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Key Points: 15 

• On average, urban NO2 inequalities of 28 ± 2% are observed with race-ethnicity and 16 
income; disparities are much greater in many cities 17 

• Diesel traffic is the dominant source of NO2 disparities; a 62% reduction in diesel 18 
emissions would decrease inequalities by more than 37%  19 

• TROPOMI observations combined with oversampling resolve surface patterns in NO2 20 
disparities at the census-tract scale 21 

  22 
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Abstract 23 

Air pollution disproportionately burdens communities of color and lower-income communities in 24 
U.S. cities. We have generally lacked city-wide concentration measurements that resolve the steep 25 
spatiotemporal gradients of primary pollutants required to describe intra-urban air pollution 26 
inequality. Here, we use observations from the recently-launched TROPospheric Ozone 27 
Monitoring Instrument (TROPOMI) satellite sensor and physics-based oversampling to describe 28 
nitrogen dioxide (NO2) disparities with race, ethnicity, and income in 52 U.S. cities (June 2018–29 
February 2020). We report average U.S.-urban census tract-level NO2 inequalities of 28 ± 2% 30 
(race-ethnicity and income combined), with many populous cities experiencing even greater 31 
inequalities. Using observations and inventories, we find diesel traffic is the dominant source of 32 
NO2 disparities, and that a 62% reduction in diesel emissions would decrease race-ethnicity and 33 
income inequalities by 37%. We add evidence that TROPOMI resolves tract-scale NO2 differences 34 
using relationships with urban segregation patterns and spatial variability in column-to-surface 35 
correlations. 36 

Plain Language Summary 37 

People of color and people with lower household incomes commonly experience higher levels of 38 
air pollution and worsened health burdens from poor air quality in U.S. cities. We have lacked 39 
direct observations of air pollution across cities with which to describe, explain, and guide policy 40 
making on air pollution disparities. Nitrogen dioxide is an important combustion pollutant that is 41 
co-emitted with many other toxic pollutants, and its concentrations are highly variable between 42 
neighborhoods. Here, we use nitrogen dioxide measurements collected from space by the 43 
TROPospheric Ozone Monitoring Instrument (TROPOMI) to describe inequalities within 52 U.S. 44 
cities. TROPOMI captures greater spatial detail than previously possible, and the near-daily data 45 
collection allows for interpretation of the specific polluting sources causing nitrogen dioxide 46 
inequality, including diesel traffic emissions. Because satellite applications for air pollution 47 
inequality analyses are nascent, we build on our past work to advance understanding of the extent 48 
to which TROPOMI resolves inter-neighborhood nitrogen dioxide differences.  49 

1 Introduction 50 

In U.S. cities, the concentrations of many air pollutants have been observed, modeled, and inferred 51 
to be higher in neighborhoods where residents are primarily people of color and have lower 52 
household incomes (e.g., Ard, 2015; Bell & Ebisu, 2012; Bullard, 1987; Gwynn & Thurston, 2001; 53 
Jerrett et al., 2005; Pope et al., 2016; Tessum et al., 2019). These disparities have been shown to 54 
cause measurable differences in health and life expectancy (Adar & Kaufman, 2007; Di et al., 55 
2017; Lin et al., 2002; Lipfert & Wyzga, 2008). Heavy-duty diesel vehicles (HDDVs) are a major 56 
driver of air pollution inequalities (Demetillo et al., 2020; Houston et al., 2004; 2008; 2011; 2014; 57 
Lena et al., 2002; Levy et al., 2009; Nguyen & Marshall, 2018; Tessum et al., 2021), with HDDV 58 
exhaust containing nitrogen oxides (NOx º NO + NO2) and a myriad of hazardous co-emissions 59 
(HEI, 2010). Source characterization of air quality disparities, including from diesel traffic 60 
emissions, has been hindered by the lack of city-wide measurements resolving steep atmospheric 61 
pollutant gradients and providing temporal information useful for source identification. 62 

