+ — e

which violates the sixth equation of (38). O

By Claim 5.17, we may henceforth assume that

(39) [pAv| < [A] < [p|+[v].
Let

1] + v = [A|
40 k="—-—-—>0;
(10) S0,

k € Z by the hypothesis that |A| + |u| + |v| = 0 (mod 2). For future use, we record
this rewriting of (40):
(41) A4+ Ao =1+ pe+ 11 + o — 2k

A pair (u*k %) € Pary is walid if there exists o € Parg with |a| = k such that
c goe > 0and ey >0 (equivalently, ptf C p, v** C v with |u/pt*| = |v/v¥F| =
k, and the two skew shapes u/put* and v/vtk each have an LR tableau of the same
content «).
Claim 5.18. A valid pair (u**, ) exists. Moreover,
(42) kE <|puAv|=min(p,v1) + min(usg, va).

Proof of Claim 5.18. By (39), |A\| > |#Av|. Thus existence follows from Theo-
. . . +|v|—|puAv +v|—|A .
rkem 3.1(I) combined with (1). (42) holds since |uAv| = 2] ‘2 pav] > ol |2‘ Al 5

For i = 1,2, let k; and [; be, respectively, the number of boxes in row i of the
skew shapes u/pt* and v/vvF.
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Claim 5.19. If (u**, v+*) is valid then at least one of the following inequalities holds:

(43) >\1>/L1+I/1—]€1—11
(44) )\2>[L1—|—l/2—l€1—lg
(45) Ao > po + 11 — ke — 1.

Proof of Clatm 5.19. By (1), Ny, =0 < cﬁikuik = 0 whenever (u** v+*) is a
valid pair. Now the claim holds by the n = 2 case of Theorem 5.11 (see (27)). O

Claim 5.20. Suppose u** = (1 — ki, p2 — ko), v¥F = (11 — l1,v2 — I3) and a =
(a1, a9) € Z2. Then (u**,v4) is a valid pair of content « if and only if
(I) p* ¥ € Pary;
(II) « € Pary;
(III) ki, kQ, ll, Iy € Zzo;
(AV) k1 + ko=l +lo=a1 +as = k;
(V) k1,ke > ag and 1,15 > ap; and
(VI) g+ (1 — p2) > ky and ap + (11 — v2) > 1.

Proof of Claim 5.20. (<) We construct an LR tableau T of shape u/u** of content
a. Conditions (I), (IIT) guarantee this is a skew-shape. Fill the k; boxes of the first
row of pu/pt* with 1’s. Since by (V), ka > aw, we can fill the rightmost ap boxes of
the second row of u/pt* with 2’s. Then fill the remaining boxes of that row with
1’s. T is clearly row semistandard. It is column semistandard because of (VI). It
is ballot by (II) and the condition k; > aq of (V). Finally the content of T is o by
(IV). Thus Cﬁi’c,a > 0. Similarly, we show ¢}, , > 0.

(=) If (u**, v¥*) is a valid pair of content o then there exists LR tableaux T, U
of shapes u/u** and v/v*F (respectively), and of common content . Now the
conditions follow by reversing the reasoning in the above paragraph. O

Claim 5.21. If (43) holds for every valid pair (u**, v**) then an inequality from
(35)-(38) is violated.

Proof of Claim 5.21. By Lemma 2.2(I), we may assume, without loss, that us >
va. In each case below, it is straightforward to verify the conditions (I)-(VI) of
Claim 5.20, so this is left mostly to the reader.

Case 1 (min(ug, vy, k) = v1). Consider ut* = (uy — (k — v1), ug — v1) and v+ =
(v1 — (k —12)). We point out that, here and elsewhere, (42) is relevant to checking
Claim 5.20; in this case condition (I). Specifically, u%k, I/%k > 0 by (42). In addition
u%k > uﬁk since

p—(k—v1) = (p2e—v1) 2 —p2+ -k =0
(again by (42)). It follows that (u**, v+*) is a valid pair of content v = (vy, k —v1).

In this case we have ko = 11 and Iy = vo and thus kg + 1 = |v|. Now by (41), (43),
and Claim 5.20(IV),

(46) )\2<M2+l/2—k2—12.

Hence, Ay + 11 < (o + v — ko — l3) + 11 = o + v2 — |v| + v1 = po. This violates
the third inequality of (37).
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Case 2a (min(ug, v1,k) =k and vy > k). pt* = (uy, pe — k) and v = (vy, 15 — k)
is a valid pair of content o = (k). Here k; = I; = 0. Hence (43) states Ay > uy +v1,
violating (35).

