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ABSTRACT

We address the problem of multiparty private set intersection against
a malicious adversary. First, we show that when one can assume no
collusion amongst corrupted parties then there exists an extremely
efficient protocol given only symmetric-key primitives. Second,
we present a protocol secure against an adversary corrupting any
strict subset of the parties. Our protocol is based on the recently
introduced primitives: oblivious programmable PRF (OPPRF) and
oblivious key-value store (OKVS).

Our protocols follow the client-server model where each party is
either a client or a server. However, in contrast to previous works
where the client has to engage in an expensive interactive crypto-
graphic protocol, our clients need only send a single key to each
server and a single message to a pivot party (where message size is
in the order of the set size). Our experiments show that the client’s
load improves by up to 10X (compared to both semi-honest and
malicious settings) and that factor increases with the number of
parties.

We implemented our protocol and conducted an extensive ex-
periment over both LAN and WAN and up to 32 parties with up to
220 jtems each. We provide a comparison of the performance of our
protocol and the state-of-the-art for both the semi-honest setting
(by Chandran et al.) and the malicious setting (by Ben Efraim et al.
and Garimella et al.).

CCS CONCEPTS

« Security and privacy — Cryptography; Privacy protections;
Theory of computation — Cryptographic protocols.

KEYWORDS
private set intersection

ACM Reference Format:

Ofri Nevo, Ni Trieu, and Avishay Yanai. 2021. Simple, Fast Malicious Mul-
tiparty Private Set Intersection. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS °21), November
15-19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3460120.3484772

1 INTRODUCTION

Private set intersection (PSI) allows several parties, each holding
a set of items, to learn the intersection of these sets and nothing
else. Over the last several years, two-party PSI has become truly
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practical with extremely fast cryptographically secure implemen-
tations [3, 29, 32]. These protocols can process millions of items
in seconds and are only a small factor slower than the naive and
insecure method of exchanging hashed values. PSI (both two-party
and multiparty) has many privacy-preserving applications such as
private contact discovery [6, 16], measuring the effectiveness of on-
line advertising [19] and password checkup [15]. Recently, private
contact tracing applications related to COVID-19 [1, 7, 9, 35] found
PSI as the ultimate cryptographic tool, allowing multiple parties (di-
agnosed users and healthcare providers) to privately match contact
information and notify users who may have been infected. There
are numerous applications that are better suited to the multiparty
case, for example, several calendar users wish to find a commonly
available time slot for a meeting; several companies wish to com-
bine their data to find a target audience for an ad campaign [19];
a set of enterprises with private audit logs of connections to their
corporate networks wish to identify similar activities in all net-
works. Recently, a variant of multiparty PSI [28] has been used for
cache sharing in edge computing, which allows multiple network
operators to store a set of common data items with the highest
access frequencies in their capacity-limited shared cache while
maintaining the privacy of their datasets. We can fairly say that
today, PSI is one of the most motivated questions within the field
of secure computation, which is well reflected in the progress made
in the recent several years.

In this work, we consider the problem of multiparty PSI and
devise protocols that are secure in the presence of a malicious
adversary who may statically corrupt any strict subset of the parties.

1.1 State of the Art for Multiparty PSI

The complexity of various concretely efficient multiparty PSI pro-
tocols is presented in Table 1. Below we consider the works most
relevant to ours.

1.1.1  Kolesnikov et al. The first concretely efficient multiparty PSI
protocol was presented by Kolesnikov et al. in CCS’17 [23] which
is implemented using fast oblivious transfer (OT) extension and
is secure in the random oracle model. This protocol has two ver-
sions, one against a semi-honest adversary and the other against an
augmented semi-honest adversary (who may change the corrupted
parties’ inputs prior to the execution), such that in both versions the
adversary may corrupt an arbitrary strict subset of the parties. That
is, if the total number of parties is n, the adversary may corrupt any
t < n parties. While the performance of their semi-honest version
improves as t decreases, their augmented semi-honest version per-
forms evenly, no matter what ¢ is (e.g. a case where the parties are
relatively reliable, in which we can assume ¢t < n/2 or t = 1 would
not improve the protocol’s performance). The main contribution of
[23] is the introduction of a two-party functionality called oblivious
programmable PRF (OPPRF) which is run between a sender and a
receiver. The sender has a set of points P = {(x;, y;) } that it wants
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Protocol Communication Computation Corruption Rounds Security Concretely
otoco Leader Client Leader Client Threshold Efficient
O(nml) O(mA) O(nmlog mk) O(mk) 4 semi-honest
HV17 [17] O((n? + nmlog m)x) O((n + mlog m)x) o(m?) t<n 7 malicious No
GN19 [14] O((n® + nm)x) O(nmlog m) O(mlog2 m) t<n 12 malicious No
O(m(A+k)) O(mk) 3 augmented semi-honest
KMPRT17 [23] O(nm(A+x)) O(mt(A+ 1)) O(nk) O(mtx) t<n 1 semi-honest Yes
CDGOSS21 [2] O(nm(A + k +logm)) O(m(A +x +logm)) O(nmk) O(mk) t<|(n+1)/2] 8 semi-honest Yes
ENOC21 [10] | O(nmk? + nmx log(mxk)) | O(mx? + mx log(mx)) O(nmk) t<n 8 malicious Yes
Ours- 3.3 O((m+n)x) O(mx) O(nmx) O(mk) t=1 5 malicious Yes
Ours- 4.4 O(mk - max {t,n — t}) O(mx) O(mk(n —t)) O(mtx) t<n 4 malicious Yes

Table 1: Analytic comparison of related work with our protocols. Notation: n parties; at most ¢ are corrupted and colluding; each party holds a set of size m. A

and k are statistical and computational security parameters, respectively.

to ‘program’ (with distinct x’s and pseudorandom y’s) and the re-
ceiver has a set of queries {g;}. For each query g; the functionality
outputs a PRF evaluation on g; to the receiver, under the following
condition. If g; = x; for some j then the functionality outputs y;
and otherwise it outputs Fy (q;) (where k is a random key chosen
by the functionality). The functionality guarantees that the receiver
cannot tell whether the obtained result is ‘programmed’ or not and
that the sender could not tell what are the receiver’s queries.

The first phase of the protocols in [23] requires the parties to
obtain many shares of zero. The main difference between the two
versions is that in the semi-honest setting an expensive conditional
zero-sharing protocol is required, which incurs an OPPRF invoca-
tion between each pair of parties; whereas for the augmented semi-
honest a cheap unconditional zero-sharing protocol is sufficient,
which requires each pair of parties to exchange only a symmetric
key.

When the receiver has only a single query, a protocol for OPPRF
can be instantiated very efficiently using only oblivious transfers
(OT). [23] demonstrated an efficient extension in order to allow the
receiver to have multiple queries as follows. The receiver maps its
queries qi, . .., qm to m’ bins, By, ..., By, using cuckoo hashing
with k hash functions hy, ..., ki, such that each bin has at most
one query in it. The sender, however, maps its points into m’ bins
with simple hashing using all hy, ..., b, so each point (x;,y;) is
inserted to all bins By, (x,) for j € [k]. By this, except with negligible
probability, each sender’s bin contains at most O(logm) points.
Now, the sender and receiver can run m’ instantiations of the single-
query OPPRE, such that in the i-th instantiation the sender inputs
all points that were mapped to its B; and the receiver inputs the
query that was mapped to its B; (or some dummy query if that bin
is empty).

That approach, however, is not secure against a malicious sender.
The sender may map the point (x,y) only to a subset of the re-
quired bins By, (), - - -, Bp, () instead of all of them. Suppose that
the adversary learns whether the receiver obtained y or not (this
information may be leaked in real-world scenarios). Such leakage
is not isolated, i.e. if the sender put (x,y) only in one bin By, (4)
and the receiver indeed obtained y, that necessarily means that the
receiver put its query g = x; in bin By, (4, which leaks information
related to other queries that could have been put in that bin.

Recently, Pinkas et. al. [29] proposed a two-party PSI secure
against a malicious adversary. Their protocol relies on cuckoo hash-
ing, and yet, protects from the malicious sender’s attack described
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above. At the core of their construction is a hidden malicious version
of OPPRF supporting multiple queries!. We use that maliciously
secure OPPRF in our protocols and present the details in Appendix
B for completeness. Garimella et al. [13] used that version of OPPRF
to replace the OPPRF in [23] in order to obtain a protocol that is
secure against a malicious adversary. Their protocol, as we discuss
in Section 1.2, is secure against t = n — 1 parties, however, when
t < n — 1 their protocol’s performance remains the same (i.e., as if
it has to protect against a coalition of t = n — 1 corrupted parties).

1.1.2  Chandran et al. A concurrent and independent work by
Chandran et al. [2] improves the above protocol, against a semi-
honest adversary, as well as extends it to circuit-based PSI (where
any post-processing function may be privately operated on the
intersection) and to Quorum PSI (allowing the protocol to output
values that are intersected by only a subset of the parties, instead of
all of them). [2] however, considers a weaker adversary, who may
corrupt at most ¢t < n/2 of the parties (i.e. honest majority). That
relaxation of the adversarial power allows removing the expensive
conditional zero-sharing that is the bottleneck in [23] and use an
(n, t)-secret sharing scheme (e.g. Shamir’s) instead. This ensures
that any subset of at most ¢ parties could not reveal intermediate
results during the execution of the protocol. In contrast to [2], the
protocol we present in this work is maliciously secure even in the
dishonest majority setting (i.e. n/2 < t < n). Furthermore, even
in the honest majority setting, our protocol offers slightly better
security as we can pick the ¢ + 1 parties with the highest reputation
to process the intersection (i.e. to play as servers). This means that
only if this particular set of ¢ + 1 parties collude they can reveal
information, whereas in [2] any ¢ + 1 parties may do so.

1.1.3  Ben Efraim et al. Another concurrent and independent work
by Ben Efraim et al. [10] presents the first concretely efficient ma-
liciously secure multiparty PSI, cleverly combining results from
semi-honest multiparty PSI [18] and malicious two-party PSI [31],
which are based on garbled bloom filter (GBF). A bloom filter (BF)
is a data structure mainly used for recording the membership of
items in a set. A set of items A = (ay,...,am) (with a; € {0,1}")
is encoded to a codeword B = (by,...,byy) (Where m’ = O(mA)
and b; € {0, 1}) using a set of k hash functions hy, .. ., hy. For every
a € A and for every j € [k] it holds that bh,—(a) = 1 and all other

IWe note that a newer version of their PaXo$ construction was introduced in [32] and
solves a minor security issue. We stress that future construction should consider using
the fixed version in [32].
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positions in B equal 0. Thus, to check whether an item x belongs to
A, check whether A je(x] bhj(a) = 1. For every a ¢ A it holds that
Njelk] bhj(d) = 1 only with negligible probability (which accounts
to ‘false positive’).