Nitrogen dioxide (NO2) is a combustion product and a key control over atmospheric oxidation and 63 
secondary pollutant formation. Communities of color and those with lower household incomes 64 
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often experience elevated NO2 concentrations and exposures (Clark et al., 2014; 2017; Kerr et al., 65 
2021; Kravitz-Wirtz et al., 2016; Rosofsky et al., 2018; Southerland et al., 2021). Epidemiological 66 
studies indicate an association between NO2 exposure and/or its co-emissions and various adverse 67 
health effects (Brook et al., 2007; Brunekreef & Holgate, 2002; Burnett et al., 2004). NO2 is a 68 
common surrogate for combustion pollution generally (Levy et al., 2014) and toxins in traffic 69 
exhaust specifically (HEI, 2010). HDDVs contribute a major portion of urban NOx despite being 70 
a small fraction (3–6%) of the U.S. fleet in terms of distance traveled, as diesel engines produce 71 
x7 more NOx per kg fuel burned than gasoline (McDonald et al., 2012; 2018). Because its sources 72 
are ubiquitous and distributed, NO2 is highly variable in space and time, with typical distance-73 
decay gradients away from sources of <0.5–2 km (Apte et al., 2017; Choi et al., 2012; Karner et 74 
al., 2010). A key advantage to focusing air pollution inequality analyses on NO2 is that it has 75 
recently become possible to observe NO2 daily from space at the scale of a few kilometers using 76 
the TROPospheric Ozone Monitoring Instrument (TROPOMI).  77 

In Demetillo et al. (2020), we conducted a detailed evaluation of the use of TROPOMI 78 
observations to describe intra-urban NO2 disparities, demonstrating that TROPOMI was indeed 79 
well-positioned to inform multiple aspects of NO2 inequality research in Houston, Texas. We used 80 
fine spatial resolution (250 m x 500 m) airborne NO2 remote sensing measurements from the 81 
GEOstationary Coastal and Air Pollution Events Airborne Simulator (GCAS) as a standard 82 
(Nowlan et al., 2018), showing that TROPOMI, oversampled to 0.01° x 0.01° using the physics-83 
based algorithm employed here, resolved equivalent NO2 relative inequalities as GCAS. We 84 
assessed the effects of observational uncertainties, retrieval biases, and time averaging on NO2 85 
inequality estimates, finding that although their influence led to underestimations in absolute 86 
census tract-level differences, TROPOMI still captured key variations in NO2 spatial distribution 87 
between tracts. We also showed that spatial patterns in NO2 columns reflected those at the surface, 88 
an essential aspect of their application to air quality environmental justice decision-making, and 89 
determined that column-based inequalities represented those that would be captured at the surface.  90 

Here we expand this application of TROPOMI, describing NO2 inequality in 52 major U.S. cities 91 
and using these observations as empirical constraints on the contribution of HDDV traffic to NO2 92 
disparities. We report neighborhood-level (census-tract) disparities with race, ethnicity, and 93 
income over an almost two-year period (June 2018–February 2020). We analyze weekday-94 
weekend differences from both TROPOMI and NOx emissions inventories to quantify the role of 95 
diesel traffic in NO2 inequalities. We discuss results seasonally, as the NO2 atmospheric lifetime 96 
is shorter in the summer, leading to greater co-location between NOx emission sources and NO2 97 
columns than in the winter. We further explore analytical issues in the use of TROPOMI for 98 
observing tract-scale inequalities in cities where higher spatial resolution measurements are not 99 
available, investigating inequality relationships with urban segregation patterns and correlating 100 
column and surface measurements as a function of their spatial coincidence. 101 

 102 

2 Data and Methods 103 

2.1 TROPOMI  104 

The TROPOspheric Monitoring Instrument (TROPOMI) detects various atmospheric trace gases 105 
in the ultraviolet and visible, near-infrared, and shortwave infrared spectral regions (van Geffen et 106 
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al., 2018; Veefkind et al., 2012). TROPOMI samples at ~1:30 pm local time (LT) almost daily 107 
from onboard the sun-synchronous Copernicus Sentinel-5 Precursor satellite. NO2 is retrieved by 108 
fitting the 405–465 nm band using an updated OMI DOMINO algorithm based on the QA4ECV 109 
project (Boersma et al., 2011; 2018; Lorente et al., 2017; van Geffen et al., 2015; Zara et al., 2018). 110 
Before 6 August 2019, NO2 was retrieved at a nadir spatial resolution of 3.5 km x 7 km. NO2 111 
tropospheric vertical column densities (TVCDs) have since become available at 3.5 km x 5.5 km. 112 
Precision of individual TVCDs over polluted scenes is on the order of 30–60% (Boersma et al., 113 
2018) and dominated by uncertainties in air mass factor inputs, including clouds, NO2 profile shape 114 
(daily 1° x 1° TM5-MP output) (Williams et al., 2017), and surface albedo (monthly 0.5° x 0.5° 115 
OMI climatology) (Kleipool et al., 2008). 116 

