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Abstract

We show that, when an approximation used in this prior work is removed, the

resulting improved calculation yields an alternative derivation, in the particular

case studied, of the accidental curvature constraint of Hellmann and Kaminski.

The result is at the same time extended to apply to almost all non-degenerate

Regge-like boundary data and a broad class of face amplitudes. This resolves a

tension in the literature.

Keywords: spin-foams, loop quantum gravity, classical limit

Spin-foam models offer a space-time covariant, path integral definition of dynamics for loop

quantum gravity, a canonical approach to quantizing general relativity restricted by Einstein’s

principle of general covariance, which is equivalent to background independence. At present,

the spin-foam model which has passed the most tests of viability, and on which the most work

has been done, is the EPRL/FK model, which comes in both Lorentzian and Euclidean ver-

sions [1, 2]. The work [3] investigates the classical limit of the transition amplitude predicted

by the Euclidean version of this model for the simplest triangulation allowing for space-time

curvature. That is, it investigates the transition amplitude for the simplest triangulation with an

internal triangle, in the limit of large boundary quantum numbers.

The boundary states considered are Livine–Speziale states [4], which are peaked on the

three dimensional intrinsic boundary geometry. For the simple triangulation considered, such
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boundary data, classically, uniquely determines the area of, and deficit angle around, the one

interior triangle. Two different sets of boundary data are considered in [3]: one in which the

classically determined deficit angle is zero (flat), and one in which it non-zero (curved). In

evaluating the transition amplitudes for these boundary states, this work goes beyond the earlier

work [5] in that each term in the discrete sum over the internal spin, determining the area of

the internal triangle, is analyzed in more detail. The work [3] concludes that the transition

amplitudes for both of the boundary states considered are not exponentially suppressed, in

agreement with the earlier work [5].

This result seems to contradict the works [6–9], which conclude, for both the Euclidean

and Lorentzian EPRL models, that, in order for the transition amplitude to not be exponen-

tially suppressed in the classical limit, every internal deficit angleΘmust satisfy an accidental

curvature constraint

γΘ = 0mod4π. (1)

This is a version of the so-called ‘flatness problem’ originally derived for Euclidean EPRL

and SU(2) BF theory [10], but more precise in that it considers the discrete nature of the sums

over internal spins. The data for the curved triangulation considered by [3] is that of the three

four-simplices adjoining a common triangle in the boundary of a regular five-simplex. Each of

these four-simplices is regular, whence they all have dihedral angle arccos(1/4), yielding the

internal deficit angle

Θ = 2π − 3 arccos(1/4) ≈ 2.328 84.

The value of γ used in the calculation of the corresponding transition amplitude is γ =
√
3/2,

so that

γΘ

4π
≈ 0.160 49,

which is not an integer. Equation (1) is thus violated, so that the results of [6, 8, 9] imply that

the amplitude should be suppressed.

How can this be consistent with the conclusion of [3] that it is not suppressed? As we shall

show below, the calculation in [3] makes an assumption, which, when removed, leads exactly

to the constraint (1), thereby providing a new derivation of the constraint in this case. We also

take the opportunity, at the end of this Addendum, to make the argument in the earlier paper

[5] more precise to show exactly where it falls short. This relieves the tension between [3, 5]

and the works [6–9].

We would like to emphasize that the accidental curvature constraint (1) is not necessarily a

problem for the EPRL model, but may be an artifact of attempting to take the classical limit of

the theory prior to taking the refinement limit of the theory, or, equivalently, prior to summing

over all triangulations, a step integral to the theory’s complete definition [11, 12]. This is related

to the viewpoint first expressed and developed by Han in [9, 13], that the correct classical limit

involves not only the limit of large quantum numbers, but also the refinement limit. In this

combined limit, the spin-foam sum includes a family of discrete geometries approximating

any desired curved smooth geometry, in which the deficit angles nevertheless approach zero

and so approach satisfying (1) arbitrarily well.

Furthermore, the recent numerical work of [14, 15] (in the closely related SU(2) BF and

Lorentzian EPRL models), going up to boundary spin values of 30, could not see the exponen-

tial suppression from the accidental curvature constraint. This suppression could only be seen

by increasing the expected deficit angle and going up to boundary spin values of 40 thanks
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to an improved code [14, 16, 17]. That is to say: numerically it is found that the exponential

suppression from the accidental curvature constraint is much slower than that from the orien-

tation and closure constraints essential in recovering Regge geometries. This yields a range

of boundary spins high enough that orientation and closure are imposed, but low enough that

the accidental curvature constraint is not—a range in which correct physics can be modeled,

even for a fixed triangulation. This is similar to what is found in [18, 19], where, for a sim-

pler but similar quantum gravity model, good semi-classical behavior is shown even on a fixed

triangulation for certain ranges of spins and parameters.