A garbled bloom filter, introduced by Dong et al. [8] allows
encoding A = (ai,...,am) to a codeword B = (by,..., byy) (with
b; € {0, 1}4) such that for every a € Aitholds that @ie[k] b, (a) =
0% whereas for d € A it holds that @ie[k] bp,(a) equals a random
value except with negligible probability. The false positive rate for
GBF is negligible, just like in a plain BF. A combination of GBF and
oblivious transfer (OT) leads to a very simple two-party PSI (against
a semi-honest adversary). Specifically, let a sender S and a receiver
R have the sets X = (x1,...,xm) and Y = (y1, . .., ym) respectively.
The receiver encodes Y’ = BF(Y) = (yi,...,y,,) and the sender
encodes X’ = GBF(X) = (x{,...,x],) (note that x] € {0, 1}* and
y; € {0,1}). Then, for i € [m'] the parties invoke an OT where
the sender inputs two strings (mg, m1) and the receiver inputs bit
b and obtains my,, where my S {0, 1}A, mp = xlf and b = ylf. Let
R=(ry,...,rny) be the vector of OT results. The receiver concludes
that y € Y is in the intersection iff @ie[k] Thi(y) = o’

That simple protocol is insecure when the sender or receiver is
malicious. A malicious sender may encode more than m items into
the GBF (e.g. by setting y; = 07 for every i € [m’]) and the receiver
may input 1 in every OT instance, by which it obtains the entire GBF
of the sender, and may perform a brute force attack to extract the
sender’s input set X. Protecting against a malicious sender is easy,
by using a random OT instead. In random OT (ROT) both messages
mg and mj are chosen uniformly at random by the functionality
and are given to the sender as an output. The new protocol is
exactly as above, except that the sender does not encode X to a GBF.
Instead, the parties run m’ ROT instances, by which the receiver
obtains R as before. Let mf), m’1 be the random messages used in
the i-th ROT instance, then for each x; € X the sender computes
x| = @je[k] milj(xi) and send x| to the receiver. The receiver in
turn computes ylf = @je[k] Th;(ys) for every y; € Y. The receiver
concludes that y; is in the intersection iff y; € {x{,...,x;,}. This
way the sender may input only m items to the PSI protocol since
it has to explicitly compute their random representation and send
them to the receiver.

Preventing against a malicious receiver is more involved. This
was first addressed by Rindal and Rosulek [31] using the cut-and-
choose technique, which allows the receiver to prove that it indeed
encoded only m items in its bloom filter Y’. The result protocol,
which is secure against malicious adversaries, is quadratic in A (the
statistical security parameter) whereas the protocols we present in
this paper are linear in A. That means that the storage, computation,
and communication (i.e. number of ROTs) of [10] are much larger
than the set size m. We can observe from [10, Table 9] that the final
bloom filter size and the number of ROTs performed in the protocol
are almost 200X and 300x larger than the plain set size m whereas
in our protocols the concrete complexity is larger only by a small
factor (2-3).

We believe that, just like in the malicious two-party setting, a
transition from GBF-based [31] to GCT-based [29] protocols will
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take place in the malicious multiparty setting as well and that the
GCT approach will prevail.

1.1.4  Other Multiparty PSI Protocols. The first multiparty PSI was
proposed by Freedman, Nissim and Pinkas [12], relying on oblivi-
ous polynomial evaluation (OPE), which in turn is based on homo-
morphic encryption (e.g. Paillier). In the two-party version, Alice
interpolates a polynomial p(x) = X7, a;x" whose roots are her
items x1, . . ., X;, and sends the encrypted coefficients Enc,i (a;) to
Bob (where (ek, dk) is the encryption-decryption key pair and dk
is known only to Alice). For every item y; of Bob, he then homo-
morphically computes the ciphertext y] = Encer(r; - p(yi) + yi),
for a uniformly random r;, and sends it back to Alice. Alice then
decrypts y* = Decgy (y;) and concludes that y* is in the intersec-
tion iff y* € X. It is easy to see that this protocol is correct and
secure against a semi-honest adversary. That approach is followed
by other works, like [4, 5, 17, 21, 33, 34].

The recent work by Ghosh and Nilges [14] replaces the expensive
homomorphic encryption with an efficient protocol for oblivious
polynomial evaluation (OLE). Their asymptotic communication
complexity is near-optimal, however, their protocol requires the
parties to perform polynomial interpolations over a large number
of points (i.e. the polynomial degree is the set size O(m)), which
renders their protocol impractical for large sets (e.g. more than few
tens of thousands). As a result, it was not implemented.

Other protocols follow the bloom filter approach described above.
Miyaji et al. [25, 26] combine bloom filters with additively homo-
morphic encryption to obtain a non-colluding server-aided solution,
and Zhang et al. [36] achieve maliciously secure multiparty PSI, but
in a model in which the two ‘servers’ Py and P; do not collude (in
fact, their collusion would make the protocol insecure even against
a semi-honest adversary).

1.2 Overview of Our Results & Techniques

Our aim is at constructing a scalable maliciously secure multiparty
PSI protocol. We make use of two main building blocks: oblivious
programmable PRF (OPPRF) and oblivious key-value store (OKVS).
The former is the basis for the fastest multiparty PSI protocols in
the semi-honest setting [2, 23]. Pinkas et al. [29] strengthened the
original cuckoo hashing based OPPRF construction of [23] to the
malicious setting (see details in Appendix B).

An OKVS [13] is a data structure in which a sender has a set
of key-value mapping ({x;,y;}) with (pseudo)random y;’s, and
she wishes to hand that mapping over to a receiver (or receivers),
allowing the receiver to evaluate the mapping on any input but
without revealing the keys x;. Correctness of the data structure
must ensure that if the other party evaluates the OKVS on some
q = xj then the result is y;. Obliviousness here is similar to that
of the OPPREF: given the OKVS, the receiver cannot tell what keys
x;’s are encoded. The most compact OKVS that one can think of
is a polynomial. That is, the OKVS S = (ay, ..., &m) is the set of
coefficients of an (m — 1)-degree polynomial p(x) = Z;’zlal aixt
where m is the number of points and p is interpolated over those
points ({x;,y;}). Given the coefficients S, the receiver can evaluate
the polynomial p on every query. This OKVS is size-optimal: it
encodes m points using exactly m entries (coefficients). Correctness
is obvious; obliviousness follows from the fact that if the y’s are



Session 4C: Private Set Intersection

(pseudo)random then so is the polynomial, and p is independent
of the x’s. When m is large, however, that OKVS construction is
not practical as it requires interpolation and multi-point evaluation,
which are super linear in the degree. The PaXoS data structure
[29, 32], which is based on cuckoo hashing, is proven to be a much
more practical OKVS [13], which compromises a bit on compactness
(i.e. its size is 1.5 — 2.5% larger than the number of points m), but
it is very fast to encode and decode (in analogy to interpolation
and evaluation). While our protocols can be instantiated with any
OKVS, we rely on that specific construction in our implementation.

The main difference between the two primitives is that OPPRF
actively enforces the receiver to evaluate the function F on a limited
number of queries, whereas OKVS is simply a data structure that
is sent in the clear to the receiver, thus, no limit on the number of
evaluation is set. This difference has a significant impact on their
performance. Specifically, an OT-based OPPRF [22] incurs about
4.2 — 4.5X more communication and is about 2X slower. In addition,
an OKVS is merely a single message sent from the sender to the
receiver while an OPPRF requires a 2-round protocol.

We present PSI protocols for two different settings. In the first
one we assume no collusion among the parties (i.e. n parties and
t < 1) and in the second we assume an arbitrary collusion (i.e. n
parties and t < n). We give a high-level idea of our techniques:

e No collusion. In this case we do not even require an OPPRF.

Specifically, we reduce the problem of multiparty PSI to the
problem of two-party PSI. As an example, consider three par-
ties Py, Py, P3 with sets A, A2, A3 respectively. Party P; picks
arandom key k and send it to Py, in addition, P; generates an
OKVS S using the points (a%, Fk(a})) for every a% € Al and
sends it to P3. Then P, computes b? = Fk(a?) for every a?
and P53 evaluates b? =S (a?) for every a? € A3, Note that at
this point if x is in the intersection then both P, and P3 have
b? = b;, = Fy.(x) for some j and j’. Otherwise (if x is not in
the intersection) then either P, or P53 (or both) does not have
Fi.(x). Thus, P2 and P3 can run a two-party PSI protocol over
the inputs {b?},-E [n] and {b?}ie [n] and obtain the intersec-
tion Al N A2 N A3. Furthermore, we observe that instead
of running the usual two-party PSI (e.g. [29, 31]), they can
run a server-aided PSI with P; being the server. Since a mali-
cious server-aided PSI is much faster than a plain malicious
PSI (~0.8 seconds vs. ~5 seconds for sets size of m = 220)
the overall running time for the three party PSI decreases
from ~9 seconds (with plain PSI) to ~4.8 seconds for sets of
size m = 220, almost 2x improvement. We extend this simple
idea to an arbitrary number of parties, resulting with an
extremely fast protocol. For instance, n = 32 parties with set
size of m = 220 complete the protocol in 10 seconds.
Since a server-aided two-party PSI does not require OT (e.g,
public-key base OT), our multiparty PSI protocol relies only
on symmetric-key primitives. To the best of our knowledge,
this is the only construction with such a property.

e Arbitrary collusion. This is the challenging setting, in
which the adversary may corrupt any strict subset of the
parties. We present a simple protocol that can be described
in a modular fashion using only high level primitives OP-
PRF and OKVS (sealing lower-level complex primitives like
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OT). Our protocol can be calibrated as a function of ¢ such
that the smaller ¢ is the faster the protocol. For example,
with n = 15 and m = 2?° the runtimes of our protocol
are {7.2,22.8,32.5,58.23} seconds for t = {1,4, 7, 14} respec-
tively. In the worst case, when t = n — 1, our protocol con-
verges with the protocol of Garimella et al. [13] (which is the
same as the augmented semi-honest version of [23], except
the OKVS instantiation); both have the same performance.
Calibration of the protocol according to the upper bound on
the number of corrupted parties is not trivial. That is, the
augmented semi-honest protocol by [23] and the malicious
protocols by [10, 13] protect from a collusion of n — 1 parties
even though t may be smaller. In addition, the semi-honest
honest majority protocol by [2] protects against a collusion
of n/2 — 1 parties even though ¢ may be smaller. It is not
known how to improve the performance of these protocols
in accordance to smaller ¢.

