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CrossMark
Abstract
We shed some light on the reason why the accidental flatness constraint appears
in certain limits of the amplitudes of covariant loop quantum gravity. We show
why this constraint is harmless, by displaying how analogous accidental con-
straints appear in transition amplitudes of simple systems, when certain limits
are considered.
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1. Introduction

The spinfoam amplitude of covariant loop-quantum-gravity (LQG) [1-4], together with its
extension with cosmological constant [5], defines a tentative Lorentzian quantum theory of
gravity in four dimensions. Among the open issues of this theory is a possible objection
to its viability first raised in the literature in [6], sharpened by a number of authors [7-11]
and confirmed by numerical investigations [12]: in a certain ‘semiclassical’ limit, a ‘flatness
constraint’, or ‘accidental curvature constraint’ appears: the amplitude appears to be peaked on
boundary data compatible with flat geometries only, in apparent tension with the classical limit
expected from a quantum theory of gravity, which of course must include curved geometries.

Here, building on a number of recent results, in particular the analytical and numerical
investigations in [12—16], as well as original ideas proposed in [10, 17], we illustrate why the
tension is only apparent, and that accidental constraints appear commonly from exchanging
the order of limits.

*Author to whom any correspondence should be addressed.
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Since the pioneering thesis of Feynman, a quantum transition amplitude can be written as
a sum over paths, expressed as a limit of multiple integrals, where the limit is the refinement
of a discretization of the dynamics. In quantum gravity, the classical limit can be seen as the
regime where the scale of the geometry is large compared to the Planck scale. The interplay
between the two limits is subtle. The appearance of the accidental constraint shows that if one
fixes the discretization, one can find sufficiently large boundary geometry quantum numbers
for which the amplitude goes wrong. But this does not conflict with the fact that for each set of
boundary data there is a discretization for which the amplitude gives the correct result to any
desired accuracy, which is what is required by consistency with the classical theory.

We illustrate this point with some explicit examples, where the logic underpinning the objec-
tion is manifestly ill conceived. The simple examples below show that ‘accidental constraints’
analogous to the one in spinfoams are ubiquitous, but they are harmless and they do not indicate
that the classical limit is wrong.

2. A simple example: truncated Feynman expansion

The sum over history formulation of quantum theory was born in the celebrated PhD Thesis by
Feynman [18]. Feynman introduces the path integral starting from the transition amplitudes of
a one-dimensional system with Hamiltonian H = H, + V, where H, is a free Hamiltonian and
V a potential, breaking the time interval in N steps and inserting a resolution of the identity at
each step:

W(xp, xi31) = <xf|e_i7Ht|x,'>

N-1

- / Q] (onsrle#% |x,) (1)

n=0

with xg = x;, xy = x,. Here x indicates the label of a basis in the Hilbert space, and dx, the
measure that gives the resolution of the identity. The equation above is of course an identity
for every N. The next step is to observe that e:=¢/N is arbitrarily small if N is sufficiently
large. In this limit, we can disregard the term quadratic in € in each matrix element, and if V is
diagonal in x we can write

OleHEA ) — (yleFHor o H Ve x) 4+ () @
= (e H e HYO 4 Oe), ©)

If the transition amplitude of H, is known, say (y|e” 7/¢|x) = e %09 then we can define a
truncated amplitude

WN(.Xf, xi;t) = /dxneiznd‘(xn+l’xn,‘)_ (4)
and its limit
it . . i
/[Dx(t)]eﬂ f"dt Lx.%) = hm dxn en ENFL(X}H-I X 5€) . (5)
N—o0

If the above expansion in € is consistent with this limit (which is not a priori obvious), this
quantity gives back W(xy, x;; t). This was Feynman’s thesis.
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Now, let us assume that we repeat the above steps, but instead of using a basis of orthogonal
states |x) we use, instead, an over-complete basis of coherent states, for instance standard wave
packets of average position g, average momentum p and width (in position space) o, which we
denote |g, p). In place of (1), one obtains

N—-1
dg, dp, i
W(qf,pf;qi,pi;t)z/ - “TT (@ns 1o pusile” 55 qu pa).- (6)
n=0

Just as each matrix element of the truncated amplitude (4) disregards O(e®) terms, similarly
here we write

g, i
(q.pPle 7" |q. p) = (¢". p'| 1l — Helg, p) + 0(e). (7)

Hence within the desired approximation we have the following truncated amplitude in the
coherent state basis

N—1

i
H (Gns1s Prgpr |1 — %H€|‘]mPn>
n=0

=:(qs. pr|Un(D|qi> Pi)- (8)

dg, dp,
Vi

Wn(qr, priqi- pist) = /

The limit of this truncation as N — oo gives the correct quantum transition amplitude.