1. Calculation

The transition amplitude under consideration is for Regge-like, non-degenerate boundary data

in which the boundary spins are scaled by a factor λ. [3] casts this transition amplitude in the

form

Z(λ) =
∑

j′∈[ j′
min

, j′max]∩ Z

2λ

μ(λ j′)

∫

Mn

eiλS(�x, j
′)ν(�x)dn�x

=
∑

j′∈[ j′
min

, j′max]

χ Z

2λ
( j′)μ(λ j′)

∫

Mn

eiλS(�x, j
′)ν(�x)dn�x

, (2)

whereMn is a manifold of dimension n = 78 5 with coordinates�x ∈ R
n defined almost every-

where, S(�x, j′) is complex valued, ν(�x) real valued, 0 � j′min � j′max with j′min and j′max deter-

mined by the fixed boundary data via triangle inequalities, and χS denotes the characteristic
function of S. j = λ j′ ∈ N

2
is the quantum number determining the area of the internal triangle,

which may be taken to be 8πγ�Gλ j′, where γ is the Barbero–Immirzi parameter. μ( j) is the
face amplitude, usually taken to be 2 j+ 1 from the arguments of [20]. We keep, however, μ( j)
general: the analysis belowwill apply to any choice of μ( j) admitting an asymptotic expansion

in powers of 1/ j. Denote the leading order term in this expansion by μo j
p with p ∈ Z.

The goal is to obtain an asymptotic expression for Z(λ) in the limit in which the coher-

ent boundary state becomes more classical: specifically, the limit of large quantum numbers

λ→∞. To this end, [3] takes the asymptotic limit of the summand as λ→∞ for each j′. As
noted earlier, for this simple triangulation, the fixed boundary data, together with the Euclidean

geometry of each four-simplex, determines the area of the internal triangle to be some unique

value 8πγ�Gλ j′o. For simplicity, assume that j′o 
= 0, as for the boundary data used in [3].

As a consequence, the complex spin-foam action S(�x, j′) in each of the integrals in (2) has a

critical point �xo with respect to its dependence on �x for only the single value j′o ∈ [ j′min, j
′
max]

of j′.6 Hence, for each j′ 
= j′o in the sum, the usual stationary phase theorem (7.7.5 in [21])

implies exponential decay of the corresponding term, in consistency with the classical theory.

In order to determine whether the full sum is exponentially suppressed, however, one needs

more information about these exponentially suppressed terms. We first note that, if j′min = 0,

then, because j′o 
= 0, the j′ = 0 term will be exponentially suppressed and can be dropped

from the expression for the asymptotic limit.

5Consisting of the 4 non-gauge-fixed interior Spin(4) parallel transports in each of the three four-simplices, and the

S2 normal to the interior triangle in the frame of each of the three interior tetrahedra.
6 For a real action, the implicit function theorem would guarantee that there exists critical points in some neighborhood

of j′o; but the action in this case is complex, and in fact there are no critical points in any neighborhood of j′o.
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To aide in denoting this, we let ∗[a, b] denote the interval (a, b] if j′min = 0 and [a, b] otherwise.

For the remaining terms in the sum, the λ→∞ asymptotic limits of the face factors μ(λ j′) are
μo · (λ j′)p, so that

Z(λ) ∼ μoλ
p

∑

j′∈ ∗[ j′
min

, j′max]

χ Z

2λ
( j′)

∫

Mn

eiλS(�x, j
′)( j′)pν(�x)dn�x. (3)

[3] then uses an elegant extension of stationary phase, namely theorem 7.7.12 in [21], which

provides a non-trivial exact asymptotic expression of the above integral for each j′ in a neigh-
borhood of j′o. Before applying this theorem, [3] approximates the spin-foam action S(�x, j′) by
its second order Taylor polynomial in the xi’s and j

′ in a neighborhood of the one critical point
(�xo, j

′
o). With this approximation, the application of theorem 7.7.12 is equivalent to completing

the squares in the xi variables, and using the fact that the widths of the resulting Gaussians go

to zero in the λ→∞ limit to evaluate the integrals as Gaussian integrals. One obtains

Z(λ) ≈ Cλp+n/2
∑

j′∈ ∗[ j′
min

, j′max]∩ Z

2λ

exp λi
(

SRo + γΘ( j′ − j′o)+ a( j′ − j′o)
2
)

, (4)

where SRo is the value of the Regge action evaluated on the geometry fixed by the boundary

data, Θ is, up to a sign, the deficit angle on the interior triangle in this geometry, and

C :=
(2πi)n/2μo( j

′
o)
pν(�xo)√

det H

a :=
−1

2
(KiH

i jK j)

with

Hi j :=
∂2S(�x, j′)

∂xi∂x j
(�xo, j

′
o),

Ki :=
∂2S(�x, j′)

∂xi∂ j′
(�xo, j

′
o),

det H the determinant of Hi j, and H
i j its inverse.