To withstand a collusion of up to t parties, our protocol
(very informally) reduces the problem of n-party PSI to the
problem of (¢ + 1)-party PSIL Specifically, n — ¢ — 1 parties
play as clients, with a very lightweight computational and
network load. In addition, t parties play as servers, and the
last party plays as a pivot. The challenge is to share the
clients’ sets to the possession of the pivot and the ¢ servers
in a way that does not reveal anything about the intersection
of the honest clients’ sets. To this end, we utilize a technique
similar to that in the non-collusion setting: Each client picks
a random PRF key for each server and sends it to that server.
Then, the client generates an OKVS where the keys are its
items and the values are a combination of PRF evaluation
using all these keys, and send that OKVS to the pivot party.
At this point, for each item in the intersection (of all parties’
sets) the servers and the pivot (in total ¢ + 1 parties) have a
sharing of zero. In contrast, for items not in the intersection,
their sharing is for a random value. The servers and pivot
find these items for which the shares sum up to zero by
running a dedicated ZeroXOR protocol.

We compare our protocols to recent (implemented) multi-
party PSI protocols [2, 10, 13].

2 PRELIMINARIES

Denote the set {1,...,n} by [n]. Definitions for [oblivious, pro-
grammable] PRF (i.e. OPRF, PPRF, and OPPRF) are given below,
taken almost verbatim from [23]. Denote by k and A the computa-
tional and statistical security parameters, respectively. PPT is short
for probabilistic polynomial time. We denote the concatenation of
two bit strings x and y by x||y. In our PSI protocols, we denote the
set of party i of size m by A’ = {ai, coab)

2.0.1 Private Set Intersection. The functionality for n-party private
set intersection is given in Functionality 2.1. Note that in the semi-
honest setting the functionality may give the intersection output
to all parties (rather than to P, only) and the adversary always
sets abort = 0. Also note that even though the functionality allows
an unbounded bit-length for the items, in practice (and in our
protocols in particular) it is sufficient to consider items of length «,
so it is possible to input the item H(x) instead of the original item
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x € {0,1}" where H : {0,1}* — {0, 1} is a collision-resistant hash
function.

FUNCTIONALITY 2.1. ( Multiparty PSI- #7°™ )
PARAMETERS: The number of parties n, the number of corrupted

parties ¢t < n and the size of each input set m.

BEHAVIOR: Wait for input A’ = {ai ..... al,} c {0,1}* from party
P; and abort € {0, 1} from the adversary. If abort = 0, give output
Nieln] Al to P,,. Otherwise give L to Pp,.

2.0.2 Oblivious PRF. An oblivious PRF (OPRF) [11] is a 2-party
protocol in which the sender learns a PRF key k and the receiver
learns F(k, q1), ..., F(k,qm), where F isa PRF and (q1, . .., qm) are
inputs chosen by the receiver. Note that we consider a variant of
OPRF where the receiver obtains outputs of multiple statically cho-
sen queries. The OPRF ideal functionality is given in Functionality
2.2.

FUNCTIONALITY 2.2. ( Oblivious PRF - 7{]0:;’ )

PARAMETERS: A PRF F, and a bound m on the number of queries.

BeHAVIOR: Wait for input (qy, . .., ¢m) from the receiver R where
qi € {0,1}*. Sample a random PRF key k and give it to the sender
S. Give {F(k,q1),...,F(k,qm)} to the receiver.

2.0.3  Programmable PRF (PPRF). A programmable PRF consists of
the following algorithms:

e KeyGen(k,P) — (k, hint): Given a security parameter k
and set of points P = {(a1,t1), ..., (an, tm)} with distinct
aj-values, where a;, t; € {0, 1}, generate a PRF key k and
(public) auxiliary information hint. We denote the set {a;};
by keys(#P) and the set {t;}; by vals(P).

o F(k, hint,x) — y: Evaluates the PRF on input x, giving out-
puty € {0, 1}*.

A programmable PRF satisfies correctness if for all (x,y) € P,
and (k, hint) « KeyGen(k, P) it holds that F(k, hint, x) = y. For
security consider Experiment 2.3.

EXPERIMENT 2.3. ( Exp”™ (P, Q,x) )
(1) For each a; € P choose random ¢; « {0, 1}
(2) (k, hint) < KeyGen(k, {(ai,t}) | a; € keys(P) 1)
(3) return A(hint, {F(k, hint,q) | g € Q})

We say that a programmable PRF is (mj, my)-secure if for all
P1, Po, Q where |P1| = |P2| = m1, |Q| = my, and all PPT adversary
A:

|Pr[Exp” (P1, Q. x)] — Pr[Exp? (P2, 0, )]| < negl(x)

Intuitively, security means that it is hard to tell which set of
points is programmed, given hint and my outputs of the PRF, if
the points were programmed to random outputs. Note that this
definition implies that unprogrammed PRF outputs (i.e., those not
set by the input to KeyGen) are pseudorandom. The ‘hint’ is part
of the syntax since all constructions of PPRF leak some object to
the receiver in addition to the PRF outputs. This object is called a
hint and security is guaranteed even though the hint is known to
the receiver.
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Oblivious Programmable PRF (OPPRF). The formal definition of
an oblivious programmable PRF functionality is given in Function-
ality 2.4. It is similar to the plain OPRF functionality except that
(1) it allows the sender to initially provide a set of points # which
will be programmed into the PRF; (2) it additionally gives the “hint”
value to the receiver. OPPRF construction for both the semi-honest
and malicious setting were proposed by Kolesnikov et. al. [23] and
by Pinkas et. al. [29, 30] ([29] proposes the malicious construction).

7:F,m1,mz )

FUNCTIONALITY 2.4. ( opprt

PARAMETERS: A programmable PRF F, an upper bound m; on
the number of points to be programmed, and a bound m3 on the
number of queries.

BeHAVIOR: Wait for input P = {(ay, t1),..., (@my>tm,)} from
the sender S and input (qi,...,qm,) from the receiver R.
Run (k,hint) « KeyGen(k, P). Give (k, hint) to S and
(hint, F(k, hint, q1), . .., F(k, hint, qm,)) to R.

2.0.4 Key-Value Store (KVS). A Key Value Store consists of two
algorithms:
e Encode takes as input a set of (k;,v;) key-value pairs from
the key-value domain, K X V, and outputs an object S (or,
with negligible probability, an error indicator L).
e Decode takes as input an object S, a key x and outputs a
value y.

AKVS is correct if, for all A C K x V with distinct keys:
e Pr[Encode(A) = 1] is negligible.
e if Encode(A) =S # L and (k,v) € A then Decode(S, k) = o.

Oblivious Key-Value Store (OKVS)[13]. Consider Experiment 2.5.

EXPERIMENT 2.5. ( Exp™ (K = (k1,....km)))

(1) fori € [m]: choose uniform v; « V
(2) return A (Encode({(k1,v1), ... (km,vm)}))

We say that a KVS is oblivious if for all K7, K> of size m and all
PPT adversaries A:

| Pr[Exp™ (K1)] = Pr[Exp™ (%2)]| < negl(x)

In other words, if the values v; are chosen uniformly then the output
of Encode hides the choice of the keys k;.

The key difference between OPPRF and OKVS is that an OPPRF
limits the number of queries the receiver can make, whereas in
OKYVS the receiver is limited by its computational power only. We
show that, despite that relaxation, it is possible to replace some
invocations of OPPRF within a PSI protocol with invocations of
OKVS, which improves performance.

It is proven in [13] that the PaXoS data structure [29] satisfies
the correctness and obliviousness OKVS’s requirements described
above and we use it in our implementation.

2.0.5 Unconditional Zero Sharing [23]. As the name suggests, the
unconditional zero sharing provides the parties with a sharing
function S : {0,1}* x {0,1}¥ — {0,1}* and a key K; for party P;,
such that for every x, we have that s; = S(Kj, x) is P;’s random
share, and @?:1 si = 0. The functionality from [23] is given below
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for completeness of the presentation. Its construction abn is

zeroShare
presented in Protocol C.1.

o)

FUNCTIONALITY 2.6. ( Zero-Sharing -
zeroShare
PARAMETERS: n parties. The dictionary store is initialized to 0.

Benavior: Upon an input x from P;, if store[x] does not ex-
ist, generate random values s, .. ., s, s.t. @?:1 s; = 0 and store
store[x][i] = s; for i € [n]. Output store[x][i] to P;.

3 PSI WITH NO COLLUSION

This section serves as a warm-up and presents simple protocols
for n-party PSI. Even though the general protocols in this section
are not the most efficient ones, the purpose of presenting them is
twofold: (1) demonstrating the simplicity of basing the PSI protocol
on the higher-level abstraction of OKVS; and (2) this presentation
yields the most efficient three-party PSI protocol to date, for both
the semi-honest and malicious settings.

In Section 3.1, we present a recursive multiparty PSI protocol for
the case of no collusion, that is, the adversary corrupts at most one
party. In particular, this covers an important setting of 3 parties and
an honest majority (which was extensively explored in the MPC
literature, e.g. [27]). Obviously, if a multiparty protocol incurs O(1)
rounds, then the recursive protocol incurs O(n) rounds. In Section
3.2 we present an optimization of the first protocol, which has only
O(1) rounds.

3.1 A Recursive Construction with O(n) rounds

We reduce the problem of n-party PSI with no collusion (i.e. t = 1)
to the problem of n — 1-party PSI with no collusion. The idea
is that party P; chooses a random PRF key k, which she sends
to P,. She then encodes her input A into an OKVS S as § «
Encode({(a},F(k, a}))}a}eAl), which she sends to Ps, ..., Py,. Pa,

in turn, computes A® = {F(k, a?) | a? € A%} P e {P3,...,P,} de-

codes the given OKVS on its values A’ and obtains A = {Decode(S, a;) |

a;'. € Ai}. Now, parties Py, ..., P, run 7—;’?1 with their new sets A’
The parties repeat this process recursively until party P, obtains
the result.

Note that the above simple recursive protocol has a caveat: a
malicious P; could encode (a’, F(k, a’’)) in the OKVS where a’ € A?
foralli = 3,...,n and a”’ € A? but neither a’ nor a’’ are in the
intersection (suppose that P; has that auxiliary information). This
way, P, incorrectly obtains @’ in the output, since now all parties
P; (i € {1,...,n}) input F(k,a") to Tp’;’l

We can easily mitigate that attack. Our protocol (Protocol 3.1)
instructs Py, ..., P, to augment the items they input to Tp ’;i’l: in-
stead of only dj. = Decode(S, aj.) party P; inputs both a; and dj. (a
concatenation of them). This ensures that Tp’;l’l outputs only the
correct intersection.

3.1.1 Recursion Base Case: Server-Aided Two-Party PSI. The tem-
plate above shows a reduction from n-party PSI to (n — 1)-party
PSIL. Our base case would be a protocol for two parties. We ob-
serve that, since there is at most one corrupted party, this base case
can be instantiated by a server-aided two-party PSI, where one of
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PROTOCOL 3.1. ( Recursive PSI - nr?s’il’m )
PARAMETERS: There are n > 2 parties Py, ..., P, and an adversary

A. The protocol uses the functionality 7‘;15?1’1"" and an OKVS

scheme (Encode, Decode).

