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Abstract

We shed some light on the reason why the accidental flatness constraint appears

in certain limits of the amplitudes of covariant loop quantum gravity. We show

why this constraint is harmless, by displaying how analogous accidental con-

straints appear in transition amplitudes of simple systems, when certain limits

are considered.

Keywords: spinfoams, path integral, classical limit

1. Introduction

The spinfoam amplitude of covariant loop-quantum-gravity (LQG) [1–4], together with its

extension with cosmological constant [5], defines a tentative Lorentzian quantum theory of

gravity in four dimensions. Among the open issues of this theory is a possible objection

to its viability first raised in the literature in [6], sharpened by a number of authors [7–11]

and confirmed by numerical investigations [12]: in a certain ‘semiclassical’ limit, a ‘flatness

constraint’, or ‘accidental curvature constraint’ appears: the amplitude appears to be peaked on

boundary data compatible with flat geometries only, in apparent tension with the classical limit

expected from a quantum theory of gravity, which of course must include curved geometries.

Here, building on a number of recent results, in particular the analytical and numerical

investigations in [12–16], as well as original ideas proposed in [10, 17], we illustrate why the

tension is only apparent, and that accidental constraints appear commonly from exchanging

the order of limits.

∗Author to whom any correspondence should be addressed.
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Since the pioneering thesis of Feynman, a quantum transition amplitude can be written as

a sum over paths, expressed as a limit of multiple integrals, where the limit is the refinement

of a discretization of the dynamics. In quantum gravity, the classical limit can be seen as the

regime where the scale of the geometry is large compared to the Planck scale. The interplay

between the two limits is subtle. The appearance of the accidental constraint shows that if one

fixes the discretization, one can find sufficiently large boundary geometry quantum numbers

for which the amplitude goes wrong. But this does not conflict with the fact that for each set of

boundary data there is a discretization for which the amplitude gives the correct result to any

desired accuracy, which is what is required by consistency with the classical theory.

We illustrate this pointwith some explicit examples, where the logic underpinning the objec-

tion is manifestly ill conceived. The simple examples below show that ‘accidental constraints’

analogous to the one in spinfoams are ubiquitous, but they are harmless and they do not indicate

that the classical limit is wrong.

2. A simple example: truncated Feynman expansion

The sum over history formulation of quantum theory was born in the celebrated PhD Thesis by

Feynman [18]. Feynman introduces the path integral starting from the transition amplitudes of

a one-dimensional system with HamiltonianH = Ho + V , whereHo is a free Hamiltonian and

V a potential, breaking the time interval in N steps and inserting a resolution of the identity at

each step:

W(x f , xi; t) := 〈x f |e
− i

h̄
Ht|xi〉

=

∫

dxn

N−1
∏

n=0

〈xn+1|e
− i

h̄
H t
N |xn〉 (1)

with x0 = xi, xN = x f . Here x indicates the label of a basis in the Hilbert space, and dxn the

measure that gives the resolution of the identity. The equation above is of course an identity

for every N. The next step is to observe that ε := t/N is arbitrarily small if N is sufficiently

large. In this limit, we can disregard the term quadratic in ε in each matrix element, and if V is

diagonal in x we can write

〈y|e−
i
h̄
(Ho+V)ε|x〉 = 〈y|e−

i
h̄
Hoε e−

i
h̄
Vε|x〉+ O(ε2) (2)

= 〈y|e−
i
h̄
Hoε|x〉e−

i
h̄
V(x)ε

+ O(ε2), (3)

If the transition amplitude of Ho is known, say 〈y|e−
i
h̄
Hoε|x〉 = e

i
h̄
So(y,x,ε) then we can define a

truncated amplitude

WN(x f , xi; t) =

∫

dxn e
i
h̄

∑

nεL(xn+1,xn ,ε). (4)

and its limit

∫

[Dx(t)]e
i
h̄

∫ t
odt L(x,ẋ) ≡ lim

N→∞

∫

dxn e
i
h̄

∑

nεL(xn+1,xn ,ε). (5)

If the above expansion in ε is consistent with this limit (which is not a priori obvious), this

quantity gives backW(x f , xi; t). This was Feynman’s thesis.