Case 2b (min(ug, v1,k) = kand k > v9). pt* = (u1, po—k) and v*k = (v1—(k—11))
is a valid pair with @ = (k). Here k; = 0,ka = k,l; = k — 15 and I = v5. By (43)
and (46),

AM—Aa> (pr+vi—ki—1) — (2 +v2 —ka —la)
=mtvi—(k—v2) —po—vatk+u
=+ v+ p1 — M2

which violates the third inequality from (38).

Case 3 (min(pg,v1, k) = p2). Let p** = (u1 — (k — po)), v** = (11 — (k — ).
By (42), po > vo > k — min{u1,v1}. Using this, one checks (ut*, v4F) is valid of
content & = (min{py, 11}, k — min{u1,v1}). Here, ko = po and lo = v5. Hence by
(46), Ao < po + vo — ko — Iy = 0 contradicts that A € Pars. O

Introduce the quantity
At ) = (1 +vo — ki = o) = (pa + 11 — k2 — ).

Claim 5.22. Suppose (u**, v+*) is a valid pair such that |A(u**, v+*)| < 1. Then
(44) and (45) are violated.

Proof of Claim 5.22. If (44) holds, by (41) and Claim 5.20(IV) we obtain
M+ —ke—lh =1 +va— ki —la < Ag,
which is a contradiction of A € Pary. Similarly, if (45) holds then
M +ve—k1i—lo—=1< o +v1 —ky — 11 < Mg,
giving the same contradiction. |

Claim 5.23. Suppose (u**,v+F) and (jit*, 7+*) are valid pairs of content o and &,
respectively. There is a sequence of valid pairs

(1t vA8) = (o) (o).t ot ) = i, )
of contents a(® = a, ™, ... o™ =@ (respectively) such that for all i € [m],
(47) AG Vi) = Aty Vi)l < 2.

Proof of Claim 5.23. First suppose that a=a. By exchanging the roles of (u**, v+F)
and (f**, 7¥) if necessary, we may assume that k; — k; = j > 0. Define

ity = (i + e = 1)
0 <i<j. Also, set ug’z]’; = V(lok) for all 0 < i < j. By definition of j, u%f) = itk
Moving a single box at a time, we construct V(t]; similarly for ¢ > j such that when
i = m we obtain v* (and we set u = [tk forj <1 < m). More precisely if [; = A
then j =m. If Iy > ll then set 1/( +1) ( v )1 +1, V(Z) 1) for j <i < m. Finally
if Iy <11 we set I/(ZH) ( ()1 1,1/(&]; +1) for j <i<m.
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Set o) = a = a for 0 < i < m. It is a straightforward induction argument to
see that each (,u%i’;, V(t];) is valid of content o). Finally, by construction,

7 7 7 7 —1 1—1 1—1 1—1
48) (kS — K + 1 — 19y — (kY — kY Y i) =2,

which implies (47).
Now suppose that o # @. We assume without loss of generality that ay > as.
Let m* := as — ap > 0. Then, for 0 <i < m* — 1 set

(49) Uit — (a! (@) 11, a(z) 1),
1k
CONMPCA ) T utyac > 0
(+1) (u 1, )1 +1, u( )2 — 1) otherwise,
and
ik v
(51 w0 s a0
) Viiv1) = 1k .
(v Vi 1, u(z) 1) otherwise.

It is straightforward to check
i i i i i—1 i—1 i—1 i—1
(kY =k + 157 = 157) = (kg™ = BTV Y — 1Y) € {0,2)

and hence (47) holds.

Thus, it remains to show that (ué’il), I/EL;:_I)) is a valid pair of content a*t1). By

definition, the only concern is if u%ﬁrl) (respectively, Véil)) is obtained by applying
the second case of (50) (respectively, (51)). Now, suppose we applied the second

Wk lk

case of (50) to obtain u( Since, by induction, (/‘(i)7V(i)) is valid of content

i+1)°
a@ | there exists an LR tableau T of shape ,u/u%ik) of content a?. The assumption

ag > &2 implies a; < a;. This combined with the induction hypothesis, the fact

that ,u(z) 5+ ag) = p1 holds when CZ“ i1 =0, and pg > ay > agi), shows
(‘)*O‘

Now, define T by modifymg T as follows: Move the leftmost 1 in the first row
and place it to the left of the leftmost entry of the second row. Then change the
leftmost 2 in the second row into a 1.

