
Compact and Malicious Private Set Intersection for Small Sets
Mike Rosulek

Oregon State University

rosulekm@eecs.oregonstate.edu

Ni Trieu

Arizona State University

nitrieu@asu.edu

ABSTRACT
We describe a protocol for two-party private set intersection (PSI)

based on Diffie-Hellman key agreement. The protocol is proven

secure against malicious parties, in the ideal permutation + random

oracle model.

For small sets (500 items or fewer), our protocol requires the

least time and communication of any known PSI protocol, even

ones that are only semi-honest secure and ones that are not based

on Diffie-Hellman. It is one of the few significant improvements to

the 20-year old classical Diffie-Hellman PSI protocol of Huberman,

Franklin, and Hogg (ACM Elec. Commerce 1999).

Our protocol is actually a generic transformation that constructs

PSI from a class of key agreement protocols. This transformation is

inspired by a technique of Cho, Dachman-Soled, and Jarecki (CT-

RSA 2016), which we streamline and optimize in several important

ways to achieve our superior efficiency.

CCS CONCEPTS
• Theory of computation → Cryptographic protocols;

KEYWORDS
private set intersection

ACM Reference Format:
Mike Rosulek and Ni Trieu. 2021. Compact and Malicious Private Set In-

tersection for Small Sets. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’21), November 15–19,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3460120.3484778

1 INTRODUCTION
In a private set intersection (PSI) protocol, Alice provides an input

set 𝑋 of items, Bob provides an input set 𝑌 , then one or both of

them learn𝑋 ∩𝑌 , without learning anything about their opponent’s
items not in the intersection. Many of the most compelling real-

world applications of secure multiparty computation are direct

applications of PSI, or close variants of PSI such as private contact

discovery [19, 40].

PSI state of the art. Recently, PSI protocols have been the focus

of significant concrete performance improvements (see [10, 11, 20,

28, 36, 42–47]). There are several protocol paradigms for PSI, but in

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484778

this work we focus on the two most practical approaches: Diffie-
Hellman andOT-extension. Other protocol paradigms (FHE, RSA,

generic MPC) are many orders of magnitude slower.

Diffie-Hellman protocols. The first and arguably simplest PSI pro-

tocol is due to Huberman, Franklin, and Hogg [29], but with roots

as far back as Meadows [39]. It is a semi-honest protocol that re-

quires exponentiations in a Diffie-Hellman group proportional to

the number of items in the sets. Because this protocol follows so

elegantly from Diffie-Hellman key agreement, there is a rather lim-

ited design space of variants for semi-honest security (one variant

is implicit in [34]). The DH-PSI protocol has been strengthened

for malicious security in several works. The most efficient to date

is due to De Cristofaro, Kim, and Tsudik [16]. Another efficient,

malicious variant is due to Jarecki & Liu [34], although it achieves a

functionality that slightly relaxes the input independence security

guarantee.

OT-extension protocols. The other category of PSI protocols is

based on OT extension. With OT extension [4, 32], parties can

generate many instances of oblivious transfer with only a small

constant number of public-key operations. By basing PSI on many

OTs, the number of public-key operations (exponentiations) in the

resulting PSI protocol scales only with the security parameter, and

not with the size of the input sets. PSI protocols in this category

include [11, 36, 42–47].

As a general rule, OT-based protocols are (significantly) faster but

require more communication than Diffie-Hellman-based protocols.

However, recent work of Pinkas et al. [42] presented an OT-based

protocol with slightly less communication (and running time) than

Diffie-Hellman-based PSI.

WhyCare About Diffie-Hellman PSI?. Since DH-based PSI is much

slower (with exponentiations linear in the number of items) than

OT-based PSI, what is the value in studying it? We suggest several

reasons:

• In some scenarios, communication cost is overwhelmingly

more important than computation cost. For a concrete example,

Ion et al. [30, 31] report on their real-world deployment of a

PSI-like functionality within Google. They chose to deploy Diffie-

Hellman PSI, and justified their choice as follows:

“Somewhat surprisingly, for the offline ‘batch computing’ scenarios
we consider, communication costs are far more important
than computation. This is especially the case for a secure protocol
involving multiple businesses, where servers cannot be co-located
(Wide area network solutions). Networks are inherently shared, and
it is much less expensive to add CPUs to a shared network than to
expand network capacity.” [from [30], bold formatting not in the

original]

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1166

https://doi.org/10.1145/3460120.3484778
https://doi.org/10.1145/3460120.3484778

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Mike Rosulek and Ni Trieu

Our improved DH-PSI protocol has the lowest communication

among DH-based and OT-based protocols.
1

• Consider the regime of PSI on small sets. For example, the

PrivateDrop [27] system enhances Apple’s AirDrop feature by

performing a PSI of one user’s entire address book (a few thou-

sand items) with another user’s own personal identifiers (e.g.,
phone numbers and email addresses; perhaps 10 items), in order

to determine whether one user appears in the other’s address

book. In another example, two parties may wish to use PSI of

their available calendar times to schedule a meeting (∼360 half-
hour slots during business hours in a single month). DH-based

PSI protocols are the cheapest for these input sizes (equal-size

sets of a few hundred items, or sets of highly unbalanced size

where the larger set is a few thousand items); our improvements

to DH-PSI give even further improvements.

OT-based PSI protocols use OT extension, whose “base OTs” each

require public-key operations (exponentiations). Concretely, us-

ing the most efficient 1-out-of-2 OT protocol to date [38], 128

base OTs cost 3 × 128 = 384 group elements of communica-

tion and 5 × 128 = 640 exponentiations. This is already more

expensive than our improved DH-PSI protocol on sets of size

200, meaning that our protocol is necessarily cheaper than
any OT-extension-based protocol for sets of this size. In fact

the breakeven point, where OT-based protocols overtake ours,

is between 500 and 1000 items on a fast network (10Gbps) and

beyond 1000 items for a slow network (50Mbps).

• For OT-based PSI protocols, the performance gap between semi-

honest andmalicious is quite narrow due to recent improvements

in malicious PSI by [43]. The case for DH-based PSI is much dif-

ferent, where the most efficient malicious PSI is 5× slower and

requires 2.5× more communication. Our new approach essen-

tially closes the performance gap between semi-honest and

malicious, for DH-based PSI.

• Finally, the semi-honest DH-PSI protocol of [29] is a truly classic

protocol that has not been improved upon in over 20 years. Our

new semi-honest protocol variant is the first to improve the com-

munication cost of DH-PSI, and the improvement is not minor

(over 40%). Even our malicious variant is more efficient than the

classic semi-honest protocol. The only comparable improvement

that we know of is due to Jarecki & Liu [34] who show how

to improve only the computational cost, by about 5-15% in our

experience.

1.1 Related Work
Since its introduction, several techniques have been proposed to

improve PSI’s performance. In this section, we give an overview

on existing efficient PSI protocols with more focus on the solutions

that have linear-communication complexity due to public-key tech-

niques. From here on, we assume that each set has 𝑛 items, where

each item has 𝜎-bit length. We let 𝜆 and 𝜅 denote the statistical and

computational security parameters, respectively.

1
Some protocols based on FHE or RSA [3, 17] have even lower communication, but

are several orders of magnitude higher in computation cost.

The earliest PSI protocols were presented in the 1980s-1990s [29,

39] and proven secure against semi-honest adversaries, in the ran-

dom oracle model. These protocols remain the basis for comparison

among Diffie-Hellman-based protocols.

Freedman et al. [21] introduced PSI protocols secure against semi-

honest andmalicious adversaries in the standardmodel. Their proto-

col was based on oblivious polynomial evaluation (OPE) which is im-

plemented using additively homomorphic encryption (AHE), such

as Paillier encryption scheme. Relying on the OPE technique, Kiss-

ner and Song [35] proposed protocols for different set operations,

such as set-intersection and set-union with quadratic computation

and communication complexity in the size of dataset. Dachman-

Soled et al. [14] present an improved construction of PSI proto-

col [35], which achieves communication of 𝑂 (𝑛𝜅2 log2 (𝑛) + 𝜅𝑛)
group elements and 𝑂 (𝑛2𝜅 log(𝑛) + 𝑛𝜅2 log2 (𝑛)) exponentiations
in the presence of malicious adversaries. They avoid generic zero-

knowledge due to the fact that Shamir’s secret sharing implies a

Reed-Solomon code. Later, Hazay and Nissim [26] extend OPE-

based PSI protocol, and combine the efficiency of perfectly hiding

commitment scheme with an OPRF evaluation protocol. The PSI

protocol in [26] incurs communication of 𝑂 (𝑛(1 + log𝜎)) group
elements, and computation of𝑂 (𝑛(1+ log log(𝑛) + log(𝜎)) modular

exponentiations. Later, other variants of the problem were also

investigated such as size-hiding set intersection [9, 10], PSI cardi-

nality [15, 18], Private Intersection-Sum [30]. Here we highlight

public-key based PSI protocols with linear-complexity.

Semi-honest PSI protocols. The current state-of-the-art for semi-

honest PSI (independent of whether the protocols are based on

DH or not) are the protocols of [11, 36, 42], with the best protocol

depending on the relative cost of computation vs communication.

Our protocol involves encoding values into polynomials, and this

technique appears in some form in several PSI protocols. One such

protocol is due to Cho, Dachman-Soled, and Jarecki [13]. Our pro-

tocol builds heavily on theirs, and we discuss it in more detail later.

Another protocol of Pinkas et al. [42] is based on OT extension but

also encodes certain values in a polynomial. Until our work, this

protocol has had the lowest communication, excluding protocols

based on expensive FHE or RSA accumulators.

For RSA-based PSI approaches, to the best of our knowledge, the

work of Cristofaro and Tsudik [17], and its improvement [3] pro-

posed PSI protocols with lowest communication in this semi-honest

setting. These protocol are based on RSA accumulators. The latter

protocol achieves communication that is only marginally more than

the insecure protocol for intersection (in which parties simply send

hashes of their inputs). However, their computational requirements

(at least 𝑛 log(𝑛) RSA exponentiations) make the protocol prohibi-

tively expensive in practice due to the cost of RSA operations. We

give further comparisons to the RSA approach later in Section 5.2.

Malicious PSI protocols. Jarecki and Liu [33] proposed the first

linear-complexity PSI protocol based on OPRF in the presence of

malicious adversaries. They constructed an OPRF protocol for the

Dodis-Yampolskiy PRF 𝑓𝑘 (𝑥) = 𝑔1/(𝑘+𝑥) , which requires𝑂 (1) mod-

ular exponentiations and has constant-round communication. How-

ever, the secure computation protocol for their OPRF functionality

is in the Common Reference String (CRS) model, where the CRS

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1167

Compact and Malicious Private Set Intersection for Small Sets CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2
7

2
8

2
9

2
3

2
4

2
5

2
6

this work

DKT10

PRTY20

PRTY19

(spot-low)

this work

CM20

KKRT16

HFH99

■ semi-honest

▲ malicious

running time (milliseconds)

c
o
m
m
u
n
i
c
a
t
i
o
n
(
K
B
)

Figure 1: Time vs communication for PSI protocols on 𝑛 = 256

items; LAN setting. Both axes are in log-scale.

includes a safe RSA composite that either must be pre-generated

by a trusted party or implies high overhead when produced in the

secure two-party computation model. Another limitation of this

protocol is that its security proof runs an exhaustive search over

the input domain. This implies that the domain of the inputs should

be polynomial in the security parameter.

De Cristofaro et al. [16] presented a PSI protocol secure in the

malicious setting, which achieves the same asymptotic bound as

the previous work [33] without restricting the input domain size,

and does not require the CRS model. Their PSI protocol incurs

computation of 11𝑛 + 3 modular exponentiations in a cyclic group.

Jarecki and Liu [34] is a concurrent work with [16]. Their proto-

col [34] requires only 5𝑛 modular exponentiations for computing

the adaptive set intersection in the presence of malicious adver-

saries, but under a One-More Gap Diffie-Hellman (OMGDH) as-

sumption, which assumes that the One-More Diffie-Hellman prob-

lem is hard even when the DDH problem is easy.

Currently, the fastest malicious 2-party PSI protocols are due to

Pinkas et al. [43], and more recently Rindal & Schoppmann [48].

They are not based on Diffie-Hellman, but on efficient OT extension

or vector OLE [8]. The protocol of [48] is efficient when the set size

is sufficiently large (e.g. 𝑛 > 2
20
), but it has significant fixed costs

that make it inefficient for smaller sets.

In Table 1, we show the theoretical communication complex-

ity of our protocol compared with the semi-honest and malicious

protocols.

1.2 Summary of Our Results
We show how to transform any KA protocol (with pseudorandom

messages and a natural non-malleability property) into a PSI proto-

col.

CDJ starting point. Our starting point is an approach of Cho,

Dachman-Soled, and Jarecki (CDJ). SupposeAlice holds items𝑥1, . . . , 𝑥𝑛
and Bob has items 𝑦1, . . . , 𝑦𝑛 . Each party will run 𝑛 instances of

a (malicious) secure string equality test protocol, one for each of

their inputs. Consider Alice’s equality-test-protocol instance corre-

sponding to item 𝑥𝑖 . How will she send the protocol messages to

Bob so that (1) if Bob also has 𝑥𝑖 , then he will associate it with this

instance (of the equality-test protocol) and not some other one, (2)

if Bob doesn’t have 𝑥𝑖 , he won’t know whether Alice was running

an instance associated with 𝑥𝑖?