2



Class. Quantum Grav. 39 (2022) 117001 Note

Now, let us assume that we repeat the above steps, but instead of using a basis of orthogonal

states |x〉we use, instead, an over-complete basis of coherent states, for instance standard wave

packets of average position q, average momentum p and width (in position space) σ, which we
denote |q, p〉. In place of (1), one obtains

W(q f , pf ; qi, pi; t) =

∫

dqn dpn

π

N−1
∏

n=0

〈qn+1, pn+1|e
− i

h̄
Hε|qn, pn〉. (6)

Just as each matrix element of the truncated amplitude (4) disregards O(ε2) terms, similarly

here we write

〈q′, p′|e−
i
h̄
Hε|q, p〉 = 〈q′, p′|11−

i

h̄
Hε|q, p〉+ O(ε2). (7)

Hence within the desired approximation we have the following truncated amplitude in the

coherent state basis

WN(q f , pf ; qi, pi; t) =

∫

dqn dpn

π

N−1
∏

n=0

〈qn+1, pn+1|11−
i

h̄
Hε|qn, pn〉

=: 〈q f , pf |UN(t)|qi, pi〉. (8)

The limit of this truncation as N →∞ gives the correct quantum transition amplitude.

But let’s observe what happens if we study the classical limit of the truncated amplitude. To

this aim let us study a semiclassical regime where both∆q/q and∆p/p are small. This can be

obtained by rescaling both q and p, in the label of the coherent states, by λ, and considering the
large λ limit. Note that, at least for the free (V = 0) and simple harmonic (V = 1

2
kq2) cases,

the classical equations of motion are invariant under such a rescaling of q and p. The cut-off

transition amplitude for data so rescaled is

WN(λq f ,λpf ;λqi,λpi; t) = 〈λq f ,λpf |UN(t)|λqi,λpi〉. (9)

If we define the annihilation operator

a := x + i
σ2

h̄
p (10)

then our coherent states are eigenstates

a|q′, p′〉 =

(

q′ + i
σ2

h̄
p′
)

|q′, p′〉, (11)

so that

a|λq′,λp′〉 = λ

(

q′ + i
σ2

h̄
p′
)

|λq′,λp′〉. (12)

Now, assume thatH is polynomial in x and p. Then sinceUN(t) is polynomial inH,UN(t) is

polynomial in x and p, and so is polynomial in a and a† as well. Choosing a normal ordering,

UN(t) thus takes the form

UN(t) =
∑

j=0, ... J
k=0, ... K

C jk (a
†) jak, (13)

3
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so that

WN(λq f ,λpf ;λqi,λpf ; t)

=
∑

j=0,J
k=0,K

C jk〈λq f ,λpf |(a
†) jak|λqi,λpi〉

=
∑

j=0,J
k=0,K

C jk

(

q f−i
σ2

h̄
pf

)j(

qi+i
σ2

h̄
pi

)k

λ j+k 〈λq f ,λpf |λqi,λpi〉

=e
−λ2

[

(q f−qi)
2

2σ2
+

σ2(pf−pi)
2

4 h̄2

]

∑

j=0,J
k=0,K

C jk

(

q f−i
σ2

h̄
pf

)j(

qi+i
σ2

h̄
pi

)k

λ j+k. (14)

Because of the finiteness of the sums, this is exponentially suppressed—i.e., falls off faster

than any negative power of λ—unless

q f = qi and pf = pi. (15)

That is, the amplitude, for fixed cut-offN, is exponentially suppressed unless (q f , p f ) = (qi, pi).

In other words: if we take the classical limit at finite N, we get a constraint on the bound-

ary data that is incompatible with the classical dynamics, or any discretized version thereof.

If instead we remove the cut-off N first, we know that we get the usual quantum dynamics

and, hence, no such ‘accidental’ constraint. Importantly this does not mean that the truncated

amplitude does not capture the classical dynamics. It does, to any desired accuracy, but a given

accuracy requires an appropriately large N.

3. ‘Accidental’ constraint in the regularized transition amplitude

for ‘half-coherent’ states in case of Larmor precession

Let us next consider a richer example which tracks closer what happens in LQG. Consider a

charged particle on a sphere, in a uniform magnetic field. This system admits exact, normaliz-

able states |�L〉 (defined below) that are analogous to the half-coherent Livine–Speziale states

that play a key role in the definition of the covariant LQG amplitude [1]. Time evolution in

such a system, both classically and quantum mechanically, exhibits the well-known Larmor

precession of the angular momentum. As we shall show, if one first expands the transition

amplitude as one does in spin-foams, and implements a cut-off analogous to the cut-off on

the number of vertices, and then takes the classical limit prior to removing this cut-off, one

obtains another example of an ‘accidental constraint’—namely that angular momentum must

be constant—inconsistent with the known exact result of Larmor precession.