By definition of m*, and the existence of T, there exists a (leftmost) 1 in the
first row and a 2 in the second row. Hence the modification is well-defined for
0 < i < m. Moreover, it is clear 7" is semistandard, of content a1 and has
shape p/ ,u%ik;l). That T” is ballot follows easily from the fact T is ballot. Hence T’
is an LR tableau of the desired type. "

In the same way, if 1/( is obtained from V(;) using the second case of (51), we

+1)
can modify an LR tableau U of shape v/ u(t’; of content a?) into an LR tableau of

shape l//l/ and content a1,

(i+1)
Summarlzmg, irregardless of which cases of (50) and (51) are used at each stage,

by induction, (u%ﬁrl), Véil)) is valid of content a"*1). Moreover when i + 1 = m*,

we arrive at (M%:w)v I/(ink;*)) of content . We have therefore reduced to the o = a
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case above. Applying the argument of that case we continue this sequence to
(V). D
Claim 5.24. No valid pair (u**, v+*) can satisfy (44) and (45) simultaneously.
Proof of Claim 5.24. If some valid pair (u**, v+%) satisfies both (44) and (45), then

A2 >,u1 —|—1/2 and Ag >u2 4—1/1 .
Therefore we have

AL 2X2 > [t + ] = |A,

a contradiction. (]

Claim 5.25. If all valid pairs (ut*, v+*) satisfy (44) or (45) then one of the inequal-
ities from (35)-(38) is violated.

Proof of Claim 5.25. Claim 5.22 says that |A(u**, v4¥)| < 1 cannot occur.
If we have two valid pairs (u*F, v¥%), (i+F, 74F) satisfying

A(p* o) < —1 and A, 7)) > 1,

then by Claim 5.23 there is a sequence (,u%(];) (i(f)) = (u**, Vw) (M%k), (ilk))
(1th Ve ) = (%%, 7%%) such that [A(ufh,vEh) — A(ugl ), vl ) < 2 for al

i€ [m] Hence for some j, A(u(j), (UC) e {-1,0,1}. However in that case,

(,u(])7 G )) contradicts our hypothesis, by Claim 5.22.

Since A(u¥*, v¥h) = —A(v**| 1+*)| by Lemma 2.2(T), we may assume A(ptk, v4)
< —1. By definition this means 1 +vo — k1 —lo < o + 11 — ko — I3 If furthermore
Ao > o+ — ko —1y then Ao > pq +v9 — k1 —Ils. That is, if (/Hk, V“ﬁ) satisfies (45)
then (ut*, v*F) satisfies (44). Now by Claim 5.24 we get a contradiction. Thus,
henceforth we assume (u*, %) satisfies
(52) At vt < —1 and (44).

We have four cases, depending on k. We appeal to Claim 5.20 in each case.
Case 1 (k < pa, vy —1v3). Notice that pt* = (1, pa — k), v** = (v; —k, 1) is a valid
pair with content o = (k). We have k; = lo = 0 and hence (44) says Aa > 1 + v
violating (36).

Case 2 (p2 < k < juy,v1—1). Observe that pu** = (g — (k—p2)), ¥ = (11 —k, 1»)
is a valid pair with content o = (k). By (44) combined with (41),
(53) )\1 <H2+V1—k2—ll.

We will use this inequality here and in the cases below. In the present case, ky =
0,13 = k and thus (53) says Aa > u1 + v2 — k + po. Combining with (44) gives

A1 = A2 <1 — e — i — p,
which violates (38).

Case 3 (u1 <k <wvy —wg). Since vo > ag >k —py and py <wvg —vo +k — p1, we
have a valid pair p** = (1 — (k — p2)), v** = (v1 — pa, v2 — (k — p1)) with content
o= (u1,k — p1). We have ko = po and I3 = p1 and thus by (53),

A < fpo+vp— po— =V — i,
which violates (35).
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Case 4 (k > 11 — o). Let

k— k—
a=|v; —1vo+ Lt Vo y Vit Vo y and
2 2
1k ( \‘k—V1+V2J ’Vk—l/1+yg-‘>
e\t e T e )

One can check that there is an LR tableau of shape v/v*¥ and content a by
verifying the conditions (I)-(VI) of Claim 5.20. In particular o C v. If a« C p as
well then since s,/ # 0, by (7) we can find p* such that (u**,**) is valid of
content a. However, in that case

(1/1 — ll) — (1/2 — ZQ) = I/iLk — Z/QUC S ].,

and hence
A vy =gy f vy — kg — o — (g + 11 — ko — 1)
=p1 — ki — (p2 — k) +ra—vi+li —1lo
=(uy" = ") = [ — 1) = (2 — I)]
>—1.
This would contradict the assumption A(u**, v+¥) < —1. Therefore we may assume
either py < ag or us < as.