The main insight of CDJ — inspired by a technique originally due

to Manulis, Pinkas, and Poettering [37] — is to embed protocol
messages in a polynomial. For each message of the equality-

test protocol, Alice will interpolate a polynomial 𝑃 such that 𝑃 (𝑥𝑖)
equals the next message for the 𝑖th equality test instance. When

Bob receives the polynomial, he can evaluate it at each of his 𝑦𝑖
inputs, respond to each one, and encode them into a polynomial

of his own. Importantly, if the equality-test protocol messages are

sufficiently random, then the polynomial 𝑃 hides the 𝑥𝑖 values of

Alice.

Our improvements. We improve this CDJ paradigm in several

dimensions. (1) Instead of embedding messages from a malicious-

secure string-equality protocol into a polynomial, we can embed

messages from a plain key agreement (KA) protocol. (2) We

show that one party can avoid embedding 𝑛 KA messages into a

polynomial, and instead send only one KA message. This reduces

the total communication significantly. (3) We simplify the protocol

to use an ideal permutation in place of an ideal cipher.

Inmore detail, the CDJmechanism has the parties run𝑛 instances

of string equality tests. Each equality test will return either true or

false, indicating which items are in the intersection. We observe

that full-fledged equality tests are overkill for CDJ. Instead, let the

parties run 𝑛 instances of plain KA, embedded into polynomials

according to their PSI inputs. Each of these KA instances terminates

with an output key. If Alice and Bob hold a common item, then they

will have a key in common. If Alice has an item that Bob doesn’t (or

vice-versa), we show that Alice computes a key that looks random

to Bob. Hence, for PSI it suffices for the parties to simply compare

their set of KA outputs in the clear.

Not only are key agreement protocols conceptually simpler and

more concretely efficient than string equality test protocols — they

are also inputless. As a result, KA protocols have the property that

their first protocol message can be reused for many instances. This

is not necessarily true for a string equality test protocol, where

the party’s input string would typically be “baked into” the first

protocol message. In terms of the PSI protocol, this means that our

protocol does not require a large polynomial of degree 𝑛 (for 𝑛

items) for the first message. Instead, Alice can send just a single

KA protocol message, to which Bob computes 𝑛 KA responses.

For a two-message KA protocol (like Diffie-Hellman), the fact

that the second message is pseudorandom ensures that the poly-

nomial hides the input set. By adding random oracle calls in a few

selected places, we provide a “hook” for the simulator to extract

malicious parties’ inputs, yielding a malicious-secure PSI protocol.

Finally, the CDJ mechanism uses an ideal cipher for technical

reasons (giving the simulator the ability to ”program” outputs of

the polynomial). We show that a simpler ideal permutation suffices.

Performance of the Diffie-Hellman Instantiation. When our new

PSI paradigm is instantiated with Diffie-Hellman KA, we obtain the

most efficient DH-based PSI protocol to date. For malicious security

we require the oracle Diffie-Hellman (ODH) assumption [2] to

hold in the cyclic group. For semi-honest security we only require

the standard CDH assumption.

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1168

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Mike Rosulek and Ni Trieu

Protocol Communication 𝑛 = 𝑛1 = 𝑛2 Hardness

2
8

2
9

2
10

2
12

2
16

2
20

Assumption

Semi Honest
DH-PSI (𝜙 + 𝜆 + log(𝑛1𝑛2))𝑛1 + 𝜙𝑛2 568𝑛 570𝑛 572𝑛 576𝑛 584𝑛 592𝑛 CDH

KKRT [36] (3 + 𝑠) (𝜆 + log(𝑛1𝑛2))𝑛1 + 1.2ℓ𝑛2 + |baseOT | 1349𝑛 1388𝑛 1418𝑛 1094𝑛 1032𝑛 1018𝑛

CDH

SpOT-low [42] 1.02(𝜆 + log
2
(𝑛2) + 2)𝑛1 + ℓ𝑛2 + |baseOT | 483𝑛 493𝑛 495𝑛 499𝑛 515𝑛 532𝑛

SpOT-fast [42] 2(𝜆 + log(𝑛1𝑛2))𝑛1 + ℓ (1 + 1/𝜆)𝑛2 + |baseOT | 547𝑛 559𝑛 563𝑛 571𝑛 595𝑛 619𝑛

PaXoS [43] (𝜆 + log
2
(𝑛1𝑛2))𝑛1 + ℓ (2.4𝑛2 + 𝜆 + 𝜒) + |baseOT | 1074𝑛 1095𝑛 1097𝑛 1101𝑛 1128𝑛 1155𝑛

CM [11] (𝜆 + log(𝑛1𝑛2))𝑛1 + 4.8𝜅𝑛2 + |baseOT | 670𝑛 672𝑛 674𝑛 678𝑛 686𝑛 694𝑛

VOLE-PSI (PaXoS)[48] (𝜆 + log(𝑛1𝑛2))𝑛1 + 217𝜅𝑛0.05
2
+ 2.4𝜅𝑛2 + |baseOT | 86838𝑛 45128𝑛 23538𝑛 6580𝑛 825𝑛 419𝑛

LPN+CDH

VOLE-PSI (interpolation)[48] (𝜆 + log(𝑛1𝑛2))𝑛1 + 217𝜅𝑛0.05
2
+ 𝜅𝑛2 + |baseOT | 86659𝑛 44948𝑛 23358𝑛 6400𝑛 646𝑛 240n

Ours (𝜆 + log(𝑛1𝑛2))𝑛1 + 𝜙𝑛2 + 𝜙 312n 314n 316n 320n 328n 336𝑛 CDH

Malicious
DKT [16] 2𝜅𝑛1 + 6𝜙𝑛2 + 2𝜙 1792𝑛 1792𝑛 1792𝑛 1792𝑛 1792𝑛 1792𝑛 CDH

JL [34] 2𝜅𝑛1 + 3𝜙𝑛2 1024𝑛 1024𝑛 1024𝑛 1024𝑛 1024𝑛 1024𝑛 OMGDH

Hazay [25] 𝜙 (𝑛1 + 𝑛2) log(𝑛1 + 𝑛2) 4608𝑛 5120𝑛 5632𝑛 6656𝑛 8704𝑛 10752𝑛 CDH

PaXoS [43] 2𝜅𝑛1 + ℓ (2.4𝑛2 + 2𝜆 + 𝜒) + 𝜆 (2.4𝑛2 + 2ℓ) + |baseOT | 1370𝑛 1389𝑛 1389𝑛 1389𝑛 1408𝑛 1427𝑛 CDH

VOLE-PSI (PaXoS)[48] 2𝜅𝑛1 + 217𝜅𝑛0.05
2
+ 2.4𝜅𝑛2 + |baseOT | 87038𝑛 45326𝑛 23734𝑛 6772𝑛 1009𝑛 595𝑛

LPN+CDH

VOLE-PSI (interpolation)[48] 2𝜅𝑛1 + 217𝜅𝑛0.05
2
+ 𝜅𝑛2 + |baseOT | 86859𝑛 45146𝑛 23554𝑛 6592𝑛 830𝑛 416n

Ours 2𝜅𝑛1 + 𝜙𝑛2 + 𝜙 512n 512n 512n 512n 512n 512𝑛 ODH

Table 1: Theoretical communication costs of PSI protocols (in bits), calculated using computational security 𝜅 = 128 and
statistical security 𝜆 = 40. The cost of base OTs are independent of input size and equal to 5𝜅, which are ignored in the columns
𝑛 = 𝑛1 = 𝑛2. 𝑛1 and 𝑛2 are the input sizes of the sender and receiver respectively. 𝜙 is the size of elliptic curve group elements
(256 is used here). ℓ is width of OT extension matrix (depends on 𝑛1 and protocol). 𝜒 is the upper bound on the number of cycles
in a cuckoo graph of PaXoS.

Our protocol is both faster and uses less communication
than any other protocol, when the set sizes are small (less than

1000 items) — even considering semi-honest protocols and protocols

based on OT extension, which are faster on large sets. For 𝑛 = 256

items, our malicious protocol is 18-30% faster (depending on the

network speed) and uses 10% less communication than the next

best (semi-honest) protocol. Our semi-honest variant uses 45% less

communication than the next best. See Figure 1 for a complete

comparison.

To the best of our knowledge, ours is the first significant im-
provement in communication cost to the 20-year old classic
DH-PSI protocol, due to [29].We reduce the communication cost
while simultaneously promoting it from semi-honest to malicious secu-
rity. The classic semi-honest DH-PSI protocol of [29] requires total

communication 2𝑛 group elements plus 𝑛 hashes; the total com-

putation is 4𝑛 variable-base exponentiations. In our protocol, the

total communication is only 𝑛+1 group elements plus 𝑛 hashes; the

total computation is 3𝑛 fixed-base exponentiations, 2𝑛 variable-base

exponentiations, and 2 polynomial interpolation/multi-evaluations

of a degree-𝑛 polynomial. The leading malicious DH-based PSI

protocol is due to De Cristofaro, Kim, and Tsudik [16]; its total

communication is 6𝑛 group elements plus 𝑛 hashes; the total com-

putation is 2𝑛 fixed-based exponentiations and 4𝑛 variable-base

exponentiations. Our malicious protocol is over 30× faster and uses
80% less communication.

2 PRELIMINARIES
2.1 Security Model
Secure two-party computation allows mutually distrusting parties

to jointly perform a computation on their private inputs without

revealing any additional information except for the result itself.

There are two adversarial models, which are usually considered.

In the semi-honest model, the adversary is assumed to follow the

Parameters: Size of parties’ sets: 𝑛 for honest parties and 𝑛′ for
corrupt parties.

Functionality:

• Wait for input 𝑌 ⊆ {0, 1}∗ from receiver. Abort if |𝑌 | > 𝑛
and the receiver is honest, or if |𝑌 | > 𝑛′ and the receiver is
corrupt.

• Wait for input𝑋 ⊆ {0, 1}∗ from sender and abort if |𝑋 | > 𝑛.
• Give output 𝑋 ∩ 𝑌 to the receiver.

Figure 2: PSI ideal functionality.

protocol, but may try to learn information from the protocol tran-

script. In the malicious model, the adversary follows an arbitrary

polynomial-time strategy, and feasibility holds in the presence of

both types of attacks.

2.2 PSI functionality
In Figure 2, we formally describe the PSI functionality, which allows

2 parties to compute the intersection of their datasets without

revealing any additional information.

Note that the functionality allows a corrupt receiver to havemore

input items (𝑛′) than is “advertised” (𝑛). This property reflects the

fact that our protocol can’t tightly enforce the number of items held

by the receiver. This is a common feature of PSI protocols, shared

in particular by all the fastest malicious-secure PSI protocols [43,

46, 47]. We discuss specific relationship between 𝑛′ and 𝑛 achieved

by our protocol in Section 4.1.

2.3 Polynomial Operations
A common implementation of polynomial interpolation and multi-

point evaluation is based on Lagrange algorithm, which costs𝑂 (𝑛2)
field operations. This implementation typically uses for low-degree

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1169

Compact and Malicious Private Set Intersection for Small Sets CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

polynomials. However, when 𝑛 is very large (e.g. 𝑛 = 2
20
) this algo-

rithm is completely impractical. In this work, we use the faster algo-

rithms [41]which achieves computational complexity of𝑂 (𝑛 log2 𝑛)
arithmetic operations. At the high level idea, the algorithms for

both problems follow the divide-and-conquer approach. Particu-

larly, the problem is reduced to two half-size problems after each

iteration. Each combination of individual solutions from two half-

size problems to the full-size solution costs 𝑂 (𝑛 log𝑛). Therefore,
the total complexity of polynomial interpolation and multi-point

evaluation is 𝑂 (𝑛 log2 𝑛).
Given 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊆ F and 𝑌 = {𝑦1, . . . , 𝑦𝑛} ⊆ F, we

use 𝑃 = interpolF ({(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}) to refer to polynomial

interpolation which finds the unique (𝑛 − 1)-degree polynomial 𝑃

that satisfies 𝑃 (𝑥𝑖) = 𝑦𝑖 for all 𝑖 ∈ [𝑛].

2.4 Ideal Permutation
In the ideal permutation model, all parties have oracle access to a

random permutation Π on {0, 1}𝑛 and its inverse Π−1. We write

Π± to refer to the pair of these oracles. In the proof of security, the

simulator answers the interface of Π±, meaning that it can observe

all queries and program the responses. The ideal permutation model

is similar to, but weaker than, the ideal cipher model. An ideal cipher
is a family of ideal permutations, one for each key.

The ideal permutation assumption has recently become popular

in practical MPC implementations, because it allows one to base

cryptographic operations on a fixed-key block cipher — i.e., to use

hardware-accelerated AES instructions without computing the AES

key schedule. Ideal permutations have been used to realize efficient

hashing functions for garbled circuits and OT extension [5, 24]. Our

work requires an ideal permutation that supports key-agreement

messages as inputs, therefore our implementation uses Rijndael-

256 rather than AES (whose block size is only 128). We note that

other options are available to instantiate an ideal permutation.

For example, symmetric-key constructions that use the sponge

methodology [7] all use an efficient underlying ideal permutation.

3 KEY AGREEMENT PRELIMINARIES
We construct PSI from 2-round key-agreement protocols. A 2-
round key agreement protocol KA has several parameters:

• KA.R is the space of random coins for the two parties.

• KA.M is the space of possible messages for Party 2.

• KA.K is the space of possible output keys.