In a flat Euclidean three-spacewithCartesian coordinates (x, y, z), a particle withmassm and

electric charge q is constrained to the sphere r ≡
√

x2 + y2 + z2 = R, and driven by a uniform

magnetic field �B = Bẑ, where ẑ is the unit vector in the z direction. The vector potential in the

Coulomb gauge is then

�A =
1

2
�B×�r =

B

2
(−yx̂ + xŷ)

4



Class. Quantum Grav. 39 (2022) 117001 Note

where x̂, ŷ are the unit vectors in the x and y directions. The Lagrangian is

L = T − U =
1

2
m�v2 + q�v · �A

=
1

2
mR2

(

θ̇2 + sin2 θφ̇2
)

+
1

2
qBR2 sin2 θφ̇

where we have used spherical coordinates (θ,φ) for the position of the particle, related to

(x, y, z) in the usual way and where dot denotes time derivative. This yields the conjugate

momenta

πθ :=
∂L

∂θ̇
= mR2θ̇ πφ :=

∂L

∂φ̇
= mR2sin2 θ

(

φ̇+
qB

2m

)

.

From this, one can check that

�L := �r × �π := �r ×
(

�p+ q�A
)

=
(

− sin φπθ − cot θ cos φπφ

)

x

+
(

cos φπθ − cot θ sin φπφ

)

y+ πφz (16)

generates rotations in the usual way and so gives the physically correct angular momentum

components in the presence of a magnetic field. The Hamiltonian is

H :=πθ θ̇ + πφφ̇− L =
1

2
mR2

(

θ̇2 + sin2 θφ̇2
)

=
1

2
m�v2 =

(�r × �p)2

2mR2
=

(

�L− q�r × �p
)2

2mR2

=
�L2

2mR2
+
qB

2m
Lz +

q2B2R2

8m
sin2 θ.

With the usual assumption that the last term is much smaller than the others, this becomes

H =
�L2

2mR2
+
qB

2m
Lz (17)

which yields

�̇L = {�L,H} =
qB

2m
{�L, Lz}

so that, under time evolution, �L rotates about the z-axis with the usual Larmor angular

frequency ω := qB
2m
.

Quantum states can be written as wave functions on the two-sphere ψ(θ,φ). Equation (16)
leads to the standard angular momentum operators Li on this space. Hermiticity of these oper-

ators forces use of the usual spherical measure sin2 θdθ dφ in defining the inner product for

the Hilbert space of states H. Quantization of (17) provides an unambiguous Hamiltonian

operator H.

We define a family of normalizable coherent states inHwhich are peaked on the operatorsLi

but not peaked in (θ,φ)—what we call ‘half-coherent’ or ‘�L-coherent’ states. Specifically, for
each �L′ ∈ R

3 such that |�L′|=: � ∈ N, let |�L′〉 denote the normalized simultaneous eigenstate of

5
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�L2 and n · �L := (�L′/|�L′|) · �Lwith eigenvalues h̄2�(�+ 1) and h̄�, respectively, with phase chosen
arbitrarily. This family of coherent states are in fact those introduced by Livine and Speziale

to quantum gravity [1], and give the following expectation values and uncertainties

〈�L′|Li|�L′〉 = (L′)i

∆ := 〈�L2〉 − 〈�L〉2

= (∆Lx)
2
+ (∆Ly)

2
+ (∆Lz)

2
= � (18)

as well as the resolution of the identity

I =

∞
∑

�=0

(2�+ 1)

∫

d2 n|�n〉〈�n|.

