Session 4C: Private Set Intersection

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Compact and Malicious Private Set Intersection for Small Sets

Mike Rosulek
Oregon State University
rosulekm@eecs.oregonstate.edu

ABSTRACT

We describe a protocol for two-party private set intersection (PSI)
based on Diffie-Hellman key agreement. The protocol is proven
secure against malicious parties, in the ideal permutation + random
oracle model.

For small sets (500 items or fewer), our protocol requires the
least time and communication of any known PSI protocol, even
ones that are only semi-honest secure and ones that are not based
on Diffie-Hellman. It is one of the few significant improvements to
the 20-year old classical Diffie-Hellman PSI protocol of Huberman,
Franklin, and Hogg (ACM Elec. Commerce 1999).

Our protocol is actually a generic transformation that constructs
PSI from a class of key agreement protocols. This transformation is
inspired by a technique of Cho, Dachman-Soled, and Jarecki (CT-
RSA 2016), which we streamline and optimize in several important
ways to achieve our superior efficiency.

CCS CONCEPTS

« Theory of computation — Cryptographic protocols;

KEYWORDS
private set intersection

ACM Reference Format:

Mike Rosulek and Ni Trieu. 2021. Compact and Malicious Private Set In-
tersection for Small Sets. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS °21), November 15-19,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3460120.3484778

1 INTRODUCTION

In a private set intersection (PSI) protocol, Alice provides an input
set X of items, Bob provides an input set Y, then one or both of
them learn X NY, without learning anything about their opponent’s
items not in the intersection. Many of the most compelling real-
world applications of secure multiparty computation are direct
applications of PSI, or close variants of PSI such as private contact
discovery [19, 40].

PSI state of the art. Recently, PSI protocols have been the focus
of significant concrete performance improvements (see [10, 11, 20,
28, 36, 42-47]). There are several protocol paradigms for PSI, but in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3484778

1166

Ni Trieu
Arizona State University
nitrieu@asu.edu

this work we focus on the two most practical approaches: Diffie-
Hellman and OT-extension. Other protocol paradigms (FHE, RSA,
generic MPC) are many orders of magnitude slower.

Diffie-Hellman protocols. The first and arguably simplest PSI pro-
tocol is due to Huberman, Franklin, and Hogg [29], but with roots
as far back as Meadows [39]. It is a semi-honest protocol that re-
quires exponentiations in a Diffie-Hellman group proportional to
the number of items in the sets. Because this protocol follows so
elegantly from Diffie-Hellman key agreement, there is a rather lim-
ited design space of variants for semi-honest security (one variant
is implicit in [34]). The DH-PSI protocol has been strengthened
for malicious security in several works. The most efficient to date
is due to De Cristofaro, Kim, and Tsudik [16]. Another efficient,
malicious variant is due to Jarecki & Liu [34], although it achieves a
functionality that slightly relaxes the input independence security
guarantee.

OT-extension protocols. The other category of PSI protocols is
based on OT extension. With OT extension [4, 32], parties can
generate many instances of oblivious transfer with only a small
constant number of public-key operations. By basing PSI on many
OTs, the number of public-key operations (exponentiations) in the
resulting PSI protocol scales only with the security parameter, and
not with the size of the input sets. PSI protocols in this category
include [11, 36, 42-47].

As a general rule, OT-based protocols are (significantly) faster but
require more communication than Diffie-Hellman-based protocols.
However, recent work of Pinkas et al. [42] presented an OT-based
protocol with slightly less communication (and running time) than
Diffie-Hellman-based PSI.

Why Care About Diffie-Hellman PSI?. Since DH-based PSIis much
slower (with exponentiations linear in the number of items) than
OT-based PSI, what is the value in studying it? We suggest several
reasons:

e In some scenarios, communication cost is overwhelmingly

more important than computation cost. For a concrete example,
Ion et al. [30, 31] report on their real-world deployment of a
PSI-like functionality within Google. They chose to deploy Diffie-
Hellman PSI, and justified their choice as follows:
‘Somewhat surprisingly, for the offline ‘batch computing’ scenarios
we consider, communication costs are far more important
than computation. This is especially the case for a secure protocol
involving multiple businesses, where servers cannot be co-located
(Wide area network solutions). Networks are inherently shared, and
it is much less expensive to add CPUs to a shared network than to
expand network capacity.” [from [30], bold formatting not in the
original]

https://doi.org/10.1145/3460120.3484778
https://doi.org/10.1145/3460120.3484778

Session 4C: Private Set Intersection

Our improved DH-PSI protocol has the lowest communication
among DH-based and OT-based protocols.!

e Consider the regime of PSI on small sets. For example, the

PrivateDrop [27] system enhances Apple’s AirDrop feature by
performing a PSI of one user’s entire address book (a few thou-
sand items) with another user’s own personal identifiers (e.g.,
phone numbers and email addresses; perhaps 10 items), in order
to determine whether one user appears in the other’s address
book. In another example, two parties may wish to use PSI of
their available calendar times to schedule a meeting (~360 half-
hour slots during business hours in a single month). DH-based
PSI protocols are the cheapest for these input sizes (equal-size
sets of a few hundred items, or sets of highly unbalanced size
where the larger set is a few thousand items); our improvements
to DH-PSI give even further improvements.
OT-based PSI protocols use OT extension, whose “base OTs” each
require public-key operations (exponentiations). Concretely, us-
ing the most efficient 1-out-of-2 OT protocol to date [38], 128
base OTs cost 3 X 128 = 384 group elements of communica-
tion and 5 X 128 = 640 exponentiations. This is already more
expensive than our improved DH-PSI protocol on sets of size
200, meaning that our protocol is necessarily cheaper than
any OT-extension-based protocol for sets of this size. In fact
the breakeven point, where OT-based protocols overtake ours,
is between 500 and 1000 items on a fast network (10Gbps) and
beyond 1000 items for a slow network (50Mbps).

e For OT-based PSI protocols, the performance gap between semi-
honest and malicious is quite narrow due to recent improvements
in malicious PSI by [43]. The case for DH-based PSI is much dif-
ferent, where the most efficient malicious PSI is 5% slower and
requires 2.5X more communication. Our new approach essen-
tially closes the performance gap between semi-honest and
malicious, for DH-based PSI.

e Finally, the semi-honest DH-PSI protocol of [29] is a truly classic
protocol that has not been improved upon in over 20 years. Our
new semi-honest protocol variant is the first to improve the com-
munication cost of DH-PSI, and the improvement is not minor
(over 40%). Even our malicious variant is more efficient than the
classic semi-honest protocol. The only comparable improvement
that we know of is due to Jarecki & Liu [34] who show how
to improve only the computational cost, by about 5-15% in our
experience.

1.1 Related Work

Since its introduction, several techniques have been proposed to
improve PSI’s performance. In this section, we give an overview
on existing efficient PSI protocols with more focus on the solutions
that have linear-communication complexity due to public-key tech-
niques. From here on, we assume that each set has n items, where
each item has o-bit length. We let A and k denote the statistical and
computational security parameters, respectively.

Some protocols based on FHE or RSA [3, 17] have even lower communication, but
are several orders of magnitude higher in computation cost.

1167

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

The earliest PSI protocols were presented in the 1980s-1990s [29,
39] and proven secure against semi-honest adversaries, in the ran-
dom oracle model. These protocols remain the basis for comparison
among Diffie-Hellman-based protocols.

Freedman et al. [21] introduced PSI protocols secure against semi-
honest and malicious adversaries in the standard model. Their proto-
col was based on oblivious polynomial evaluation (OPE) which is im-
plemented using additively homomorphic encryption (AHE), such
as Paillier encryption scheme. Relying on the OPE technique, Kiss-
ner and Song [35] proposed protocols for different set operations,
such as set-intersection and set-union with quadratic computation
and communication complexity in the size of dataset. Dachman-
Soled et al. [14] present an improved construction of PSI proto-
col [35], which achieves communication of O(nk? log?(n) + xn)
group elements and O(n?k log(n) + nx? log?(n)) exponentiations
in the presence of malicious adversaries. They avoid generic zero-
knowledge due to the fact that Shamir’s secret sharing implies a
Reed-Solomon code. Later, Hazay and Nissim [26] extend OPE-
based PSI protocol, and combine the efficiency of perfectly hiding
commitment scheme with an OPRF evaluation protocol. The PSI
protocol in [26] incurs communication of O(n(1 + log o)) group
elements, and computation of O(n(1+loglog(n) +log(o)) modular
exponentiations. Later, other variants of the problem were also
investigated such as size-hiding set intersection [9, 10], PSI cardi-
nality [15, 18], Private Intersection-Sum [30]. Here we highlight
public-key based PSI protocols with linear-complexity.

Semi-honest PSI protocols. The current state-of-the-art for semi-
honest PSI (independent of whether the protocols are based on
DH or not) are the protocols of [11, 36, 42], with the best protocol
depending on the relative cost of computation vs communication.
Our protocol involves encoding values into polynomials, and this
technique appears in some form in several PSI protocols. One such
protocol is due to Cho, Dachman-Soled, and Jarecki [13]. Our pro-
tocol builds heavily on theirs, and we discuss it in more detail later.
Another protocol of Pinkas et al. [42] is based on OT extension but
also encodes certain values in a polynomial. Until our work, this
protocol has had the lowest communication, excluding protocols
based on expensive FHE or RSA accumulators.

For RSA-based PSI approaches, to the best of our knowledge, the
work of Cristofaro and Tsudik [17], and its improvement [3] pro-
posed PSI protocols with lowest communication in this semi-honest
setting. These protocol are based on RSA accumulators. The latter
protocol achieves communication that is only marginally more than
the insecure protocol for intersection (in which parties simply send
hashes of their inputs). However, their computational requirements
(at least nlog(n) RSA exponentiations) make the protocol prohibi-
tively expensive in practice due to the cost of RSA operations. We
give further comparisons to the RSA approach later in Section 5.2.

Malicious PSI protocols. Jarecki and Liu [33] proposed the first
linear-complexity PSI protocol based on OPRF in the presence of
malicious adversaries. They constructed an OPRF protocol for the
Dodis-Yampolskiy PRF fi.(x) = g'/(¥*¥) which requires O(1) mod-
ular exponentiations and has constant-round communication. How-
ever, the secure computation protocol for their OPRF functionality
is in the Common Reference String (CRS) model, where the CRS

Session 4C: Private Set Intersection

T I
A
20 PRTY20 N
KKRT16 DKT104
a ® m CM20
§ | ® PRTY19 h
8 (spot-low)
E HFH99
Eop| o " :
3 2 this work
) m semi-honest
® this work A malicious
3 \ ‘
2 27 28 29

running time (milliseconds)

Figure 1: Time vs communication for PSI protocols on n = 256
items; LAN setting. Both axes are in log-scale.

includes a safe RSA composite that either must be pre-generated
by a trusted party or implies high overhead when produced in the
secure two-party computation model. Another limitation of this
protocol is that its security proof runs an exhaustive search over
the input domain. This implies that the domain of the inputs should
be polynomial in the security parameter.