A key agreement protocol consists of algorithms:KA.msg
1
,KA.msg

2
,

KA.key
1
, KA.key

2
, which correspond to an interactive key agree-

ment protocol as shown in Figure 3.

In some 2-round key agreement protocols, the second message

𝑚2 does not depend on the first message 𝑚1, and we can write

𝑚2 = KA.msg
2
(𝑏) instead of𝑚2 = KA.msg

2
(𝑏,𝑚1). In these cases,

𝑚1 and𝑚2 can be sent simultaneously (or in either order), and we

say that the key agreement protocol is one-round.

3.1 Security Properties
Different instantiations of our PSI protocol will require the fol-

lowing security properties of a key agreement protocol. Note that

Definition 3.4 and strongly uniform KA (SU-KA) [22] are similar,

but our definition is specialized to 1-round KA.

Party 1 Party 2

𝑎 ← KA.R

𝑚1 = KA.msg
1
(𝑎) 𝑚1

𝑏 ← KA.R
𝑚2 = KA.msg

2
(𝑏,𝑚1)

𝑚2

output KA.key
1
(𝑎,𝑚2) output KA.key

2
(𝑏,𝑚1)

Figure 3: Generic 2-round key agreement protocol

Definition 3.1. A KA scheme is correct if, when executed hon-

estly as shown in Figure 3, the two parties give identical output. In

other words, for all 𝑎, 𝑏 ∈ KA.R:
KA.key

1
(𝑎,KA.msg

2
(𝑏,KA.msg

1
(𝑎))) = KA.key

2
(𝑏,KA.msg

1
(𝑎))

Definition 3.2. AKA scheme is secure against an eavesdropper
if the following distributions are indistinguishable:

𝑎, 𝑏 ← KA.R
𝑚1 = KA.msg

1
(𝑎)

𝑚2 = KA.msg
2
(𝑏,𝑚1)

𝑘 = KA.key
2
(𝑏,𝑚1)

return (𝑚1,𝑚2, 𝑘)

𝑎, 𝑏 ← KA.R
𝑚1 = KA.msg

1
(𝑎)

𝑚2 = KA.msg
2
(𝑏,𝑚1)

𝑘 ← KA.K
return (𝑚1,𝑚2, 𝑘)

Definition 3.3. A KA scheme is non-malleable if it is secure

(in the sense of Definition 3.2) against an eavesdropper that has

oracle access to KA.key
1
(𝑎, ·), provided the eavesdropper never

queries the oracle on𝑚2. Formally, the following distributions are

indistinguishable, for every PPT A that never queries its oracle on

input𝑚2:

𝑎, 𝑏 ← KA.R
𝑚1 = KA.msg

1
(𝑎)

𝑚2 = KA.msg
2
(𝑏,𝑚1)

𝑘 = KA.key
2
(𝑏,𝑚1)

return AKA.key
1
(𝑎, ·) (𝑚1,𝑚2, 𝑘)

𝑎, 𝑏 ← KA.R
𝑚1 = KA.msg

1
(𝑎)

𝑚2 = KA.msg
2
(𝑏,𝑚1)

𝑘 ← KA.K
return AKA.key

1
(𝑎, ·) (𝑚1,𝑚2, 𝑘)

Definition 3.4. A KA scheme has pseudorandom second mes-
sages if 𝑚2 is indistinguishable from random, even to someone

who chooses𝑚1 adversarially. Formally, the following distributions

are indistinguishable for all PPT A:

(𝑣𝑖𝑒𝑤,𝑚1) ← A
𝑏 ← KA.R
𝑚2 = KA.msg

2
(𝑏,𝑚1)

return (𝑣𝑖𝑒𝑤,𝑚2)

(𝑣𝑖𝑒𝑤,𝑚1) ← A

𝑚2 ← KA.M
return (𝑣𝑖𝑒𝑤,𝑚2)

3.2 Diffie-Hellman Instantiation
The classic Diffie-Hellman key agreement protocol is a one-round

KA protocol (meaning that the two messages can be sent simulta-

neously). It is parameterized by a cyclic group G = ⟨𝑔⟩ of order 𝑞,
and defined as:

• KA.R = Z𝑞 (space of private randomness)

• KA.M = G (space of second party’s protocol messages)

• KA.msg
1
(𝑎) = 𝑔𝑎

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1170

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Mike Rosulek and Ni Trieu

• KA.msg
2
(𝑏) = 𝑔𝑏

In this work we consider the “hashed” variant of DHwhich is secure

under the computational Diffie-Hellman (CDH) assumption in the

random oracle model. Let 𝐻 : G → {0, 1}ℓ be a random oracle,

then:

• KA.K = {0, 1}ℓ (space of output keys)
• KA.key

1
(𝑎,𝑔𝑏) = 𝐻 ((𝑔𝑏)𝑎)

• KA.key
2
(𝑏,𝑔𝑎) = 𝐻 ((𝑔𝑎)𝑏)

Elligator DHKA. Modern applications of DHKA use elliptic curves

for the underlying cyclic group, due to their compact size (e.g.,
group elements with representations roughly 2𝜅 bits, for 𝜅 bits of

security). However, encodings of elliptic curve elements are rather

conspicuous, and can easily be distinguished from uniformly dis-

tributed strings.Our PSI protocols require the KA protocol messages

(specifically,𝑚2) to be pseudorandom as strings.

In [6], Bernstein et al. explicitly consider the question of encoding
elliptic curve elements so that the resulting Diffie-Hellman protocol

has pseudorandom messages (viewed as strings). Formally, they

define an encoding mechanism called elligator with the following

properties:

• There are efficient encoding/decoding functions dec, enc which
are inverses, where im(enc) ⊆ {0, 1}𝑡 is a set of strings and

im(dec) ⊆ E is a subset of elliptic curve points.

• The size of im(enc) is very close to 2
𝑡
, so that the uniform dis-

tribution over encodings is indistinguishable from the uniform

distribution over {0, 1}𝑡
• The size of im(dec) is a constant fraction (typically close to 1/2)

of the size of the elliptic curve.

• It is possible to efficiently test for membership in im(enc) (and
hence also in im(dec)).

After defining such an elligator encoding method for Edwards

curves, Bernstein et al. propose to modify Diffie-Hellman key agree-

ment as follows:

• KA.R = {𝑟 ∈ Z𝑞 | 𝑔𝑟 ∈ im(dec)}.
• KA.M = {0, 1}𝑡
• KA.msg

1
(𝑎) = enc(𝑔𝑎)

• KA.msg
2
(𝑏) = enc(𝑔𝑏)

• KA.key
1
(𝑎, 𝑠𝑏) = 𝐻 (dec(𝑠𝑏)𝑎)

• KA.key
2
(𝑏, 𝑠𝑎) = 𝐻 (dec(𝑠𝑎)𝑏)

In other words, the parties condition their randomness to always

sample a point in the “elligator subset” im(dec) of the curve. In prac-
tice, each party would repeatedly sample an exponent 𝑟 ← Z𝑞 and

retry until finding one in the elligator subset. Since |im(dec) |/|E | is
constant, only a constant number of trials is needed before success-

fully hitting im(dec). Furthermore, the concrete security of DHKA

is degraded by only a small constant factor.

Due to the desired properties of the elligator encoding, the pro-

tocol messages are uniform in im(enc) and hence pseudorandom

in {0, 1}𝑡 .

Security properties. The security of hashed DHKA against an eaves-

dropper (Definition 3.2) is standard and follows from the CDH

assumption.

The “pseudorandom second messages” property (Definition 3.4)

of the elligator-DHKA protocol follows from the properties of el-

ligator discussed above. Note that in DHKA,𝑚2 doesn’t depend

on𝑚1, so the adversary’s ability to choose𝑚1 in Definition 3.4 is

irrelevant.

Finally, the “non-malleable” property (Definition 3.3) of hashed

DHKA is equivalent to the oracle DH (ODH) assumption proposed

by Abdalla, Bellare, and Rogaway [2]. Roughly speaking, the ODH

assumption is that 𝑔𝑎, 𝑔𝑏 , 𝐻 (𝑔𝑎𝑏) is indistinguishable from random

in the presence of an oracle for 𝑋 ↦→ 𝐻 (𝑋𝑎), as long as the distin-
guisher doesn’t query that oracle on 𝑔𝑏 . Here𝐻 is the hash function

/ random oracle used in hashed DHKA. In [2] it is shown that the

ODH assumption holds in the generic group model when 𝐻 is a

random oracle.

4 MALICIOUS PSI FROM KEY AGREEMENT
In this section we present our main result, a malicious 2-party PSI

protocol. Our protocol requires the following building blocks:

• A 2-round KA protocol KA. Recall that KA.M is the space of

possible protocol messages.We requireKA.M = F for some finite

field F, and that the KA protocol has pseudorandom messages in

this field. We also require the KA protocol to be non-malleable

in the sense of Definition 3.3.

• Parties have oracle access to an ideal permutation Π,Π−1 defined
over the same field F. We write Π± to refer to the two functions

Π,Π−1 collectively. Parties also have access to random oracles

𝐻1, 𝐻2.

As a concrete example, we can choose hashed DHKA with elligator

encodings (see Section 3.2), whose protocol messages are pseudo-

random in {0, 1}ℓ , and then set F be to the field 𝐺𝐹 (2ℓ). Under the
ODH assumption, hashed DHKA is also non-malleable. We give

more details about instantiating our protocol with Diffie-Hellman

in Section 5.

Protocol Overview. Following the overview given in Section 1, the

sender sends the first KA message. Intuitively, the receiver prepares

a polynomial 𝑃 such that 𝑃 (𝑦𝑖) is a KA response that it chooses,

for each 𝑦𝑖 in its set. If KA responses are pseudorandom then the

polynomial 𝑃 hides the identities of the 𝑦𝑖 -values.

However, for technical reasons we make the receiver prepare a

polynomial such that 𝑃 (𝐻1 (𝑦𝑖)) = Π−1 (𝑚𝑖) where 𝐻1 is a random

oracle, Π is an ideal permutation, and𝑚𝑖 is the KA response. The

presence of random oracle 𝐻1 helps the simulator extract from a

corrupt receiver (from observing its 𝐻1-queries). The presence of

the ideal permutation helps the simulator (against both corrupt

parties), by programming Π to output KA messages chosen by the

simulator.

Finally, the sender can interpret Π(𝑃 (𝐻1 (𝑥𝑖))) as a KA response,

for each 𝑥𝑖 in its set, and compute the corresponding KA output

𝑘𝑖 . For each 𝑥𝑖 , the sender sends 𝐻2 (𝑥𝑖 , 𝑘𝑖) to the receiver. The

presence of this random oracle again helps the simulator extract

from a corrupt sender.

The protocol is described formally in Figure 4. interpolF denotes
polynomial interpolation over field F, as discussed in Section 2.3.

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1171

Compact and Malicious Private Set Intersection for Small Sets CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

Parameters: finite field F
KA protocol KA with KA.M = F and |KA.K| ≥ 2

𝜅

ideal permutation Π,Π−1 : F→ F
random oracles 𝐻1 : {0, 1}∗ → F,

𝐻2 : {0, 1}∗ × F→ {0, 1}2𝜅

Sender Receiver

𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊆ {0, 1}∗ 𝑌 = {𝑦1, . . . , 𝑦𝑛} ⊆ {0, 1}∗

1. 𝑎 ← KA.R
2.𝑚 = KA.msg

1
(𝑎)

𝑚

3. for 𝑖 ∈ [𝑛]:
𝑏𝑖 ← KA.R
𝑚′
𝑖
= KA.msg

2
(𝑏𝑖 ,𝑚)

𝑓𝑖 = Π−1 (𝑚′
𝑖
)

4. 𝑃 = interpolF
(
{(𝐻1 (𝑦𝑖), 𝑓𝑖) | 𝑦𝑖 ∈ 𝑌 }

)
𝑃

(abort if deg(𝑃) < 1)

5. for 𝑖 ∈ [𝑛]:
𝑘𝑖 = KA.key

1
(𝑎,Π(𝑃 (𝐻1 (𝑥𝑖))))

𝑘 ′
𝑖
= 𝐻2 (𝑥𝑖 , 𝑘𝑖)

6. 𝐾 = {𝑘 ′
1
, . . . , 𝑘 ′𝑛} (shuffled)

𝐾

7. output

{
𝑦𝑖

��� 𝐻2

(
𝑦𝑖 ,KA.key2 (𝑏𝑖 ,𝑚)

)
∈ 𝐾

}
Figure 4: Our malicious PSI protocol.

Lemma 4.1. The protocol of Figure 4 is UC-secure against a mali-
cious sender, if KA has pseudorandom messages (Definition 3.4), Π±

is an ideal permutation, and 𝐻2 is a random oracle.

Before giving the proof, we first sketch the main idea of the

simulator. When the simulator sees the set 𝐾 provided by the ad-

versary, it needs to extract a set of items that “explains” the effect

of 𝐾 on the honest party. The elements of 𝐾 are supposed to have

the form 𝐻2 (𝑥𝑖 , 𝑘𝑖), where 𝑘𝑖 is the “correct” KA output for item

𝑥𝑖 . The simulator observes all queries to 𝐻2, so it can see which

𝐻2-outputs are placed into 𝐾 — but how can the simulator check

that some 𝑘𝑖 is the “correct” KA output corresponding to item 𝑥𝑖?