Now, suppose |Ψ(0)〉 = |�L′〉=: |�n〉 at time t = 0. Then |Ψ(T )〉 at time t = T satisfies

�L2|Ψ(T)〉 = �L2 e
iT
h̄

(

�L2

2mR2
+ωLz

)

|�n〉

= e
iT
h̄

(

�L2

2mR2
+ωLz

)

�L2|�n〉

= h̄2�(�+ 1)|Ψ(T)〉

and

(Rz(Tω)n) · �L|Ψ(T)〉 = e
iT
h̄

�L2

2mR2 (Rz(Tω)n) · �L e
iTωLz
h̄ |�n〉

= e
iT
h̄

(

�L2

2mR2
+ωLz

)

n · �L|�n〉 = h̄�|Ψ(T)〉

where Rz(α) denotes rotation about the z axis by angle α, and where we have used that e
iTωLz
h̄

(n · �L)e
−iTωLz

h̄ = (Rz(Tω)n) · �L since Lz is the generator of rotations about the z-axis. It follows

that |Ψ(T )〉 equals |Rz(Tω)�L
′〉 up to a phase, so that the quantum evolution of �L-coherent states

exactly mimics the classical evolution of �L.
Now let us imitate the construction leading to the spinfoam transition amplitude. For this,

let us follow the original idea in [19], leading to a sum over two complexes. The �L-coherent
state transition amplitude can be written

W(�L f ;�Li; T) := 〈�L f | exp

(

i

h̄
TH

)

|�Li〉 =

∞
∑

N=0

1

N!

(

iT

h̄

)N

〈�L f |H
N|�Li〉

=

∞
∑

N=0

1

N!

(

iT

h̄

)N

⎛

⎜

⎝

N−1
∏

n=1

∞
∑

N
�n=0

(2
N

�n + 1)

∫

d2
N
nn

⎞

⎟

⎠

×
N−1
∏

n=0

〈
N

�n+1
N
nn+1|H|

N

�n
N
nn〉 (19)

6
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where, for each N,
N

�0
N
n0 :=Li and

N

�N
N
nN := L f . The above is the analogue of the spin-foam

expansion in the Livine–Speziale coherent state basis [1]. From comparison with [19], the

factorA(�L′;�L) := 〈�L′|H|�L〉 is analogous to the vertex amplitude, andN analogous to the number

of vertices in the spin-foam.

Truncating the spin-foam sum to a fixed triangulation is here analogous to taking only a sin-

gle term in the above sum overN. More precisely, to regularize the spin-foam sum,we can put a

cut-off on the number of verticesN to be less than someM. The accidental curvature constraint

has been derived for fixed triangulations; because the sum over all spin-foams with number of

vertices less than M is finite, such a regularized sum will still yield the same constraint. The

regularization of (19) analogous to this is the cut-off transition amplitude

WM(�L f ;�Li; T) :=

M
∑

N=0

1

N!

(

iT

h̄

)N

〈�L f |H
N|�Li〉

= 〈�L f |

(

M
∑

N=0

1

N!

(

iT

h̄

)N

HN

)

|�Li〉

=: 〈�L f |UM(T)|�Li〉 (20)

where UM(T ) is a ‘cut-off time evolution operator’.

Consider now, for each �Lo = �ono, the one parameter family of coherent states |λ�Lo〉. From
(18), we have the relative uncertainty

∆

〈�L2〉
:=

(∆Lx)
2 + (∆Ly)

2 + (∆Lx)
z

〈�L2〉
=

1

λ�o + 1

which goes to zero as λ→∞. For this reason, the λ→∞ limit of such states is often taken as

a classical limit. Furthermore, the flow (λ,�Lo) 
→ λ�Lo, underlying these families of states, is

a symmetry of the classical equations of motion for �L(t): for �L(T) = λ�L f and �L(0) = λ�Li, the
classical equations of motion imply

�L f = Rz(ωT)�Li (21)

independent of λ.
The cut-off transition amplitude for such families of states is

WM(λ�L f ;λ�Li; T) = 〈λ�L f |UM(T)|λ�Li〉.

Now, since UM(T ) is polynomial in H, which in turn is polynomial in �L, theorem 1 in the

appendix below implies that this expression is zero or exponentially suppressed in the classical

limit λ→∞ unless

�L f = �Li. (22)

This is inconsistent with the classical evolution (21) of�L. It is a spurious ‘accidental’ constraint
arising from taking the classical limit prior to removing the cut-offM, similar to the accidental

curvature constraint arising in spin-foams due to taking the classical limit prior to removing

the cut-off on the number of vertices.

However, if one removes the cut-offM first, M→∞, from the previous section, we know

that one gets the usual quantum dynamics and so gets no such ‘accidental’ constraint. One can

7
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see how this is possible explicitly from equation (26) in the proof of theorem 1 in the appendix:

in the limitM→∞, the upper limitN of the summultiplying the suppressing exponential term

becomes infinite, so that an exponentially suppressing bound is no longer implied. Again, this

does not mean that the correct dynamics are not captured for finite M, but rather that, for a

given desired degree of accuracy,M must be sufficiently large.