ProTOCOL:

(1) Party P; chooses a PRF key k and sends it to P,.
(2) P, runs® S « Encode({(a},F(k, a})) }a}EAl)’ and sends S

toPs,...,P,.
(3) Party P, computes A% = {ai. ||F(k, ai.) }ai.eAz'
(4) Party P; € {Ps,...,P,} computes Al =

{a} ||Decode(S, a}) }a;'.eAi'

(5) Parties P, ..., P, invoke ?rjlsi_l’l’m where Al is P;’s input
set.

(6) Party P, obtains the intersection X = {x||x}

T;Si*l’l’m and outputs {x | x||x € X}.

x||xen; Al from

“In case that A is malicious, party P; uses H(aj.) instead of a’;. in steps
(2)-(4) above, where H is a random oracle. -

Py, ..., Py takes the role of the server. Specifically, we can use
the server-aided PSI in Kamara et al. [20] or the one by Le et al.
[24]. Both protocols allow two parties to obtain the intersection of
their sets using an untrusted third party where it is assumed that
the third party does not collude with neither of the parties. Since
these protocols with a non-colluding server are much more effi-
cient our overall construction becomes more efficient as well. For
completeness, a description of those protocols is given in Appendix
A.

3.1.2  Discussion: Insecurity in the Face of Collusion. We demon-
strate the reason the above protocol is insecure when the adversary
corrupts two or more parties. If P, colludes with P;, P, could send
the PRF key k to P;. Now, P; can call Decode(S, x) on any x and
receive either F(k, x) or some random value, depending on whether
x € Al or not. If the inputs are known to be from a relatively small
domain (e.g phone numbers), P; can perform a check on every input
in the domain and expose all P;’s input items.

Note that the attack above is possible since P; has a key k and
an OKVS §, both objects do not imply any limit on the number of
queries to them (i.e. P; can compute F(k, -) and Decode(S, -) arbi-
trarily many times). In order to weaken the threshold assumption
(i.e. to make the protocol secure even against collusion), one may
use an 721;’;':;”2 in place of the OKVS. That is, in Step 2 of Protocol
3.1, P; runs an OPPRF protocol with each of Ps, . . ., P,,. Now, by the
definition of OPPRF, P; can make only a limited number of queries.

Although that modification seems to strengthen the protocol
security, it would not satisfy the security requirement defined by
functionality ﬁi’it’m. Recall that the functionality outputs to P,

only the items that are in the intersection of all sets. However, in
the modified protocol the adversary, who corrupts parties P;, P;
(2 < i, j) may learn the intersection of the sets of parties Py, P;, P;
by having P;, P; agree on the same input set Al = AJ and compare
their OPPREF results. An equal OPPRF results on a query x means
that x € A' N A' N A/ whereas an unequal results on x means that
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x ¢ Al. Such an intersection of three parties is not permitted by
. . n,t,m
functionality Tpsi .

3.1.3 Three-party and dishonest majority. Note that when n
3, the above adversarial behavior is not considered as an attack,
since the intersection of the sets of three parties is actually the
intersection of all sets, which is allowed to be revealed. Thus, we
find such a modification to Protocol 3.1 useful for implementing
7‘;35[2'" That is, to securely compute the intersection of three sets
even when two of the parties are corrupted and colluding.

3.1.4 Complexity and Security. The protocol recursively invokes
itself with decreasing number of parties, where our base case is
a two-party PSI. That means that each of Py,..., P, encrypts a
single OKVS and decodes i — 1 instances of OKVS. Furthermore,
that means that the protocol has O(n) rounds of communication,
which may be the bottleneck when the number of parties is large.

THEOREM 3.2. Protocol 3.1 (Jrs;il’m

ity ?;Z’il’m in the ?;)Z:l’l’m-hybrid and random oracle model in the
presence of a malicious adversary.

) securely computes functional-

Proor. Correctness is clear from the definitions of OKVS, PRF
and PSI. We turn to show security by presenting a simulator to each
of the following four cases, for each case we describe simulation in
both the semi-honest and malicious settings.

Corrupted P;. In the semi-honest setting, the simulator is given
the P;’s input A! = {a%, ...,al}, he inputs it to the ideal-
world functionality and obtains an empty output. In the
real execution P; receives no further messages, thus, which
trivially concludes the simulation. In the malicious setting,
the simulator has to extract P;’s actual input. To do so,
the simulator internally runs P; and for each call H(x) to
the random oracle, the simulator enters x to a list L. Then,
playing the role of P, who receives k and P; (i = 3,...,n)
who receives S, the simulator concludes with the actual in-
put set A' = {x € L | F(k,H(x)) = Decode(S, H(x))}.
The simulator inputs A! to the ideal world functionality.
Note that except with negligible probability, for every x’
that was not queried the random oracle, it follows that
F(k,H(x’)) # Decode(S, H(x")), and thus x’ does not ap-
pear in the real execution result intersection. This concludes
the simulation because P; does not receive any further mes-
sage in both worlds.

Corrupted P,. The simulator is given A?, inputs it to the ideal
world functionality and receives nothing back. In the real
execution P, receives a random key from P, so the simulator
generates a random key k and sends it to Py, which concludes
the simulation in the semi-honest case.

In the malicious setting, the simulator runs P, internally
and gives a random key k. The simulator observes Py’s calls
to the random oracle and records them in the set L. Then,
the simulator observes the set of values, L’, input by P,
to the Tp ';le functionality and concludes with the set

A’ ={xeL|3yel :F'(ky) = H(x)}. The simulator
inputs A? to the ideal world functionality. Note that for each
value y € L’ for which F~!(k,y) is not a random oracle
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output on some value from L, the probability that F~!(k, )
is a random oracle output for some value in A’ (for i # 2) is
negligible, since there are at most (n — 1)m random oracle
outputs in the range {0, 1}*, the probability that F~1(k, y) is
one of them is negligible. Therefore, with high probability y
would not impact the result intersection in the real execution.

Corrupted P; (3 < i < n). The simulator is given A!, sends
it to the ideal world functionality and receives no output.
In the real execution P; receives an OKVS from P, so the
simulator computes S «— Encode({(k;,v;)}) with m random
pairs (kj,v;) and sends S to P;. By the obliviousness property
of S, it is not possible to distinguish between S output by
the simulator and the OKVS that has A! as keys in the real
execution.
In the malicious setting the simulator extracts P;’s input set
as follows: it runs P; internally with the random OKVS S as
its first message. It observes the set of P;’s random oracle
queries and records them in the list L. Then, it receives P;’s

?—njl,l,m

psi

the set A’ = {x | x € L A Decode(S, H(x)) € L’}. As before,
for a value y in L’ that is not in the range of Decode(S, -) or
is Decode(S, r) where r not being a random oracle respond
to any value in L, with high probability y has no impact on
the result intersection in the real execution. Therefore we
may ignore it in the ideal world simulation.

Corrupted P,,. The simulation here works exactly as in the previ-
ous case with S being the OKVS sent to P,,. The simulator

input set L’ to the functionality and concludes with

inputs the concluded set A’ to the ideal world functionality
and indeed receives an output X - the intersection of all
parties’ sets. The simulator hands {x||Decode(S, x)}ex to
P, (in the internal execution) and outputs whatever P, out-
puts. As argued in the previous case, with high probability
both worlds use the same input set of Py, therefore the result
intersection is the same.

3.2 Reducing to O(1) Rounds

Protocol 3.3 has a constant number of rounds. The idea is to ‘push’
the computation workload to a small number of designated parties,
specifically, to parties P,,—; and P,. Party P; generates the PRF keys
ki for all i € [2,n — 2], and hands k; to P;, and uses the XOR of
all F(k;, a}) as @::22 F(ki, a})je[m] to encode an OKVS S, which
she then sends to P,,. Party Py, learns an OKVS S, so she decodes it
on every a" € A", which equals ;:22 F(kj,a™) if a" was encoded
in Sp,. Similarly, party P,—1 receives the OKVS S; (encoded using
key k; received from P;) from party P; € {Py,...,Py—2}, so she
can decode it on every a1 e An-1, Again, if a" 1 was encoded
then the result is @::22 F(ki, a"1). So for a value x that is in the
intersection, both P,_; and P, compute the same value, which
looks pseudo-random to them (Because both parties learn only the
pseudo-random values encoded in the OKVS’s without knowing
the keys).

Note that, similar to Protocol 3.1, P,—1 and P,, augment their in-
put to F2L™

psi
PRF evaluation. This is required in order to mitigate a similar

to be the concatenation of the plain item and its
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PROTOCOL 3.3. (PSI- -t )
PARAMETERS: There are n parties Py, ..., P, and an adversary A.
The protocol uses the functionality 7-_'32;'" and an OKVS scheme

(Encode, Decode).

ProTOCOL%:
(1) Py chooses k; € {0,1}* uniformly and sends k; to P;, for
i=2,...,n—2.

(2) Py computes S, — Encode({(a}, @ F (ki a})} jerm1)
and sends S, to P,,.

3) P (i € {2,....n 2}) computes S;
Encode({(a} F(k;, a;:)) }je[m)) and sends S; to Pp—1.

(4) P,—y computes

«—

n-2
APl = {a}l’l 1 @ Decode(Si,a;?’l)}je[n]
i=2

(5) P, computes
A" = (! || Decode (S )} je(n)
6) Parties Pp,_1, P,, invoke F2™ with inputs A"~! and A", re-
psi p

spectively. P,, obtains X = {x| |’~C}x|\5ceA"*1mA" and outputs
the intersection {x | x||x € X}.

“In case that A is malicious, party P; uses H(a;) instead of aj. in steps

(2)-(5) above, where H is a random oracle.

attack to the one described above: a malicious P; might encode
(x, @::21 F(ki,x")) in S;, (rememeber, P; chooses all keys), where
x’ € Alforalli € {2,...,n—1} and x € A", but neither x nor x’ are
in the intersection. Now, when P, computes (Decode(Sy, x)) she
obtains @7:_21 F(ki, x"). Therefore, P,_1, Py invoke 7‘:)25[1'" with

:-’:_21 F(ki,x") as one of the values in their sets, leading P, to
falsely output the value x.

Let us remark that in the case of n = 3, party P, acts as if
she is party P,_;. Namely, P, preforms steps 4 and 6, while she
does not preform step 3. As a consequence, in step 4, P, computes

At = {ap | o1, @) g g

3.2.1 Discussion. Note that even a slight modification to Protocol
3.3 may turn it insecure. For example, suppose P;, for i € [2,n — 2]
sends the OKVS S; directly to Py; then P, could compute v’ «

?:_22 Decode(S;,v) and v < Decode(Sy,v), compare the two
values v’,v”” and deduce if v € AL, v € NA! or neither. Since OKVS
does not imply any limit on the number of queries to it, P, can
preform this test with any o, thus learning more information than
what the functionality allows.

