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CrossMark
Abstract

We show that, when an approximation used in this prior work is removed, the
resulting improved calculation yields an alternative derivation, in the particular
case studied, of the accidental curvature constraint of Hellmann and Kaminski.
The result is at the same time extended to apply to almost all non-degenerate
Regge-like boundary data and a broad class of face amplitudes. This resolves a
tension in the literature.
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Spin-foam models offer a space-time covariant, path integral definition of dynamics for loop
quantum gravity, a canonical approach to quantizing general relativity restricted by Einstein’s
principle of general covariance, which is equivalent to background independence. At present,
the spin-foam model which has passed the most tests of viability, and on which the most work
has been done, is the EPRL/FK model, which comes in both Lorentzian and Euclidean ver-
sions [1, 2]. The work [3] investigates the classical limit of the transition amplitude predicted
by the Euclidean version of this model for the simplest triangulation allowing for space-time
curvature. That is, it investigates the transition amplitude for the simplest triangulation with an
internal triangle, in the limit of large boundary quantum numbers.

The boundary states considered are Livine—Speziale states [4], which are peaked on the
three dimensional intrinsic boundary geometry. For the simple triangulation considered, such
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boundary data, classically, uniquely determines the area of, and deficit angle around, the one
interior triangle. Two different sets of boundary data are considered in [3]: one in which the
classically determined deficit angle is zero (flat), and one in which it non-zero (curved). In
evaluating the transition amplitudes for these boundary states, this work goes beyond the earlier
work [5] in that each term in the discrete sum over the internal spin, determining the area of
the internal triangle, is analyzed in more detail. The work [3] concludes that the transition
amplitudes for both of the boundary states considered are not exponentially suppressed, in
agreement with the earlier work [5].

This result seems to contradict the works [6—9], which conclude, for both the Euclidean
and Lorentzian EPRL models, that, in order for the transition amplitude to not be exponen-
tially suppressed in the classical limit, every internal deficit angle © must satisfy an accidental
curvature constraint

vO = O0mod4r. (D

This is a version of the so-called ‘flatness problem’ originally derived for Euclidean EPRL
and SU(2) BF theory [10], but more precise in that it considers the discrete nature of the sums
over internal spins. The data for the curved triangulation considered by [3] is that of the three
four-simplices adjoining a common triangle in the boundary of a regular five-simplex. Each of
these four-simplices is regular, whence they all have dihedral angle arccos(1/4), yielding the
internal deficit angle

© =27 — 3 arccos(1/4) ~ 2.328 84.

The value of y used in the calculation of the corresponding transition amplitude is v = v/3/2,
so that

76 ~ 0.16049,

47
which is not an integer. Equation (1) is thus violated, so that the results of [6, 8, 9] imply that
the amplitude should be suppressed.

How can this be consistent with the conclusion of [3] that it is not suppressed? As we shall
show below, the calculation in [3] makes an assumption, which, when removed, leads exactly
to the constraint (1), thereby providing a new derivation of the constraint in this case. We also
take the opportunity, at the end of this Addendum, to make the argument in the earlier paper
[5] more precise to show exactly where it falls short. This relieves the tension between [3, 5]
and the works [6-9].

We would like to emphasize that the accidental curvature constraint (1) is not necessarily a
problem for the EPRL model, but may be an artifact of attempting to take the classical limit of
the theory prior to taking the refinement limit of the theory, or, equivalently, prior to summing
over all triangulations, a step integral to the theory’s complete definition [11, 12]. This is related
to the viewpoint first expressed and developed by Han in [9, 13], that the correct classical limit
involves not only the limit of large quantum numbers, but also the refinement limit. In this
combined limit, the spin-foam sum includes a family of discrete geometries approximating
any desired curved smooth geometry, in which the deficit angles nevertheless approach zero
and so approach satisfying (1) arbitrarily well.