The accidental constraint in this case, as well as in the previous example, and in spin-foams,

is the result of a wrong exchange of limits.
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Appendix. Theorem regarding �L-coherent states

Consider the decomposition of the Hilbert space of states of our toy model into eigenspaces

of �L2:

H = ⊗∞
�=0H�.

In this appendix we use the natural isomorphism [20]

(

�L,H�

) nat.
∼=⊗2�

symm.

(

h̄

2
�σ,H1/2

)

(24)

between representations of su(2), where σi are the Pauli matrices, H1/2 :=C
2 is the Hilbert

space for the spin 1/2 representation, and ⊗2�
symm.(·) denotes the symmetric tensor product of

2� copies of the argument. In terms of this isomorphism, and with appropriate choice of phase

convention, the �L-coherent state |�n〉, with n = (sin θL cosφL, sin θL sinφL, cos θL) is given by

|�n〉 = ⊗2�|n〉, with |n〉 :=

(

cos(θL/2)

eiφL sin(θL/2)

)

. (25)

Theorem 1. If M is any operator on H polynomial in �L, then 〈�′n′|M|�n〉 is zero unless
�′ = �, and is exponentially suppressed as �′ = �→∞ if n′ 
= n.

Proof. Using the angular momentum commutation relations,M can be cast in the form

M =

N
∑

k,m,n=0

Ak,m,nL
k
xL

m
y L

n
z

for some set of coefficients {Ak,m,n} ⊂ C. Since Li all commute with �L2, M|�n〉 is again an

eigenstate of �L2 with eigenvalue h̄2�(�+ 1), so that 〈�′n′|M|�n〉 = 0 unless �′ = �. For the case

8
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�′ = �, we have

〈�n′|M|�n〉 =
⊗2�〈n′|

N
∑

k,m,n=0

Ak,m,nL
k
xL

m
y L

n
z |n〉

⊗2�

=

(

h̄

2

)k+m+n N
∑

k,m,n=0

A ⊗2�

k,m,n 〈n′|

⎛

⎝

2�
∑

p=1

pσx

⎞

⎠

k⎛

⎝

2�
∑

q=1

qσy

⎞

⎠

m
(

2�
∑

r=1

rσz

)n

|n〉⊗2�

=

(

h̄

2

)k+m+n N
∑

k,m,n=0

A ⊗2�

k,m,n 〈n′|

⎛

⎝

k
∏

s=1

2�
∑

ps=1

psσx

⎞

⎠

⎛

⎝

m
∏

u=1

2�
∑

qu=1

quσy

⎞

⎠

(

n
∏

v=1

2�
∑

rv=1

rvσz

)

|n〉⊗2�

=

(

h̄

2

)k+m+n N
∑

k,m,n=0

Ak,m,n
∑

1�{ps},{qu},{rv}�2�

⊗2�〈n′|

(

k
∏

s=1

psσx

)(

m
∏

u=1

quσy

)(

n
∏

v=1

rvσz

)

|n〉⊗2�

where pσi denotes the action of σi on the pth copy of H1/2 in the symmetrized tensor product

decomposition ofH�. Because (σi)
a = 1 for a even, (σi)

a = σi for a odd, and σxσy = iσz and
cyclic permutations, each of the terms in the above sum consists in a product of powers of

the factors 〈n′|n〉 and 〈n′|σi|n〉. Furthermore, in any term, the maximum number of factors of

the form 〈n′|σi|n〉 for some i is k + m+ n. As the total number of factors in each term is 2�, it
follows that each term has a minimum of 2�− (k+ m+ n) factors of the form 〈n′|n〉. From the

normalization of |n〉, |n′〉, the fact that each σi has spectrum {±1}, and the Cauchy–Schwarz

inequality, the rest of the factors have absolute value less than or equal to 1. This, combined

with the triangle inequality, implies

|〈�n′|M|�n〉| � (h̄�)k+m+n

(

N
∑

k,m,n=0

|Ak,m,n|

)

|〈n′|n〉|
2�−(k+m+n)

. (26)

Thus, if n′ 
= n, so that 〈n′|n〉 < 1, we have that |〈�n′|M|�n〉| is exponentially suppressed

as �→∞. �
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