To do this, we let the simulator program Π so that every output of

Π is a KA message for which it knows the randomness. Now for

any 𝑥 , the simulator can compute the corresponding KA output,

using the KA randomness it associates with Π(𝑃 (𝐻1 (𝑥))).

Proof. We first describe the behavior of the simulator.

• The simulator honestly plays the role of random oracle𝐻2. For ev-

ery query 𝐻2 (𝑥, 𝑘) made by the adversary, the simulator records

the input-output tuple (𝑥, 𝑘, 𝐻2 (𝑥, 𝑘)) in a set O2.
• For every query of the form Π(𝑓) made after the message𝑚 is

sent, the simulator chooses a random 𝑏 𝑓 ← KA.R and simulates

KA.msg
2
(𝑏 𝑓 ,𝑚) as the output of Π(𝑓).

• In step 4, the simulator sends a uniform polynomial 𝑃 .

• Upon receiving 𝐾 in step 6, the simulator defines the set

𝑋̃ = {𝑥 | ∃𝑘 ′ :
(
𝑥,KA.key

2
(𝑏𝑃 (𝐻1 (𝑥)) ,𝑚), 𝑘

′
)
∈ O2 and 𝑘 ′ ∈ 𝐾}

and sends 𝑋̃ to the ideal PSI functionality (which causes the

honest receiver to obtain output 𝑋̃ ∩ 𝑌).
We prove that this simulation is indistinguishable from the real

interation via the following sequence of hybrids.

Hybrid 0: The real interaction, with the receiver running honestly
with input 𝑌 and giving its output to the environment according to

the protocol specification.

Hybrid 1: Same as the previous hybrid, except for how Π± is

simulated. A query to Π (resp. Π−1) is fresh if it was never made

before, and its value is not determined by previous queries to Π−1

(resp. Π) and the fact that Π/Π−1 are inverses. In this hybrid, all

fresh queries (by either the adversary or honest party) to Π and Π−1

are answered with a uniformly random response. The interaction

aborts if this leads to Π or Π−1 repeating an output. This change is

indistinguishable from the standard permutation switching lemma.

Hybrid 2: Same as the previous hybrid, except for how 𝑃 is gen-

erated. In step 3, 𝑃 is generated by interpolating through points

of the form Π−1 (KA.msg
2
(𝑏𝑖 ,𝑚)). In this hybrid we abort if these

queries to Π−1 are not fresh — i.e., if KA.msg
2
(𝑏𝑖 ,𝑚) previously

occurred as either an adversary’s query to Π−1 or as an output of

an adversary’s query to Π.
If the KA.msg

2
(𝑏𝑖 ,𝑚) terms were independently and uniformly

random, then this abort would happen with probability bounded by

𝑛𝑞/|F|, when the adversary makes 𝑞 oracle queries. By the pseudo-

random property of the KA scheme, each KA.msg
2
(𝑏𝑖 ,𝑚) is indistin-

guishable from random, so the abort probability is negligibly close

to 𝑛𝑞/|F|. Either way, the probability is negligible, so the hybrids

are indistinguishable.

Now conditioned on not aborting, we have that eachΠ−1 (KA.msg
2
(· · ·))

is a fresh and uniform value. Hence, 𝑃 is distributed as a uniform

polynomial, independent of the 𝑦𝑖 values. Then this interaction is

identical to one in which we first choose a uniform polynomial 𝑃

and then later program Π(𝑃 (𝐻1 (𝑦𝑖))) = KA.msg
2
(𝑏𝑖 ,𝑚) for each

𝑦𝑖 ∈ 𝑌 (aborting if Π is already programmed on this point).

Hybrid 3: Same as the previous hybrid, except for how Π is simu-

lated. For every fresh query Π(𝑓) made after the adversary sends𝑚,

sample 𝑏 𝑓 ← KA.R and respond with KA.msg
2
(𝑏 𝑓 ,𝑚) (instead of

responding with a uniform result). This change is indistinguishable

by the pseudorandomness property of KA.

Note that we have already been simulating Π(𝑃 (𝐻1 (𝑦𝑖))) in this

way for 𝑦𝑖 ∈ 𝑌 , but with different variable names (randomness 𝑏𝑖
rather than 𝑏 𝑓 for 𝑓 = 𝑃 (𝐻1 (𝑦𝑖))). If we rename randomness 𝑏𝑖 (for

𝑦𝑖 ∈ 𝑌) to 𝑏𝑃 (𝐻1 (𝑦𝑖)) then we program Π in the same way for all

inputs, with no special case for the elements of 𝑌 . In doing so, the

honest party’s output is computed via:

{𝑦𝑖 ∈ 𝑌 | 𝐻2

(
𝑦𝑖 ,KA.key2 (𝑏𝑃 (𝐻1 (𝑦𝑖)) ,𝑚)

)
∈ 𝐾}

Hybrid 4: The honest receiver queries 𝐻2 to determine its final

output (in the expression above). In this hybrid we abort if one of

those 𝐻2 queries is fresh (meaning that the adversary did not make

that query) and yet the result is in 𝐾 . The probability of a fresh

query’s output being an element of 𝐾 is |𝐾 |/|F| = 𝑛/|F|, which is

negligible. Therefore this change is indistinguishable.

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1172

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Mike Rosulek and Ni Trieu

Suppose the final hybrid maintains the list O2 as described earlier
— i.e., (𝑥, 𝑘, 𝑘 ′) ∈ O2 means that the adversary queried𝐻2 (𝑥, 𝑘) and
got a result 𝑘 ′. Since the receiver only “recognizes” values that the

adversary has already queried to 𝐻2, this final hybrid is identical

to one in which the receiver’s output is computed as:

{𝑦𝑖 ∈ 𝑌 | ∃𝑘 ′ :
(
𝑦𝑖 ,KA.key2 (𝑏𝑃 (𝐻1 (𝑦𝑖)) ,𝑚), 𝑘

′
)
∈ O2 and 𝑘 ′ ∈ 𝐾}

But this is logically equivalent to:

𝑌 ∩ {𝑥 | ∃𝑘 ′ :
(
𝑥,KA.key

2
(𝑏𝑃 (𝐻1 (𝑥)) ,𝑚), 𝑘

′
)
∈ O2 and 𝑘 ′ ∈ 𝐾}︸ ︷︷ ︸

𝑋̃

Here 𝑋̃ is the set that the simulator can define. Hence this hybrid

is identical to the ideal interaction involving the simulator defined

earlier. □

Lemma 4.2. The protocol of Figure 4 is UC-secure against a ma-
licious receiver, if KA is non-malleable (Definition 3.3), |KA.K| ≥ 2

𝜅 ,
𝐻1, 𝐻2 are random oracles, and Π± is an ideal permutation.

Before giving the proof, we first sketch the main idea of the simu-

lator. The simulator’s job, when the adversary gives the polynomial

𝑃 , is to extract a set 𝑌̃ that it can send to the ideal functionality.

Then, after learning𝑋 ∩𝑌̃ , it simulates the message𝐾 appropriately.

Intuitively, we want to make a distinction between KA instances

where the receiver participates versus KA instances where the re-

ceiver acts as an eavesdropper. The former instances will correspond

to the items of 𝑌̃ and the latter instances will contribute to KA

outputs (and elements of 𝐾) that look random.

The honest sender will interpret Π(𝑃 (𝐻1 (𝑥))) as a KA message,

for every 𝑥 ∈ 𝑋 . The receiver only “controls” this value if: (1) it made

a query to𝐻1 (𝑥); (2) it made a backwards query to Π−1 that resulted
in the value 𝑃 (𝐻1 (𝑥)). If on the other hand the adversary chose

𝑃 (𝐻1 (𝑥)) first and only then made a forward query at Π(𝑃 (𝐻1 (𝑥))),
then intuitively it will have no control over the resulting value.

The simulator observes all queries to Π± and to 𝐻1, and can

therefore use these criteria to identify which KA instances will give

outputs that the receiver can recognize. All other KA outputs can

safely be replaced with random.

We draw the reader’s attention to two subtleties in the proof:

Suppose the adversary queries Π to obtain some KA message𝑚∗.
Since (intuitively) the adversary has no control over𝑚∗, we would
like to argue that the corresponding KA.key(𝑚∗) (slightly abusing

notation here) looks random. But suppose the adversary programs

𝑃 so that Π(𝑃 (𝐻1 (𝑦))) = 𝑚∗ and Π(𝑃 (𝐻1 (𝑦′))) = 𝑚∗ + 1. If the
sender has both inputs 𝑦 and 𝑦′, then she will compute and send

KA.key(𝑚∗) and KA.key(𝑚∗ + 1). Does the former KA output look

random even in the presence of the latter? It does if the KA protocol

is non-malleable in the sense of Definition 3.3.

Another subtlety is that the receiver may choose its polynomial 𝑃

to have “collisions” in the sense that 𝑃 (𝐻1 (𝑦)) = 𝑃 (𝐻1 (𝑦′)). This is
not a problem or an attack per se, but it means that the hybrids in the

proof must be structured carefully. The goal of the proof is to justify

that the sender’smessages of the form𝐻2 (𝑥𝑖 ,KA.key(Π(𝑃 (𝐻1 (𝑥𝑖))))
can be replaced with random values, for all 𝑥𝑖 not in the intersection.

But the sequence of hybrids does not replace these real values with

random one at a time. Instead, we replace Π(𝑃 (𝐻1 (·))) outputs, one

at a time, with KA messages chosen by the simulator. Then we can

argue that KA.key(Π(𝑃 (𝐻1 (𝑥𝑖)))) is indistinguishable from random

for possibly many values of 𝑥𝑖 that give the same 𝑃 (𝐻1 (𝑥𝑖)).

Proof. We first formally describe the behavior of the simulator:

• The simulator honestly plays the role of random oracle 𝐻1 and

ideal permutation Π±. For every query𝐻1 (𝑦) made by the adver-

sary, record 𝑦 in a set O1. For every query Π−1 (𝑚) = 𝑓 , where

there was no previous query of the form Π(𝑓) =𝑚, record 𝑓

in a set OΠ .
• The simulator runs steps 1–2 honestly.

• Upon receiving 𝑃 in step 4, the simulator defines the set

𝑌̃ = {𝑦 | 𝑦 ∈ O1 and 𝑃 (𝐻1 (𝑦)) ∈ OΠ}

and sends 𝑌̃ to the ideal PSI functionality.

• Upon receiving output 𝑍 = 𝑋 ∩ 𝑌̃ from the functionality, the

simulator computes𝑘𝑧 = KA.key
1
(𝑎,Π(𝑃 (𝐻1 (𝑧))) for each 𝑧 ∈ 𝑍 .

Define 𝐾 = {𝐻2 (𝑧, 𝑘𝑧) | 𝑧 ∈ 𝑍 } and then keep adding uniformly

random values to 𝐾 until |𝐾 | = |𝑋 |. The simulator finally sends

this 𝐾 to the adversary.

We prove that this simulation is indistinguishable from the real

interation via the following sequence of hybrids.

Hybrid 0: The real interaction, with the sender running honestly

on input 𝑋 . In particular, the protocol message 𝐾 is generated as

follows:

𝐾 =

{
𝐻2

(
𝑥,KA.key

1

(
𝑎,Π(𝑃 (𝐻1 (𝑥))

))
| 𝑥 ∈ 𝑋

}
The lists O1 and OΠ are also maintained, as defined above.

Hybrid 1: Same as the previous hybrid, except the interaction

aborts in step 5 if there is an 𝑥 ∈ 𝑋 where 𝑥 ∉ O1 and yet

𝑃 (𝐻1 (𝑥)) ∈ OΠ . In other words, the adversary nevery queried

𝐻1 (𝑥) and yet 𝑃 (𝐻1 (𝑥)) is a value that it previously received as

output from Π−1.
It suffices to show that the probability of such an abort is negligi-

ble. For any 𝑓 ∈ OΠ , the polynomial equation 𝑃 (·) = 𝑓 has at most

𝑛 solutions, since 𝑃 is a polynomial of degree 𝑛, and not the zero

polynomial (that would mean 𝑃 is a constant polynomial and the

sender would have already aborted in step 4). Since 𝐻1 (𝑥) is a fresh
query never made before (until the simulated sender makes it), it is

uniformly distributed in F and therefore has at most 𝑛/|F| proba-
bility of satisfying 𝑃 (𝐻1 (𝑥)) = 𝑓 . Suppose the adversary makes a

total of 𝑞 queries to its oracles. By a union bound over all 𝑛 choices

of 𝑥 ∈ 𝑋 and 𝑞 choices of 𝑓 ∈ OΠ , the total probability of this event
is 𝑛2𝑞/|F|, which is negligible.

Hybrid (2, 𝑖), for 𝑖 ∈ [𝑞]: Same as the previous hybrid, except for

the following changes. For the first 𝑖 queries of the form Π(𝑓) =𝑚,

where there was no previous query to Π−1 (𝑚), add 𝑓 to the set S𝑖 .
Note that S𝑖 and OΠ are necessarily disjoint (based on whether Π
or Π−1 was queried first). Intuitively, S𝑖 are the first 𝑖 Π-outputs
(interpreted in the protocol as KA protocol messages) that the

adversary has no control over. Then compute 𝐾 instead as:

𝐾 =

{
𝐻2

(
𝑥,KA.key

1

(
𝑎,Π(𝑃 (𝐻1 (𝑥))

))
| 𝑥 ∈ 𝑋 and 𝑃 (𝐻1 (𝑥)) ∉ S𝑖

}
and thereafter add uniformly random elements to 𝐾 until |𝐾 | = 𝑛.
Note that there may be many values of 𝑥 giving the same 𝑃 (𝐻1 (𝑥))

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1173

Compact and Malicious Private Set Intersection for Small Sets CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

output, so theremay bemany values of𝑥 treated differently between

Hybrids (2, 𝑖) and (2, 𝑖 + 1).
It should be clear that Hybrid (2, 0) is identical to Hybrid 2, since

S0 = ∅ and the new condition is always true. In Lemma 4.3 we

prove that Hybrids (2, 𝑖) and (2, 𝑖 + 1) are indistinguishable.