De Cristofaro et al. [16] presented a PSI protocol secure in the
malicious setting, which achieves the same asymptotic bound as
the previous work [33] without restricting the input domain size,
and does not require the CRS model. Their PSI protocol incurs
computation of 11n + 3 modular exponentiations in a cyclic group.

Jarecki and Liu [34] is a concurrent work with [16]. Their proto-
col [34] requires only 5n modular exponentiations for computing
the adaptive set intersection in the presence of malicious adver-
saries, but under a One-More Gap Diffie-Hellman (OMGDH) as-
sumption, which assumes that the One-More Diffie-Hellman prob-
lem is hard even when the DDH problem is easy.

Currently, the fastest malicious 2-party PSI protocols are due to
Pinkas et al. [43], and more recently Rindal & Schoppmann [48].
They are not based on Diffie-Hellman, but on efficient OT extension
or vector OLE [8]. The protocol of [48] is efficient when the set size
is sufficiently large (e.g. n > 2%°), but it has significant fixed costs
that make it inefficient for smaller sets.

In Table 1, we show the theoretical communication complex-
ity of our protocol compared with the semi-honest and malicious
protocols.

1.2 Summary of Our Results

We show how to transform any KA protocol (with pseudorandom
messages and a natural non-malleability property) into a PSI proto-
col.

CDY starting point. Our starting point is an approach of Cho,
Dachman-Soled, and Jarecki (CDJ). Suppose Alice holds items x1, . . .,
and Bob has items y, . .., yn. Each party will run n instances of
a (malicious) secure string equality test protocol, one for each of
their inputs. Consider Alice’s equality-test-protocol instance corre-
sponding to item x;. How will she send the protocol messages to
Bob so that (1) if Bob also has x;, then he will associate it with this
instance (of the equality-test protocol) and not some other one, (2)

Xn

1168

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

if Bob doesn’t have x;, he won’t know whether Alice was running
an instance associated with x;?

The main insight of CDJ — inspired by a technique originally due
to Manulis, Pinkas, and Poettering [37] — is to embed protocol
messages in a polynomial. For each message of the equality-
test protocol, Alice will interpolate a polynomial P such that P(x;)
equals the next message for the ith equality test instance. When
Bob receives the polynomial, he can evaluate it at each of his y;
inputs, respond to each one, and encode them into a polynomial
of his own. Importantly, if the equality-test protocol messages are
sufficiently random, then the polynomial P hides the x; values of
Alice.

Our improvements. We improve this CDJ paradigm in several
dimensions. (1) Instead of embedding messages from a malicious-
secure string-equality protocol into a polynomial, we can embed
messages from a plain key agreement (KA) protocol. (2) We
show that one party can avoid embedding n KA messages into a
polynomial, and instead send only one KA message. This reduces
the total communication significantly. (3) We simplify the protocol
to use an ideal permutation in place of an ideal cipher.

In more detail, the CDJ mechanism has the parties run n instances
of string equality tests. Each equality test will return either TRUE or
FALSE, indicating which items are in the intersection. We observe
that full-fledged equality tests are overkill for CDJ. Instead, let the
parties run n instances of plain KA, embedded into polynomials
according to their PSI inputs. Each of these KA instances terminates
with an output key. If Alice and Bob hold a common item, then they
will have a key in common. If Alice has an item that Bob doesn’t (or
vice-versa), we show that Alice computes a key that looks random
to Bob. Hence, for PSI it suffices for the parties to simply compare
their set of KA outputs in the clear.

Not only are key agreement protocols conceptually simpler and
more concretely efficient than string equality test protocols — they
are also inputless. As a result, KA protocols have the property that
their first protocol message can be reused for many instances. This
is not necessarily true for a string equality test protocol, where
the party’s input string would typically be “baked into” the first
protocol message. In terms of the PSI protocol, this means that our
protocol does not require a large polynomial of degree n (for n
items) for the first message. Instead, Alice can send just a single
KA protocol message, to which Bob computes n KA responses.

For a two-message KA protocol (like Diffie-Hellman), the fact
that the second message is pseudorandom ensures that the poly-
nomial hides the input set. By adding random oracle calls in a few
selected places, we provide a “hook” for the simulator to extract
malicious parties’ inputs, yielding a malicious-secure PSI protocol.

Finally, the CDJ mechanism uses an ideal cipher for technical
reasons (giving the simulator the ability to "program” outputs of
the polynomial). We show that a simpler ideal permutation suffices.

Performance of the Diffie-Hellman Instantiation. When our new
PSI paradigm is instantiated with Diffie-Hellman KA, we obtain the
most efficient DH-based PSI protocol to date. For malicious security
we require the oracle Diffie-Hellman (ODH) assumption [2] to
hold in the cyclic group. For semi-honest security we only require
the standard CDH assumption.

Session 4C: Private Set Intersection

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Protocol H Communication H 28 29 " 21511 n2212 216 920 Asi?:;ie;sl ‘
Semi Honest

DH-PSI (¢ + A+log(niny))ny + pny 568n 570n 572n 576n 584n 592n CDH
KKRT [36] (3+s)(A+log(niny))ny + 1.2¢ny + |base0T]| 1349n 1388n 1418n | 1094n | 1032n 1018n

SpOT-low [42] 1.02(A +Iog, (nz) + 2)ny + £ny + [baseOT] 483n 493n 495n 499n 515n 532n

SpOT-fast [42] 2(A+log(niny))n; + £(1+ 1/A)n, + [baseOT| 547n 559n 563n 571n 595n 619n CDH
PaXoS [43] (A+Tog,(ninz))ny + £(2.4ny + A1 + y) + [baseOT]| 1074n 1095n 1097n | 1101n | 1128n 1155n

CM [11] (A +1log(niny))ng + 4.8xn;y + [baseOT| 670n 672n 674n 678n 686n 694n

VOLE-PSI (PaXoS)[48] (A +log(ning))ny + 277knd® + 2.4kn;, + |base0T| 86838n | 45128n | 23538n | 6580n | 825n 4190 | | oviopn
VOLE-PSI (interpolation)[48] [| (A +Iog(niny))ny +27kn)™ + kn, + [base0T| 86659n | 44948n | 23358n | 6400n | 646n 240n

Ours (A+log(niny))ny + dny + ¢ 312n 314n 316n 320n 328n 336n CDH
Malicious

DKT [16] 2kny + 6¢ny + 2¢ 1792n 1792n 1792n | 1792n | 1792n 1792n CDH
JL [34] 2kn; + 3¢n; 1024n 1024n 1024n 1024n | 1024n 1024n OMGDH
Hazay [25] ¢ (ny + ny) log(ny + ny) 4608n 5120n 5632n | 6656n | 8704n | 10752n CDH
PaXoS [43] 2kny + €(2.4ny + 24 + y) + A(2.4n;, + 2¢) + |baseOT| 1370n 1389n 1389n | 1389n | 1408n 1427n CDH
VOLE-PSI (PaXoS)[48] 2kny + 277kn0® + 2.4kn;, + [base0T| 87038n | 45326n | 23734n | 6772n | 1009n 59n | | onLcDH
VOLE-PSI (interpolation)[48] || 2xn; +27knJ™ + kn + [baseOT| 86859n | 45146n | 23554n | 6592n 830n 416n

Ours 2kny + Pny + @ 512n 512n 512n 512n 512n 512n ODH

Table 1: Theoretical communication costs of PSI protocols (in bits), calculated using computational security x = 128 and
statistical security A = 40. The cost of base OTs are independent of input size and equal to 5x, which are ignored in the columns
n = ni = ny. n1 and ny are the input sizes of the sender and receiver respectively. ¢ is the size of elliptic curve group elements
(256 is used here). ¢ is width of OT extension matrix (depends on n; and protocol). y is the upper bound on the number of cycles

in a cuckoo graph of PaXoS.

Our protocol is both faster and uses less communication
than any other protocol, when the set sizes are small (less than
1000 items) — even considering semi-honest protocols and protocols
based on OT extension, which are faster on large sets. For n = 256
items, our malicious protocol is 18-30% faster (depending on the
network speed) and uses 10% less communication than the next
best (semi-honest) protocol. Our semi-honest variant uses 45% less
communication than the next best. See Figure 1 for a complete
comparison.

To the best of our knowledge, ours is the first significant im-
provement in communication cost to the 20-year old classic
DH-PSI protocol, due to [29]. We reduce the communication cost
while simultaneously promoting it from semi-honest to malicious secu-
rity. The classic semi-honest DH-PSI protocol of [29] requires total
communication 2n group elements plus n hashes; the total com-
putation is 4n variable-base exponentiations. In our protocol, the
total communication is only n+1 group elements plus n hashes; the
total computation is 3n fixed-base exponentiations, 2n variable-base
exponentiations, and 2 polynomial interpolation/multi-evaluations
of a degree-n polynomial. The leading malicious DH-based PSI
protocol is due to De Cristofaro, Kim, and Tsudik [16]; its total
communication is 6n group elements plus n hashes; the total com-
putation is 2n fixed-based exponentiations and 4n variable-base
exponentiations. Our malicious protocol is over 30X faster and uses
80% less communication.

2 PRELIMINARIES
2.1 Security Model

Secure two-party computation allows mutually distrusting parties
to jointly perform a computation on their private inputs without
revealing any additional information except for the result itself.
There are two adversarial models, which are usually considered.
In the semi-honest model, the adversary is assumed to follow the

1169

PARAMETERS: Size of parties’ sets: n for honest parties and n’ for
corrupt parties.

FUNCTIONALITY:

e Wait for input Y C {0, 1}* from receiver. Abort if |Y| > n
and the receiver is honest, or if |Y| > n’ and the receiver is
corrupt.

o Wait for input X C {0, 1}* from sender and abort if [X| > n.

e Give output X N'Y to the receiver.

Figure 2: PSI ideal functionality.

protocol, but may try to learn information from the protocol tran-
script. In the malicious model, the adversary follows an arbitrary
polynomial-time strategy, and feasibility holds in the presence of
both types of attacks.

2.2 PSI functionality

In Figure 2, we formally describe the PSI functionality, which allows
2 parties to compute the intersection of their datasets without
revealing any additional information.

Note that the functionality allows a corrupt receiver to have more
input items (n’) than is “advertised” (n). This property reflects the
fact that our protocol can’t tightly enforce the number of items held
by the receiver. This is a common feature of PSI protocols, shared
in particular by all the fastest malicious-secure PSI protocols [43,
46, 47]. We discuss specific relationship between n’ and n achieved
by our protocol in Section 4.1.

2.3 Polynomial Operations

A common implementation of polynomial interpolation and multi-
point evaluation is based on Lagrange algorithm, which costs O(n?)
field operations. This implementation typically uses for low-degree

Session 4C: Private Set Intersection

polynomials. However, when n is very large (e.g. n = 22°) this algo-
rithm is completely impractical. In this work, we use the faster algo-
rithms [41] which achieves computational complexity of O(n log? n)
arithmetic operations. At the high level idea, the algorithms for
both problems follow the divide-and-conquer approach. Particu-
larly, the problem is reduced to two half-size problems after each
iteration. Each combination of individual solutions from two half-
size problems to the full-size solution costs O(nlogn). Therefore,
the total complexity of polynomial interpolation and multi-point
evaluation is O(n log2 n).