In addition, a collusion of even two parties would break the secu-
rity of Protocol 3.3: If P; colludes with P,_1, P; may send the PRF
keys k; to Pp,—1. Now, P,—1 may run Decode(S;, x) on unlimited
number of values x, by that, it receives either F(k;, x) or some pseu-
dorandom value, depending on whether x € A? or not. If inputs are
drawn from a rather small domain then Pj,_; may completely reveal
P;’s input set. We remark that the protocol remains secure against a
collusion of any subset in P({Ps, ..., Ph—2}) X{P1, Pp—1, P} (Where
P denotes the power set), as each party P; € {Py,..., Py,—2} holds
only its own key k; and set S;, which do not leak information re-
garding any other parties’ input.
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3.2.2  Complexity and Security. We begin by the analysis of the
computational complexity. Party P; computes a single OKVS, but
performs O(nm) calls to F in order to do so. Party P; (i € {2,...,n—
2}) computes a single OKVS with work linear in m. P,_; decodes
O(n) instances of OKVS, each on O(m) values, which incurs com-
putation of O(nm). Finally, P, decodes a single OKVS on O(m)
values.

We continue with the round complexity. Party P; sends k; to P;
(i € {2,...,n—2}) in the first round. She also sends S, to P, in the
same round. P; (i € {2,...,n — 2}) sends S; to P,_1 at the second
round. Parties P,_1 and P, invoke szmlm in the third and last round.
Overall, the round complexity is 2 rounds more than the protocol
for two parties. We instantiate TZS’il’m using the server-aided PSI
by Kamara et al [20] which is 2 rounds. Therefore, our protocol has
an overall of 4 rounds.

Finally, consider communication complexity. Each party P; (i €
{1,...,n — 2}) sends an OKVS encoded with O(m) values. Party
P; also sends O(n) k-length keys. P,_; and P, communication
complexity is determined by the exact protocol used to compute
the functionality 7‘;25[1’" which is O(m) as it can be instantiated
with a server-aided version.

n,l,m

psi—opt

ality FLM i the F41M -hybrid model in the presence of a malicious
psi psi

THEOREM 3.4. Protocol 3.3 (r ) securely computes function-

adversary.

Proor. To show correctness, we separate the proof to the case
where x is in the intersection and the cases where x does not belong
to A, for each i € [n].

Case 1:x in the intersection. P; encodes the point (x, @;:22 F(ki, x))
into Sy, which is sent to Py,. Party P; fori € {2,...,n — 2} encodes
(x, F(kj, x)) into S;, which is sent to P,_;. Party P,—1 decodes each
S; with key x, obtains F(k;, (x) for alli € {2,...,n — 2}, and sums
them up, resulting with @::22 F(k;j, (x). This is exactly the value
obtained by P,, when decoding Sy, on x. Thus, both P,,_; and P, adds
that value to their sets A"~ and A", respectively, so P, outputs x
as part of the intersection.

Case 2: x ¢ AL. Py sends S, to P,, without encoding x as a key in
Sn. Thus, y, = Decode(Sy, x) is a pseudorandom value that with
overwhelming probability not equal to y,—1 = @::22 Decode(S;, x).
Thus, even if x € Al forall i € {2,...,n}, the values x||y,—1 and
x||yn input to 7‘—pZSI1m would not match, therefore x is not output as
part of the intersection.

Case 3: x ¢ A for somei € {2,...,n — 2}. Party P; sends S; to
P,,—1 without encoding x as a key. Thus, Decode(S;, x) is a pseu-
dorandom value that with overwhelming probability not equal to
F(k;j, (x). Therefore, if P,,_; has x, it inputs to 7';2;11"" x||% where % is

a pseudorandom value not equal to X = @:’:_22 F(k;, (x) whereas if
Py, has x it inputs x||%, meaning that x is not part of the intersection.

Case 4:x ¢ A" ! orx ¢ A™. Parties P,,_; and P, concatenate their
plain-text values in the beginning of each value of their sets A"~
and A" respectively. Thus, they do not obtain a value corresponding
to x from ‘}L;Zs’il’m, from the correctness of this functionality.
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Simulation. We turn to show security by presenting a simulator
to each of the following four cases, for each case, we describe
simulation in both the semi-honest and malicious settings.

Corrupted P;. In the semi-honest setting the simulator is given

Py’s input Al = {a%, .. .,a,ln}, it inputs it to the ideal-world
functionality and obtains an empty output. In the real ex-
ecution, P; receives no further messages, which trivially
concludes the simulation.
In the malicious setting, the simulator has to extract P;’s
actual input. To do so, the simulator internally runs P; and
for each call H(x) to the random oracle, the simulator enters
x to alist L. Then, playing the role of P,, who receives S, and
P; (i =2,...,n—1) who receives k;, the simulator concludes
with the actual input set Al = {x e L| @:‘:_22 F(ki,x) =
Decode(Sy, H(x))}. The simulator inputs A! to the ideal-
world functionality. Note that except with negligible prob-
ability, for every x’ that was not queried to the random
oracle, it follows that @::22 F(ki, x) # Decode(Sy, H(x")),
and thus x” does not appear in the real execution result in-
tersection. This conclude the simulation because P; does not
receive any further message in both worlds.

Corrupted P; (2 < i < n — 2). In the semi-honest setting, the

simulator is given P;’s input A%, so it inputs that set to the
ideal-world functionality. In addition, P; receives a random
key from P; in the real execution, so the simulator generates
arandom key k; and set it as P;’s view, which concludes the
simulation since P; receives no further messages.
In order to extract P;’s actual input in the malicious setting,
the simulator internally runs P; and for each call H(x) to the
random oracle, the simulator enters x to a list L. Then, play-
ing the role of P,,_; who receives S;, the simulator concludes
with the actual input set Al = {x € L | Decode(S;, H(x)) =
F(ki, (H(x))} where k; is the key that the simulator gives
P; in the internal execution. The simulator inputs A’ to the
ideal world functionality. Note that, except with negligible
probability, for every x’ that was not queried the random
oracle, it follows that Decode(S;, H(x")) # F(k;, H(x")), and
thus x” does not appear in the real execution result intersec-
tion. This concludes the simulation as P; receives no further
messages in the real execution.

Corrupted Pp,—;. In the semi-honest case, the simulator has A1
so it inputs that set to the ideal world functionality. In the
real execution P,_1 receives an OKVS from P; (2 < i <
n — 2), so the simulator computes S; < Encode({(ki,v;)})
with m random pairs (kj,v;) and sends S; to P,—1, for each
i € (2,...,n—2).By the obliviousness property of S;, it is not
possible to distinguish between S; output by the simulator
and an OKVS that encodes A! as keys in the real execution.
This concludes the simulation since P,,—1 receives no further
messages in the real execution.

In the malicious setting, the simulator extracts P,—1’s input
set as follows: it runs Pp,_1 internally with the n — 2 random
S; as its first messages, as described above. It observes the set
of P,_1’s random oracle queries and records them in a list L.

Then, it receives P,—1’s input set L’ to the ‘Féllm function-

ality and concludes with the set A" ! = {x € L | x||% € L'}
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where X = @:’;22 Decode(S;, H(x)). The simulator inputs
A1 to the ideal world functionality. As before, values x that
are not in L or not in L’ would not be found in the intersec-
tion in the real execution (except with negligible probability)
and therefore can be ignored in the ideal world execution.
This concludes the simulation as P,,—1 receives no further
messages in the real execution.

Corrupted P,. In the semi-honest case, the simulator has A",
inputs it to the ideal world functionality, and obtains the
intersection X back. The simulator sends a random OKVS S,
and the set X = {x||Decode(Sp, x)}xex to P, and outputs
whatever it outputs. By the obliviousness property of the
OKVS, Sy, and X in both worlds are computationally indis-
tinguishable and expose the same correlation, i.e. for each
x||% € X it follows that Decode(Sy, x) = %.

The extraction of Pp,’s actual input in the malicious setting
follows. The simulator runs P, internally with the random
OKVS, S, as its first message. It observes the set of P,’s
random oracle queries and records them in the list L. Then,
it receives Pp,’s input set L’ to the 7_~p25[1m functionality and

concludes with the set A" = {x € L | x||% € L’} where
X = Decode(Sy, H(x)). The simulator inputs A™ to the ideal
world functionality and receives X back. It sends to P, the
set X = {x||Decode(Sn, H(x))}xex and outputs whatever it
outputs.

4 PSI WITH ARBITRARY COLLUSION

Recall the insecurity of Protocol 3.3 against a collusion of two
parties. Specifically, when P; colludes with P,_1, they have both
the keys k; and the OKVSes S; for alli € [2, n—2], which means they
can reveal P;’s input if the domain is small enough. Furthermore,
when Pj,_; and P, collude, they can reveal the intersection of all
parties Py, ..., P,—2, which is not allowed by the functionlity.

We can mitigate the above attacks as follows: First, P; picks key
ki for P; for i € [2,n — 3] and computes S, based on these keys.
Now, each P; for i € [2,n — 3] picks an additional key k; and com-
putes its S; by S; « Encode({(aj.,I:“(a;'.))}je[n]) where ﬁ(a;)
F(k], a;) @ F(ki, ai.), and sends it to P,—;. In addition, P; sends k to

— -3 — —
Pn—2, who computes {a’} 2P, Fy;(a} Dok, , (a} )} ielm)-
At this point, the ‘important information’ of the parties is spread
amongst three parties P,_3, P,—1 and Py,. Specifically, for an item

a in the intersection, party P,_p holds a,—» = @7:_23 Fy (a), party
Py—1 holds ap—1 = 7:_23 F,(a) ® Fyr (a) and party P, holds a,, =

?:_23 Fy, (a). Notice that a,—2 ® ap—1 ® a, = 0. For other values
a which are not in the intersection, the result of a,—2 ® an—1 ® an
is pseudorandom. To find out the items for which the sum a,—2 @
ap—19ay = 0 the three parties P,,—3, P,—1 and P, run a sub-protocol
called ZeroXOR, which outputs exactly those items. This solves the
aforementioned issues since now there are no two parties that
have sufficient information to reveal the intersection of the honest
parties.
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In Section 4.1 we introduce the ZeroXOR functionality and proto-
col and in Section 4.2 we present our protocol that uses it in order
to resist an arbitrary corruption of ¢t < n parties.

4.1 ZeroXOR

Let us introduce the ZeroXOR functionality. Intuitively, it allows n

parties, where P;¢[5,] holds a set of key-value pairs X; = {(xj., yj.) Yielm)s

to determine all keys that satisfy the two conditions: (1) the key is
in the intersection set of all parties’ keys; (2) the XOR of the values
associated with these common key from each party is zero. We
formally present the ZeroXOR functionality and its construction in
Figure 4.1 and Figure 4.2, respectively.