At this point [3], assumes that only the real part of the argument of the exponential in (4)

is relevant in determining whether Z(λ) is exponentially suppressed as λ→∞, and so the

imaginary part of the argument is dropped in equation (72) and subsequent equations of [3],

concluding in the end that the amplitude is not suppressed even for the boundary data forcing a

curved interior. We argue now that this assumption and conclusion are incorrect: we retain the

imaginary part of the argument of the exponential in (4) and show that it leads to exponential

suppression in the case considered, andmore generally leads to exponential suppression unless

(1) is satisfied.

Changing the variable j′ in favor of m := 2λ( j′ − j′o), (4) becomes

Z(λ) ≈ Cλp+n/2 eiλS
R
o

∑

m∈ ∗[−2λ( j′o− j′
min

),2λ( j′max− j′o)]∩Z
exp i

(

γΘm

2
+
am2

4λ

)

. (5)

Now, the imaginary part of the spin-foam action S(�x, j′), with the conventions here, is always

non-negative and is equal to zero at all critical points. I S(�x, j′) is thus minimized at (�xo, j
′
o), so

that its second derivative there, along any curve, is non-negative. Application of this to curves
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straight in the coordinate system (�x, j′), combined with the symmetry of the second derivative

matrixM

M :=

(

0 KT

K H

)

,

implies that the (component-wise) imaginary part of M is positive semi-definite. (Note that

since S(�x, j′) is linear in j′ [3, 22, 23], the j′– j′ component ofM is zero.) Thus, defining

J :=

(

1

−H−1K

)

,

one can check that a =
1
2
J†MJ, and we have

I a =
1

4i

(

J†MJ − J†MJ
)

=
1

4i

(

J†MJ − J†M†J
)

= J†
1

4i

(

M −M†) J

= J†
1

4i

(

M −M
)

J =
1

2
J†(IM)J

� 0

always. In order for the quadratic approximation in (4) to correctly reflect the qualitative

fact that the integral in (3) is suppressed for j′ 
= j′o, it is necessary to assume that the

above inequality is furthermore strict, I a > 0. This happens for every case explicitly checked

in [3].3

The summand in (5) is then a Gaussian function of m peaked about m = 0 with standard

deviation
√

2λ/I a. Since the width of the summation domain grows faster than the standard

deviation, the lower and upper limits of the sum may be dropped in the λ→∞ limit, leaving

Z(λ) ≈ Cλp+n/2 eiλS
R
o

∑

m∈Z
exp i

(

γΘm

2
+
am2

4λ

)

. (6)

Setting x := 2mπ, let f(x) denote the summand in (6), so that its Fourier transform is

f̃ (k) :=
1√
2π

∫ ∞

−∞
exp i

(

γΘx

4π
+

ax2

λ(4π)2
− kx

)

dx

= π

√

8λ

ia
exp

−iλ

4a
(4πk− γΘ)2.

Poisson resummation of (6) then yields

Z(λ) ≈ C′λ(2p+n+1)/2eiλS
o
R

∞
∑

k=−∞
exp

−iλ

4a
(4πk− γΘ)2, (7)

where C′ is independent of λ.

7 From equation (99) in [3] and I a = A/8, I a ≈ 0.827 53 > 0 and I a ≈ 1.8049 > 0 respectively for the curved and

flat cases considered there.
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Suppose γΘ/(4π) /∈ Z. Let k− and k+ be the integers directly above and below γΘ/(4π).
We then have

|Z(λ)| � |C′|λ(2p+n+1)/2
∞
∑

k=−∞

∣

∣

∣

∣

exp
−iλ

4a
(4πk − γΘ)2

∣

∣

∣

∣

= |C′|λ(2p+n+1)/2
∞
∑

k=−∞
exp

−λ I a

4|a|2 (4πk− γΘ)2

= |C′|λ(2p+n+1)/2

(

k−−1
∑

k=−∞
exp

−λI a

4|a|2 (4πk − γΘ)2 + exp
−λI a

4|a|2 (4πk− − γΘ)2

+ exp
−λ I a

4|a|2
(

4πk+ − γΘ
)2

+

∞
∑

k=k++1

exp
−λI a

4|a|2 (4πk− γΘ)2

⎞

⎠

� |C′|λ(2p+n+1)/2

(∫ k−

∞
exp

−λI a

4|a|2 (4πk − γΘ)2dk + exp
−λI a

4|a|2 (4πk− − γΘ)2

+ exp
−λ I a

4|a|2
(

4πk+ − γΘ
)2

+

∫ ∞

k+

exp
−λI a

4|a|2 (4πk− γΘ)2dk

)