First suppose p1; < aj. Using this assumption, and the definition of a; one
verifies the conditions (II) and (VI) Claim 5.20. It follows that

Ky = (= k =+ p2) vy = (= vz = (k= m))

is a valid pair with content @ = (u1,k — p1). Now we have ko = ps and I} = g
and thus (53) states
AL < p2 v — po — py = v —
This violates the second inequality of (35).
Now suppose s < ao. Using this assumption,

/‘g) = (m — k+ﬂ2)ay(¢2k) = (1 — [ —va +pal,ve — V2 —v1 +k — p2))
gives a valid pair of content @ = (k — ua, u2). Now we have ko = po and I; =
V1 — Vg + o and so here (53) is

AL < o+ 1 _(ILLQ)_(Vl—l/z—F,uQ) = Vy — U2.
This gives a violation of the second equation of (36). O
Conclusion of the proof of Theorem 5.15: If all valid pairs satisfy (44) or (45), we
are done by Claim 5.25. Since by Claim 5.19, at least one of (43), (44) or (45)
holds for valid pairs, we may assume there is a valid pair (u**, %) such that (43)
holds. If in fact, all valid pairs satisfy (43), we are done by Claim 5.21. Hence we

may also suppose there is a valid pair (z**, 7+*) that does not satisfy (43).
Let us consider the sequence of valid pairs

ko lk ko Lk ko Lk ko~
(M%0)7 V(io)) = (Niky Vik)a (/l(ll)u V(ll))y ceey (M%m)7 V(im)) = (Niky VLk)
where (uék), I/(t’;) — (ut.kﬂ), I/(i.lil)) by Claim 5.23’s construction.
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Combining the fact that (u %k), (iok)) = (u**,v**) is a valid pair satisfying (43)

with (41) and Claim 5.20(IV),
Ay < /‘(0)2 + V(o)z 2k+k1+ 1 < /‘(0)2 + u(0)2
Hence
1k 1k oLk 1k
(54) A2 < Hgyz + Y(g)2 < minfpgy + Vg, 1“(0)2 + V(o)1}

By examining Claim 5.23’s construction (for both « = @ and a # a), it is
straightforward to see that

1k

(55) | min{u, z)1+y(z)2’ﬂ(z)2+y(z }—min{u, z+1)1+V(z+1)2’l‘(z+1)2+V(z+1 L
Inductively, if (43) holds for (u . ,1/(.))7 then by the same reasoning as for (54),
Ao S i + V(i — 1
1k 1k
S mln{'u(i)l + V(i)Q’ G2 TVt — 1

Combining with (55), we get

Az < mm{“(z+1)1 + V(z+1)2"u(z+1)2 (1,+1)1}

This means (,u%ikﬂ), Vi +1)) violates (44) and (45); consequently, (43) holds for this

valid pair. Therefore by induction, (u%fl), 1/(UC ) satisfies (43), which contradicts the

m)
Lk
choice of ( ) (m)) 0
O
5.4. Refinements? A conjecture of W. Fulton (proved in [23]) states that
hy=1= i, =1 Vk>1

Example 5.26 (Counterexample to analogue of W. Fulton’s conjecture). One
checks that

_ (LD 3 (2,2) 3 (2,2) 3 _
Nan,a,1,11) = (0(1),(1)) but N2 2),(2,2),(2,2) = (¢ €1,1),@, 1)) +(c C(2), (2)) =2
Hence, the analogue of Fulton’s conjecture for N, , x is false. O

Define a function
¢ L>1 > N by ki cﬁfmu.

A conjecture of R. C. King-C. Tollu-F. Toumazet [19] asserts that this function
is interpolated by a polynomial with nonnegative rational coefficients. The poly—
nomiality property was proved by H. Derksen-J. Weyman [7]. Consequently, v
is called the Littlewood-Richardson polynomial. (The positivity conjecture remalns
open in general.)

Similarly, let us define the Newell-Littlewood function:

‘)’I#V,,_,,\ : Zzl — N by k— Nk,u,kz/.,k)w

The following shows that 0, ,, »(k) cannot always be interpolated by a single poly-
nomial.

Theorem 5.27 (Non-polynomiality). There exist A, p,v such that M, (k) &
R[k].
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Proof. We will show M1 1),(1,1),1,1)(k) = [’”1] which is clearly non-polynomial.

Let u, v, \=(1,1) and suppose «, 3, 7y satisfy ca“ﬁcfy’ﬁycﬂ 5 >0, ie., cgk;)c&kyk)cgvk)

> 0. The claim is that the only possible («, 8,7) are

k+1

and in this case the contribution to (1) is (cgf:) Gk j))3 = 1. This would com-

plete the proof as there are [£:!] such j. That CE?:)J) (h—j) = 1 follows easily
from the Littlewood-Richardson rule. Hence it only remains to rule out other
possible («, 3,7). Indeed, given such a triple, since c( *) > 0 we must have
la| + |8] = 2k. Similarly, we obtain |a| + |y| = 2k and |ﬁ| + |y| = 2k which to-
gether imply |a] = |8] = |y| = k. To conclude, we apply another fact about
Littlewood-Richardson coefficients that has a Schubert calculus provenance. That

is, cgr% 0 = = 0g,ov Where aV is the 180-degree rotation of (m — £)¢\ B (as used in
Claim 3.4).” In our case £ = 2 and m = k + 2; moreover (j,k — )V = (j, k — j).
From this, the result follows. |
Example 5.28. Let 0,z (k) := N, ,(2k—1), ‘F)V?M’,,,)\(k) =N, 2(2k). By Propo-
sition 5.27,

ﬁ(1,1),(1,1).,(1,1) =k and ﬁ(1,1),(1,1),(1,1) =k+1.
For another example, it seems that

_ 1
N(2,1,1),(2,1,1),(1,1,1,1) = gk(k +2)(k+1)

and L
N2,1,1),(2,1,1),(1,1,1,1) = 6(% +3)(k+2)(k +1).