FUNCTIONALITY 4.1. ( FL™m )

PARAMETERS: n parties.

BEHAVIOR: Wait for input X; = {(x;, yj')}je[mj’ from Pje[,) where
(v < ({0,137, {0, 1}9).

Give P, the set {x | Yie[n] : (%, y%) € X; and @ie[n] yl = 0}4

One could use an OPPRF to implement our ZeroXOR as follows.
Each party P;¢[,_1] Witha set of key-value pairs X; = {(x;., y}) Yietm)
allows Py, to submit {x;’ }je[m] as queries, and to obtain the asso-

ciated responses zj. from P;. Now, zj. is equal to yj, if x;‘ = xj.,,

otherwise, zj. is pseudorandom. Consequently, if all parties have
the key x;.’, the XOR of all responses zj., Vi € [n — 1], are equal to
Py’s value y;.’, by which P, concludes that x;’ is in the intersection.

While the above correctly implements ZeroXOR functionality
and may be adequate in some scenarios, it is not secure in general.
Concretely, P, learns the actual associated values of the common
items of other parties P; even if their keys are not in the intersection.
To address this security issue, we rely on the zero-sharing idea
of [23], which serves as a one-time-pad over the values associated
with the parties’ keys. The zero-sharing functionality and protocol
are given in Section 2. Note that the zero-sharing construction
of [23] is ‘unconditional’, i.e., it produces an unlimited number of
pseudorandom zero-sharings derived from short seeds that can be
exchanged in a one-time initialization step.

The security of ZeroXOR follows in a straightforward way from
the security of its building blocks (e.g. OPPRF and zero-sharing).
Thus, we omit the proof of the following theorem.

THEOREM 4.3. Protocol ”zFé:Z;?OR
(Figure 4.1) in the presence of a malicious adversary cor-

(Figure 4.2) securely implements

F,n,m
7——zerOXOR F
rupting t < n parties, in the F;eroShare- Top’;':%’mz -hybrid model.

4.2 The Protocol
t

. n
The construction of our 7 o

and the intuition follows. The idea described above specifically for
t = 2 can be extended to any t < n as follows. Let v = n — t, the
parties Pi,...,Py—1, Py, Pps1, ..., Py are separated to three parts.
The first part Py,..., Py—1 take a role of a client; the third part
Pyt1, ..., Py take a role of a server; and the final Py is a pivot. Each

™ is formally presented in Protocol 4.4

client P; generates and sends a key klj to every server P;. In addition,
the client P; generates an OKVS S; such that each item aé € Alis
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PROTOCOL 4.2. (xfmm )
zeroXOR

PARAMETERS: A PRF F, an OPPRF functionality, n parties where P;
has the set X; = {(x;., y;.) Yielm)-
ProToCOL:

(1) Pie[n] invokes FreroShare ON x;. and obtains its share s; =

S(Ki,xj.) for every j € [m].

(2) Pieq,..,n-1} and Py, jointly invoke 7—;1;’::;'":

e P; acts as a sender, programming £ = {(x}, sj. @
y3) Yjelm

e P, acts as a receiver with queries {x]'.’ Yielm)-

e P, obtains {(x;.’, zj.) }je[m] Where zj. = yj., if (xj.,, yj.,) €
X; and a pseudorandom value otherwise.
(3) Party P, outputs {x}’ | s}? + yj'.‘ = @ie[n—l] z}}

associated with the XOR of the PRF results using all keys, namely,
@je[vﬂ,n] Fk{ (ag). Each client P; sends S; to the pivot party, who
decodes and XOR them according to its own set. That is, for every
item afl € A?, compute @ie [o-1] Decode(S, ag). Aserver P;j hasall

keys klj fori € [v—1].It uses those keys to obtain @ie[v_” ij(aé)

for every aé € AJ.If x is in the intersection then the values obtained
by the pivot and the ¢ servers are XORed to zero, and otherwise, they
are XORed to a pseudorandom value. To find which ones are XORed
to zero the pivot and servers invoke the ZeroXOR functionality. It
holds that the ¢ +1 parties Py, . . ., P, (i.e. the pivot and the t servers)
hold the information in order to determine which items are in the
intersection. In addition, any subset of ¢ or fewer parties could not
determine the intersection.

4.2.1 Complexity and security. In the following, we analyze the
performance of our protocol, considering the only dependency in m
and t. All complexities also depend on the computational security
parameter x, which we omit.

The computational complexity for clients is proportional to the
set size m and the number of corrupted parties t, since each client
P; for i € [v — 1] generates an OKVS based on all ¢ keys k{ for
Jj € [v+1,n]. A single OKVS is sent from each client to the pivot
party, and thus the communication complexity of a client depends
only on m

The computational complexity for the pivot party depends on n—
t since it decodes the OKVS given from each client. The computation
and communication complexities of the ZeroXOR protocol depend
on the cost of the OPPRF, which is linear in m. Therefore, the
overall (communication and computation) cost for the pivot party
is O(m(n —1t)).

Servers receive only keys from the clients which does not depend
on the set size. Their computation is a PRF computation per key
per item. In addition, they are engaged in the ZeroXOR protocol,
which incurs a linear overhead in m for all parties, except for Py,
who is involved in ¢+ OPPRF invocations (with each of P; for i €
[0, n—1]). Thus, for server P; (i € [v+1, n—1]) the computation and
communication complexities are O(m(n—t)) and O(m) respectively
and for the server P, they are O(m(n — t)) and O(mt).

Consider the round complexity of the protocol. Steps (2)-(3) are
run in parallel, steps (4)-(5) are computation only, and step 6 is
the ZeroXOR protocol which incurs one round for the ZeroShare
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PROTOCOL 4.4. ( PSI with collusion - 71';15’{ |

PARAMETERS: There are n parties Py, ..., P, and an adversary A.
Party P; has the set A = {a§ }je[m]- The protocol uses an OKVS
scheme (Encode, Decode) and a PRF F modeled as a random oracle

in the malicious setting.

ProTocoL %
(1) Let v = n — ¢. That is, the parties are Py, ..., Py, ..., Py s.t.
I{Pv+1s---,Pn}| =t

(2) Party P; for i. € [1,v—1] chooses keys {k{}forj € [v+1,n]
and sends k{ to Pj.
(3) Party P; fori € [1,0 — 1] sends S; to P, where

n
Si « Encode({(al, P Fys () }qerm))
J=ov+1 t

(4) Party P, received S; for i € [1, v — 1]. It computes the key-
values set

v-1
X = {(afl, @ Decode(Si,ag)}
i=1

(5) Party P; fori € [v+1, n] received keys {k;.}forj € [1,0-1].
It computes the key-values set

v-1
xXi= {(a;, @ Fk} (a;)}

Jj=1

q<[m]

q€[m]

t+1lm . .
?iroXOR with their

., Xn, by which P,, obtains the in-

(6) Parties P, ..
corresponding sets X, . .
tersection.

., P, invoke functionality

“In case that A is malicious, party P; uses H(a;) instead of aj. in steps
(3)-(5) above, where H is a random oracle.

protocol in addition to the round complexity of the OPPRF. Overall,
there are 4 rounds.
. . n,t,m
THEOREM 4.5. Protocol 4.4 securely computes functionality T;)si
in the ﬁi;g%R—hybrid and random oracle model in the presence of a
malicious adversary corrupting t < n parties.

Proof Sketch. As explained in the introduction, each client P;
(i € [v — 1]) essentially produces a conditional zero sharing for
each item x € A’ That is, it provide the pivot with an OKVS §
and the servers with keys k{ (j € [0+ 1,n]) such that if they
query these object on x € Al they obtain the shares sy, Sy+1, . - ., Sn
such that ea;?:z)sj = 0. Otherwise, if even one of P, ..., Pp, say Py,
does not query about x, then the probability that it holds s; such
that EB;?:Us j = 0 is negligible. Now, to obtain only those items for
which their shares sum up to zero, the pivot and the servers use
the ZeroXOR functionality.

As a corollary, combining the conditional zero-sharing produced
by all clients leads to that the pivot and the servers have a shares
of zero only for items that are in the intersection of all parties.

Extracting any party’s input is done by the simulator internally
running the party P; and for each call H(x) to the random oracle,
the simulator enters the input x to a list L. After the party sent
her derived OKVS §; to P, (for P;,i € [1,0 — 1]) or key-value set
X; to 7_—F,t+1,m

zeroXOR .
the actual input set A’, similarly to the proof of Theorem 3.4. We
denote the set or parties corrupted by A as C. The case where
C C {Py,...,Py—1} is trivial, as none of these parties receive any

(for P;, i € [v,n]), the simulator can conclude with
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information which depends on any input set A/. For the case where
P, € C, we note that any input af] received through S; is encrypted
using P;’s t generated PRF keys. Thus, simulating S; is easy as S;
appears random to P,, even if she receives any t — 1 PRF keys. Next,
assume Party P; € C,i € [v + 1, n]. P; receives only PRF keys from
Pj, j € [1,0 - 1], and not any item which depends on other party’s

input. Thus, all the simulator has to do is generate random PRF
TF,t+1,m

keys and hand it to A. Py, also receives the outputs from ¥, ; 0.

so the simulator outputs whatever P, outputs.

5 PERFORMANCE EVALUATION

We implemented our protocols 3.3 and 4.4 for the cases of no col-
lusion and arbitrary collusion, respectively, and compared them
with the state-of-the-art multiparty PSI protocols by Kolesnikov
et al. [23] (in both the semi-honest and augmented semi-honest
settings), Chandran et al [2] (for semi-honest honest majority) and
Ben Efraim et al. [10] (for malicious dishonest majority). Note that
the comparison with the augmented semi-honest version of [23]
covers also a comparison with the malicious version of [13], since
they only diverse in the OPPRF instantiation and the former is
faster. In our reports, for t = 1 we used our protocol 3.3 and for
t > 1 we used protocol 4.4. Whent =n -1, ”n;it,m
fact requires only performing ZeroXOR with n parties, each holding
Xl = {(aa, OK)}qem. That is, when t = n — 1 we have no clients, the
pivot party is Py and P, ..., P, are servers.

Similar to [2, 23], we used a single machine 2x 36-core Intel Xeon
2.30GHz CPU and 256GB of RAM and simulated network using the
Linux tc command. Our LAN setting has 0.02ms round-trip latency
and 10 Gbps network bandwidth. Our WAN setting has 96ms round-
trip latency and 200 Mbps network bandwidth. Similar to [2, 23], in
order to ensure parallelism as promised in our protocols, each party
uses a separated thread to communicate with each other party.

protocol 4.4 in

m 212 216 220
Encode | 0.052 | 0.103 | 2.838
Decode | 0.003 | 0.005 | 0.99

Table 2: OKVS performance:
rithms Encode and Decode.