We use the TROPOMI Level 2 NO2 product averaged to 0.01° x 0.01° (~1 km x 1 km) with a 117 
physics-based oversampling algorithm (Sun et al., 2018). We include cloud-free scenes with qa > 118 
0.75. We calculate mean NO2 TVCDs within census tract boundaries for 52 U.S. cities (Table S1) 119 
over June 2018–February 2020, summer (June–August), and winter (December–February) and 120 
separately analyze seasonal NO2 TVCDs on weekdays and weekends. We define weekdays as 121 
Tuesdays–Fridays and weekends as Saturdays–Sundays. Monday and Saturday are considered 122 
transition days as they are influenced by carryover of yesterday’s NO2. We remove Mondays from 123 
our analysis but keep Saturdays to improve weekend statistics. The mean number of TROPOMI 124 
pixels rounded up to the nearest integer in each 0.01° x 0.01° grid are as follows (± 1 s standard 125 
deviation), 77 ± 24 (summer weekdays), 33 ± 10 (summer weekends), 33 ± 21 (winter weekdays), 126 
and 18 ± 11 (winter weekends), with reduced wintertime sampling statistics due to increased cloud 127 
cover (Table S2). TROPOMI observations are spatially continuous (discretized to 0.001° x 128 
0.001°), giving NO2 TVCDs within tracts smaller than 1 km2. Cities were selected to represent 129 
both the largest U.S. urban areas and mid-sized cities for broad country-wide coverage. Cities are 130 
defined as U.S. Census-designated ‘urbanized areas’ (UAs) with two exceptions: we separate New 131 
York-Newark, NJ–NY–CT along state lines into New York City, NY and Newark, NJ and San 132 
Francisco–Oakland, CA along the San Francisco Bay into San Francisco and Oakland, CA. With 133 
a population density threshold of 1,000 people mi–2, UAs represent the urban core of metropolitan 134 
areas; therefore, results reflect intra-urban rather than urban-suburban differences (Demetillo et 135 
al., 2020).  136 

2.2 Population-Weighted Census-Tract NO2 Inequalities  137 

We calculate population-weighted NO2 census tract-averaged TVCDs with race and ethnicity and 138 
sort tracts by household poverty status or median household income using the U.S. Census 139 
database for 2019 (Text S1). Race-ethnicity groups are defined following the U.S. Census 140 
categories of Black and African Americans, Asians, American Indians and Native Alaskans, 141 
referred to in the text as Native Americans, and whites, excluding people from each racial group 142 
identifying as Hispanic or Latino, and Hispanics/Latinos, including all races also reporting as 143 
Hispanic and/or Latino. Poverty status is defined according to the U.S. Census Bureau definition 144 
using the household income-to-poverty ratio. Households are categorized as below the poverty 145 
line if their income is below the U.S. Federal Poverty Guidelines threshold, which scales with the 146 
number of people per household. Tracts are classified as follows: below the poverty line, >20% of 147 
tract households at or below an income-to-poverty ratio of one; near poverty, all tract households 148 
having an income-to-poverty ratio of 1–1.24; and above poverty, all tract households having an 149 
income-to-poverty ratio >1.24. We discuss the sensitivity of our results to the 1.24 threshold in 150 
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Text S1. We combine race-ethnicity and income categories, reporting results for Black and African 151 
Americans, Asians, Native Americans, and/or Hispanic/Latino residents in the lowest median 152 
income quintile tracts (LINs) and for non-Hispanic/Latino whites residing in the highest median 153 
income quintile tracts (HIWs). Household income quintiles are UA specific.  154 