Given X = {x1,...,xp} € Fand Y = {y1,...,yn} C F, we
use P = interpolg({(x1,y1), ..., (xn,Yn)}) to refer to polynomial
interpolation which finds the unique (n — 1)-degree polynomial P
that satisfies P(x;) = y; for all i € [n].

2.4 Ideal Permutation

In the ideal permutation model, all parties have oracle access to a
random permutation IT on {0,1}" and its inverse II"!. We write
I1* to refer to the pair of these oracles. In the proof of security, the
simulator answers the interface of II*, meaning that it can observe
all queries and program the responses. The ideal permutation model
is similar to, but weaker than, the ideal cipher model. An ideal cipher
is a family of ideal permutations, one for each key.

The ideal permutation assumption has recently become popular
in practical MPC implementations, because it allows one to base
cryptographic operations on a fixed-key block cipher — i.e., to use
hardware-accelerated AES instructions without computing the AES
key schedule. Ideal permutations have been used to realize efficient
hashing functions for garbled circuits and OT extension [5, 24]. Our
work requires an ideal permutation that supports key-agreement
messages as inputs, therefore our implementation uses Rijndael-
256 rather than AES (whose block size is only 128). We note that
other options are available to instantiate an ideal permutation.
For example, symmetric-key constructions that use the sponge
methodology [7] all use an efficient underlying ideal permutation.

3 KEY AGREEMENT PRELIMINARIES

We construct PSI from 2-round key-agreement protocols. A 2-
round key agreement protocol KA has several parameters:

e KA.R is the space of random coins for the two parties.

o KA. M is the space of possible messages for Party 2.

o KA.K is the space of possible output keys.

Akey agreement protocol consists of algorithms: KA.msg,, KA.msg,,
KA.key,, KA.key,, which correspond to an interactive key agree-
ment protocol as shown in Figure 3.

In some 2-round key agreement protocols, the second message
my does not depend on the first message my, and we can write
my = KA.msg, (b) instead of my = KA.msg, (b, m1). In these cases,
mj and my can be sent simultaneously (or in either order), and we
say that the key agreement protocol is one-round.

3.1 Security Properties

Different instantiations of our PSI protocol will require the fol-
lowing security properties of a key agreement protocol. Note that
Definition 3.4 and strongly uniform KA (SU-KA) [22] are similar,
but our definition is specialized to 1-round KA.

1170

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Party 1 Party 2

a — KA.R

m
m1 = KA.msg, (a) _1>
b — KAR

my = KA.msg, (b, m1)
my
~—

output KA key, (a, m3) output KA key, (b, my)

Figure 3: Generic 2-round key agreement protocol

Definition 3.1. A KA scheme is correct if, when executed hon-
estly as shown in Figure 3, the two parties give identical output. In
other words, for all a, b € KA.R:

KA key (a, KA.msg, (b, KA.msg, (a))) = KA key, (b, KA.msg; (a))

Definition 3.2. AKA scheme is secure against an eavesdropper
if the following distributions are indistinguishable:

a,b — KAR

my = KA.msg; (a)

my = KA.msg, (b, my)
k = KA.key, (b, my)

return (mq, mo, k)

a,b — KAR

m1 = KA.msg; (a)

my = KA.msg, (b, m1)
k — KA. K

return (mq, mo, k)

Definition 3.3. A KA scheme is non-malleable if it is secure
(in the sense of Definition 3.2) against an eavesdropper that has
oracle access to KA.key,(a,-), provided the eavesdropper never
queries the oracle on my. Formally, the following distributions are
indistinguishable, for every PPT A that never queries its oracle on
input my:

a,b — KAR

my = KA.msg; (a)

my = KA.msg, (b, my)

k = KA key, (b, my)

return AAKeY1(a) (m my. k)

a, b — KAR

m1 = KA.msg; (a)

my = KA.msg, (b, mq)

k «— KA K

return AKAKeY1(@) (my my. k)

Definition 3.4. A KA scheme has pseudorandom second mes-
sages if my is indistinguishable from random, even to someone
who chooses m; adversarially. Formally, the following distributions
are indistinguishable for all PPT A:

(view,my) « A (view,my) « A
b — KA.R
mgy = KA.msg, (b, m1)

return (view, my)

my — KA.M
return (view, mz)

3.2 Diffie-Hellman Instantiation

The classic Diffie-Hellman key agreement protocol is a one-round
KA protocol (meaning that the two messages can be sent simulta-
neously). It is parameterized by a cyclic group G = (g) of order g,
and defined as:

o KAR =Z4 (space of private randomness)

o KA.M = G (space of second party’s protocol messages)

o KA.msg,(a) = g*

Session 4C: Private Set Intersection

o KA.msgy(b) = g

In this work we consider the “hashed” variant of DH which is secure
under the computational Diffie-Hellman (CDH) assumption in the
random oracle model. Let H : G — {0, 1}’ be a random oracle,
then:

o KA.K = {0,1} (space of output keys)
o KAkey;(a.¢") = H((¢"))
o KAkey,(b,g%) = H((9%)")

Elligator DHKA. Modern applications of DHKA use elliptic curves
for the underlying cyclic group, due to their compact size (e.g.,
group elements with representations roughly 2« bits, for « bits of
security). However, encodings of elliptic curve elements are rather
conspicuous, and can easily be distinguished from uniformly dis-
tributed strings. Our PSI protocols require the KA protocol messages
(specifically, my) to be pseudorandom as strings.

In [6], Bernstein et al. explicitly consider the question of encoding
elliptic curve elements so that the resulting Diffie-Hellman protocol
has pseudorandom messages (viewed as strings). Formally, they
define an encoding mechanism called elligator with the following
properties:

o There are efficient encoding/decoding functions dec, enc which
are inverses, where im(enc) € {0,1} is a set of strings and
im(dec) C & is a subset of elliptic curve points.

e The size of im(enc) is very close to 2%, so that the uniform dis-
tribution over encodings is indistinguishable from the uniform
distribution over {0, 1}*

o The size of im(dec) is a constant fraction (typically close to 1/2)
of the size of the elliptic curve.

e It is possible to efficiently test for membership in im(enc) (and
hence also in im(dec)).

After defining such an elligator encoding method for Edwards
curves, Bernstein et al. propose to modify Diffie-Hellman key agree-
ment as follows:

o KAR={reZy|g" €im(dec)}.
o KAM = {0,1}}

o KA.msg; (a) = enc(g%)

o KA.msg,(b) = enc(gb)

o KA.key,(a,sp) = H(dec(sp)%)

o KAkey,(b,sq) = H(dec(sq)?)

In other words, the parties condition their randomness to always
sample a point in the “elligator subset” im(dec) of the curve. In prac-
tice, each party would repeatedly sample an exponent r « Z4 and
retry until finding one in the elligator subset. Since |im(dec)|/|E] is
constant, only a constant number of trials is needed before success-
fully hitting im(dec). Furthermore, the concrete security of DHKA
is degraded by only a small constant factor.

Due to the desired properties of the elligator encoding, the pro-
tocol messages are uniform in im(enc) and hence pseudorandom
in {0,1}%.

Security properties. The security of hashed DHKA against an eaves-
dropper (Definition 3.2) is standard and follows from the CDH
assumption.

1171

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

The “pseudorandom second messages” property (Definition 3.4)
of the elligator-DHKA protocol follows from the properties of el-
ligator discussed above. Note that in DHKA, my doesn’t depend
on my, so the adversary’s ability to choose mj in Definition 3.4 is
irrelevant.

Finally, the “non-malleable” property (Definition 3.3) of hashed
DHKA is equivalent to the oracle DH (ODH) assumption proposed
by Abdalla, Bellare, and Rogaway [2]. Roughly speaking, the ODH
assumption is that g%, g?, H(¢g?) is indistinguishable from random
in the presence of an oracle for X — H(X9), as long as the distin-
guisher doesn’t query that oracle on ¢”. Here H is the hash function
/ random oracle used in hashed DHKA. In [2] it is shown that the
ODH assumption holds in the generic group model when H is a
random oracle.

4 MALICIOUS PSI FROM KEY AGREEMENT

In this section we present our main result, a malicious 2-party PSI
protocol. Our protocol requires the following building blocks:

e A 2-round KA protocol KA. Recall that KA.M is the space of
possible protocol messages. We require KA. M = F for some finite
field F, and that the KA protocol has pseudorandom messages in
this field. We also require the KA protocol to be non-malleable
in the sense of Definition 3.3.

e Parties have oracle access to an ideal permutation IT, IT™! defined
over the same field F. We write IT* to refer to the two functions
I, t collectively. Parties also have access to random oracles
Hi, Hp.

As a concrete example, we can choose hashed DHKA with elligator
encodings (see Section 3.2), whose protocol messages are pseudo-
random in {0, 1}, and then set F be to the field GF(2¢). Under the
ODH assumption, hashed DHKA is also non-malleable. We give
more details about instantiating our protocol with Diffie-Hellman
in Section 5.

Protocol Overview. Following the overview given in Section 1, the
sender sends the first KA message. Intuitively, the receiver prepares
a polynomial P such that P(y;) is a KA response that it chooses,
for each y; in its set. If KA responses are pseudorandom then the
polynomial P hides the identities of the y;-values.

However, for technical reasons we make the receiver prepare a
polynomial such that P(Hj (y;)) = II”!(m;) where Hj is a random
oracle, IT is an ideal permutation, and m; is the KA response. The
presence of random oracle H; helps the simulator extract from a
corrupt receiver (from observing its Hi-queries). The presence of
the ideal permutation helps the simulator (against both corrupt
parties), by programming II to output KA messages chosen by the
simulator.

Finally, the sender can interpret II(P(H; (x;))) as a KA response,
for each x; in its set, and compute the corresponding KA output
ki. For each x;, the sender sends H(xj, k;) to the receiver. The
presence of this random oracle again helps the simulator extract
from a corrupt sender.

The protocol is described formally in Figure 4. interpolg denotes
polynomial interpolation over field F, as discussed in Section 2.3.

Session 4C: Private Set Intersection

Parameters: finite field F
KA protocol KA with KA.M =F and |[KA. K| > 2¥
ideal permutation II, Ol:F>F
random oracles Hy : {0,1}* — F,
Hy: {0,1}* X F — {0,1}%¢

Receiver
Y={ys,...,

yn} € {01}

3. fori € [n]:
bi «— KA.R
m] = KA.msg, (b;, m)
fi=1"(m))

4. P= interpoIF({(Hl(yi)»fi) lyi € Y})

P
e

(abort if deg(P) < 1)
5.fori € [n]:
ki = KA.key; (a, II(P(Hi(x;))))
k{ = Ha(xi, ki)
6. K ={k{,...,k,} (shuffled)
K

7. output {yi ‘ Hy (y,-,l<A.key2(b,-, m)) € K}

Figure 4: Our malicious PSI protocol.