Run time in seconds of the PaXo$ [29] algo-

Our implementation uses the table-based OPPRF? code from [23],
OPREF code from [22]. We use Encode and Decode based on PaXoS
data structure [29] and give a detailed running time for it in Table 2.
For the PaXoS cuckoo table we use the expansion parameter of 2.5,
i.e. the number of bins in the cuckoo table is 2.5m. We instantiate
the PRF F using AES-NI. All evaluations were performed with
item input length of 128 bits, statistical security parameter A = 40
and computational security parameter k = 128. When ¢t = n — 1,
our ﬂgsfm protocol can be optimized by only performing ZeroXOR
with n parties, each holding X’ = {(afl, 0°)}gem. Our complete
implementation is available on GitHub: https://github.com/asu-
crypto/mPSI

5.1 Comparison with Prior Work

For the most direct comparison, we consider the following values
of (n,t) € {(4{1,3}),(10,{1,4,9}),(15,{1,4,7,14})}. Note that

2Note that the table-based OPPRF which is secure against a semi-honest adversary is
about 3X slower than the state-of-the-art malicious PaXoS-based OPPRF.
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S P ) S B S B O D O . D O R B %) M 1 B

KMPRT[23)(aug) | Chent [ 020 [ 105 [ 1557 [ 021 [ 105 [ 1557 [ 0277 [ 136 | 1877 [0277 [ 136 | 1877 [0277 | 136 [ 1877 [ 034] 176 258 [ 034 ] 176] 2548 [o34[ 176 | 25.18] 034 ] 176 25.18

Total | 024 | 129 | 19.19 | 0.24 | 1.29 | 1919 | 0365 | 259 | 38.04 | 0365 | 259 | 38.04 | 0.365 | 2.59 | 38.04 | 047 | 3.78 | 58.23 | 047 | 378 | 58.23 | 047 | 378 | 5823 | 047 | 3.78 | 58.23

KMPRT[23] 024 | 129 | 19.19 | 034 | 3.6 | 52.25 | 0365 | 297 | 4608 | 067 | 677 | 9804 | 1.01 | 297 | 4608 | 046 | 428 | 6428 | 081 | 801 | 1542 | 137 | 1347 | 20112 | 1.85 | 20.61 | 30436

LAN | ENOCI0] 131 | 14.24 | 5687 | 131 | 14.24 | 5687 | 241 | 23.24 241 | 23.24 — 241 | 2324 -~ 357 | 3282 ~ 357 | 3282 ~ [ 357 | 3282 —| 357 | 3282 -

CDGOSS [2] 023 | 16| 238 - - - - 031 | 248 | 3145 - - - - - - - - ~[ 044 | 327 3945 - - -

Ours Client | 0.06 | 0.15 | 3.34 | 0.21 | 1.05 | 1557 | 0.06 | 0.16 | 3.35 | 0.06 | 0.17 | 3.39 | 0.28 | 1.36 | 18.77 | 0.06 | 0.13 | 3.95 | 0.06 | 0.11 | 3.52 | 0.06 | 0.16 | 3.48 | 0.34 | 176 | 25.18

Total | 0.07 | 0.25 | 5.16 | 0.24 | 1.29 | 19.19 | 0.08 | 0.35 | 6.07 | 0.24 | 142 22| 037 | 259 | 38.04| 01| 035 7.25]026| 146 | 228|031 | 212 | 32.56| 047 | 3.78 | 5823

KMPRT[23] aug) | Chent | 129 [ 267 | 21,59 [ 129 | 2,67 [ 21.59 [ 246 | 508 [ 41.07 ] 246 [ 508 4107] 246 | 508 | 4107 [ 333 695 ] 6137 [ 333 ] 695 ] 6137[333] 695| 6137] 333 | 695 6137

Total | 175 | 731 | 9519 | 1.75 | 7.31 | 95.19 | 3.04 | 13.88 | 21981 | 3.04 | 13.88 | 21981 | 3.04 | 13.88 | 219.81 | 3.35 | 20.76 | 336.84 | 3.35 | 20.76 | 336.84 | 3.35 | 20.76 | 336.84 | 3.35 | 20.76 | 336.84

KMPRT[23] 175 | 731 | 9519 | 318 | 1747 | 233.0 | 33 | 2642 | 4009 | 42 | 37.6 | 6154 | 7.81 | 1128 | 1915 | 3.63 | 39.11 | 664.08 | 6.24 | 110.52 | 18243 | 9.87 | 15085 | 2641 | 1642 | 263.2 -
ENOC[10] - - - - - - - - - - - - - - - - - - - - - - - - -

WAN e5G0ss 2] 19 7] 696 - - - - 3] 104 1539 - - - - - - - - “[ 33| 154 2ms8 - - -

Ours [ Client | 0.06 | 0.83 | 852 | 129 | 2.67 | 2159 | 0.05 | 0.75 | 7.87 | 0.06 | 059 | 7.89 | 2.46 | 5.08 | 41.07 | 0.05 | 0.92 | 839 | 0.06 | 0.58 | 14.57 | 0.06 | 0.59 | 154 | 333 | 695 | 6137

[ Total | 0.36 | 1.83 | 18.48 | 1.75 | 7.31 | 95.19 | 0.37 | 3.08 | 20.28 | 1.78 | 8.42 | 124.26 | 3.04 | 13.88 | 219.81 | 038 | 5.7 | 24.67 | 1.79 | 8.8 | 11622 | 1.94 | 11.31 | 180.56 | 3.35 | 20.76 | 336.84

Table 3: Running time in second of multiparty PSI protocols for n parties with corruption threshold ¢ on sets of size m. KMPRT[23] and CDGOSS[2] in semi-
honest setting, our protocol and ENOC[10] are in malicious setting. Cells with — denote trials that are not supported or not reported by the protocol.

(D) [E5) @3) (0.1) (10.4) (109) (5.1 (15.9) 5.7 (15, 19)
Protocols o B . e S - . - o e -
KMPRT[23](aug) Client 1.84 31.69 556.39 1.84 31.69 556.39 1.84 31.69 | 556.39 1.84 31.69 556.39 1.84 31.69 556.39 1.85 31.69 556.39 1.85 31.69 556.39 1.85 31.69 556.39 1.85 31.69 556.39
Total | 736 | 12676 | 222556 | 736 | 12676 | 222556 | 184 | 3169 | 55639 | 184 | 3169 | 55639 | 184 | 3169 | 55639 | 27.75 | 47535 | 834585 | 2775 | 47535 | 834585 | 2775 | 47535 | 834585 | 2775 | 47535 | 834585
KMPRT[23] Client 1.84 31.69 556.39 4.92 77.8 1402 1.84 31.69 556.39 83 131.7 2373.5 14.76 233.41 4208 1.85 31.69 556.39 8.3 131.7 2373.5 13.1 207.5 3741 22.96 363.09 6547
Total 7.36 126.76 2225.56 19.68 311.2 5608 18.4 316.9 | 5563.9 447 706.2 | 12730.4 147.6 | 2334.1 42080 21.75 475.35 8345.85 62.25 987.75 17801.25 103.4 1635.4 29487.9 344.4 | 5446.35 98205
ENOC[10] Client 4476 655.88 10204 44.76 655.88 10204 4476 655.88 10204 4476 655.88 10204 44.76 655.88 10204 44.76 655.88 10204 4476 655.88 10204 4476 655.88 10204 4476 655.88 10204
Total 258.91 | 2279.16 | 31080.96 | 258.91 | 2279.16 | 31080.96 | 714.44 | 6370.22 | 93654.3 | 714.44 | 6370.22 | 93654.3 | 714.44 | 6370.22 | 93654.3 | 1094.04 | 10995.6 | 147396.98 | 1094.04 | 10995.6 | 147396.98 | 1094.04 | 10995.6 | 147396.98 | 1094.04 | 10995.6 | 147396.98
R Client 1.3 199 318 - - - - - 2 30.8 4921 - - - - - - - - 24 38.8 620.1 - - -
CDGOSS [2] Total 3.2 494 790.2 - - - - 12.3 192.4 3077.2 - - - - - - - - 22.5 353.4 5652.9 - - -
Ours Client 0.16 2.62 41.94 1.84 31.69 556.39 0.16 2.62 41.94 0.16 2.62 41.94 1.84 31.69 | 556.39 0.16 2.62 41.94 0.16 2.62 41.94 0.16 2.62 41.94 1.85 31.69 556.39
Total 0.79 12.58 201.33 7.36 | 126.76 | 2225.56 1.77 28.31 | 452.98 3.76 62.67 1054.6 18.4 316.9 | 5563.9 2.59 41.42 662.7 4.54 75.17 1254.62 5.23 85.37 1416.9 27.75 | 475.35 8345.85

Table 4: Communication (in MB) of multiparty PSI protocols for n parties with corruption threshold ¢ on set of size m. KMPRT[23] and CDGOSS[2] in semi-
honest setting, our protocol and ENOC[10] are in malicious setting. Cells with — denote trials that are not supported or not reported by the paper.

S n 3 4 5 8 16 32

ett. t/m 1 1 2 1 2 3 1 3 4 1 3 4 1 3 16
212 0.06 0.07 0.21 0.06 0.26 0.28 0.07 0.29 0.29 0.08 0.3 0.37 0.1 0.31 0.53

LAN [ 2T° 0.2 0.25 1.25 0.23 1.57 1.45 0.28 1.46 1.56 0.43 1.47 2.51 0.74 1.48 4.57
220 4.67 5.16 | 19.05 5.26 | 25.78 | 24.11 5.5 | 25.04 26.7 7.57 25.4 39.28 | 10.71 25.52 76.89

212 0.25 0.06 1.67 0.36 1.87 1.8 0.36 1.8 1.83 0.37 1.81 2.04 0.4 1.8 2.61

WAN | 216 1.02 1.83 6.27 1.74 6.44 7.16 2.66 7.2 8.66 4.73 7.77 12.92 5.44 9.83 25.12
270 110,57 | 18.48 70 | 18.78 | 70.18 | 93.98 | 19.36 | 97.54 | 119.02 | 25.21 | 109.38 | 210.04 | 34.05 | 131.82 | 422.46

Table 5: Running time in seconds of party P,, (the one with most workload) of our protocols.

(4,1), (10, 4), (15,7) were reported explicitly in the experimental
analysis of [2]. The settings with ¢ > 2 is not supported by the
protocol [2]. Due to lack of time, we are unable to run the im-
plementation of ENOC [10] (which was on Github 3 ~3 months
ago) on our benchmark machine (due to errors in the build process
which we could not handle at that time frame). Therefore, ENOC
runtimes are taken from [10, Table 5]. Table 5 [10] does not report
on n € {10, 15}, therefore we use n € {8, 12} for them instead (on
which they do report), respectively, which is more favour to them.
The communication cost of ENOC [10] is calculated from their pro-
tocol description. The exact calculation we performed is detailed
in Appendix D. In their evaluation reports it can be seen that their
protocol does not scale beyond 16 parties with sets larger than 21
and beyond 32 parties even for sets larger than 214, In contrast, our
protocols perform well with 32 parties, even with sets of 22 items.