But let’s observe what happens if we study the classical limit of the truncated amplitude. To
this aim let us study a semiclassical regime where both Ag/q and Ap/p are small. This can be
obtained by rescaling both g and p, in the label of the coherent states, by A, and considering the
large A limit. Note that, at least for the free (V = 0) and simple harmonic (V = %qu) cases,
the classical equations of motion are invariant under such a rescaling of ¢ and p. The cut-off
transition amplitude for data so rescaled is

WG 1, APrs Aqis Apis 1) = (Agr, Apr|Un ()| Agi, Api). 9

If we define the annihilation operator

2

a:=x+i%p (10)

then our coherent states are eigenstates
/ / ! . 0-2 / ! /
alg.p)=q +i,p)ld.r) (11
so that
o2
alAg', Ap') = A (q’ + ihp'> RYPYA (12)
Now, assume that H is polynomial in x and p. Then since Uy(¢) is polynomial in H, Uy () is

polynomial in x and p, and so is polynomial in ¢ and a' as well. Choosing a normal ordering,
Un(t) thus takes the form

Uy = > Cilad", (13)
j=0,...J
k=0, ... K
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so that

Wy (NG, Apss Aqi, Aprs )

= > CilAap ApslayYa*| Agi, Api)
j=0.J
k=0,K

RN o Vo
= 3 afari% o) (i p) ¥4 O rprlag )
Jj=0,J
k=0,K

. Az{@f—w)Z#Qf—pf

= 5 g2 J o2 ko
’ " ]Zc,k@f—lfpf) (qi+17pi> N4

j=0.7
k=0.K

=e

Because of the finiteness of the sums, this is exponentially suppressed—i.e., falls off faster
than any negative power of A—unless

qr=g¢q; and p;=p;. (15)

Thatis, the amplitude, for fixed cut-off N, is exponentially suppressed unless (¢ 1, py) = (g;, p;)-

In other words: if we take the classical limit at finite N, we get a constraint on the bound-
ary data that is incompatible with the classical dynamics, or any discretized version thereof.
If instead we remove the cut-off N first, we know that we get the usual quantum dynamics
and, hence, no such ‘accidental’ constraint. Importantly this does not mean that the truncated
amplitude does not capture the classical dynamics. It does, to any desired accuracy, but a given
accuracy requires an appropriately large N.

3. ‘Accidental’ constraint in the regularized transition amplitude
for ‘half-coherent’ states in case of Larmor precession

Let us next consider a richer example which tracks closer what happens in LQG. Consider a
charged particle on a sphere, in a uniform magnetic field. This system admits exact, normaliz-
able states |Z> (defined below) that are analogous to the half-coherent Livine—Speziale states
that play a key role in the definition of the covariant LQG amplitude [1]. Time evolution in
such a system, both classically and quantum mechanically, exhibits the well-known Larmor
precession of the angular momentum. As we shall show, if one first expands the transition
amplitude as one does in spin-foams, and implements a cut-off analogous to the cut-off on
the number of vertices, and then takes the classical limit prior to removing this cut-off, one
obtains another example of an ‘accidental constraint’—namely that angular momentum must
be constant—inconsistent with the known exact result of Larmor precession.

In a flat Euclidean three-space with Cartesian coordinates (x, y, z), a particle with mass m and
electric charge g is constrained to the sphere r = /x% + y? + z2 = R, and driven by a uniform
magnetic field B = Bz, where % is the unit vector in the z direction. The vector potential in the
Coulomb gauge is then

- - B
A= Bx?zi(—yfc—i—xy)
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where X, y are the unit vectors in the x and y directions. The Lagrangian is
1, I
L:T—Uzimv +qu-A
Lo (2 w2 pi2 1 220
= EmR (9 + sin” ¢ ) + EqBR sin” 6¢
where we have used spherical coordinates (6, ¢) for the position of the particle, related to

(x,y,z) in the usual way and where dot denotes time derivative. This yields the conjugate
momenta

Ty = g—g =mR*0  my= g—; = mR%sin’ 9((;5 + %)
From this, one can check that
L=Fx@=7Fx (ﬁ+q§f)
= (—sin ¢my — cot § cos ¢my) x
+ (cos ¢my — cot § sin ¢my) y + Tz (16)

generates rotations in the usual way and so gives the physically correct angular momentum
components in the presence of a magnetic field. The Hamiltonian is