Furthermore, the recent numerical work of [14, 15] (in the closely related SU(2) BF and
Lorentzian EPRL models), going up to boundary spin values of 30, could not see the exponen-
tial suppression from the accidental curvature constraint. This suppression could only be seen
by increasing the expected deficit angle and going up to boundary spin values of 40 thanks
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to an improved code [14, 16, 17]. That is to say: numerically it is found that the exponential
suppression from the accidental curvature constraint is much slower than that from the orien-
tation and closure constraints essential in recovering Regge geometries. This yields a range
of boundary spins high enough that orientation and closure are imposed, but low enough that
the accidental curvature constraint is not—a range in which correct physics can be modeled,
even for a fixed triangulation. This is similar to what is found in [18, 19], where, for a sim-
pler but similar quantum gravity model, good semi-classical behavior is shown even on a fixed
triangulation for certain ranges of spins and parameters.

1. Calculation

The transition amplitude under consideration is for Regge-like, non-degenerate boundary data
in which the boundary spins are scaled by a factor . [3] casts this transition amplitude in the
form

Z(\) = Z M()\Jl) ei)\s(f’ﬂ)l/(f)d"f

F € Fmax N

> g [ S v
2)\ Mn

F €L, ineJimax]

@)

where M,, is a manifold of dimension n = 78 ° with coordinates ¥ € R” defined almost every-
where, S(%, j') is complex valued, v(¥) real valued, 0 < ;. < Ji. with j . and j .. deter-
mined by the fixed boundary data via triangle inequalities, and x g denotes the characteristic
functionof S. j = \j € % is the quantum number determining the area of the internal triangle,
which may be taken to be 8myAG\j, where + is the Barbero—Immirzi parameter. () is the
face amplitude, usually taken to be 2 j + 1 from the arguments of [20]. We keep, however, 1u(})
general: the analysis below will apply to any choice of 1(j) admitting an asymptotic expansion
in powers of 1/j. Denote the leading order term in this expansion by u, j” with p € Z.

The goal is to obtain an asymptotic expression for Z(\) in the limit in which the coher-
ent boundary state becomes more classical: specifically, the limit of large quantum numbers
A — oo. To this end, [3] takes the asymptotic limit of the summand as A — oo for each j'. As
noted earlier, for this simple triangulation, the fixed boundary data, together with the Euclidean
geometry of each four-simplex, determines the area of the internal triangle to be some unique
value 87yhAGAj,. For simplicity, assume that j. # 0, as for the boundary data used in [3].
As a consequence, the complex spin-foam action S(%, j/) in each of the integrals in (2) has a
critical point X, with respect to its dependence on X for only the single value j, € [J ., fraux]
of j.® Hence, for each j # j, in the sum, the usual stationary phase theorem (7.7.5 in [21])
implies exponential decay of the corresponding term, in consistency with the classical theory.
In order to determine whether the full sum is exponentially suppressed, however, one needs
more information about these exponentially suppressed terms. We first note that, if j; =0,
then, because j, # 0, the j = 0 term will be exponentially suppressed and can be dropped
from the expression for the asymptotic limit.

5 Consisting of the 4 non-gauge-fixed interior Spin(4) parallel transports in each of the three four-simplices, and the
S normal to the interior triangle in the frame of each of the three interior tetrahedra.

6 For a real action, the implicit function theorem would guarantee that there exists critical points in some neighborhood
of j,; but the action in this case is complex, and in fact there are no critical points in any neighborhood of j.
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To aide in denoting this, we let x[a, b] denote the interval (a, b] if j. .. = 0 and [a, b] otherwise.
For the remaining terms in the sum, the A\ — oo asymptotic limits of the face factors p()\j') are
to - (Aj)P, so that

Z0 N Y g [ Sy G
My

7€ Ul ineJhnax]

[3] then uses an elegant extension of stationary phase, namely theorem 7.7.12 in [21], which
provides a non-trivial exact asymptotic expression of the above integral for each j in a neigh-
borhood of j,. Before applying this theorem, [3] approximates the spin-foam action S(X, j/) by
its second order Taylor polynomial in the x;’s and j in a neighborhood of the one critical point
(Xo, /). With this approximation, the application of theorem 7.7.12 is equivalent to completing
the squares in the x; variables, and using the fact that the widths of the resulting Gaussians go
to zero in the A — oo limit to evaluate the integrals as Gaussian integrals. One obtains