Hybrid 3: We rewrite Hybrid (2, 𝑞) for clarity. In this hybrid,

every Π(𝑓) =𝑚 that is known in the interaction is represented in

either S𝑞 (for those known by an initial Π-query) or OΠ (for those

known by an initial Π−1 query). In other words, these two sets form

a partition of all known Π(𝑓) =𝑚 points.

Let us consider how the set 𝐾 is computed in this hybrid. The

condition 𝑃 (𝐻1 (𝑥)) ∉ S𝑞 is equivalent to 𝑃 (𝐻1 (𝑥)) ∈ OΠ , meaning

that we can write:

𝐾 =

{
𝐻2

(
𝑥,KA.key

1

(
𝑎,Π(𝑃 (𝐻1 (𝑥))

))
| 𝑥 ∈ 𝑋 and 𝑃 (𝐻1 (𝑥)) ∈ OΠ

}
(padded with random values).

Recall that the interaction aborts if there is any 𝑥 ∉ O1 but

𝑃 (𝐻1 (𝑥)) ∈ OΠ . In other words, conditioned on even reaching this

point in the interaction, 𝑃 (𝐻1 (𝑥)) ∈ OΠ implies 𝑥 ∈ O1. Hence we
can further rewrite the definition of 𝐾 as:

𝐾 =

{
𝐻2

(
𝑥,KA.key

1

(
𝑎,Π(𝑃 (𝐻1 (𝑥))

))
| 𝑥 ∈ 𝑋 ∩ O1

and 𝑃 (𝐻1 (𝑥)) ∈ OΠ

}
Now, suppose we define 𝑌̃ = {𝑦 | 𝑦 ∈ O1 and 𝑃 (𝐻1 (𝑦)) ∈ OΠ}.
Then 𝐾 can be rewritten in the equivalent form:

𝐾 =

{
𝐻2

(
𝑥,KA.key

1

(
𝑎,Π(𝑃 (𝐻1 (𝑥))

))
| 𝑥 ∈ 𝑋 ∩ 𝑌̃

}
In this form, it is now clear that the hybrid corresponds to the

behavior of the ideal interaction. That is, the simulator computes

𝑌̃ , and then computes 𝐾 based only on the contents of 𝑍 = 𝑋 ∩ 𝑌̃ ,
its output from the functionality. □

Lemma 4.3. Hybrids (2, 𝑖 − 1) and (2, 𝑖) are indistinguishable, if
the KA protocol is non-malleable (Definition 3.3) and |KA.K| ≥ 2

𝜅 .

Proof. The hybrids differ only in the following way: Hybrid

(2, 𝑖) replaces KA.key
1
(𝑎,Π(𝑓 ∗)) with random, in the event that 𝑓 ∗

was the 𝑖th query to Π (with no corresponding prior Π−1 query).
Recall that in the game that defines non-malleability of a KA,

the distinguisher receives (𝑚1 = KA.msg
1
(𝑎),𝑚2, 𝑘) and also gets

access to an oracle for K(·) = KA.key
1
(𝑎, ·), which it cannot query

on𝑚2. Below is a reduction algorithm that is a distinguisher for

the non-malleability game:

RK (𝑚1,𝑚2, 𝑘):
• Run Hybrid (2, 𝑖 − 1) against the adversary, using𝑚1 as the PSI

protocol message𝑚.

• Maintain set S𝑖−1 as described. On the 𝑖th query to Π (i.e., the
value that would have been added to S𝑖), let 𝑓 ∗ denote the input
and simulate𝑚2 = Π(𝑓 ∗) as the response.
• For every expression of the form KA.key

1
(𝑎,Π(𝑃 (𝐻1 (𝑥)))) used

in the definition of 𝐾 :

– If 𝑃 (𝐻1 (𝑥)) = 𝑓 ∗ then replace the entire expression with 𝑘

(input to this reduction algorithm).

– Otherwise, replace the entire expression with the result of

K(Π(𝑃 (𝐻1 (𝑥)))), whereK is the reduction algorithm’s oracle.

Since Π is a permutation, we have Π(𝑃 (𝐻1 (𝑥))) ≠ Π(𝑓 ∗) =
𝑚2; in other words, the oracle K is never invoked on𝑚2.

Intuitively, this reduction algorithm runs the hybrid interaction

without knowing the KA randomness 𝑎. Instead, 𝑎 is used implicitly

via𝑚1, 𝑘 , and the oracle K.
When the input 𝑘 is the correct key 𝑘 = KA.key

1
(𝑎,𝑚2), then the

simulation exactly matches Hybrid (2, 𝑖 − 1), since the reduction
correctly uses 𝑘 in place of the expression KA.key

1
(𝑎,Π(𝑓 ∗)) =

KA.key
1
(𝑎,𝑚2).

Now consider the case that 𝑘 is a random key. Then when-

ever 𝑃 (𝐻1 (𝑥)) = 𝑓 ∗, the value 𝐻2 (𝑥, 𝑘) is added to 𝐾 . Since 𝐻2

is a random oracle, and since 𝑘 is uniform (and |𝑘 | ≥ 𝜅), outputs
𝐻2 (𝑥, 𝑘) are indistinguishable from random, even for multiple val-

ues of 𝑥 (e.g., in the case where the adversary constructs 𝑃 so that

𝑃 (𝐻1 (𝑥)) = 𝑓 ∗ for several values of 𝑥). In summary, when 𝑘 is

uniform, the simulation is indistinguishable from Hybrid (2, 𝑖) in
which a random value is added to the set 𝐾 in these cases. The

non-malleabiity of KA means that these two cases are indistin-

guishable. □

Optimizations. When KA is a one-round key agreement proto-

col (i.e., message 2 doesn’t depend on message 1, as in the Diffie-

Hellman instantiation), then the two messages𝑚 and 𝐾 from the

sender can be combined. This leads to a 2-round PSI protocol
where the first flow is 𝑃 from the receiver and the second flow is

𝑚,𝐾 from the sender.

Note that the direction of the last message (𝐻2 outputs from

sender to receiver) is important. It is not possible to save a round

of communication by letting the receiver send 𝐻2 outputs to the

sender. These 𝐻2 outputs are computed using the result of a KA

between a common 𝑎 (chosen by the sender) and various 𝑏𝑖 (chosen

by the receiver). Knowing 𝑎, the sender can compute the “correct”

𝐻2 for any 𝑥 , so the receiver would expose a dictionary attack by

sending their set of 𝐻2 outputs.

If security is required against only semi-honest adversaries,
then the protocol can be streamlined slightly, as follows (full details

are given in Appendix A):

• The polynomial can be interpolated on values 𝑃 (𝑦𝑖) instead of

𝑃 (𝐻1 (𝑦𝑖)); 𝐻1 was used only to help extract.

• Instead of sending values of the form 𝐻2 (𝑥𝑖 , 𝑘𝑖), the sender can
simply send the 𝑘𝑖 values. Again, 𝐻2 was used only to extract.

Furthermore, the 𝑘𝑖 values can have length of only 𝜆 + 2 log(𝑛)
in order to ensure correctness with probability 1 − 2−𝜆 .

Two other possible optimizations are presented in Appendix B.

Costs. The sender must compute one KA message and 𝑛 KA

keys/outputs. The receiver computes 𝑛 KA responses and 𝑛 KA

keys/outputs. Both parties make 𝑛 queries to each of 𝐻1, 𝐻2, and

Π±. Finally, the receiver must interpolate a polynomial of degree 𝑛,

and the sender must evaluate such a polynomial on 𝑛 points. These

are both possible with 𝑂 (𝑛 log2 𝑛) field operations, as described in

Section 2.3.

The total communication cost of the protocol consists of: (1) 1

KAmessage from the sender, (2) 𝑛 field elements (each equivalent in

size to a KA response) from the receiver to describe 𝑃 , (3) 𝑛 outputs

of 𝐻2, each 2𝜅 bits.

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1174

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Mike Rosulek and Ni Trieu

4.1 Size of Adversary’s Set
Recall that we consider an ideal functionality in which a corrupt

party can provide an input set that is “larger than advertised.” If

a corrupt party (specifically, the receiver) provides an input that

is as large as the universe of possible items, then PSI provides no

security whatsoever. Hence, it is important to bound the size of the

set that the simulator extracts.

Corrupt Sender. The sender gives a set 𝐾 during the protocol,

which is supposed to contain 𝐻2-outputs. The simulator extracts

by finding 𝑥 such that 𝐻2 (𝑥, 𝑘) ∈ 𝐾 , for an appropriate value 𝑘 .

Since the output of 𝐻2 is 2𝜅 bits, the probability of the adversary

encountering a collision in 𝐻2 is negligible. Hence for each item in

𝐾 , there is at most one preimage known to the adversary/simulator

and hence at most one item that will be included in the extracted

set 𝑋̃ .

In other words, the simulator extracts an input set for a corrupt

sender of size at most |𝐾 | = 𝑛. The protocol strictly enforces the

size of a corrupt sender’s input set.

Corrupt Receiver. The simulator for a corrupt receiver extracts

their input set as

𝑌̃ = {𝑦 | 𝑦 ∈ O1 and 𝑃 (𝐻1 (𝑦)) ∈ OΠ}
Abstractly speaking, the adversary sees 𝑞 outputs of 𝐻1, and it

sees 𝑞 outputs of Π. In the simulation, outputs of both 𝐻1 and

Π are uniform. The adversary then generates a polynomial 𝑃 of

degree less than 𝑛 (and greater than 0) and the simulator checks

whether 𝑃 (𝛼) = 𝛽 for all outputs 𝛼 from 𝐻1 and all outputs 𝛽 from

Π. The number of such pairs is the size of the set that is extracted.

The question is therefore how many random points can the
adversary fit on a degree < 𝑛 polynomial?

CDJ shows that if the size of the field is 2
𝑛𝜔 (log𝜅)

then with over-

whelming probability no polynomial can fit more points than its

degree suggests. However, such a large field leads to quadratic total
communication (𝑛 coefficients in a field of more than 2

𝑛
elements).

We instead prefer to stick to a field of minimum size (large enough

only to encode a KA message) and obtain bounds on the number of

items.

Definition 4.4. Let F be a field and define the PolyOverfit𝑛,𝑛
′

F
(𝑞)

game against an adversary A to be as follows:

sample 𝛼1, . . . , 𝛼𝑞, 𝛽1, . . . , 𝛽𝑞 ← F
𝑃 ← A(𝛼1, . . . , 𝛼𝑞, 𝛽1, . . . , 𝛽𝑞)
if 0 < deg(𝑃) < 𝑛 and

���{𝛼𝑖 | 𝑃 (𝛼𝑖) ∈ {𝛽1, . . . , 𝛽𝑞}}��� ≥ 𝑛′:
declare A the winner

In other words, the adversary tries to generate a polynomial that

hits some 𝛽 𝑗 on at least 𝑛′ distinct 𝛼𝑖 ’s.

We say that PolyOverfit𝑛,𝑛
′

F
is hard if for all polynomial 𝑞 and

all PPT A, the adversary wins with negligible probability.

Proposition 4.5. If PolyOverfit𝑛,𝑛
′

F
is hard, then the simulator

for a corrupt receiver in our PSI protocol outputs a set of size bounded
by 𝑛′, except with negligible probability.

In Appendix C we show the following using a standard compres-

sion argument. If such an “overfitting” polynomial existed, it could

be used to generate a compressed representation of the 𝛼𝑖 ’s and

𝛽𝑖 ’s, which is impossible if they are uniform.

Lemma 4.6. The probability of winning PolyOverfit𝑛,𝑛
′

F
(𝑞) is at

most (𝑞2𝑛)𝑛′/|F|𝑛′−𝑛 .

Some concrete examples of this bound for |F| = 2
256

are given

below:

𝑞 𝑛 𝑛′ bound

2
107

2
10

8𝑛 + 4 2
−128

2
115

2
10

16𝑛 + 8 2
−128

2
102

2
20

8𝑛 + 4 2
−128

2
110

2
20

16𝑛 + 8 2
−128

For example, when running the protocol for 𝑛 = 2
10

items, the

adversary will not be able to have an effective input of size 8𝑛 + 4,
with high probability.

We emphasize that the above bound is unconditional, meaning

that for the parameters above, such an “overfitting” polynomial

simply does not exist except with negligible probability. It seems

reasonable to conjecture that even when such polynomials exist,

finding them is hard for PPT adversaries. If such a claim were

proven, it would imply a tighter enforcement of set sizes in our

protocol.

We also emphasize that all malicious PSI protocols based on OT

extension have similar “slack” in the size of corrupt parties’ sets.

In [46] a bound of 𝑛′ = 6𝑛 is stated; in [47] a bound of 𝑛′ = 4𝑛 is

stated; and in [43] a range of bounds 𝑛′ = 2.4𝑐𝑛 for 𝑐 ∈ {2, 3, 4, 5}
is given for different parameters.