This would suggest ﬁu,u,kvsﬁuwﬂ € Q>o[k]. However, when A = p=v = (2,1,1),
the values of M, , (k) for & = 1,2,...,11 are 4,18,51, 141, 315,676, 1288, 2370,
4047,6720,10605. None of mmw,\,ﬁu,y,,\, gtwm\ seem to have a nice interpolation,
although it is possible we do not have sufficiently many values. ]

5.5. Complexity of computing N, , . Following H. Narayanan [34],
T. McAllister—J. De Loera [6], and K. D. Mulmuley-H. Narayanan-M. Sohoni [33],
Theorem 5.1 and Conjecture 5.5 have some implications about the complexity of
computing N, , . For brevity, we limit ourselves to a sketch.

Given input (A, u,v) € Par,, (measured in terms of bit-size complexity) there is
the counting problem NLvalue which outputs N, , x. By Lemma 2.2(II), a sub-
problem is LRvalue (computation of ¢§ ,). H. Narayanan [34] shows LRvalue €
# P-complete (thus, in particular, no polynomial time algorithm exists for this prob-
lem unless P = NP). This implies NLvalue is #P-hard. Theorem 5.1 shows that

"Let 0o denote the Schubert class for a C (m—£)¢. The underlying Schubert calculus statement
is that if o] + |8 = dim Gre(C™)(= £ X (m — £)) then 0o Uog = 05,4V 0(,,_ge € H*(Gre(C™)).

8 After posting this work to the arXiv, R. C. King (private commumcatlon) informed us that
(1+x+5x +4x +8x +x* +x6)

(1-2)3(1-a2)2

From this he conjectures that M(2 1 1) (2,1,1),(2,1,1) (k) = (k+2)(k+4)(7Tk* +57k3 +212k> + 492k +
480)/3840 if k is even and M(a.1,1y,(2,1,1),(2,1,1) (k) = (b + 1)(k + 3)(7k* 4 7T1k3 + 305k + 697k +
840)/3840 if k is odd. On the basis of this and other examples, he conjectures more generally that
N, u,v (k) is a quasi-polynomial in k.

this sequence of numbers fit the coefficients of the generating series
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the problem is in # P since the vectors (az , f , 'yg ) provide an efficient encoding of
elements of a set counted by N, , ». Summarizing,

NLvalue € # P-complete.

The decision problem NLnonzero decides if N, , » > 0. Theorem 5.1 implies
NLnonzero € NP. In [6,33] it is shown that the analogous problem LRnonzero
(deciding ¢§ , > 0) can be done in polynomial time. Their proof relies on the
Saturation Theorem for c§ .

Conjecture 5.5 implies NLnonzero € P as well. In brief, Conjecture 5.5 actually
shows

Nlhlh)\ 7& 0 — P,U,,V,)\ 7£ 0.

The “=" implication is by Theorem 5.1. For “«<”  we may assume, by Lemma
2.2(V), that |\| + |p| + |v| = 0 (mod 2). Then P, ,  # 0 implies P, ,  contains
a rational point p. Then choose k € Zs such that k-5 € kP, .\ is a lattice
point. By construction, kP, , x = Prukv,kx and so by Theorem 5.1, Ny go.xx > 0.
Conjecture 5.5 then says N, , » > 0. Finally, the inequalities defining the Newell-
Littlewood polytope are of the form Ax < b where the entries of A are 0,41
whereas the entries of b are integers. Hence the polytope is combinatorial, and one
can appeal E. Tardos’ algorithm [11,45] to decide if P, \ is feasible in strongly
polynomial time. This completes the conditional argument.

6. MULTIPLICITY-FREENESS

In Section 5 we studied when N) ,, = 0. We now look at a related problem,
proving an analogue of J. R. Stembridge’s [42, Theorem 3.1] which characterizes
pairs (u,v) € Par such that (8) is multiplicity-free, i.e., ¢ , € {0,1} for all A € Par.

Call a pair (i1, ) € Par® NL-multiplicity-free if (4) contains no multiplicity, i.e.,
each Ny, » € {0,1} for all A € Par.