LEMMA 4.1. The protocol of Figure 4 is UC-secure against a mali-
cious sender, if KA has pseudorandom messages (Definition 3.4), IT*
is an ideal permutation, and Hy is a random oracle.

Before giving the proof, we first sketch the main idea of the
simulator. When the simulator sees the set K provided by the ad-
versary, it needs to extract a set of items that “explains” the effect
of K on the honest party. The elements of K are supposed to have
the form Ha(x;, k;), where k; is the “correct” KA output for item
x;. The simulator observes all queries to Ha, so it can see which
Hy-outputs are placed into K — but how can the simulator check
that some k; is the “correct” KA output corresponding to item x;?
To do this, we let the simulator program IT so that every output of
IT is a KA message for which it knows the randomness. Now for
any x, the simulator can compute the corresponding KA output,
using the KA randomness it associates with II(P(Hj(x))).

Proor. We first describe the behavior of the simulator.

o The simulator honestly plays the role of random oracle Hy. For ev-
ery query Ha(x, k) made by the adversary, the simulator records
the input-output tuple (x, k, H2(x, k)) in a set O.

o For every query of the form II(f) made after the message m is
sent, the simulator chooses a random bf «— KA.R and simulates
KA.msg, (by, m) as the output of IT(f).

e In step 4, the simulator sends a uniform polynomial P.

o Upon receiving K in step 6, the simulator defines the set

)2 = {x | Ik’ - (x, KA-keyz(bP(Hl(x))’m):k,) € 02 and k’ € K}

1172

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

and sends X to the ideal PSI functionality (which causes the
honest receiver to obtain output X N Y).

We prove that this simulation is indistinguishable from the real
interation via the following sequence of hybrids.

Hybrid 0: The real interaction, with the receiver running honestly
with input Y and giving its output to the environment according to
the protocol specification.

Hybrid 1: Same as the previous hybrid, except for how IT* is
simulated. A query to II (resp. II"!) is fresh if it was never made
before, and its value is not determined by previous queries to II~!
(resp. IT) and the fact that IT/IT"! are inverses. In this hybrid, all
fresh queries (by either the adversary or honest party) to IT and [T~
are answered with a uniformly random response. The interaction
aborts if this leads to IT or IT™! repeating an output. This change is
indistinguishable from the standard permutation switching lemma.

Hybrid 2: Same as the previous hybrid, except for how P is gen-
erated. In step 3, P is generated by interpolating through points
of the form H_1(|<A.msg2(b,~, m)). In this hybrid we abort if these
queries to II™! are not fresh — ie., if KA.msg,(b;, m) previously
occurred as either an adversary’s query to II! or as an output of
an adversary’s query to II.

If the KA.msg, (b;, m) terms were independently and uniformly
random, then this abort would happen with probability bounded by
nq/|F|, when the adversary makes q oracle queries. By the pseudo-
random property of the KA scheme, each KA.msg, (b;, m) is indistin-
guishable from random, so the abort probability is negligibly close
to nq/|F|. Either way, the probability is negligible, so the hybrids
are indistinguishable.

Now conditioned on not aborting, we have that each T (KA.msg, (- - -))

is a fresh and uniform value. Hence, P is distributed as a uniform
polynomial, independent of the y; values. Then this interaction is
identical to one in which we first choose a uniform polynomial P
and then later program II(P(Hi(y;))) = KA.msg,(b;, m) for each
y; € Y (aborting if IT is already programmed on this point).

Hybrid 3: Same as the previous hybrid, except for how II is simu-
lated. For every fresh query II(f) made after the adversary sends m,
sample by < KA.R and respond with KA.msg,(by, m) (instead of
responding with a uniform result). This change is indistinguishable
by the pseudorandomness property of KA.

Note that we have already been simulating II(P(H;(y;))) in this
way for y; € Y, but with different variable names (randomness b;
rather than by for f = P(Hi(y;))). If we rename randomness b; (for
yi € Y) to bp(g, (y,;)) then we program II in the same way for all
inputs, with no special case for the elements of Y. In doing so, the
honest party’s output is computed via:

{yieY] Hz(yzu KA~keY2(bP(H1(yi)),m)) € K}

Hybrid 4: The honest receiver queries Hy to determine its final
output (in the expression above). In this hybrid we abort if one of
those Hy queries is fresh (meaning that the adversary did not make
that query) and yet the result is in K. The probability of a fresh
query’s output being an element of K is |K|/|F| = n/|F|, which is
negligible. Therefore this change is indistinguishable.

Session 4C: Private Set Intersection

Suppose the final hybrid maintains the list O, as described earlier
—i.e, (x,k, k") € Oy means that the adversary queried Hz(x, k) and
got a result k’. Since the receiver only “recognizes” values that the
adversary has already queried to Ha, this final hybrid is identical
to one in which the receiver’s output is computed as:

{yi € Y1 3K+ (i KA key, (bp(a (y,))). K') € Oz and K € K}
But this is logically equivalent to:

YNn{x|3k : (x, KA.key, (bp (g, (x)), M) k') € 0; and k' € K}

X

Here X is the set that the simulator can define. Hence this hybrid
is identical to the ideal interaction involving the simulator defined
earlier.]

LEMMA 4.2. The protocol of Figure 4 is UC-secure against a ma-
licious receiver, if KA is non-malleable (Definition 3.3), |KA.K| > 2%,
Hi, Hy are random oracles, and I is an ideal permutation.

Before giving the proof, we first sketch the main idea of the simu-
lator. The simulator’s job, when the adversary gives the polynomial
P, is to extract a set Y that it can send to the ideal functionality.
Then, after learning X NY, it simulates the message K appropriately.
Intuitively, we want to make a distinction between KA instances
where the receiver participates versus KA instances where the re-
ceiver acts as an eavesdropper. The former instances will correspond
to the items of ¥ and the latter instances will contribute to KA
outputs (and elements of K) that look random.

The honest sender will interpret II(P(Hj (x))) as a KA message,
for every x € X. The receiver only “controls” this value if: (1) it made
a query to Hy (x); (2) it made a backwards queryto I1™! that resulted
in the value P(Hj(x)). If on the other hand the adversary chose
P(H;j(x)) first and only then made a forward query at II(P(Hj (x))),
then intuitively it will have no control over the resulting value.

The simulator observes all queries to II* and to Hy, and can
therefore use these criteria to identify which KA instances will give
outputs that the receiver can recognize. All other KA outputs can
safely be replaced with random.

We draw the reader’s attention to two subtleties in the proof:
Suppose the adversary queries IT to obtain some KA message m*.
Since (intuitively) the adversary has no control over m*, we would
like to argue that the corresponding KA.key(m*) (slightly abusing
notation here) looks random. But suppose the adversary programs
P so that II(P(Hy(y))) = m* and II(P(H;(y"))) = m* + 1. If the
sender has both inputs y and y’, then she will compute and send
KA.key(m*) and KA.key(m* + 1). Does the former KA output look
random even in the presence of the latter? It does if the KA protocol
is non-malleable in the sense of Definition 3.3.

Another subtlety is that the receiver may choose its polynomial P
to have “collisions” in the sense that P(H; (y)) = P(H;(y")). This is
not a problem or an attack per se, but it means that the hybrids in the
proof must be structured carefully. The goal of the proof is to justify
that the sender’s messages of the form Ha (x;, KA.key (IT(P(Hi (x;))))
can be replaced with random values, for all x; not in the intersection.
But the sequence of hybrids does not replace these real values with
random one at a time. Instead, we replace II(P(Hj (+))) outputs, one

1173

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

at a time, with KA messages chosen by the simulator. Then we can
argue that KA. .key(II(P(Hj(x;)))) is indistinguishable from random
for possibly many values of x; that give the same P(Hj(x;)).

Proor. We first formally describe the behavior of the simulator:

The simulator honestly plays the role of random oracle H; and
ideal permutation IT*. For every query Hj (y) made by the adver-
sary, record y in a set Oy. For every query II”!(m) = f, where
there was no previous query of the form II(f) = m, record f
in a set O.

o The simulator runs steps 1-2 honestly.

Upon receiving P in step 4, the simulator defines the set

Y ={y |y € Oy and P(Hi(y)) € O}

and sends Y to the ideal PSI functionality.

Upon receiving output Z = X N Y from the functionality, the
simulator computes k, = KA .key, (a, II(P(H1(z))) foreachz € Z.
Define K = {Hz(z,k;) | z € Z} and then keep adding uniformly
random values to K until |K| = |X|. The simulator finally sends
this K to the adversary.

We prove that this simulation is indistinguishable from the real
interation via the following sequence of hybrids.

Hybrid 0: The real interaction, with the sender running honestly
on input X. In particular, the protocol message K is generated as
follows:

K= {Hz (x, KA key, (a, TI(P(H; (x)))) |xe x}
The lists O1 and Oy are also maintained, as defined above.

Hybrid 1: Same as the previous hybrid, except the interaction
aborts in step 5 if there is an x € X where x ¢ O; and yet
P(Hi(x)) € Op. In other words, the adversary nevery queried
Hi(x) and yet P(Hj(x)) is a value that it previously received as
output from IT71,

It suffices to show that the probability of such an abort is negligi-
ble. For any f € Oy, the polynomial equation P(-) = f has at most
n solutions, since P is a polynomial of degree n, and not the zero
polynomial (that would mean P is a constant polynomial and the
sender would have already aborted in step 4). Since Hy (x) is a fresh
query never made before (until the simulated sender makes it), it is
uniformly distributed in F and therefore has at most n/|F| proba-
bility of satisfying P(Hj(x)) = f. Suppose the adversary makes a
total of g queries to its oracles. By a union bound over all n choices
of x € X and q choices of f € Oy, the total probability of this event
is nq/|F|, which is negligible.

Hybrid (2,1), fori € [q]: Same as the previous hybrid, except for
the following changes. For the first i queries of the form ITI(f) = m,
where there was no previous query to IT"1(m), add f to the set S;.
Note that S; and Oy are necessarily disjoint (based on whether IT
or II"! was queried first). Intuitively, S; are the first i [I-outputs
(interpreted in the protocol as KA protocol messages) that the
adversary has no control over. Then compute K instead as:

K= {Hz (x, KA key, (a,H(P(Hl(x)))) | x € X and P(H; (x)) ¢ S; }

and thereafter add uniformly random elements to K until |[K| = n.
Note that there may be many values of x giving the same P(H;(x))

Session 4C: Private Set Intersection

output, so there may be many values of x treated differently between
Hybrids (2,i) and (2,i + 1).

It should be clear that Hybrid (2, 0) is identical to Hybrid 2, since
8o = 0 and the new condition is always true. In Lemma 4.3 we
prove that Hybrids (2,i) and (2, i + 1) are indistinguishable.