5 EXPERIMENTAL RESULTS
5.1 Implementation
In order to evaluate the performance of our PSI protocol, we built

and evaluated an implementation. Our complete implementation is

available onGitHub: https://github.com/osu-crypto/MiniPSI. Below,

we discuss how the various components were instantiated.

KeyAgreement. We instantiate DHKAusing elliptic curve groups,

and hash 𝑔𝑎𝑏 with SHA2. As mentioned previously, this variant of

DHKA is non-malleable (Definition 3.3) under the ODH assumption.

An elliptic curve consists of the solutions (𝑥,𝑦) in a field F𝑞
to the Weierstrass equation 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝐵 or Montgomery

equation 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 . Depending on the curve parameters,

EC shows different shapes on the plane. In this work, we choose

the Curve25519 Montgomery curve, since it is recommended for

elligator [1]. This Curve25519 is defined over 𝐺𝐹 (𝑞 = 2
255 − 19)

and its curve parameter 𝐴 has the value 486662.

We implement the elligator encoding based on [6]. The encoding

takes a curve point and outputs a pseudorandom string of 256 bits.

The point (𝑥,𝑦) has an inverse map if it satisfies two conditions: the

𝑥 value is not equal to the curve parameter𝐴; and−2𝑥 (𝑥+𝑎)must be

a square. Therefore, we keep sampling points until these conditions

are hold. According [1, 6] and confirmed by our experiment, the

success probability is
1

2
. The elligator encoding of such a valid point

is defined by 𝑟 =

√︃
(−1
2
) (𝑥

𝑥+𝐴)𝑏 , where 𝑏 = 1 if 𝑣 ≤ 𝑞−1
2

, otherwise,

𝑏 = −1.

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1175

https://github.com/osu-crypto/MiniPSI

Compact and Malicious Private Set Intersection for Small Sets CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

𝑛 Protocol Sec. Comm. Running time (milliseconds)
10 Gbps 50 Mbps

(KB) Offline Online Total Offline Online Total

2
7

Classic DH [29]

SH

9.09 — 81.1 81.1 — 241.1 241.1

KKRT [36] 22.22 180.1 21.2 201.3 339.0 499.1 838.1

Ours 4.99 29.2 29.3 58.5 29.2 172 201.2
SpOT-low [42]

1M

26.70 139.5 24.9 164.4 570.9 185.6 756.5

CM [11] 32.00 203.9 32.3 236.2 554.0 349.2 903.2

DKT [16]

2M

31.48 — 492.0 492.0 — 1918.8 1918.8

PaXoS [43] 40.96 250.2 34.8 285 665.2 536.1 1201.3

Ours 8.19 32 30.1 62.1 32.2 189.6 221.8

2
8

Classic DH [29]

SH

18.18 — 149.8 149.8 — 321.7 321.7

KKRT [36] 43.8 181.2 27.1 208.3 341.2 507.1 848.3

Ours 9.98 57.4 59.1 116.5 58.1 212.5 270.6
SpOT-low [42]

1M

33.90 138.8 59.2 198.0 565.7 216.8 782.5

CM [11] 43.00 205.1 32.0 237.1 623.3 361.3 984.6

DKT [16]

2M

62.74 — 898.0 898.0 — 3081.8 3081.8

PaXoS [43] 69.83 255.3 35.9 291.2 668.1 552.04 1220.14

Ours 16.38 58.4 61.1 119.5 62.1 225.5 287.6

2
9

Classic DH [29]

SH

36.86 — 248.2 248.2 — 430.3 430.3

KKRT [36] 94.64 183.2 40.8 224.0 342.0 656.9 998.9

Ours 20.48 96.3 110.0 206.3 106.2 268.9 375.1
SpOT-low [42]

1M

48.40 139.0 116.8 255.8 571.0 266.7 837.7

CM [11] 64.00 207.1 28.3 235.4 633.5 355.1 988.6

DKT [16]

2M

125.27 — 1720.0 1720.0 — 5966.2 5966.2

PaXoS [43] 127.56 256.3 54.1 310.4 671.1 554.04 1225.14

Ours 32.77 98.3 112.9 211.2 115.1 275.1 390.2

2
10

Classic DH [29]

SH

73.73 — 375.2 375.2 — 574.2 574.2

KKRT [36] 188.64 185.4 42.6 228.0 345.1 554.1 899.2

Ours 40.96 149.1 252.4 401.5 155 379.7 534.7
SpOT-low [42]

1M

77.20 140.0 239.6 379.6 570.5 358.2 928.7

CM [11] 105.00 207.4 36.5 243.9 633.6 359.5 993.1

DKT [16]

2M

250.32 — 3028.0 3028.0 — 10111.2 10111.2

PaXoS [43] 243.01 258.4 94.1 352.5 671.2 560.1 1231.3

Ours 65.54 155.6 268.9 424.5 164 393.9 557.9
Table 2: Communication cost in KB and running time in milliseconds of PSI protocols on the set size 𝑛. “SH", “1M", and “2M"
refer to semi-honest, 1-sided malicious and 2-sided malicious protocol, respectively. Cells with "—" denote setting not supported
or program out of memory.

The decoding function takes a string 𝑟 and produces the 𝑥 coor-

dinate of a point on Curve25519. The value 𝑥 can be computed as

𝑥 = 𝑒𝑑 − (1 − 𝑒)𝐴
2
, where 𝑑 = −𝐴

1+2𝑟 2 and 𝑒 = (𝑑3 +𝐴𝑑2 + 𝑑)
𝑞−1
2 .

We implemented elligator on top of the Curve25519 implementa-

tion from libsodium. From our experimental evaluation, libsodium
is about 10× faster than miracl library.

The length of elligator encodings is slightly less than 256 bits. In

order to promote these encodings to be uniform in {0, 1}256, we can
append a few extra uniform bits which are ignored during decoding.

These additional bits can be considered as part of the randomness

in the KA protocol, and they cause the protocol messages to be

pseudorandom in F = {0, 1}256.

Other Primitives. We instantiate the necessary random oracles us-

ing SHA2. Since the elliptic curves have 256-bit encodings, we need

an ideal permutation Π± defined over {0, 1}256. In our implementa-

tion we use Rijndal-256 with a fixed key as the ideal permutation.

Polynomial Operations. Our protocol requires the receiver to

generate a polynomial of degree 𝑛, and the sender to evaluate it

on 𝑛 points. It is known that these problems could be solved by La-

grange interpolation and Horner evaluation which requires 𝑂 (𝑛2)
field operations. However, when 𝑛 is very large (e.g. 𝑛 = 2

20
) this

becomes impractical. Moenck and Borodin [41] describe algorithms

for these problems in 𝑂 (𝑛 log2 (𝑛)) field operations, which make

them a better fit for our protocol.

Security Parameters. All evaluations were performed with a PSI

item length of 128 bits, computational security parameter 𝜅 = 128

bits, and a statistical security parameter 𝜆 = 40 bits.

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1176

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Mike Rosulek and Ni Trieu

Protocol Sec. Comm. Running time (seconds)

𝑛2 𝑛1
10 Gbps 50 Mbps 1 Mbps

(MB) Online Total Online Total Online Total

2
12

2
12

Classic DH [29]

SH

0.29 0.86 0.86 1.13 1.13 2.26 2.26

KKRT [36] 0.56 0.03 0.2 0.57 0.91 5.09 5.47

Ours 0.16 0.59 1.07 0.91 1.39 1.71 2.17
SpOT-low [42]

1M

0.25 0.72 0.88 1.04 1.61 2.79 3.36

CM [11] 0.36 0.08 0.28 0.51 1.15 3.11 3.74

DKT [16]

2M

0.83 12.12 12.12 36.35 36.35 97.06 97.06

PaXoS [43] 0.94 0.14 0.4 0.97 1.64 5.26 5.93

Ours 0.16 0.62 1.08 0.95 1.41 1.75 2.22

2
8

Classic DH [29]

SH

0.17 0.48 0.48 0.83 0.83 1.24 1.24

KKRT [36] 0.28 0.02 0.2 0.67 1.01 4.64 5.01

Ours 0.26 0.41 0.47 0.59 0.65 0.59 0.69
SpOT-low [42]

1M

0.24 0.65 0.79 0.33 0.89 0.38 0.95

CM [11] 0.32 0.20 0.27 0.63 1.13 3.11 3.74

Ours 2M 0.14 0.43 0.49 0.62 0.66 0.63 0.67

2
16

2
16

Classic DH [29]

SH

4.78 10.38 11.58 17.6 17.6 38.53 38.53

KKRT [36] 6.73 0.21 0.44 2.53 2.92 74.15 74.57

Ours 2.69 8.96 16.25 10.9 16.64 25.03 31.16
SpOT-low [42]

1M

3.9 12.61 12.81 15.76 16.33 40.15 40.71

CM [11] 5.34 0.54 0.75 1.72 2.35 45.11 45.75

DKT [16]

2M

13.33 216.83 216.83 845.63 845.63 1929.76 1929.76

PaXoS [43] 14.79 0.25 0.52 4.27 4.95 48.34 49.02

Ours 4.19 8.89 15.95 11.1 18.64 27.73 36.16

2
12

Classic DH [29]

SH

2.82 6.45 6.45 14.01 14.01 22.37 22.37

KKRT [36] 4.55 0.11 0.32 1.59 1.92 39.7 40.02

Ours 0.72 4.71 5.17 5.91 6.37 7.10 7.46

SpOT-low [42]

1M

3.42 1.55 1.75 1.34 1.91 6.10 6.67
CM [11] 4.82 0.50 0.70 1.37 2.01 40.38 41.01

Ours 2M 2.23 4.71 5.97 6.01 7.47 7.90 8.96

2
20

2
20

Classic DH [29]

SH

77.59 189.87 189.87 290.82 290.82 717.08 717.08

KKRT [36] 133.00 3.51 4.18 27.42 27.5 1153.23 1154

Ours 44.04 144.64 245.06 150.93 251.69 452.7 554.26
SpOT-low [42]

1M

63.18 270.69 270.88 310.83 311.4 687.77 688.34

CM [11] 86.16 7.94 8.15 16.56 17.17 726.81 727.46

DKT [16]

2M

213.00 5121 5121 — — — —

PaXoS [43] 236.47 5.01 5.29 46.13 46.81 798.26 798.94

Ours 67.11 148.94 251.06 161.93 267.69 489.7 597.26

2
16

Classic DH [29]

SH

46.14 104.57 104.57 170.82 170.82 371.77 371.77

KKRT [36] 74.20 1.86 2.32 17.5 18.25 609.49 610.25

Ours 12.58 92.5 98.24 104.44 108.92 109.41 117.81
SpOT-low [42]

1M

55.53 218.65 218.85 15.82 16.39 128.43 129.10

CM [11] 76.77 7.50 7.70 15.66 16.26 721.81 722.45

Ours 2M 35.65 94.1 99.91 105.44 113.02 120.49 121.81
Table 3: Communication cost in MB and running time in seconds of PSI protocols; the sender and receiver set size is 𝑛1 and 𝑛2,
respectively. “SH", “1M", and “2M" refer to semi-honest, 1-sided malicious and 2-sided malicious protocol, respectively. Cells
with "—" denote setting not supported or program out of memory.

5.2 Experiments and Evaluation
Experimental Setup. We implement our protocol in C++, and run

our protocol on a single Intel Xeon with 2.30GHz and 256GB RAM.

The parties communicate over a simulated 10Gbps network with

0.2ms round-trip time for LAN setting. We also run all protocols in

WAN setting with 80ms round-trip time and two different network

bandwidths 50 Mbps, and 1 Mbps.

Protocol Evaluation. In the following, we benchmark the state of

the art semi-honest and malicious PSI protocols [11, 16, 29, 36, 42,

43]. We now briefly discuss several protocols not included in our

comparison: The Jarecki-Liu protocol [34] is a malicious-secure,

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1177

Compact and Malicious Private Set Intersection for Small Sets CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

DH-based protocol. However, it achieves a weaker ideal functional-

ity where the adversary can choose items adaptively. The recent PSI

protocol of Rindal & Schoppmann [48] is based on silent vector-OLE,

and is extremely efficient for large sets. However, its implementa-

tion is not yet publicly available and its high fixed costs make it

inefficient for small sets (as illustrated in Table 1). The work of Chen

et al. [12] is the state-of-the-art (one-sided) malicious FHE-based

PSI. Its first step is essentially classic DH-PSI, before even doing

any FHE operations. Since our entire protocol is more efficient

than DH-PSI, we expect ours would be much faster than theirs for

small-to-medium-size sets.

We also do not include RSA-based PSI protocols [3, 17], by which

we mean protocols that require at least one RSA exponentiation

per item. RSA elements are 16 × (= 4096/256) larger than elliptic

curve (ECC) elements. A simple benchmark on our experimental

hardware (openssl speed rsa4096 ecdhx25519) shows that RSA-
4096 exponentiation is 100× slower than ECC exponentiation (even

RSA-2048 was 20× slower). Therefore, RSA-based protocols will

always be ∼100× slower than ours. If they send one RSA value per

item, they will have 16× more communication than ours.

We report detailed comparisons in Table 2 and Table 3 for small

set size {27, 28, 29, 210} and large set size 𝑛 ∈ {212, 216, 220}. As ex-
pected, our protocol shows a significant performance improvement

when the set is small.

We note that our poly-DH PSI protocol is very amenable to pre-

computation (by precomputing exponentiation). When reporting

performance of these protocols, we split total running time into

two phases:

• Offline: operations like generating random pairs (𝑟𝑖 , 𝑔𝑟𝑖), which
can be done without any interaction and before the inputs are

known.