ZO)~ O N exp A(SE+ 90 — o) +al = )Y, @)
FE€ Ui dmad N5

where SR is the value of the Regge action evaluated on the geometry fixed by the boundary
data, © is, up to a sign, the deficit angle on the interior triangle in this geometry, and

Qo) v(Ro)
B Vdet H

C:

—1 .
a=—(KH'K))

with

PSR,
Hij = Taxjj(xo’ .]/o)’
S, )

i W(X’O, J;)a

det H the determinant of H;;, and H" its inverse.

At this point [3], assumes that only the real part of the argument of the exponential in (4)
is relevant in determining whether Z(\) is exponentially suppressed as A — oo, and so the
imaginary part of the argument is dropped in equation (72) and subsequent equations of [3],
concluding in the end that the amplitude is not suppressed even for the boundary data forcing a
curved interior. We argue now that this assumption and conclusion are incorrect: we retain the
imaginary part of the argument of the exponential in (4) and show that it leads to exponential
suppression in the case considered, and more generally leads to exponential suppression unless
(1) is satisfied.

Changing the variable j' in favor of m :=2A(j — j.), (4) becomes

- Om  am?
Z(N) & CAPH2 S5 > ()
N e exp i > + 5\ &)
ME (=220~} 2A e — Fo)INZ

Now, the imaginary part of the spin-foam action S(¥, j'), with the conventions here, is always
non-negative and is equal to zero at all critical points. J S(X, j) is thus minimized at (X,, f,), so
that its second derivative there, along any curve, is non-negative. Application of this to curves
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straight in the coordinate system (¥, j/), combined with the symmetry of the second derivative

matrix M
0 KT
- (2 %),

implies that the (component-wise) imaginary part of M is positive semi-definite. (Note that
since (¥, ') is linear in j [3, 22, 23], the j/—j component of M is zero.) Thus, defining

1
‘]'_ (_H1K> s

one can check thata = %JTMJ , and we have

(R I
Sa= (JMI—TMI) = ~ (JiMI = I MIT) = 1T (=M
Ya= o (VMy =TI ) = - (JMI = TMU) = T (M- M) g

PR

N A _ — gty
=J (M—-M)J ALY
>0

always. In order for the quadratic approximation in (4) to correctly reflect the qualitative
fact that the integral in (3) is suppressed for j # j., it is necessary to assume that the
above inequality is furthermore strict, Ja > 0. This happens for every case explicitly checked
in [3].}

The summand in (5) is then a Gaussian function of m peaked about m = 0 with standard
deviation y/2\/J a. Since the width of the summation domain grows faster than the standard
deviation, the lower and upper limits of the sum may be dropped in the A — oo limit, leaving

2
o CNPH1/2 GIASK (Om  am
Z(\) ~ CX e E exp 1 ( > =+ ) (6)

mez

Setting x :=2m, let f(x) denote the summand in (6), so that its Fourier transform is

1 e . [ 7Ox ax*
f(k)'_\/T_ﬂ'/,oo exp1<?+w—kx>dx

— /32 exp TRk — o).
ia 4a

Poisson resummation of (6) then yields

) o o0 _.A
Z(\) & C\CPH+D/260AS, Z exp ﬁ(%k — 40P, 7
k=—00
where C’ is independent of \.

7 From equation (99) in [3]and Ja = A/8, Ja ~ 0.82753 > 0 and Ja ~ 1.8049 > 0 respectively for the curved and
flat cases considered there.
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Suppose 7O /(47) ¢ Z. Let k_ and k. be the integers directly above and below 70 /(4).
We then have

1Z(V)| < \C'\)\(ZPJ”‘H)/Z Z

k=—00

DY
exp ﬁ(47rk —70)?