Theorem 6.1. A pair (u,v) € Par® is NL-multiplicity-free if and only if

(I) p or v is either a single boz or ;
(IT) p is a single row and v is a rectangle (or vice versa); or
(II1) w is a single column and v is a rectangle (or vice versa).

Before the proof, we pause to compare and contrast Theorem 6.1 with [42, The-
orems 3.1, 4.1], and with J. R. Stembridge’s later work [43]. Theorem 6.1 is an
analogue of [42, Theorem 3.1] in the sense that the Schur functions {s)} are uni-
versal characters for GL, whereas {s[y } are universal characters for Sp (we repeat
that by [24, Theorem 2.3.4], Theorem 6.1 holds without change for SO). A gen-
eralization of [42, Theorem 3.1] is [42, Theorem 4.1], which characterizes when a
product of Schur polynomials s, (x1,...,2n)s,(21,. .., 2y,) is multiplicity-free. This
is a generalization since (5) preserves multiplicity-freeness.

Since s, (x1,...,2,) is the character of the (finite) GL(V)-module S»(V'), [43]
provides the appropriate generalization to all other Weyl characters (associated
to an irreducible representation of a complex semisimple Lie algebra). However,
unlike the GL story, the modification rules are non-positive (see the discussion and
references of Section 1.2). Nevertheless, by invoking [24, Corollary 2.5.3], it should
be possible to derive Theorem 6.1 from [43] by translating the root-system language
to partitions (we have not actually done this). That said, our proof is different
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and self-contained, starting from (1). It is relatively short, and has a component
(Lemma 6.2) which might be of some independent interest.

Proof. (<) Suppose we are in case (I). If y = @, then cgﬁ > 0 if and only if
&5 = L. Hence, ¢ = d,,. Therefore Ny, = d, x.
As a result, sig)s(,) = s[,] is multiplicity-free. Thus we may suppose y = (1). This
case is NL-multiplicity-free by Corollary 2.6.

(III) follows from (IT) by Lemma 2.2(VI).

Thus suppose we are in case (II). Without loss, let u = (k) and let v = (c%).
We apply Proposition 2.4, and specifically (10). Since v is a rectangle, for any
0 < j < k there is at most one way to remove a horizontal strip of size j from v.
The result is a shape 6, = (c¢?~!,u) where 0 < u < ¢. Straightforwardly, if u # u’
then one cannot add a horizontal strip of k£ — j boxes to 6, and separately to 6,
and obtain the same A. NL-multiplicity-freeness follows from this analysis.

(=) Our argument is similar to (and uses) the one used in J. Stembridge’s work
[42]. If «, 8 € Par, by aUS we mean the partition obtained by sorting the (nonzero)
parts in the multiset union of « and .

o = 8 = 0, in which case ¢

Lemma 6.2. For all triples of partitions p,v,\ and t € Z>,
Nuowywau) = Nuwx and Nyy ey vty = Ny

Proof of Lemma 6.2. We will only prove the first assertion; the second follows by
Lemma 2.2(VI). By [42, Lemma 2.2],

&0 e =
Compare
(58) Nuva= D che gecha oChe e
as ge e
with
) Nty = 3 oo e,
0,30 70

Notice that if (a®,3°,7*) is a witness for N, , » then by (57), (a°,3°,7°) =
(a®, B*U(t),~*) is a witness for N,u).u,au(t), and moreover N,y vaue) = Nuwa,
as desired.

Suppose (u,v) € Par® that do not fall into (I), (II), or (IIT). We break the
argument into two cases, depending on whether either of i or v is a rectangle.

Case 1 (One of p or v is not a rectangle). Say that v is not a rectangle. Since y
is not a single box, it has at least two rows or at least two columns. In view of
Lemma 2.2(VI), we may assume without loss of generality that p has at least two
columns. We first establish:

Claim 6.3. For v not a rectangle and k > 2, Ny v vy (k—2) = 2.

Proof of Claim 6.3. Since v is not a rectangle, it has two corners, so let a = (1),
B =(k—1), and v and 7 each be v with a different corner removed. By (9),

(k) _ v _ v _
€1y, (k—1) = C3,(1) = G5,0) = L,
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and since (v + (k — 2))/v and (v + (k — 2))/7 are horizontal strips of k£ — 1 boxes,

v+(k—2) _ v+(k—2)
€y k-1) = Gy h-1) = 1-

Therefore,

(k) v rk=2) (k) v r(k=2) _
Ny v (h=2) Z €1 (5-1) 7.0 C,(h—1). T €0, =) T G, (k—1) = 2

as asserted. O
In general, consider p and v such that p; > 2, and v is not a rectangle. Let

A=+ (p1 —2)) U (ua, p3, ... ). By repeated application of Lemma 6.2, followed
by Claim 6.3:

Nuwr = N, (11 =2) 02,13, )
2 N s ) v (1 =2)U(se) =7 2 N v (n—2) 2 21
Hence (u,v) is not NL-multiplicity-free.