• Online: everything else, starting when the parties have deter-

mined their inputs.

Bandwidth Comparison. Our polynomial-based protocol requires

the lowest communication among all PSI protocols. The commu-

nication of our polynomial-based protocol is approximately 2×
smaller than that of classic DH PSI. Compared to malicious DH-

based PSI protocol [16] (DKT), our protocol shows about 3 − 4×
improvement.

Consider a semi-honest PSI with unequal set size, the commu-

nication cost is (𝑛1 |G| + 𝑛2ℓ) bits for the polynomial-based PSI

protocol, and about (𝑛1 + 𝑛2) |G| + 𝑛2ℓ) bits for classic DH-based
PSI. Concretely, for 𝑛1 = 2

16
and 𝑛2 = 2

20
, the polynomial-based

protocol takes 12.58 MB of communication while classic DH PSI

needs 46.14 MB, a 3.67× improvement.

We also compare bandwidth to the state-of-the-art OT-based

semi-honest PSI protocols [11, 36, 42] and malicious PSI proto-

col [43]. Note that [36] (KKRT), [43](PaXoS) are the fastest PSI

protocol to date and [11] (CM) has the fastest in networks with

moderate bandwidth (e.g., 30-100 Mbps) while [42] (SpOT-low) has

the least communication among practical semi-honest protocols.

The communication cost of our protocol is about 3−4.6×, 1.4−1.7×,
and 3.7 − 7.8× less than that of [36], [42], and [43], respectively.

Runtime Comparison. For small set (e.g 𝑛 = 2
9
), our polynomial-

based protocol is faster than all DH-based and OT-based schemes in

both LAN and WAN settings. Starting from 𝑛 = 2
10
, our protocol is

slower than the OT-based protocols in LAN setting. However, bench-

marking all protocols in the WAN setting with 1 Mbps network

bandwidth and 80 ms round-trip latency, our protocol shows an

1− 3.17× faster than others due to the fact that the communication

cost is smallest.

The polynomial-based protocol shows its benefit in the unbal-

anced setting where the sender’s set size is larger than the receiver’s

set size (𝑛2 > 𝑛1). It means that the sender only needs to send the

receiver a short fingerprint ℓ per each item in his set while in

DH-based protocol the sender additional requires to send a group

element per each item. Since the implementation of PaXoS and DKT

does not support to compute a PSI for asymmetric set, we omit to

report their performance costs. Table 3 shows that in most of the

cases the running time of our polynomial-based protocol is faster

than other semi-honest protocols. Consequently, our protocol is

faster than other malicious protocols. For 𝑛1 = 2
16

and 𝑛2 = 2
20

in

WAN setting with 1Mpbs bandwidth, the baseline DH protocol runs

in 574.26 seconds, while the polynomial-based protocol requires

117.81 seconds, a factor of 4.9× and 3.1× improvement, respectively.

A summary of the state of the art (including this work) is pre-

sented in Figure 1 where the running time is measured in the LAN

setting. Our PSI prototocol’s performance is mostly unaffected by

changing the network bandwidth and latency, due to its extremely

low communication complexity.

Conclusions. For small sets (𝑛 ≤ 512) our protocol is the best in

terms of both communication and computation. As we previously

discussed in Section 1, on sets of this size our protocol is less expen-

sive than the base OTs required for OT extension and PSI protocols

that are based on OTs.

ACKNOWLEDGEMENTS. The first author is partially supported

by a Facebook research award. The second author is partially sup-

ported by NSF awards #2031799, #2101052, and #2115075. We are

grateful to the CCS 2021 anonymous reviewers whose feedback

was instrumental in improving several aspects of this paper.

REFERENCES
[1] https://www.imperialviolet.org/2013/12/25/elligator.html.

[2] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman

assumptions and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001,
volume 2020 of LNCS, pages 143–158. Springer, Heidelberg, April 2001.

[3] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters:

Size-hiding private set intersection. In Dario Catalano, Nelly Fazio, Rosario

Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages
156–173. Springer, Heidelberg, March 2011.

[4] Donald Beaver. Correlated pseudorandomness and the complexity of private

computations. In 28th ACM STOC, pages 479–488. ACM Press, May 1996.

[5] Mihir Bellare, Viet TungHoang, SriramKeelveedhi, and Phillip Rogaway. Efficient

garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and
Privacy, pages 478–492. IEEE Computer Society Press, May 2013.

[6] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:

elliptic-curve points indistinguishable from uniform random strings. In Ahmad-

Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
967–980. ACM Press, November 2013.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the

indifferentiability of the sponge construction. In Nigel P. Smart, editor, EURO-
CRYPT 2008, volume 4965 of LNCS, pages 181–197. Springer, Heidelberg, April
2008.

[8] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,

and Peter Scholl. Efficient two-round OT extension and silent non-interactive

secure computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1178

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Mike Rosulek and Ni Trieu

and Jonathan Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, November

2019.

[9] Tatiana Bradley, Sky Faber, and Gene Tsudik. Bounded size-hiding private set

intersection. In Vassilis Zikas and Roberto De Prisco, editors, SCN 16, volume

9841 of LNCS, pages 449–467. Springer, Heidelberg, August / September 2016.

[10] Andrea Cerulli, Emiliano De Cristofaro, and Claudio Soriente. Nothing refreshes

like a repsi: Reactive private set intersection. In Bart Preneel and Frederik

Vercauteren, editors, Applied Cryptography and Network Security, pages 280–300,
Cham, 2018. Springer International Publishing.

[11] Melissa Chase and Peihan Miao. Private set intersection in the internet setting

from lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart,

editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34–63. Springer,
Heidelberg, August 2020.

[12] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully

homomorphic encryption with malicious security. In David Lie, Mohammad

Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
1223–1237. ACM Press, October 2018.

[13] Chongwon Cho, Dana Dachman-Soled, and Stanislaw Jarecki. Efficient concur-

rent covert computation of string equality and set intersection. In Kazue Sako,

editor, CT-RSA 2016, volume 9610 of LNCS, pages 164–179. Springer, Heidelberg,
February / March 2016.

[14] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient

robust private set intersection. In Michel Abdalla, David Pointcheval, Pierre-Alain

Fouque, and Damien Vergnaud, editors, ACNS 09, volume 5536 of LNCS, pages
125–142. Springer, Heidelberg, June 2009.

[15] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private computa-

tion of cardinality of set intersection and union. In Josef Pieprzyk, Ahmad-Reza

Sadeghi, and Mark Manulis, editors, CANS 12, volume 7712 of LNCS, pages 218–
231. Springer, Heidelberg, December 2012.

[16] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private

set intersection protocols secure in malicious model. In Masayuki Abe, editor,

ASIACRYPT 2010, volume 6477 of LNCS, pages 213–231. Springer, Heidelberg,
December 2010.

[17] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection

protocols with linear complexity. In Radu Sion, editor, FC 2010, volume 6052 of

LNCS, pages 143–159. Springer, Heidelberg, January 2010.

[18] Sumit Kumar Debnath and Ratna Dutta. Secure and efficient private set intersec-

tion cardinality using bloom filter. In Javier Lopez and Chris J. Mitchell, editors,

ISC 2015, volume 9290 of LNCS, pages 209–226. Springer, Heidelberg, September

2015.

[19] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scaling private

contact discovery. Proceedings on Privacy Enhancing Technologies, 2018(4):159 –
178, 2018.

[20] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection

meets big data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi,

Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 789–800. ACM
Press, November 2013.

[21] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching

and set intersection. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

[22] Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction of

fully-simulatable, round-optimal oblivious transfer from strongly uniform key

agreement. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume

11891 of LNCS, pages 111–130. Springer, Heidelberg, December 2019.

[23] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.

Oblivious key-value stores and amplification for private set intersection. In Tal

Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS,
pages 395–425, Virtual Event, August 2021. Springer, Heidelberg.

[24] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty

computation from fixed-key block ciphers. In 2020 IEEE Symposium on Security
and Privacy, pages 825–841. IEEE Computer Society Press, May 2020.

[25] Carmit Hazay. Oblivious polynomial evaluation and secure set-intersection from

algebraic prfs. J. Cryptol., 31(2):537–586, April 2018.
[26] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of

malicious adversaries. In Phong Q. Nguyen and David Pointcheval, editors,

PKC 2010, volume 6056 of LNCS, pages 312–331. Springer, Heidelberg, May 2010.

[27] Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan Stute, and Chris-

tian Weinert. Privatedrop: Practical privacy-preserving authentication for apple

airdrop. In 30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.
[28] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are gar-

bled circuits better than custom protocols? In NDSS 2012. The Internet Society,
February 2012.

[29] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and

trust in electronic communities. In ACM CONFERENCE ON ELECTRONIC COM-
MERCE. ACM, 1999.

[30] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova,

Shobhit Saxena, Karn Seth, David Shanahan, and Moti Yung. On deploying

secure computing commercially: Private intersection-sum protocols and their

business applications. Cryptology ePrint Archive, Report 2019/723, 2019. https:

//eprint.iacr.org/2019/723.

[31] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn

Seth, David Shanahan, and Moti Yung. Private intersection-sum protocol with

applications to attributing aggregate ad conversions. Cryptology ePrint Archive,

Report 2017/738, 2017. https://eprint.iacr.org/2017/738.

[32] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious

transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 145–161. Springer, Heidelberg, August 2003.

[33] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function

with applications to adaptive OT and secure computation of set intersection. In

Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 577–594. Springer,
Heidelberg, March 2009.

[34] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection.

In Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS,
pages 418–435. Springer, Heidelberg, September 2010.

[35] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In

Victor Shoup, editor,CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer,
Heidelberg, August 2005.

[36] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient

batched oblivious PRF with applications to private set intersection. In Edgar R.

Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press, October 2016.

[37] Mark Manulis, Benny Pinkas, and Bertram Poettering. Privacy-preserving group

discovery with linear complexity. In Jianying Zhou and Moti Yung, editors, ACNS
10, volume 6123 of LNCS, pages 420–437. Springer, Heidelberg, June 2010.

[38] Daniel Masny and Peter Rindal. Endemic oblivious transfer. In Lorenzo Cavallaro,

Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 309–326. ACM Press, November 2019.

[39] C. Meadows. A more efficient cryptographic matchmaking protocol for use in

the absence of a continuously available third party. In 1986 IEEE Symposium on
Security and Privacy, pages 134–134, April 1986.

[40] GhitaMezzour, Adrian Perrig, Virgil D. Gligor, and Panos Papadimitratos. Privacy-

preserving relationship path discovery in social networks. In Juan A. Garay,

Atsuko Miyaji, and Akira Otsuka, editors, CANS 09, volume 5888 of LNCS, pages
189–208. Springer, Heidelberg, December 2009.

[41] R. Moenck and Allan Borodin. Fast modular transforms via division. In Switching
and Automata Theory, pages 90–96, 1972.

[42] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Light-

weight private set intersection from sparse OT extension. In Alexandra Boldyreva

and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 401–431. Springer, Heidelberg, August 2019.

[43] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS:

Fast, malicious private set intersection. In Anne Canteaut and Yuval Ishai,

editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 739–767. Springer,
Heidelberg, May 2020.

[44] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:

Private set intersection using permutation-based hashing. In Jaeyeon Jung and

Thorsten Holz, editors, 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015., pages 515–530. USENIX Association,

2015.

[45] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set inter-

section based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.,
pages 797–812. USENIX Association, 2014.

[46] Peter Rindal and Mike Rosulek. Improved private set intersection against ma-

licious adversaries. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,

EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 235–259. Springer, Hei-
delberg, April / May 2017.

[47] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual

execution. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan

Xu, editors, ACM CCS 2017, pages 1229–1242. ACM Press, October / November

2017.

[48] Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast oprf and circuit-psi from

vector-ole. Cryptology ePrint Archive, Report 2021/266, 2021. https://eprint.iacr.

org/2021/266.

A SEMI-HONEST VARIANT
In this section we show a simpler semi-honest variant of our proto-

col.

The details of the protocol are given in Figure 5. The correctness

of the protocol boils down to the following observations:

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1179

https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2021/266
https://eprint.iacr.org/2021/266

Compact and Malicious Private Set Intersection for Small Sets CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

Parameters: finite field F

KA protocol KA with KA.M = F and |KA.K| ≥ 2
𝜆+2 log𝑛

ideal permutation Π,Π−1 : F→ F

Sender Receiver

input 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊆ F input 𝑌 = {𝑦1, . . . , 𝑦𝑛} ⊆ F

1. 𝑎 ← KA.R
2.𝑚 = KA.msg

1
(𝑎)

𝑚

3. for 𝑖 ∈ [𝑛]:
𝑏𝑖 ← KA.R
𝑚′
𝑖
= KA.msg

2
(𝑏𝑖 ,𝑚)

𝑓𝑖 = Π−1 (𝑚′
𝑖
)

4. 𝑃 = interpolF
(
{(𝑦𝑖 , 𝑓𝑖) | 𝑦𝑖 ∈ 𝑌 }

)
𝑃

5. for 𝑖 ∈ [𝑛]:
𝑘𝑖 = KA.key

1
(𝑎,Π(𝑃 (𝑥𝑖)))

6. 𝐾 = {𝑘1, . . . , 𝑘𝑛} (shuffled)

𝐾

7. output {𝑦𝑖 | KA.key2 (𝑏𝑖 ,𝑚) ∈ 𝐾}

Figure 5: Semi-honest variant of our protocol.