‘C,‘)\(ZPJMJFU/Z Z exp 4‘ |2 (47Tk 7@)2

k=—00
k_—1 ~

-7 AJa
C’)\(2P+n+1)/2<z exp PIpE (47rk 70)? + exp 4‘ B ———(4rk_ — O)’

—\J C —-\J
+exp —za (47Tk+ — '7(9)2 + Z exp —2a(4ﬁk —~70)?
4 =, P

k_
Y Y
< |C|ACpHnED/2 / exp ﬁ@wk — ~0)*dk + exp &(Mk, —70)?
oo 4lal? 4lal?

)\ 2 o )\ 2
4 4
+ exp al (7rk+ 70) Jr/k+ exp 2P A 4k — 4O) dk)
VvVAJa —AJa
= |C'|\@PTntD/2 la © —4mk ) | +exp ——@rk_ —~40)’
[of NN 2l (v mk_) | 4 exp 4|a‘2(7r 70)
—AJa 2, |al VAT
4k S erfc 47k S
+exp 4)a |2(7T+ ’Y) 4\/>\—,. (2|(7T+ 70)
laf?

(47Tk 70)* + exp —(47rk ~0)?

N Cl )\(2p+n+1)/2
<l AaP

AT a(v©—4rk.) exp 4\ |2

—AJa 2
+ exp W (47Tk+ — ’7@)

~

|la|? —AJa
7r)\Ja(47rk+—’y@) exp 4lal?

(4mky — 79)2>

~

@4k — 4O) + exp 4)\ Tz (4mky — 7@)2).

C/ )\(21)+n+1)/2
~[c] e

Since Ja > 0, both of these terms are exponentially suppressed as A — oc.

Thus, in the A — oo limit, if v© /(47) ¢ Z, the amplitude is exponentially suppressed. By
contrast, if O /(47) = k, for some integer k,, similar methods show that the sum of all of the
terms in the sum (7) with k = k, removed is exponentially suppressed, so that the amplitude is
asymptotically equal to the k = k, term. That is, the amplitude is exponentially suppressed if
and only if the accidental curvature constraint (1) is satisfied.

1.1. Remark on Magliaro—Perini argument

The exact expression (2) for the amplitude enables one to construct a more precise version of
the argument in [5], which argued that the amplitude is never exponentially suppressed for any
©. One thereby can see where the argument fails, so that there is no contradiction with the
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result presented above. Specifically, similar to [5], we can write

Z(\) = <Xg<j;>u<xj;> ei”(f-f’o)uoc*)d"f) + ROV, (8)

My

where the remainder R()\) is given by
R\ = > R ©)
7 € Ui Jinax M DN 35
with
Ry(\) = pu(\f) / M@ () d"x. (10)
MH
The first term in (8) is an integral with a critical point, and so does not exponentially decay,
but is asymptotically given by
CN2X 2 ()N jy) exp AiSg. (1)

The strategy of [5] is to show that the remainder R(\) does exponentially decay, so that the total
amplitude (8) is asymptotically given by (11) and hence does not exponentially decay. Each
term in (9) has j # j., so that there is no critical point in any of the corresponding integrals
(10). Consequently, each integral (10) is indeed exponentially suppressed in the sense that, for
each £ € N, there exists C; € R™ such that

IRy(N)| < Cpe A"
Equation (9) and the triangle inequality then imply
ROV < G (12)
with
Ci(\) == > Cy. (13)
J W, mdmax N DN &
The essential argument of [5] (translated into the present language) is to first set

Ay=sup Cjy.
T#7s

Then, because, for any finite )\, the number of terms in (13) is finite and bounded by B¢\ for
some By, we have

Ci(N) < ApByA,
so that (12) yields
IRON)| < ABA™H. (14)

What is missed in this argument is that, in the limit A — oo, the sum (13) includes j arbitrarily
close to the critical point j, in which limit C;, must diverge for sufficiently large /. That is,
for sufficiently large ¢, the set of constants {C,} appearing in the sum (13) is not bounded,
whence A/ is infinite and cannot be used in (14) to imply exponential suppression of R(\).
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