Case 2 (p and v are both rectangles with at least two rows and columns). We first
consider the special case u = (k%) and v = (c%):

Claim 6.4. For k:,c,d > 2, N(k2)’(Cd)’((c+k72)2)u(cd72) > 2.

Proof of Claim 6.4. Let a = (1,1),8 = (k—1,k—1),7 = (c*2) U ((c — 1)?). By
the Littlewood-Richardson rule,

k2 v c+k—2)%)U cd—2
) = = D)

Similarly, letting @ = (2), 8 = (k,k —2), ¥ = (¢*"!) U (¢ — 2), we obtain

(%)

_ v _ (e+k=2)%)u(e??) _
CxF =@y =C55 =1
Therefore,
(k) v ((c+k—2)*)u(c??)
Nk2),(et),((c+k—2)2)U(cd-2) = Ca,8 CanCBy
(k) v ((e+k=2)*)u(c?™?) _
+ ca,E caﬁcﬁﬁ =2

as needed. O

Consider arbitrary rectangles 1 = (kP) and v = (c?) that both contain at least
two rows and columns; hence k,p,c,d > 2. Let A = ((c+k —2)2) U (kP~2) U (c?2).
By repeatedly applying Lemma 6.2, followed by Claim 6.4:

Nuwx = Ny, (e0), (e+k-2))u(kr=2)u(et=2) = Nigr=1), (1), ((c+h—2)2)U(kp=3)U(cd~2)
Z 0 Z N2y, (o) (e+h-2)2)0(et2) 2 2-
Hence (p,v) is not NL-multiplicity-free in this case, either.

These two cases cover all possibilities for p and v not satisfying (I), (II), or (III).
In both cases we established multiplicity. (Il
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7. FINAL REMARKS

7.1. The associativity relation. Since IV, , \ are the structure constants for the
Koike-Terada basis of A, the associativity relation

(SuSw1)si = S (sp1s),

implies for any u, v, A\, 7 € Par that:

(60) Z NyvoNosr = Z Ny oNu6.7-
9 0

Problem 7.1. Give a bijective proof of (60) using the definition (1).

Now, cf‘u, also “associative” in that it satisfies a relation of the form (60). How-
ever, (60) does not formally follow from this fact. To explain, we considered other
associative structure coefficients wf;yl, studied in algebraic combinatorics. For each
of these one can define a “Newell-Littlewood” analogue:

Oy = Z wh swh W .
a,B,y
Specifically, we looked at the K-theoretic Littlewood-Richardson coefficients for
Grassmannians, the shifted Littlewood-Richardson coefficients for multiplication of
Schur P— or Schur @)— functions, and the structure coefficients for Schubert polyno-
mials (here we replace partitions with permutations). Small examples show O,, ,,
is not associative. Under what conditions/natural examples is O, ,, x associative?

7.2. An analogue of M. Kleber’s conjecture. Fix arectangle a xb and consider
all products sysyv where A C a x b and AV is the 180-degree rotation of (a x b) \ \.
M. Kleber [20, Section 3] conjectured that these products, ranging over unordered
pairs (A, AV) are linearly independent in A.

Problem 7.2. Are the products s(y)s[v], indexed over unordered pairs of partitions
(A, AY) contained in a X b, linearly independent in A?

By Lemma 2.2(II), M. Kleber’s conjecture implies an affirmative answer to Prob-
lem 7.2. However, the extra terms in s[y s[yv] versus sysyv might make Problem 7.2
more tractable. (The interested reader can test ideas for a = b = 2 using the data
in the Appendix.)

7.3. Version of T. Lam-A. Postnikov-P. Pylyavskyy’s theorems. We give
another implication of Proposition 2.3. This concerns results of T. Lam-A. Postnikov-
P. Pylyavskyy [28]. Their paper solves (and generalizes) conjectures of A. Ok-
ounkov [37] and S. Fomin-W. Fulton-C.-K. Li-T.-Y. Poon [8]. It builds on work of
B. Rhoades-M. Skandera [39,40].

If o, 8 € Par then oV 8 € Par has parts max(«;, ;) (where we have adjoined 0’s
to a or § as necessary). For any two skew shapes v/« and u/3, define

(/@) A (1/B) == (v A /(@A B) and (v/a)V (u/B) = (V) /(aV B).