. . 1 ) )
H:=my0 + 43¢ — L = EmR2 (92 + sin? 9¢2)
2

1 » (?X ﬁ)Z (L—CIFX [3)
= -mv- = =

2 2mR? 2mR?
!  ¢B ¢BR:

= 4+ in” 0.
2mR? + 2m ¢ + 8m s

With the usual assumption that the last term is much smaller than the others, this becomes

[* gB
H= —L, 17
2mR? * 2m a7
which yields
5 N gB -
L={LH}=—{LL,
(L =21y

so that, under time evolution, L rotates about the z-axis with the usual Larmor angular
frequency w = ngjl'

Quantum states can be written as wave functions on the two-sphere (6, ¢). Equation (16)
leads to the standard angular momentum operators L’ on this space. Hermiticity of these oper-
ators forces use of the usual spherical measure sin? #df d¢ in defining the inner product for
the Hilbert space of states . Quantization of (17) provides an unambiguous Hamiltonian
operator H.

We define a family of normalizable coherent states in 7 which are peaked on the operators L'
but not peaked in (6, »)—what we call ‘half-coherent’ or ‘L-coherent’ states. Specifically, for

each I’ € R such that |I'| =: ¢ € N, let |} denote the normalized simultaneous eigenstate of

5
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[*andn-L:=(L'/|L'|) - L with eigenvalues #*((¢ + 1) and R/, respectively, with phase chosen
arbitrarily. This family of coherent states are in fact those introduced by Livine and Speziale
to quantum gravity [1], and give the following expectation values and uncertainties
<ZI‘LI‘ZI> _ (L/)i
A= () - (D)
= (AL + (AL + (AL = ¢ (18)

as well as the resolution of the identity
I=> @+ 1)/d2n|zn><£n\.
=0
Now, suppose |¥(0)) = |L') =: |¢n) at time = 0. Then |¥(T)) at time ¢ = T satisfies

ir
ﬁwa»zﬁw<wﬁL>

n)

= elT <2’”R2+ >Zz\€n>
= P00+ 1)|W(T))

and
5 ir 12 o iTwl;
(R (Tw)n) - L|¥(T)) = e ™ 2 (R(Tw)n) - Le" 7 |¢n)
iT

—e” (st >n - L|tn) = he|W(T))

TwLz
where R, (a) denotes rotation about the z axis by angle «, and where we have used that e

(n- L)e En = (R,(Tw)n) - L since L. is the generator of rotations about the z axis. It follows
that |U(T')) equals |R.(Tw)L') up to a phase, so that the quantum evolution of L-coherent states
exactly mimics the classical evolution of L.

Now let us imitate the construction leading to the spinfoam transition amplitude. For this,
let us follow the original idea in [19], leading to a sum over two complexes. The L-coherent
state transition amplitude can be written

Lo 21 /i -
W(Ls; Li;T) = <Lfexp< ) Z '<%> Lf\HN‘LQ

N=0
00 1 T N N—1 oo N 2N
:Zﬁ<h> Z(Z(ﬁ—l)/dnn
N=0 n=1 N
7y=0
N—1
NN N N
XH (Cop 11| H| Cynty) (19)
n=0
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where, for each N, évof]l\:) =L; and 2v erzVN = L;. The above is the analogue of the spin-foam
expansion in the Livine—Speziale coherent state basis [1]. From comparison with [19], the
factor A(L'; L) := (L'|H|L) is analogous to the vertex amplitude, and N analogous to the number
of vertices in the spin-foam.

Truncating the spin-foam sum to a fixed triangulation is here analogous to taking only a sin-
gle term in the above sum over N. More precisely, to regularize the spin-foam sum, we can puta
cut-off on the number of vertices N to be less than some M. The accidental curvature constraint
has been derived for fixed triangulations; because the sum over all spin-foams with number of
vertices less than M is finite, such a regularized sum will still yield the same constraint. The
regularization of (19) analogous to this is the cut-off transition amplitude

2o i\
Wy(Lp:LiT) =Y — <h> (Ls|H|L)

where Uy(T) is a ‘cut-off time evolution operator’.
Consider now, for each L, = ¢,n,, the one parameter family of coherent states |AL,). From
(18), we have the relative uncertainty

A (AL)*+ (ALY’ + (AL 1

(7 (12) T Mo+ 1

which goes to zero as A — oo. For this reason, the A\ — oo limit of such states is often taken as
a classical limit. Furthermore, the flow (), L,) — AL,, underlying these families of states, is
a symmetry of the classical equations of motion for z(t): for Z(T) =L r and Z(O) = \L;, the
classical equations of motion imply

Ly = R(wT)L; (21)

independent of \.
The cut-off transition amplitude for such families of states is

WAL 3 ALi; T) = (AL |Up(T)|ALy).