Recall that our ngsfm
ties: client Pjc[q4—1], pivot Py, and server Pc[y41,,]- Since clients
Pie[1,0-1] do not involve into the entire PSI computation process,
we report their running time separately. In contract, all parties in
protocols [2, 10, 23] require to participate in the mostly full com-
putation process. In terms of communication cost, all protocols
are asymmetric with respect to the server(s) and other parties (e.g.
clients). Thus, similar to [2], we separate the client and the total

protocol consists of three types of par-

3https://github.com/ArielCyber/Malicious-MPSI

communication costs, where by ‘total’ we refer to the communica-
tion of sent/received data of all parties.

When comparing the protocols, we find that the client’s running
time of our protocol is significantly less than that of the prior works,
requiring only 3.4 seconds to perform a PSI with (n,t) = (15,7)
for set size m = 2% in the LAN setting. This is a 10 — 23X and
1.6 — 82x improvement in running time compared to [2, 23] in
the semi-honest setting and [10] in malicious setting. For the total
running time, our protocol shows 1.2—6.5X and 1.2—8.5X faster than
the concurrent work CDGOSS [2] and KMPRT [23], respectively.
When t = n — 1, our protocol essentially consists only of the n-
party ZeroXOR protocol, which has the same communication and
computation cost as the augmented semi-honest version of KMPRT.

Table 3 shows the communication overhead of the protocols.
Our protocol requires 7 — 15X, 2.5 — 90x, and 18 — 270x less com-
munication cost than CDGOSS [2], KMPRT [23], and ENOC [10]
on the client’s side, respectively. Note that the bandwidth require-
ment of our client is almost constant in ¢t < (n — 1) and n since
the client’s major communication cost falls in sending encoding
set to a pivot party Py. Therefore, the client’s performance of our
protocol is extremely favorable when ¢ and n are large. For the total
communication cost, our protocol also shows a 3 — 4X%, 2.6 — 20X,
and 16 — 330X improvement compared to previous work [2, 10, 23],
respectively.
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5.2 Extended Evaluation of Our Protocols

To understand the scalability of our protocols, we evaluate them on
the range of the number parties n € {3,4,5, 8, 16,32}, corruption
threshold ¢ € {1,3, [ 5]} on the set size m € {212,216 220}

We report their detailed computational performance results in
Table 5, showing total running time in both LAN and WAN settings.
We find that our protocols scale well in the experiments. Indeed, the
performance of our protocol is mostly constant in the number of
parties n when ¢ is fixed, because the ZeroXOR protocol dominates
the run time. For instance, when fixing ¢t = 3, the total running
times of our protocol for n = 5 and n = 32 are 24.11 and 25.52
seconds, respectively, for m = 220,
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The parties have to withstand a corrupted server, who tries to omit
items from the intersection. This is done as follows. Each party
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PROTOCOL A.1. (mpy™ )
PARAMETERS: There are 2 parties P;, P, and a server S. P; and P,

have sets A! and A? as input, respectively. Let F be a PRF.

ProTOCOL:
(1) P; samples a random PRF key k, and sends it to P;.
(2) Party P;(i € (1,2)) sends A’ = {F(k, a}) }je[m) to S after
shuffling the set.
(3) S computes X = A' N A2 and returns the result to Py, P,.
(4) The parties output {F 1 (k, x) }xex-

PROTOCOL A.2. ( Server-Aided 2-Party PSI [20] - ni’s}’" )
PARAMETERS: There are 2 parties Pj, P, and a third-party server S.
P; and P, have sets A' and A? as input, respectively. S does not

have inputs. Let F be a PRF.

ProToCOL:

(1) Py chooses sets Dy, D1, D, and a key k such that |Dy| =
|D1| = |Dy| = d, sends them to P, and set A « AUDyUDj.
(2) P; sets A% — A%U Dy U D,.
(3) Party Pi(i € (1,2)) sends a shuffled version of A’ =
{F(k,x) },cqi toS.
(4) S computes X = Al N A? and sends X to Py, Ps,.
(5) P; aborts if:
(a) Either Dy ¢ F~1(k,X) or D; NF~1(k,X) # 0
(b) There exists x € A’ and a, 8 € [A] such that x||a €
F1(k,X) and x||8 ¢ F~(k,X)
(6) The parties output distinct items in {F~!(k, x) }xex \ Do-

augments its set A’ with A copies of each element. Specifically,
party P; generates the set Al = {aj.||1, Ce a§.||/1}j€[m] (each item
is replicated A times, each time it is concatenated with the next
index from 1, ..., A). Then, the parties run the semi-honest protocol
above on the sets Al and AZ. Now, to omit a single item x from
the intersection, the server has to omit A pseudorandom items
from X, namely, the items F(k, x|[1),..., F(k, x||4). Since all values
seen by the server are pseudorandom, it is difficult to tell which
pseudorandom items encode the same value and thus it is unlikely
that the server omits exactly those A items.

Note that it is still possible for the server to omit all values from
the intersection. This is easily fixed by having the parties add an
agreed upon item to both sets A and A2, by which, it is guaranteed
that the intersection is not empty. So if the server returns X = 0, it
is caught cheating.

Finally, note that it is still possible for the server to return X = A’
to P; (and similarly X = A? to P;) by which the parties conclude
that the intersection includes all items. This is again easily fixed
by agreeing on one dummy item d; which is added only to A! and
another dummy item dz which is added only to A2, This ensures that
the intersection does not contain the entire set, hence, returning
X = A' isimmediately treated a cheating, This is presented formally
in Protocol A.2.

B MALICIOUS OPPRF

There are two parties, sender S and receiver R. The sender S has
a set of points P = {(a1,t1),..., (am,,tm,)} and the receiver R
has queries (g1, .. ., gm,). The template of an OPPRF construction
follows: The parties run an OPRF which outputs a key k to the
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sender and the PRF results F(k,q1), ..., F(k,qm) to the receiver.
The sender computes the hint as follows. For each a; compute
fi = Fi(ai) @ t;. Then, the sender generates an OKVS by § «
Encode({(aj, fi)}ie[m]) and sends it to the receiver. For each of the
receiver’s query g; and OPRF results F(k, q1), the receiver computes
the OPPRF result y; = F(k, q1) @ Decode(S, g;).

Suppose that the receiver queries the OPRF on some g = aj,
then the OPPRF result is y; = F(k, aj) ® Decode(S, aj) = F(k,a;) ®
F(k,aj) ®t; = tj as required. On the other hand, for a query g # a;
for all j, the result y; = F(k, q) @ Decode(S, q) is pseudorandom
because F(k, g) is a pseudorandom value that has never been used
before in the construction of S.

The above template builds on an OPPRF that supports multiple
queries by the receives (specifically my queries) whereas concretely
efficient OPPRFs directly support a single query only.

To overcome this, two approaches have been proposed. The first
one is developed by [23, 30], in which the receiver uses cuckoo hash-
ing and the sender uses a simple hashing. This way, for each bin the
receiver has at most one item and the sender has O(log m;) items,
so they can invoke the single-query OPPRF per bin. This however is
secure in the semi-honest setting only because a malicious sender,
who knows (via auxiliary information) that the receiver has item x,
may put x only in one of the possible bins instead of in all of them.
This way, by the PSI result it may learn in which bin the receiver
put its item x and by this leaking information on other items that
the receiver has. We refer the reader to [23, 30] for more details.

Alternatively, [29] proposed a different approach via a data struc-
ture called PaXoS (Probe and XOR of Strings) along with a 1-out-of-
N random OT that has an homomorphic properties. This approach
withstands a malicious adversary. The receiver encodes its queries
in a data structure D = (dy, ..., dpy) of size m’ (which is greater
than my). Suppose that the PaXoS is parameterized with k hash
functions hy, ..., h, then for every receiver’s query q it follows
that g = Decode(D, q) = dhl(q) @ dhg(q) D...0 dhk(q)'

Then, the sender and receiver run a 1-out-of-N ROT for m’
times, where in the i-th ROT the receiver obtains the value r;
aj +s A C(d;) and the sender obtains a;, where s is a random string
that is used in all ROT instances (i.e. for all i) and C is a linear code.
After running all instances of ROT, the receiver treats the results
R = (r1,...,rpy) as a PaXoS data structure. Thus, to obtain the
result associated with a query g it computes

y = Decode(R q)=7p (q) ®Thy(q) D ®Thi(q)
= (ahl(q) S...® ahk(q)) ®sA(C(dp,(9) ®...0C(dh (9))
= (ap(q) @ - Dap(q) DsAC(dp, (@) @ ... @ dp (q)
= (ap(q) @ - - Dap(q) ®sAC(g)

From the homomorphic property of the ROT scheme, it follows
that the sender may obtain the same value y, since it knows all ROT
results ay, ..., ap and s. If the sender wants to program the point
(g, t) in the OPPREF (for a random ¢), it first computes ' =t @ y (it
can compute y on its own) and encode the point (g, ¢’) in the OKVS
S sent to the receiver. Upon receiving the OKVS S, the receiver
compute the OPPRF result y* = Decode(R, q) ® Decode(S,q) =
y®t’ =t as required, where R is the PaXoS structure interpretation
of the ROT results and S is the OKVS sent by the sender.
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PROTOCOL C.1. ( Zero-Sharing - 2% )
PARAMETERS: There are n parties Py, ..., P, and an adversary A.

There is a PRF F : {0,1}* x {0,1}* — {0,1}*~.

ProTOCOL:

(1) Each party P; picks a random seed r;; for j € [i +
1,n] and sends r;; to P;. The key K; of party P; is
(Ktisees ki1 kigets -, kin).

(2) To obtain its share for value x, party P; computes

S(Kix) = (@ Fieji <x>) ® (EB Fi,; (x))

Jj<i Jj>i

C ZERO SHARING PROTOCOL
See Protocol C.1.
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D ESTIMATING COMMUNICATION FOR BEN
EFRAIM ET AL.

We calculate the concrete communication complexity of [10] based
on the formulae and optimal parameter instantiations they report
in Table 4 and Appendix E of their paper.

The parameters are NoT, Ncc, Npr provided to the protocol,
where NoT represents the number of random OTs to perform, Nec
represents the number of bits to choose for the cut-and-choose
check and NpF represents the size of the Bloom filter.

We calculate a client’s (P;, i > 0) communication by:

2Nork+Ncclogy Nor+Nec log, Nor+x+NpF log, Nor+Nprk
And server’s (Py) communication by:

2nNotk + nNcce 10g2 Not +nNcce logz Nort + k +nNpgfr logz Nor
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