= |C′|λ(2p+n+1)/2

(

|a|
4
√
πλ I a

erfc

(√
λI a

2|a| (γΘ− 4πk−)

)

+ exp
−λI a

4|a|2 (4πk− − γΘ)2

+ exp
−λ I a

4|a|2
(

4πk+ − γΘ
)2

+
|a|

4
√
πλ I a

erfc

(√
λ I a

2|a| (4πk+ − γΘ)

))

∼ |C′|λ(2p+n+1)/2

( |a|2
πλ I a(γΘ−4πk−)

exp
−λI a

4|a|2 (4πk−−γΘ)2 + exp
−λI a

4|a|2 (4πk−−γΘ)2

+ exp
−λ I a

4|a|2
(

4πk+ − γΘ
)2

+
|a|2

πλ I a(4πk+ − γΘ)
exp

−λI a

4|a|2
(

4πk+ − γΘ
)2

)

∼ |C′|λ(2p+n+1)/2

(

exp
−λI a

4|a|2 (4πk− − γΘ)2 + exp
−λ I a

4|a|2
(

4πk+ − γΘ
)2

)

.

Since I a > 0, both of these terms are exponentially suppressed as λ→∞.

Thus, in the λ→∞ limit, if γΘ/(4π) /∈ Z, the amplitude is exponentially suppressed. By

contrast, if γΘ/(4π) = ko for some integer ko, similar methods show that the sum of all of the

terms in the sum (7) with k = ko removed is exponentially suppressed, so that the amplitude is

asymptotically equal to the k = ko term. That is, the amplitude is exponentially suppressed if

and only if the accidental curvature constraint (1) is satisfied.

1.1. Remark on Magliaro–Perini argument

The exact expression (2) for the amplitude enables one to construct a more precise version of

the argument in [5], which argued that the amplitude is never exponentially suppressed for any

Θ. One thereby can see where the argument fails, so that there is no contradiction with the

6
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result presented above. Specifically, similar to [5], we can write

Z(λ) =

(

χ Z

2λ
( j′o)μ(λ j

′
o)

∫

Mn

eiλS(�x, j
′
o)ν(�x)dn�x

)

+ R(λ), (8)

where the remainder R(λ) is given by

R(λ) =
∑

j′∈([ j′
min

, j′max]\{ j′o})∩ Z

2λ

R j′(λ) (9)

with

R j′(λ) = μ(λ j′)

∫

Mn

eiλS(�x, j
′) ν(�x)dn�x. (10)

The first term in (8) is an integral with a critical point, and so does not exponentially decay,

but is asymptotically given by

Cλn/2χ Z

2λ
( j′o)μ(λ j

′
o) exp λiSRo . (11)

The strategy of [5] is to show that the remainderR(λ) does exponentially decay, so that the total
amplitude (8) is asymptotically given by (11) and hence does not exponentially decay. Each

term in (9) has j′ 
= j′o, so that there is no critical point in any of the corresponding integrals

(10). Consequently, each integral (10) is indeed exponentially suppressed in the sense that, for

each 	 ∈ N, there exists C j′,	 ∈ R
+ such that

|R j′(λ)| < C j′,	 λ
−	.

Equation (9) and the triangle inequality then imply

|R(λ)| < C	(λ)λ
−	 (12)

with

C	(λ) :=
∑

j′∈([ j′
min

, j′max]\{ j′o})∩ Z

2λ

C j′,	. (13)

The essential argument of [5] (translated into the present language) is to first set

A	 := sup
j′ 
= j′o

C j′,	.

Then, because, for any finite λ, the number of terms in (13) is finite and bounded by B	λ for

some B	, we have

C	(λ) < A	B	λ,

so that (12) yields

|R(λ)| < A	B	λ
−	+1. (14)

What is missed in this argument is that, in the limit λ→∞, the sum (13) includes j′ arbitrarily
close to the critical point j′o, in which limit C j′,	 must diverge for sufficiently large 	. That is,
for sufficiently large 	, the set of constants {C j′,	} appearing in the sum (13) is not bounded,

whence A	 is infinite and cannot be used in (14) to imply exponential suppression of R(λ).
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