Hybrid 3: We rewrite Hybrid (2, q) for clarity. In this hybrid,
every II(f) = m that is known in the interaction is represented in
either Sy (for those known by an initial IT-query) or Oy (for those
known by an initial IT~! query). In other words, these two sets form
a partition of all known II(f) = m points.

Let us consider how the set K is computed in this hybrid. The
condition P(Hy(x)) € Sy is equivalent to P(H;(x)) € Oy, meaning
that we can write:

K= {Hz (x, KA.key; (a, TT(P(H (x)))) | x € X and P(H;(x)) € Ox

(padded with random values).

Recall that the interaction aborts if there is any x ¢ O; but
P(Hj(x)) € Op1. In other words, conditioned on even reaching this
point in the interaction, P(Hj(x)) € Oy implies x € O;. Hence we
can further rewrite the definition of K as:

K= {Hz(x, KA.keyl(a,H(P(Hl(x)))) | * < X }

and P(H;(x)) € On

Now, suppose we define Y = {y | y € O1 and P(H1(y)) € Or}.
Then K can be rewritten in the equivalent form:

K= {Hz(x, KA.keyl(a,H(P(Hl(x)))) [xe XNY }

In this form, it is now clear that the hybrid corresponds to the
behavior of the ideal interaction. That is, the simulator computes
Y, and then computes K based only on the contents of Z = X N Y,
its output from the functionality. O

LEMMA 4.3. Hybrids (2,i — 1) and (2,i) are indistinguishable, if
the KA protocol is non-malleable (Definition 3.3) and |KA. K| > 2%,

Proor. The hybrids differ only in the following way: Hybrid
(2, i) replaces KA .key, (a, II(f*)) with random, in the event that f*
was the ith query to IT (with no corresponding prior II"! query).

Recall that in the game that defines non-malleability of a KA,
the distinguisher receives (m; = KA.msg; (a), mo, k) and also gets
access to an oracle for K(-) = KA key, (a,), which it cannot query
on my. Below is a reduction algorithm that is a distinguisher for
the non-malleability game:

RE (my, my, k):

e Run Hybrid (2,i — 1) against the adversary, using mj as the PSI
protocol message m.

e Maintain set S;_1 as described. On the ith query to II (i.e., the
value that would have been added to S;), let f* denote the input
and simulate my = II(f™) as the response.

e For every expression of the form KA.key, (a, II(P(Hy(x)))) used
in the definition of K:

— If P(H1(x)) = f* then replace the entire expression with k
(input to this reduction algorithm).

— Otherwise, replace the entire expression with the result of
K(II(P(Hi(x)))), where K is the reduction algorithm’s oracle.

N—

1174

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Since II is a permutation, we have II(P(H; (x))) # II(f*) =
my; in other words, the oracle K is never invoked on m;.

Intuitively, this reduction algorithm runs the hybrid interaction
without knowing the KA randomness a. Instead, a is used implicitly
via m1, k, and the oracle K.

When the input k is the correct key k = KA key, (a, m2), then the
simulation exactly matches Hybrid (2, i — 1), since the reduction
correctly uses k in place of the expression KA.key, (a,II(f*)) =
KA key, (a, mz).

Now consider the case that k is a random key. Then when-
ever P(Hi(x)) = f*, the value Hz(x, k) is added to K. Since Hy
is a random oracle, and since k is uniform (and |k| > «), outputs
Hy(x, k) are indistinguishable from random, even for multiple val-
ues of x (e.g., in the case where the adversary constructs P so that
P(Hi(x)) = f* for several values of x). In summary, when k is
uniform, the simulation is indistinguishable from Hybrid (2, i) in
which a random value is added to the set K in these cases. The
non-malleabiity of KA means that these two cases are indistin-
guishable. O

Optimizations. When KA is a one-round key agreement proto-
col (i.e, message 2 doesn’t depend on message 1, as in the Diffie-
Hellman instantiation), then the two messages m and K from the
sender can be combined. This leads to a 2-round PSI protocol
where the first flow is P from the receiver and the second flow is
m, K from the sender.

Note that the direction of the last message (Hz outputs from
sender to receiver) is important. It is not possible to save a round
of communication by letting the receiver send H outputs to the
sender. These Hy outputs are computed using the result of a KA
between a common a (chosen by the sender) and various b; (chosen
by the receiver). Knowing a, the sender can compute the “correct”
H, for any x, so the receiver would expose a dictionary attack by
sending their set of Hz outputs.

If security is required against only semi-honest adversaries,
then the protocol can be streamlined slightly, as follows (full details
are given in Appendix A):

e The polynomial can be interpolated on values P(y;) instead of
P(H;(y;)); H1 was used only to help extract.

o Instead of sending values of the form H(x;, k;), the sender can
simply send the k; values. Again, Hy was used only to extract.
Furthermore, the k; values can have length of only A + 2log(n)
in order to ensure correctness with probability 1 — 274,

Two other possible optimizations are presented in Appendix B.

Costs. The sender must compute one KA message and n KA
keys/outputs. The receiver computes n KA responses and n KA
keys/outputs. Both parties make n queries to each of Hj, Hy, and
I1*. Finally, the receiver must interpolate a polynomial of degree n,
and the sender must evaluate such a polynomial on n points. These
are both possible with O(nlog? n) field operations, as described in
Section 2.3.

The total communication cost of the protocol consists of: (1) 1
KA message from the sender, (2) n field elements (each equivalent in
size to a KA response) from the receiver to describe P, (3) n outputs
of Hj, each 2k bits.

Session 4C: Private Set Intersection

4.1 Size of Adversary’s Set

Recall that we consider an ideal functionality in which a corrupt
party can provide an input set that is “larger than advertised.” If
a corrupt party (specifically, the receiver) provides an input that
is as large as the universe of possible items, then PSI provides no
security whatsoever. Hence, it is important to bound the size of the
set that the simulator extracts.

Corrupt Sender. The sender gives a set K during the protocol,
which is supposed to contain Hy-outputs. The simulator extracts
by finding x such that Hy(x,k) € K, for an appropriate value k.
Since the output of Hy is 2k bits, the probability of the adversary
encountering a collision in Hy is negligible. Hence for each item in
K, there is at most one preimage known to the adversary/simulator
and hence at most one item that will be included in the extracted
set X.

In other words, the simulator extracts an input set for a corrupt
sender of size at most |K| = n. The protocol strictly enforces the
size of a corrupt sender’s input set.

Corrupt Receiver. The simulator for a corrupt receiver extracts
their input set as

Y ={y |y € Oy and P(Hi(y)) € O}

Abstractly speaking, the adversary sees q outputs of Hj, and it
sees g outputs of II. In the simulation, outputs of both H; and
IT are uniform. The adversary then generates a polynomial P of
degree less than n (and greater than 0) and the simulator checks
whether P(a) = f for all outputs « from H; and all outputs § from
I1. The number of such pairs is the size of the set that is extracted.
The question is therefore how many random points can the
adversary fit on a degree < n polynomial?

CDJ shows that if the size of the field is 2@ (1°8%) then with over-
whelming probability no polynomial can fit more points than its
degree suggests. However, such a large field leads to quadratic total
communication (n coefficients in a field of more than 2" elements).
We instead prefer to stick to a field of minimum size (large enough
only to encode a KA message) and obtain bounds on the number of
items.

Definition 4.4. Let F be a field and define the PonOverfit;’n/ (q)
game against an adversary A to be as follows:

sampleal,,..,aq,ﬂl,.,.,ﬁq «F
P« ?[(ocl,...,aq,ﬂl,...,ﬂq)
if 0 < deg(P) < n and ‘{ai | P(a) € {B,..

declare A the winner

wﬁq}} >n':

In other words, the adversary tries to generate a polynomial that
hits some f; on at least n’ distinct a;’s.

We say that PolyOverfit;’", is hard if for all polynomial g and
all PPT A, the adversary wins with negligible probability.

PROPOSITION 4.5. IfPolyOverfitﬂ';’"/ is hard, then the simulator
for a corrupt receiver in our PSI protocol outputs a set of size bounded
by n’, except with negligible probability.

In Appendix C we show the following using a standard compres-
sion argument. If such an “overfitting” polynomial existed, it could

1175

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

be used to generate a compressed representation of the a;’s and
Bi’s, which is impossible if they are uniform.

LEMMA 4.6. The probability of winning PolyOverfit;’n,(q) is at
most (qzn)"//|IF|"/_".

Some concrete examples of this bound for |F| = 225¢ are given
below:
q ‘ n ‘ n’ ‘ bound
07 [510 [gnra | 27128
o115 | 910 | 1gn 1 g | 2128
2102 | 920 | gn 44 | 9—128
2110 | 920 | 1gn 48 | 2128

For example, when running the protocol for n = 21 items, the
adversary will not be able to have an effective input of size 8n + 4,
with high probability.

We emphasize that the above bound is unconditional, meaning
that for the parameters above, such an “overfitting” polynomial
simply does not exist except with negligible probability. It seems
reasonable to conjecture that even when such polynomials exist,
finding them is hard for PPT adversaries. If such a claim were
proven, it would imply a tighter enforcement of set sizes in our
protocol.

We also emphasize that all malicious PSI protocols based on OT
extension have similar “slack” in the size of corrupt parties’ sets.
In [46] a bound of n” = 6n is stated; in [47] a bound of n’ = 4n is
stated; and in [43] a range of bounds n’ = 2.4cn for ¢ € {2,3, 4,5}
is given for different parameters.

5 EXPERIMENTAL RESULTS

5.1 Implementation

In order to evaluate the performance of our PSI protocol, we built
and evaluated an implementation. Our complete implementation is
available on GitHub: https://github.com/osu-crypto/MiniPSI. Below,
we discuss how the various components were instantiated.

Key Agreement. We instantiate DHKA using elliptic curve groups,
and hash g“b with SHA2. As mentioned previously, this variant of
DHKA is non-malleable (Definition 3.3) under the ODH assumption.

An elliptic curve consists of the solutions (x,y) in a field Fy
to the Weierstrass equation y?> = x> + Ax? + B or Montgomery
equation y2 =x3 + Ax? +x. Depending on the curve parameters,
EC shows different shapes on the plane. In this work, we choose
the Curve25519 Montgomery curve, since it is recommended for
elligator [1]. This Curve25519 is defined over GF(q = 2% — 19)
and its curve parameter A has the value 486662.

We implement the elligator encoding based on [6]. The encoding
takes a curve point and outputs a pseudorandom string of 256 bits.
The point (x, y) has an inverse map if it satisfies two conditions: the
x value is not equal to the curve parameter A; and —2x(x+a) must be
a square. Therefore, we keep sampling points until these conditions
are hold. According [1, 6] and confirmed by our experiment, the
success probability is % The elligator encoding of such a valid point

is defined by r = \/(F)(
b=-1.