Now, since Uy/(T) is polynomial in H, which in turn is polynomial in L, theorem 1 in the
appendix below implies that this expression is zero or exponentially suppressed in the classical
limit A — oo unless

L, =L. (22)

This is inconsistent with the classical evolution (21) of L.1tisa spurious ‘accidental’ constraint
arising from taking the classical limit prior to removing the cut-off M, similar to the accidental
curvature constraint arising in spin-foams due to taking the classical limit prior to removing
the cut-off on the number of vertices.

However, if one removes the cut-off M first, M — oo, from the previous section, we know
that one gets the usual quantum dynamics and so gets no such ‘accidental’ constraint. One can

7
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see how this is possible explicitly from equation (26) in the proof of theorem 1 in the appendix:
in the limit M — oo, the upper limit NV of the sum multiplying the suppressing exponential term
becomes infinite, so that an exponentially suppressing bound is no longer implied. Again, this
does not mean that the correct dynamics are not captured for finite M, but rather that, for a
given desired degree of accuracy, M must be sufficiently large.

The accidental constraint in this case, as well as in the previous example, and in spin-foams,
is the result of a wrong exchange of limits.
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Appendix. Theorem regarding L-coherent states

Consider the decomposition of the Hilbert space of states of our toy model into eigenspaces
of [*:

In this appendix we use the natural isomorphism [20]
. nat. h .
(LHe) E (50, Gl /2) 24)

between representations of 5u(2), where o; are the Pauli matrices, H, ;== C? is the Hilbert

space for the spin 1/2 representation, and ®f§mm(-) denotes the symmetric tensor product of

2/ copies of the argument. In terms of this isomorphism, and with appropriate choice of phase
convention, the L-coherent state |{n), with n = (sin 0, cos ¢, , sinf sin ¢, , cosd;) is given by

, . 01/2
|¢n) = ®24\n>, with  |n) = (ei(iozgnEG/L/)%) . (25)

Theorem 1. If M is any operator on H polynomial in L, then (¢'n'|M|n) is zero unless
0" =1, and is exponentially suppressed as V' = £ — oo if ' # n.

Proof. Using the angular momentum commutation relations, M can be cast in the form

N
_ kymyn
M= " AgualiLIL!
k,m,n=0

for some set of coefficients {As,.,} C C. Since L; all commute with 17, M|¢n) is again an
eigenstate of L? with eigenvalue 72((¢ + 1), so that (¢'n'|M|¢n) = 0 unless ¢’ = £. For the case

8
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¢ = ¢, we have

N
(Zn/|M|€n> _ ®2¢ <I’l/| Z Ak,m’nLkLmLﬂn>®ﬂ

x ™y
k,m,n=0

k
B\ krmtn N 20 20
Y @20/ 5,/ p q
-(3) X A [ ) (2
p=1 —

k,m,n=0 q=1

m 2 n
(Z rUz) |n>®zf

r=1

n\ i & ko2 m 2 no2
(O 5 e (IS0 ([T S0 (TS5 o

k,m,n=0 s=1 p,=1 u=1 g,=1 v=1r,=1

07 o3l

kmn=0 1< {p,}qu b {r } <2t s=1 u=1 v=1

where Po; denotes the action of o; on the pth copy of #H,  in the symmetrized tensor product
decomposition of H,. Because (0;)* = 1 for a even, (0,)* = o; for a odd, and o0, = io, and
cyclic permutations, each of the terms in the above sum consists in a product of powers of
the factors (n'|n) and (n'|o;|n). Furthermore, in any term, the maximum number of factors of
the form (n'|o;|n) for some i is k + m + n. As the total number of factors in each term is 2/, it
follows that each term has a minimum of 2¢ — (k + m + n) factors of the form (r’|n). From the
normalization of |n), |n'), the fact that each o; has spectrum {£1}, and the Cauchy—Schwarz
inequality, the rest of the factors have absolute value less than or equal to 1. This, combined
with the triangle inequality, implies

N
[(en' M) < <M>k+'"+"< > |Ak,m,n> [ m) P, (26)
k,m,n=0
Thus, if n' # n, so that (n'|n) < 1, we have that [(¢n'|M|¢n)| is exponentially suppressed
as { — oo. O
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