Let
sorty (v, p) := (p1, p3, P5, - - .) and sorte(v, u) = (p2, pa, P6, - - ),
where (p1, p2,p3,...) := v U u. Below, ’”2'“ means coordinate-wise addition and

division. Also |-] and [-] are taken coordinate-wise.
If f € A then f is said to be Schur nonnegative if f =3, axsx with ay > 0 for
all A € Par.
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Theorem 7.3 ([28]). Let v/a and pu/B be skew shapes. The following are Schur
nonnegative:

(1) S(w/a)a(u/8)S(w/a)v(u/8) ~ Sv/asu/p

(2) 8| gy ot Spuguq razey = SujaSu/s

(3) Ssorty (v,u) /sorty (a,B) Ssorta (v,u) /sorta (a,8) — Sv/aSu/B

Define f € A to be Koike-Terada nonnegative if f = ), basx has by > 0 for

every A € Par.
Theorem 7.4. The following are Koike-Terada nonnegative:

(1) SpaulSiwvi = 801814

(2) sy g ) S1ppy) — S[1S(

(3) Sisort ()] Sfsorta (vn)] — S[v] S]]

Proof. We only prove the first statement; the others are similar. Fix any A. Then

Nuwa = [s7] Z SujaSv/a (Proposition 2.3)
(6%
< [sa] Z Sunv/aSuvr)a (Theorem 7.3(1))
«
= Nurv,uvi,x (Proposition 2.3)
and the result follows. O

Example 7.5. Let = (2),v = (1,1). Then

S(u)Slv] = S[21811,1) = S[1.1) T S[2) T S[2,1,1]) + 8311
and
Slunv]Sluve] = S[18(2,1] = S[1,1) T S[2 T 812,11 + S[3,1] T S[2,2)-
Hence s{uau)Spuve] — S[u)S[y] = S[2,2], Which is s-positive, as asserted by Theo-
rem 7.4(1). The reader can verify that, in this case,
Slunv]Sluve] = Sq| k15[ 2te) = Slsorts (v,u)] S[sorte (v,u)]-

Therefore the above also agrees with parts (2) and (3) of Theorem 7.4, as well. O

APPENDIX A. A LIST OF PRODUCTS S[1)S[v]
We compute (4) for ) # p,v C 2 x 2.
sty = sto1 + s + 512
SyS[2) = Spy + S[2,1) + Sg
SIS, = S+ Sp,11] 812,
S[1)8[2,1] = S[1,1] T S[2) + S[2,1,1] + S[2,2] T S[3,1]
S[118[2,2] = S[2,1] T S12,2,1] T 5[3,2]
Sto) = S[0] + S[1,1) + 5[z + S[2,2) + 5[3,1] + 5[]
S12)8[1,1] = S[1,1] T S[21 + S[2,1,1] + 5[3,1)
S[2]8[2,1] = S[] + S[L,1,1] T 25[2,1) + S[3) + S[2,2,1] T 83,11 + S[3,2] T 5[4,
S[218[2,2] = S[2] T S[2,1,1] T S[2,2] T 8[3,1] T+ 5[2,2,2] + 5[3,2,1] T+ 5[4,2]
5[21,1] = S[0] T S[1,1] T 821 + S[1,1,1,1] + S[2,1,1] + 5[2,2]
S[1,118[2,1) = S[1] + 2812,1] + S[3] + S[2,1,1,1] T S[2,2,1] T 53,1,1] + $[3,2]
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S[,1)812,2) = S[1,1) + S2,1,1) T S[2,2) T S[3,1] T S12,.2,1,1) T 53,2,1] + S[3,3]

8[2271] = 810]+28[1,1) 282 T5[1,1,1,1] T38[2,1,1] +25[2,2) +38[3,1) T 5[4 T5[2,2,1,1] T5[2,2,2]
+83,1,1,1] +283,2,1] + 53,3] T S[4,1,1] + S[4,2]

S[2,1)8[2,2] = S[1] TS[1,1,1] +28[2,1) +8[3] T S[2,1,1,1] +25[2,2,1] T25[3,1,1] T25[3,2] +5[4,1)

+812,2,2,1] T 8[3,2,1,1] T 5[3,2,2] T 5[3,3,1] T S[4,2,1] T 5[4,3]

5[22,2} = sj0] + S[1,1) + Sj21 + S[1,1,1,1] + S[2,1,1) + 28[2,2] + S[3,1) + S[4] + S[2,2,1,1]
+812,2,2) T 8[3,1,1,1] T 25[3,2,1] + S[3,3] + S[4,1,1] T S[4,2] T S[2,2,2,2] T 8[3,2,2,1] T 5[3,3,1,1]
+ 5[4,2,2] T 5[4,3,1] T S[4,4]

The computation s[z)s)2 2] matches the multiplication (2,2)s, x (2)sp in [24, pg.
509]. This calculation is coincides with the tensor products in Sp,,, for any n > 3.
However, when n = 2, as shown in loc. cit. the expansion differs from the one above
(and from each other, among the classical groups).
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