) -1 .
HLA)I’, where b = 1ifo < qT, otherwise,

https://github.com/osu-crypto/MiniPSI

Session 4C: Private Set Intersection

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Running time (milliseconds)
Comm.

n Protocol Sec. 10 Gbps 50 Mbps
(KB) Offline | Online | Total | Offline | Online | Total
Classic DH [29] 9.09 — 81.1 81.1 — 241.1 241.1
KKRT [36] SH 22.22 180.1 21.2 201.3 339.0 499.1 838.1
Ours 4.99 29.2 29.3 58.5 29.2 172 201.2
27 SpOT-low [42] IM 26.70 139.5 24.9 164.4 570.9 185.6 756.5
CM [11] 32.00 203.9 323 236.2 554.0 349.2 903.2
DKT [16] 31.48 - 492.0 492.0 — 1918.8 1918.8
PaXoS [43] 2M 40.96 250.2 34.8 285 665.2 536.1 1201.3
Ours 8.19 32 30.1 62.1 32.2 189.6 221.8
Classic DH [29] 18.18 — 149.8 149.8 - 321.7 321.7
KKRT [36] SH 43.8 181.2 27.1 208.3 341.2 507.1 848.3
Ours 9.98 57.4 59.1 | 116.5 58.1 212.5 270.6
28 SpOT-low [42] IM 33.90 138.8 59.2 198.0 565.7 216.8 782.5
CM [11] 43.00 205.1 32.0 237.1 623.3 361.3 984.6
DKT [16] 62.74 — 898.0 898.0 — 3081.8 3081.8
PaXoS [43] 2M 69.83 255.3 35.9 291.2 668.1 552.04 | 1220.14
Ours 16.38 58.4 61.1 | 119.5 62.1 225.5 287.6
Classic DH [29] 36.86 — 248.2 248.2 - 430.3 430.3
KKRT [36] SH 94.64 183.2 40.8 224.0 342.0 656.9 998.9
Ours 20.48 96.3 110.0 | 206.3 106.2 268.9 375.1
20 SpOT-low [42] IM 48.40 139.0 116.8 255.8 571.0 266.7 837.7
CM [11] 64.00 207.1 28.3 2354 633.5 355.1 988.6
DKT [16] 125.27 - 1720.0 | 1720.0 — 5966.2 5966.2
PaXoS [43] 2M 127.56 256.3 54.1 310.4 671.1 554.04 | 1225.14
Ours 32.77 98.3 1129 | 211.2 115.1 275.1 390.2
Classic DH [29] 73.73 — | 3752 3752 — [5742 5742
KKRT [36] SH 188.64 185.4 42.6 228.0 345.1 554.1 899.2
Ours 40.96 149.1 252.4 401.5 155 379.7 534.7
210 SpOT-low [42] M 77.20 140.0 239.6 379.6 570.5 358.2 928.7
CM [11] 105.00 207.4 36.5 | 243.9 633.6 359.5 993.1
DKT [16] 250.32 — 3028.0 | 3028.0 — | 10111.2 | 10111.2
PaXoS [43] 2M 243.01 258.4 94.1 352.5 671.2 560.1 1231.3
Ours 65.54 155.6 268.9 424.5 164 393.9 557.9

Table 2: Communication cost in KB and running time in milliseconds of PSI protocols on the set size n. “SH", “1M", and “2M"
refer to semi-honest, 1-sided malicious and 2-sided malicious protocol, respectively. Cells with "—" denote setting not supported

or program out of memory.

The decoding function takes a string r and produces the x coor-
dinate of a point on Curve25519. The value x can be computed as

x=ed—(1-e)4, whered = 1;32 and e = (d° + Ad? +d)qu.

We implemented elligator on top of the Curve25519 implementa-
tion from 1ibsodium. From our experimental evaluation, 1ibsodium
is about 10X faster than miracl library.

The length of elligator encodings is slightly less than 256 bits. In
order to promote these encodings to be uniform in {0, 1}%°°, we can
append a few extra uniform bits which are ignored during decoding.
These additional bits can be considered as part of the randomness
in the KA protocol, and they cause the protocol messages to be
pseudorandom in F = {0, 1}2%.

Other Primitives. We instantiate the necessary random oracles us-
ing SHA2. Since the elliptic curves have 256-bit encodings, we need

1176

an ideal permutation IT* defined over {0, 1}?°°. In our implementa-
tion we use Rijndal-256 with a fixed key as the ideal permutation.

Polynomial Operations. Our protocol requires the receiver to
generate a polynomial of degree n, and the sender to evaluate it
on n points. It is known that these problems could be solved by La-
grange interpolation and Horner evaluation which requires O(n?)
field operations. However, when n is very large (e.g. n = 22°) this
becomes impractical. Moenck and Borodin [41] describe algorithms
for these problems in O(n log2 (n)) field operations, which make
them a better fit for our protocol.

Security Parameters. All evaluations were performed with a PSI
item length of 128 bits, computational security parameter x = 128
bits, and a statistical security parameter A = 40 bits.

Session 4C: Private Set Intersection

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Sec. | Comm. Running time (seconds)
ny m Protocol 10 Gbps 50 Mbps 1 Mbps
(MB) || Online | Total | Online | Total | Online | Total

Classic DH [29] 0.29 0.86 0.86 1.13 1.13 2.26 2.26
KKRT [36] SH 0.56 0.03 0.2 057 | 0.91 5.09 5.47
212 [Ours 0.16 0.59 1.07 0.91 1.39 1.71 2.17
SpOT-low [42] M 0.25 0.72 0.88 1.04 1.61 2.79 3.36
512 CM [11] 0.36 0.08 0.28 0.51 1.15 3.11 3.74
DKT [16] 0.83 1212 | 1212 36.35 | 36.35 97.06 97.06
PaXoS [43] 2M 0.94 0.14 0.4 0.97 1.64 5.26 5.93
Ours 0.16 0.62 1.08 0.95 1.41 1.75 2.22
Classic DH [29] 0.17 0.48 0.48 0.83 0.83 1.24 1.24
KKRT [36] SH 0.28 0.02 0.2 0.67 1.01 4.64 5.01
28 [Ours 0.26 0.41 0.47 059 | 0.65 0.59 0.69
SpOT-low [42] M 0.24 0.65 0.79 0.33 0.89 0.38 0.95
CM [11] 0.32 0.20 0.27 0.63 1.13 3.11 3.74
Ours 2M 0.14 0.43 0.49 062 | 0.66 0.63 0.67
Classic DH [29] 4.78 1038 | 11.58 17.6 17.6 38.53 38.53
KKRT [36] SH 6.73 021 | 0.44 253 | 2.92 74.15 74.57
216 [Ours 2.69 8.96 | 16.25 109 | 16.64 25.03 | 31.16
SpOT-low [42] M 3.9 12.61 | 12.81 15.76 | 16.33 40.15 40.71
516 CM [11] 5.34 0.54 0.75 1.72 2.35 45.11 45.75
DKT [16] 13.33 || 216.83 | 216.83 || 845.63 | 845.63 || 1929.76 | 1929.76
PaXoS [43] 2M 14.79 0.25 0.52 4.27 4.95 48.34 49.02
Ours 4.19 8.89 | 15.95 11.1 | 18.64 2773 | 36.16
Classic DH [29] 2.82 6.45 6.45 14.01 | 14.01 22.37 2237
KKRT [36] SH 4.55 0.11 | 0.32 1.59 1.92 39.7 40.02
212 [Ours 0.72 471 5.17 5.91 6.37 7.10 7.46
SpOT-low [42] M 3.42 1.55 1.75 134 | 1.91 6.10 6.67
CM [11] 4.82 0.50 0.70 1.37 2.01 40.38 41.01
Ours 2M 2.23 471 5.97 6.01 7.47 7.90 8.96
Classic DH [29] 77.59 || 189.87 | 189.87 || 290.82 | 290.82 || 717.08 | 717.08
KKRT [36] SH 133.00 351 | 4.18 27.42 275 || 1153.23 1154
220 ["Ours 44.04 || 144.64 | 245.06 || 150.93 | 251.69 452.7 | 554.26
SpOT-low [42] M 63.18 || 270.69 | 270.88 || 310.83 | 311.4 || 687.77 | 688.34
520 CM [11] 86.16 7.94 8.15 1656 | 17.17 || 726.81 | 727.46
DKT [16] 213.00 5121 | 5121 — — — —
PaXoS [43] 2M 236.47 5.01 5.29 46.13 | 46.81 || 798.26 | 798.94
Ours 67.11 || 148.94 | 251.06 || 161.93 | 267.69 489.7 | 597.26
Classic DH [29] 46.14 || 104.57 | 104.57 || 170.82 | 170.82 || 371.77 | 371.77
KKRT [36] SH 74.20 1.86 | 2.32 175 | 1825 || 609.49 | 610.25
216 [Ours 12.58 925 | 98.24 || 104.44 | 108.92 109.41 | 117.81
SpOT-low [42] M 5553 || 218.65 | 218.85 15.82 | 1639 || 128.43 | 129.10
CM [11] 76.77 7.50 7.70 15.66 | 16.26 || 721.81 | 722.45
Ours 2M 35.65 941 | 99.91 || 105.44 | 113.02 || 12049 | 121.81

Table 3: Communication cost in MB and running time in seconds of PSI protocols; the sender and receiver set size is n; and ny,
respectively. “SH", “1M", and “2M" refer to semi-honest, 1-sided malicious and 2-sided malicious protocol, respectively. Cells
with "—" denote setting not supported or program out of memory.

5.2 Experiments and Evaluation

WAN setting with 80ms round-trip time and two different network

Experimental Setup. We implement our protocol in C++, and run bandwidths 50 Mbps, and 1 Mbps.

our protocol on a single Intel Xeon with 2.30GHz and 256GB RAM.
The parties communicate over a simulated 10Gbps network with
0.2ms round-trip time for LAN setting. We also run all protocols in

Protocol Evaluation. In the following, we benchmark the state of
the art semi-honest and malicious PSI protocols [11, 16, 29, 36, 42,
43]. We now briefly discuss several protocols not included in our
comparison: The Jarecki-Liu protocol [34] is a malicious-secure,

1177

Session 4C: Private Set Intersection

DH-based protocol. However, it achieves a weaker ideal functional-
ity where the adversary can choose items adaptively. The recent PSI
protocol of Rindal & Schoppmann [48] is based on silent vector-OLE,
and is extremely efficient for large sets. However, its implementa-
tion is not yet publicly available and its high fixed costs make it
inefficient for small sets (as illustrated in Table 1). The work of Chen
et al. [12] is the state-of-the-art (one-sided) malicious FHE-based
PSI. Its first step is essentially classic DH-PSI, before even doing
any FHE operations. Since our entire protocol is more efficient
than DH-PSI, we expect ours would be much faster than theirs for
small-to-medium-size sets.

We also do not include RSA-based PSI protocols [3, 17], by which
we mean protocols that require at least one RSA exponentiation
per item. RSA elements are 16 X (= 4096/256) larger than elliptic
curve (ECC) elements. A simple benchmark on our experimental
hardware (openssl speed rsa4096 ecdhx25519) shows that RSA-
4096 exponentiation is 100X slower than ECC exponentiation (even
RSA-2048 was 20X slower). Therefore, RSA-based protocols will
always be ~100x slower than ours. If they send one RSA value per
item, they will have 16X more communication than ours.