• Suppose 𝑥𝑖 = 𝑦 𝑗 for some 𝑖, 𝑗 (i.e., 𝑥𝑖 is an item of the sender that

is in the intersection). Then by construction we have:

KA.key
1
(𝑎,Π(𝑃 (𝑥𝑖))) = KA.key

1
(𝑎,Π(𝑓𝑗))

= KA.key
1
(𝑎,𝑚′𝑗)

= KA.key
1
(𝑎,KA.msg

2
(𝑏 𝑗 ,𝑚))

By the correctness of the KAprotocol, this is equal toKA.key
2
(𝑏 𝑗 ,𝑚),

and the receiver will indeed include 𝑦 𝑗 (= 𝑥𝑖) in the output.

• Suppose 𝑥𝑖 ∉ 𝑌 . In this case, our security proof will argue that

the corresponding 𝑘𝑖 value (computed by the sender) is pseudo-

random. The receiver only produces incorrect output if this 𝑘𝑖
happens to match one of the KA.key

2
(𝑏 𝑗 ,𝑚) values computed

by the receiver. For this particular 𝑘𝑖 , this event happens with

probability (negligibly close to) 𝑛/|KA.K|. With a union bound

over at most 𝑛 such 𝑘𝑖 values, the overall probability of incorrect

output is at most (negligibly close to) 𝑛2/|KA.K|.
To limit the correctness error to a concrete value 2

−𝜆
(for example,

𝜆 = 40 in our implementation), it suffices to use a KA protocol with

|KA.K| ≥ 2
𝜆+2 log𝑛

.

Lemma A.1. The protocol of Figure 5 is secure against a semi-
honest sender, if KA is a pseudorandom-message KA (Definition 3.4)
and Π± is an ideal permutation.

Proof. Since the only protocol message from the receiver is 𝑃 ,

it suffices to show how to simulate 𝑃 . In fact, we simply show that 𝑃

is indistinguishable from a polynomial of appropriate degree with

coefficients chosen uniformly in F.
First, consider replacing “𝑏𝑖 ← KA.R;𝑚′

𝑖
= KA.msg

2
(𝑏𝑖 ,𝑚)” in

step 3 with “𝑚′
𝑖
← KA.M (= F)”. This change is indistinguishable

to the sender by the pseudorandom-message property of KA. Then,

since Π is a permutation, we see that 𝑓𝑖 becomes uniformly dis-

tributed on F. Finally, interpolating a polynomial on a set of points

{(𝑦𝑖 , 𝑓𝑖)}, where each 𝑓𝑖 is uniform in F, results in a uniformly

chosen polynomial, independent of the 𝑦𝑖 values. □

Lemma A.2. The protocol of Figure 5 is secure against a semi-
honest receiver, if KA is a secure KA (Definition 3.2) and Π± is an ideal
permutation.

Proof. First, we discuss the intuition of the proof. For each

𝑥𝑖 ∈ 𝑋 , the sender interprets Π(𝑃 (𝑥𝑖)) as a KA protocol message.

When 𝑥𝑖 ∈ 𝑋 \ 𝑌 , the receiver never actively chooses the value at

𝑃 (𝑥𝑖), and so presumably does not know the secret randomness

of the KA message Π(𝑃 (𝑥𝑖)). From the receiver’s perspective, this

is just like watching a KA instance between two external parties,

so the resulting key 𝑘𝑖 should look random. We can formalize this

by having the simulator program Π(𝑃 (𝑥𝑖)) to be a KA protocol

message whose underlying randomness is explicitly unknown to

the receiver.

More formally, define Hybrid #ℎ as follows (taking 𝑋 and 𝑌 both

as inputs):

• Steps 1-2: same as honest sender.

• Step 5:

– for𝑥𝑖 ∈ (𝑋∩𝑌)∪{𝑥𝑖 | 𝑖 ≥ ℎ}: compute𝑘𝑖 = KA.key
1
(𝑎,Π(𝑃 (𝑥𝑖))).

– for all other 𝑥𝑖 ∈ 𝑋 , choose 𝑘𝑖 ← KA.K .
• Step 6: set 𝐾 = {𝑘1, . . . , 𝑘𝑛}, shuffled.

Clearly Hybrid #0 corresponds to the real interaction. Furthermore,

Hybrid #𝑛 describes a valid simulation. Even though formally Hy-

brid #𝑛 gets the honest sender’s input 𝑋 as input, it does not need

to know any values in 𝑋 \𝑌 (only how many of them exist). Hence

Hybrid #𝑛’s behavior can be carried out given only 𝑌 , 𝑋 ∩ 𝑌 , and
|𝑋 |.

Now define the following reduction algorithm𝐴(ℎ,𝑚1,𝑚2, 𝑘
∗, 𝑋,𝑌):

• Initially, use the receiver’s honest behavior to anticipate what

𝑃 will be, playing the role of Π± honestly. If 𝑥ℎ ∉ 𝑋 ∩ 𝑌 then

program Π± so that Π(𝑃 (𝑥ℎ)) =𝑚2.
2

• Steps 1-2: same as honest sender.

• Step 5:

– for𝑥𝑖 ∈ (𝑋∩𝑌)∪{𝑥𝑖 | 𝑖 > ℎ}: compute𝑘𝑖 = KA.key
1
(𝑎,Π(𝑃 (𝑥𝑖))).

– if 𝑥ℎ ∉ 𝑋 ∩ 𝑌 , hence not handled by the previous case, set

𝑘ℎ = 𝑘∗.
– for all other 𝑥𝑖 ∈ 𝑋 , choose 𝑘𝑖 ← KA.K .

• Step 6: set 𝐾 = {𝑘1, . . . , 𝑘𝑛}, shuffled.

Observe that if𝑘∗ is the key resulting fromKA conversation (𝑚1,𝑚2),
then 𝐴(ℎ,𝑚1,𝑚2, 𝑘

∗, 𝑋,𝑌) generates exactly Hybrid #ℎ. But if 𝑘∗ is
uniform and independent of (𝑚1,𝑚2), then 𝐴(ℎ,𝑚1,𝑚2, 𝑘

∗, 𝑋,𝑌)
generates exactly Hybrid #(ℎ + 1). These two cases are indistin-

guishable by the standard real-vs-random security property of KA.
Hence, Hybrids #ℎ and #(ℎ + 1) are indistinguishable. □

2
Technically speaking, this step can fail if Π−1 was already defined on 𝑚2 while

the simulator was predicting how the sender computes 𝑃 . This case happens with

negligible probability since only a negligible fraction of Π± is ever defined, and𝑚2

messages are pseudorandom.

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1180

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Mike Rosulek and Ni Trieu

B OPTIMIZATIONS
For all of these optimizations, we leave it as an exercise for the

reader to verify that the security proofs hold when using the opti-

mizations.

Elligator. Our protocol requires a KA protocol whose second
message is pseudorandom, since only the second KA message is

encoded into a polynomial. Elligator-DHKA requires parties to

re-sample randomness until they “hit” the elligator subset of the

elliptic curve. Only the receiver needs to do this in our PSI protocol;

the sender does not need to use elligator encodings for their KA

message.

Alternatives to Polynomials. Our PSI protocol requires the re-

ceiver to interpolate a polynomial over 𝑛 points, and the sender to

evaluate that polynomial on 𝑛 points, where 𝑛 is the size of their

sets (e.g., 𝑛 = 1M). Each of these procedures cost 𝑂 (𝑛 log2 𝑛) field
operations.

Oneway to reduce the cost of this step is to encode the same infor-

mation in a different way. The purpose of 𝑃 is to convey mappings

of the form 𝑦𝑖 ↦→ 𝑓𝑖 in a way that hides the 𝑦𝑖 values. Concurrent to

this work, Garimella et al. [23] introduced oblivious key-value stores
(OKVS), which are an abstraction that provides the properties that

our protocol requires. They present an efficient OKVS alternative

to polynomials that has linear encoding time, but at a small (∼35%)
increase in communication size. This data structure can be used

in our protocol to replace polynomials, however: (1) Polynomial

interpolation over small (degree < 1000) polynomials is a very small

contribution to the protocol’s overall cost (even using a simpler

quadratic algorithm) compared to the cost of elliptic curve exponen-

tiations. (2) Even a 35% increase in size significantly undermines

our protocol’s contribution of minimal communication cost.

C POLYNOMIAL OVERFITTING
Recall the polynomial overfitting game PolyOverfit𝑛,𝑛

′

F
(𝑞):

sample 𝛼1, . . . , 𝛼𝑞 ← F
sample 𝛽, . . . , 𝛽𝑞 ← F
give {𝛼1, . . . , 𝛼𝑞} and {𝛽1, . . . , 𝛽𝑞} to A
A outputs a polynomial 𝑃

if 0 < deg(𝑃) < 𝑛 and 𝑃 (𝛼𝑖) ∈ {𝛽1, . . . , 𝛽𝑞} for at least 𝑛′ distinct 𝛼𝑖 :
A wins the game

else A loses the game

We prove an unconditional bound for winning this game, based

on a compression argument.

Proposition C.1. Let 𝐸 : 𝐴 → 𝐵 and 𝐷 : 𝐵 → 𝐴 be functions.
Then Pr𝑎←𝐴 [𝐷 (𝐸 (𝑎)) = 𝑎] ≤ |𝐵 |/|𝐴|.

Proof. If 𝑎 ∉ range(𝐷), then we can never have 𝐷 (𝐸 (𝑎)) = 𝑎.
Furthermore, |range(𝐷) | ≤ |𝐵 |. □

Lemma C.2. The probability of any (computationally unbounded)
adversary winning PolyOverfit𝑛,𝑛

′

F
(𝑞) is at most

(𝑞2𝑛)𝑛
′
/|F|𝑛

′−𝑛

Proof. Let A be an adversary that wins the game with proba-

bility 𝜖 . Using A we can compress a list (𝛼1, . . . , 𝛼𝑞, 𝛽1, . . . , 𝛽𝑞) by
giving the following information (in this order):

• the output polynomial 𝑃 ← A(𝛼1, . . . , 𝛼1, 𝛽1, . . . , 𝛽𝑞)
• a bipartite graph𝐺 with left and right vertex sets [𝑞], left-degree
1, and an edge from left vertex 𝑖 to right vertex 𝑗 if 𝑃 (𝛼𝑖) = 𝛽 𝑗
• for every connected component in 𝐺 (in some canonical order):

– If the component is a singleton right vertex 𝑖 , give 𝛽𝑖
– If the component contains a left vertex, let 𝑖 be the lowest

numbered left vertex in the component, and give 𝛼𝑖 . Then

for every left vertex 𝑖 except the lowest numbered one, give

an index 𝑣 such that 𝛼𝑖 is the 𝑣th root of 𝑃 (·) − 𝑃 (𝛼𝑖) in
lexicographic order.

Recovering the 𝛼𝑖 and 𝛽𝑖 inputs from this information amounts to

labeling each vertex in 𝐺 with the appropriate 𝛼𝑖 or 𝛽 𝑗 , which can

be done in a straight-forward way.

Note that the graph 𝐺 has 2𝑞 vertices, and if it has 𝑒 edges then

it has 𝑐 = 2𝑞 − 𝑒 connected components. The number of possible

“compressed encodings” is at most the product of the following

terms:

• |F|𝑛 , for the number of polynomials 𝑃

• (𝑞2)𝑒 , for (an upper bound on) the number of bipartite graphs

with 𝑞 + 𝑞 vertices and 𝑒 edges.
• |F|𝑐 , for listing one 𝛼𝑖 or 𝛽 𝑗 per component

• 𝑛𝑒 , for the other information in each connected component —

there are at most 𝑒 left vertices in nontrivial connected compo-

nents, and each index 𝑣 names one of the 𝑛 roots of a deg < 𝑛

polynomial.

Hence, the number of such encodings is bounded by:

|F|𝑛 · 𝑞2𝑒 · |F|2𝑞−𝑒 · 𝑛𝑒 = |F|2𝑞+𝑛 ·
(
𝑞2𝑛

|F|

)𝑒
Assume that the quantity in parentheses is less than 1, since if it

is not then the probability bound in the statement of the lemma

exceeds 1 and is therefore trivial. When A wins the game, then

𝑒 ≥ 𝑛′ and the number of encodings is bounded by:

|F|2𝑞+𝑛 ·
(
𝑞2𝑛

|F|

)𝑛′
Yet the number of inputs to this compression algorithm is |F|2𝑞 .
Hence the compression cannot succeed with probability better than

the ratio of inputs to outputs:

|F|2𝑞+𝑛−𝑛′ · 𝑞2𝑛′ · 𝑛𝑛′

|F|2𝑞
=
(𝑞2𝑛)𝑛′

|F|𝑛′−𝑛
□

Session 4C: Private Set Intersection CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1181

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Summary of Our Results

	2 Preliminaries
	2.1 Security Model
	2.2 PSI functionality
	2.3 Polynomial Operations
	2.4 Ideal Permutation

	3 Key Agreement Preliminaries
	3.1 Security Properties
	3.2 Diffie-Hellman Instantiation

	4 Malicious PSI from Key Agreement
	4.1 Size of Adversary's Set

	5 Experimental Results
	5.1 Implementation
	5.2 Experiments and Evaluation

	References
	A Semi-Honest Variant
	B Optimizations
	C Polynomial Overfitting