We report detailed comparisons in Table 2 and Table 3 for small
set size {27, 28 29 210} and large set size n € {212, 216, 220}. As ex-
pected, our protocol shows a significant performance improvement
when the set is small.

We note that our poly-DH PSI protocol is very amenable to pre-
computation (by precomputing exponentiation). When reporting
performance of these protocols, we split total running time into
two phases:

e Offline: operations like generating random pairs (r;, g"*), which
can be done without any interaction and before the inputs are
known.

e Online: everything else, starting when the parties have deter-
mined their inputs.

Bandwidth Comparison. Our polynomial-based protocol requires
the lowest communication among all PSI protocols. The commu-
nication of our polynomial-based protocol is approximately 2x
smaller than that of classic DH PSI. Compared to malicious DH-
based PSI protocol [16] (DKT), our protocol shows about 3 — 4x
improvement.

Consider a semi-honest PSI with unequal set size, the commu-
nication cost is (n1|G| + na¢) bits for the polynomial-based PSI
protocol, and about (n1 + n2)|G| + nyf) bits for classic DH-based
PSI. Concretely, for nq and ny = 229, the polynomial-based
protocol takes 12.58 MB of communication while classic DH PSI
needs 46.14 MB, a 3.67X improvement.

We also compare bandwidth to the state-of-the-art OT-based
semi-honest PSI protocols [11, 36, 42] and malicious PSI proto-
col [43]. Note that [36] (KKRT), [43](PaXoS) are the fastest PSI
protocol to date and [11] (CM) has the fastest in networks with
moderate bandwidth (e.g., 30-100 Mbps) while [42] (SpOT-low) has
the least communication among practical semi-honest protocols.
The communication cost of our protocol is about 3—4.6X, 1.4—1.7X,
and 3.7 — 7.8 less than that of [36], [42], and [43], respectively.

= ol6

Runtime Comparison. For small set (e.g n = 2°), our polynomial-
based protocol is faster than all DH-based and OT-based schemes in

1178

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

both LAN and WAN settings. Starting from n = 21, our protocol is
slower than the OT-based protocols in LAN setting. However, bench-
marking all protocols in the WAN setting with 1 Mbps network
bandwidth and 80 ms round-trip latency, our protocol shows an
1 —3.17x faster than others due to the fact that the communication
cost is smallest.

The polynomial-based protocol shows its benefit in the unbal-
anced setting where the sender’s set size is larger than the receiver’s
set size (nz > n1). It means that the sender only needs to send the
receiver a short fingerprint ¢ per each item in his set while in
DH-based protocol the sender additional requires to send a group
element per each item. Since the implementation of PaXoS and DKT
does not support to compute a PSI for asymmetric set, we omit to
report their performance costs. Table 3 shows that in most of the
cases the running time of our polynomial-based protocol is faster
than other semi-honest protocols. Consequently, our protocol is
faster than other malicious protocols. For n; = 2% and n, = 220 in
WAN setting with 1Mpbs bandwidth, the baseline DH protocol runs
in 574.26 seconds, while the polynomial-based protocol requires
117.81 seconds, a factor of 4.9 and 3.1x improvement, respectively.

A summary of the state of the art (including this work) is pre-
sented in Figure 1 where the running time is measured in the LAN
setting. Our PSI prototocol’s performance is mostly unaffected by
changing the network bandwidth and latency, due to its extremely
low communication complexity.

Conclusions. For small sets (n < 512) our protocol is the best in
terms of both communication and computation. As we previously
discussed in Section 1, on sets of this size our protocol is less expen-
sive than the base OTs required for OT extension and PSI protocols
that are based on OTs.

ACKNOWLEDGEMENTS. The first author is partially supported
by a Facebook research award. The second author is partially sup-
ported by NSF awards #2031799, #2101052, and #2115075. We are
grateful to the CCS 2021 anonymous reviewers whose feedback
was instrumental in improving several aspects of this paper.

REFERENCES

[1]
[2

https://www.imperialviolet.org/2013/12/25/elligator.html.

Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001,
volume 2020 of LNCS, pages 143-158. Springer, Heidelberg, April 2001.
Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters:
Size-hiding private set intersection. In Dario Catalano, Nelly Fazio, Rosario
Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages
156-173. Springer, Heidelberg, March 2011.

Donald Beaver. Correlated pseudorandomness and the complexity of private
computations. In 28th ACM STOC, pages 479-488. ACM Press, May 1996.

Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and
Privacy, pages 478-492. IEEE Computer Society Press, May 2013.

Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
967-980. ACM Press, November 2013.

Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In Nigel P. Smart, editor, EURO-
CRYPT 2008, volume 4965 of LNCS, pages 181-197. Springer, Heidelberg, April
2008.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive
secure computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,

3

[4

[5

[8

Session 4C: Private Set Intersection

[9

=

[10]

[11

[12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

[20

[21

[22]

[23]

[24]

[25]

[26]

[27

[28]

[29]

[30

and Jonathan Katz, editors, ACM CCS 2019, pages 291-308. ACM Press, November
2019.

Tatiana Bradley, Sky Faber, and Gene Tsudik. Bounded size-hiding private set
intersection. In Vassilis Zikas and Roberto De Prisco, editors, SCN 16, volume
9841 of LNCS, pages 449-467. Springer, Heidelberg, August / September 2016.
Andrea Cerulli, Emiliano De Cristofaro, and Claudio Soriente. Nothing refreshes
like a repsi: Reactive private set intersection. In Bart Preneel and Frederik
Vercauteren, editors, Applied Cryptography and Network Security, pages 280-300,
Cham, 2018. Springer International Publishing.

Melissa Chase and Peihan Miao. Private set intersection in the internet setting
from lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34-63. Springer,
Heidelberg, August 2020.

Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully
homomorphic encryption with malicious security. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
1223-1237. ACM Press, October 2018.

Chongwon Cho, Dana Dachman-Soled, and Stanislaw Jarecki. Efficient concur-
rent covert computation of string equality and set intersection. In Kazue Sako,
editor, CT-RSA 2016, volume 9610 of LNCS, pages 164-179. Springer, Heidelberg,
February / March 2016.

Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient
robust private set intersection. In Michel Abdalla, David Pointcheval, Pierre-Alain
Fouque, and Damien Vergnaud, editors, ACNS 09, volume 5536 of LNCS, pages
125-142. Springer, Heidelberg, June 2009.

Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private computa-
tion of cardinality of set intersection and union. In Josef Pieprzyk, Ahmad-Reza
Sadeghi, and Mark Manulis, editors, CANS 12, volume 7712 of LNCS, pages 218—
231. Springer, Heidelberg, December 2012.

Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private
set intersection protocols secure in malicious model. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 213-231. Springer, Heidelberg,
December 2010.

Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection
protocols with linear complexity. In Radu Sion, editor, FC 2010, volume 6052 of
LNCS, pages 143-159. Springer, Heidelberg, January 2010.

Sumit Kumar Debnath and Ratna Dutta. Secure and efficient private set intersec-
tion cardinality using bloom filter. In Javier Lopez and Chris J. Mitchell, editors,
ISC 2015, volume 9290 of LNCS, pages 209-226. Springer, Heidelberg, September
2015.

Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scaling private
contact discovery. Proceedings on Privacy Enhancing Technologies, 2018(4):159 —
178, 2018.

Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection
meets big data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 789-800. ACM
Press, November 2013.

Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 1-19. Springer, Heidelberg, May 2004.
Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction of
fully-simulatable, round-optimal oblivious transfer from strongly uniform key
agreement. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume
11891 of LNCS, pages 111-130. Springer, Heidelberg, December 2019.

Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
Oblivious key-value stores and amplification for private set intersection. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS,
pages 395-425, Virtual Event, August 2021. Springer, Heidelberg.

Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty
computation from fixed-key block ciphers. In 2020 IEEE Symposium on Security
and Privacy, pages 825-841. IEEE Computer Society Press, May 2020.

Carmit Hazay. Oblivious polynomial evaluation and secure set-intersection from
algebraic prfs. J. Cryptol., 31(2):537-586, April 2018.

Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of
malicious adversaries. In Phong Q. Nguyen and David Pointcheval, editors,
PKC 2010, volume 6056 of LNCS, pages 312-331. Springer, Heidelberg, May 2010.
Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan Stute, and Chris-
tian Weinert. Privatedrop: Practical privacy-preserving authentication for apple
airdrop. In 30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.
Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are gar-
bled circuits better than custom protocols? In NDSS 2012. The Internet Society,
February 2012.

Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and
trust in electronic communities. In ACM CONFERENCE ON ELECTRONIC COM:-
MERCE. ACM, 1999.

Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova,
Shobhit Saxena, Karn Seth, David Shanahan, and Moti Yung. On deploying
secure computing commercially: Private intersection-sum protocols and their

1179

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

[31

[32

[33

[34

[35

[36

(37]

@
&,

(39]

[40]

[41]

[42

[43

[44

[45

[46

[47

[48

A

business applications. Cryptology ePrint Archive, Report 2019/723, 2019. https:
//eprint.iacr.org/2019/723.

Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, David Shanahan, and Moti Yung. Private intersection-sum protocol with
applications to attributing aggregate ad conversions. Cryptology ePrint Archive,
Report 2017/738, 2017. https://eprint.iacr.org/2017/738.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 145-161. Springer, Heidelberg, August 2003.

Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function
with applications to adaptive OT and secure computation of set intersection. In
Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 577-594. Springer,
Heidelberg, March 2009.

Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection.
In Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS,
pages 418-435. Springer, Heidelberg, September 2010.

Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 241-257. Springer,
Heidelberg, August 2005.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 818-829. ACM Press, October 2016.

Mark Manulis, Benny Pinkas, and Bertram Poettering. Privacy-preserving group
discovery with linear complexity. In Jianying Zhou and Moti Yung, editors, ACNS
10, volume 6123 of LNCS, pages 420-437. Springer, Heidelberg, June 2010.
Daniel Masny and Peter Rindal. Endemic oblivious transfer. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 309-326. ACM Press, November 2019.

C. Meadows. A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. In 1986 IEEE Symposium on
Security and Privacy, pages 134-134, April 1986.

Ghita Mezzour, Adrian Perrig, Virgil D. Gligor, and Panos Papadimitratos. Privacy-
preserving relationship path discovery in social networks. In Juan A. Garay,
Atsuko Miyaji, and Akira Otsuka, editors, CANS 09, volume 5888 of LNCS, pages
189-208. Springer, Heidelberg, December 2009.

R. Moenck and Allan Borodin. Fast modular transforms via division. In Switching
and Automata Theory, pages 90-96, 1972.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Light-
weight private set intersection from sparse OT extension. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 401-431. Springer, Heidelberg, August 2019.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS:
Fast, malicious private set intersection. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part I, volume 12106 of LNCS, pages 739-767. Springer,
Heidelberg, May 2020.

Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In Jaeyeon Jung and
Thorsten Holz, editors, 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015., pages 515-530. USENIX Association,
2015.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set inter-
section based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.,
pages 797-812. USENIX Association, 2014.

Peter Rindal and Mike Rosulek. Improved private set intersection against ma-
licious adversaries. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 235-259. Springer, Hei-
delberg, April / May 2017.

Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual
execution. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017, pages 1229-1242. ACM Press, October / November
2017.

Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast oprf and circuit-psi from
vector-ole. Cryptology ePrint Archive, Report 2021/266, 2021. https://eprint.iacr.
org/2021/266.

SEMI-HONEST VARIANT

In this section we show a simpler semi-honest variant of our proto-

col.

The details of the protocol are given in Figure 5. The correctness
of the protocol boils down to the following observations:

https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2021/266
https://eprint.iacr.org/2021/266

Session 4C: Private Set Intersection

Parameters: finite field F
KA protocol KA with KA.M = F and |KA.K| > 24+2logn
ideal permutation IL,IT"! : F — F
Sender Receiver
input X = {xy,...,xp} CF inputY ={ys,...,yn} CF
l.a «— KAR
2. m = KA.msg, (a)
m
—_—
3. fori € [n]:
bi — KA.R
m! = KA.msg, (b;, m)
fi=1""(m))
4. P= interpoI]F({(yi,ﬁ) |yi € Y})
P
—
5.fori € [n]:
ki = KA key; (¢, TI(P(x;)))
6. K ={ky,...,kn} (shuffled)
K
—_—
7. output {y; | KA.key,(b;, m) € K}

Figure 5: Semi-honest variant of our protocol.

e Suppose x; = y; for some i, j (i.e., xj is an item of the sender that
is in the intersection). Then by construction we have:
KA.key, (a, IL(P(x1))) = KA.key, (a, I1(f}))
= KA.key; (a, m})
= KA key (a, KA.msg, (b;, m))

By the correctness of the KA protocol, this is equal to KA .key, (b, m),

and the receiver will indeed include y; (= x;) in the output.
Suppose x; ¢ Y. In this case, our security proof will argue that
the corresponding k; value (computed by the sender) is pseudo-
random. The receiver only produces incorrect output if this k;
happens to match one of the KA.key, (b}, m) values computed
by the receiver. For this particular k;, this event happens with
probability (negligibly close to) n/|KA.K|. With a union bound
over at most n such k; values, the overall probability of incorrect
output is at most (negligibly close to) n?/|KA.%|.

To limit the correctness error to a concrete value 2~4 (for example,
A = 40 in our implementation), it suffices to use a KA protocol with
[KA.K| > gA+2logn

LEMMA A.1. The protocol of Figure 5 is secure against a semi-
honest sender, if KA is a pseudorandom-message KA (Definition 3.4)
and TTI* is an ideal permutation.

Proor. Since the only protocol message from the receiver is P,
it suffices to show how to simulate P. In fact, we simply show that P
is indistinguishable from a polynomial of appropriate degree with
coeflicients chosen uniformly in F.

First, consider replacing “b; < KA.R;m] = KA.msg,(b;, m)” in
step 3 with “m] < KA.M (= F)”. This change is indistinguishable
to the sender by the pseudorandom-message property of KA. Then,

1180

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

since II is a permutation, we see that f; becomes uniformly dis-
tributed on F. Finally, interpolating a polynomial on a set of points
{(yi, fi)}, where each f; is uniform in F, results in a uniformly
chosen polynomial, independent of the y; values. O

LEMMA A.2. The protocol of Figure 5 is secure against a semi-
honest receiver, if KA is a secure KA (Definition 3.2) and I1* is an ideal
permutation.

Proor. First, we discuss the intuition of the proof. For each
x; € X, the sender interprets II(P(x;)) as a KA protocol message.
When x; € X \ Y, the receiver never actively chooses the value at
P(x;), and so presumably does not know the secret randomness
of the KA message IT(P(x;)). From the receiver’s perspective, this
is just like watching a KA instance between two external parties,
so the resulting key k; should look random. We can formalize this
by having the simulator program II(P(x;)) to be a KA protocol
message whose underlying randomness is explicitly unknown to
the receiver.

More formally, define Hybrid #h as follows (taking X and Y both
as inputs):

e Steps 1-2: same as honest sender.
e Step 5:

- forx; € (XNY)U{x; | i > h}: compute k; = KA.key; (a, II(P(x;))).

— for all other x; € X, choose k; «— KA.K.
o Step 6: set K = {ky,..., kn}, shuffled.

Clearly Hybrid #0 corresponds to the real interaction. Furthermore,
Hybrid #n describes a valid simulation. Even though formally Hy-
brid #n gets the honest sender’s input X as input, it does not need
to know any values in X \ Y (only how many of them exist). Hence
Hybrid #n’s behavior can be carried out given only Y, X N'Y, and
1X].

Now define the following reduction algorithm A(h, mq, mg, k*, X, Y):

o Initially, use the receiver’s honest behavior to anticipate what
P will be, playing the role of IT* honestly. If x;, ¢ X N'Y then
program IT* so that II(P(x)) = my.2

o Steps 1-2: same as honest sender.

e Step 5:

- forx; € (XNY)U{x; | i > h}:compute k; = KA.key, (a, II(P(x;))).

- if x; ¢ X N'Y, hence not handled by the previous case, set
kp = k*.
— for all other x; € X, choose k; «— KA.K.
o Step 6: set K = {k1,..., kn}, shuffled.

Observe that if k* is the key resulting from KA conversation (my, mz),
then A(h, m1, mg, k*, X, Y) generates exactly Hybrid #h. But if £* is
uniform and independent of (my, m2), then A(h, my, mg, k*, X, Y)
generates exactly Hybrid #(h + 1). These two cases are indistin-
guishable by the standard real-vs-random security property of KA.
Hence, Hybrids #h and #(h + 1) are indistinguishable. O

2Technically speaking, this step can fail if [I™! was already defined on m;, while
the simulator was predicting how the sender computes P. This case happens with
negligible probability since only a negligible fraction of IT* is ever defined, and m;
messages are pseudorandom.

Session 4C: Private Set Intersection

B OPTIMIZATIONS

For all of these optimizations, we leave it as an exercise for the
reader to verify that the security proofs hold when using the opti-
mizations.

Elligator. Our protocol requires a KA protocol whose second
message is pseudorandom, since only the second KA message is
encoded into a polynomial. Elligator-DHKA requires parties to
re-sample randomness until they “hit” the elligator subset of the
elliptic curve. Only the receiver needs to do this in our PSI protocol;
the sender does not need to use elligator encodings for their KA
message.

Alternatives to Polynomials. Our PSI protocol requires the re-
ceiver to interpolate a polynomial over n points, and the sender to
evaluate that polynomial on n points, where n is the size of their
sets (e.g., n = 1M). Each of these procedures cost O(nlog? n) field
operations.

One way to reduce the cost of this step is to encode the same infor-
mation in a different way. The purpose of P is to convey mappings
of the form y; + f; in a way that hides the y; values. Concurrent to
this work, Garimella et al. [23] introduced oblivious key-value stores
(OKVS), which are an abstraction that provides the properties that
our protocol requires. They present an efficient OKVS alternative
to polynomials that has linear encoding time, but at a small (~35%)
increase in communication size. This data structure can be used
in our protocol to replace polynomials, however: (1) Polynomial
interpolation over small (degree < 1000) polynomials is a very small
contribution to the protocol’s overall cost (even using a simpler
quadratic algorithm) compared to the cost of elliptic curve exponen-
tiations. (2) Even a 35% increase in size significantly undermines
our protocol’s contribution of minimal communication cost.

C POLYNOMIAL OVERFITTING
Recall the polynomial overfitting game PolyOverfit;’n/ (9):

sample ai,...,aq «—F
sample f, ..., Bg < F
give {aq, .. .,aq} and {f1,.. .,ﬂq} to A

A outputs a polynomial P

if 0 < deg(P) < nand P(a;) € {p1,..
A wins the game

else A loses the game

., By} for at least n’ distinct ay:

We prove an unconditional bound for winning this game, based
on a compression argument.

ProrosiTiON C.1. LetE : A — Band D : B — A be functions.
Then Praca[D(E(a)) = a] < |B|/|A].

Proor. If a ¢ range(D), then we can never have D(E(a)) = a.
Furthermore, |range(D)| < |B|. O

LemmA C.2. The probability of any (computationally unbounded)
adversary winning PonOverfit?’n (q) is at most

(¢*m)" J[F|™ "

1181

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

PRrROOF. Let A be an adversary that wins the game with proba-
bility e. Using A we can compress a list (a1, ...,aq, f1,. .., Bq) by
giving the following information (in this order):

o the output polynomial P «— A(ay,...,a1, P, ... ,ﬂq)
o abipartite graph G with left and right vertex sets [q], left-degree

1, and an edge from left vertex i to right vertex j if P(a;) = f;
o for every connected component in G (in some canonical order):

— If the component is a singleton right vertex i, give f;

— If the component contains a left vertex, let i be the lowest
numbered left vertex in the component, and give «;. Then
for every left vertex i except the lowest numbered one, give
an index v such that ¢; is the vth root of P(-) — P(«a;) in
lexicographic order.

Recovering the @; and f; inputs from this information amounts to
labeling each vertex in G with the appropriate ; or 8;, which can
be done in a straight-forward way.

Note that the graph G has 2q vertices, and if it has e edges then
it has ¢ = 2q — e connected components. The number of possible
“compressed encodings” is at most the product of the following
terms:

e |F|", for the number of polynomials P

e (g?)®, for (an upper bound on) the number of bipartite graphs
with g + q vertices and e edges.

o |F|¢, for listing one a; or B per component

e n¢, for the other information in each connected component —
there are at most e left vertices in nontrivial connected compo-
nents, and each index v names one of the n roots of adeg < n
polynomial.

Hence, the number of such encodings is bounded by:
2 e
|F|n A q2e . |]F|2q—e .n€ = |F|2q+n . (ﬂ)
IFE|
Assume that the quantity in parentheses is less than 1, since if it
is not then the probability bound in the statement of the lemma

exceeds 1 and is therefore trivial. When A wins the game, then
e > n’ and the number of encodings is bounded by:

2 \"
[F|2a+n . (ﬂ)
[
Yet the number of inputs to this compression algorithm is |F|29.
Hence the compression cannot succeed with probability better than
the ratio of inputs to outputs:
|F|2q+n—n . an . n _ (qzn)n
|| || =n

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Summary of Our Results

	2 Preliminaries
	2.1 Security Model
	2.2 PSI functionality
	2.3 Polynomial Operations
	2.4 Ideal Permutation

	3 Key Agreement Preliminaries
	3.1 Security Properties
	3.2 Diffie-Hellman Instantiation

	4 Malicious PSI from Key Agreement
	4.1 Size of Adversary's Set

	5 Experimental Results
	5.1 Implementation
	5.2 Experiments and Evaluation

	References
	A Semi-Honest Variant
	B Optimizations
	C Polynomial Overfitting