2.3 NOx Inventories  155 

The Fuel-based Inventory from Vehicle Emissions (FIVE18–19) is a U.S.-wide, 4 km x 4 km 156 
mobile source (on-road and off-road, gasoline and diesel engines) NOx emissions inventory 157 
providing monthly mean hourly data on weekdays, Saturdays, and Sundays (Harkins et al., 2021; 158 
McDonald et al., 2012; 2018). Emission rates are based on publicly available fuel sales reports, 159 
road-level traffic counts, and time-resolved weigh-in-motion traffic counts. Fuel-use uncertainties 160 
are determined from differences between fuel sale reports and truck travel and traffic count site-161 
selection and sample size. Emissions uncertainties are ±16% and ±17% for gasoline and diesel 162 
vehicles, respectively, and are derived from a regression analysis of near-road infrared remote 163 
sensing and tunnel studies (Jiang et al., 2018). Fuel sales reports are provided at the state level, 164 
and we utilize separate link-level traffic counting datasets of light- and heavy-duty traffic (FHWA, 165 
2020), downscaling to 4 km x 4 km following McDonald et al. (2014). Traffic counting datasets 166 
are estimated to spatially resolve ~70% of passenger vehicle and ~80% of heavy-duty truck traffic. 167 
The small remainder (20–30%) is spatially allocated using population as a surrogate. The 168 
additional uncertainty associated with downscaling traffic results in higher urban-scale emission 169 
uncertainties of ±24% for gasoline and ±24% for diesel vehicles (McDonald et al., 2014). 170 

NOx stationary source emissions are from the 2017 National Emissions Inventory (NEI17) updated 171 
January 2021 Version (EPA, 2021). The NEI17 reports annual emission totals of point sources 172 
including industrial facilities, electricity generating units, oil and gas operations, and airports. Data 173 
for smaller industrial facilities, e.g., dry cleaners and gas stations, are voluntarily submitted by 174 
state agencies and counted as area rather than point sources. Here, we focus on annual NEI17 point 175 
source emissions and assume they exhibit no seasonal or day-to-day variability. A comparison of 176 
monthly time resolved NEI point source NOx emissions in July and January indicated differences 177 
are indeed small (~5%). Emissions uncertainties in power plants are ±25% (Frost et al., 2006); 178 
uncertainties in industrial facilities and other stationary sources are larger and assumed to be ±50% 179 
(Jiang et al., 2018).  180 

2.4 Segregation Extent and Structure  181 

We compute three complementary metrics to quantify and describe city-level racial segregation 182 
extent and structure, with segregation structure classified as clustered (mega-regions of 183 
segregation) or patch worked (micro-regions of segregation), based on the same 2019 U.S. Census 184 
tract-level demographics and UA boundaries as the inequality results. We calculate the Shannon 185 
Entropy Index, a measure of diversity and prevalence. Cities with low entropy have a small number 186 
of prominent groups, whereas cities with high entropy have roughly equal proportions of groups 187 
(Reardon & Firebaugh, 2002). We describe the extent of urban segregation through the 188 
Information Theory Index (Reardon & Firebaugh, 2002, Theil & Finizza, 1971), reflecting the 189 
amount of information that an individual’s location carries about their demographic group. This is 190 
an aspatial metric describing the extent of segregation by comparing the demographic 191 
representation of a geographic unit to the overall city average (Reardon & O’Sullivan, 2004, 192 
Roberto, 2018). We compute the mean local information density, a measure of the spatial scale of 193 
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segregation, generating urban segregation structure estimates based on the Fisher information 194 
between spatial and demographic variables (Chodrow, 2017).  195 

2.5 Surface NO2* Measurements  196 

We use NO2* surface measurements from 97 non-roadway monitors in 20 UAs identified as 197 
having at least three NO2 monitoring stations operating during June 2018–February 2020 (Table 198 
S3). Almost all of these NO2 instruments operate by first decomposing NO2 to NO over a heated 199 
molybdenum catalyst and measuring NO by chemiluminescence. NO2 data collected with this 200 
technique have a known positive interference from oxidized and reduced nitrogen compounds, 201 
which also thermally decompose across the catalyst but at non-unity efficiency (Dunlea et al., 202 
2007). The nomenclature NO2* is used in acknowledgement of this interference. Past research has 203 
shown the instruments capture NO2 temporal patterns (Russell et al., 2010) and NO2 mixing ratios 204 
before substantial oxidation has occurred. Because we are interested in the distance dependence of 205 
correlations between surface NO2* and the overhead TROPOMI TVCDs, rather than the surface 206 
NO2 mixing ratios themselves, we do not apply a correction factor to the NO2* dataset. 207 

 208 

3 Results and Discussion 209 

3.1 NO2 Inequality and the Role of Diesel NOx Emissions 210 

Across the 52 cities in our study, representing 130 million residents, population-weighted NO2 211 
TVCDs are on average 17 ± 2% higher for Black and African Americans, 19 ± 2% higher for 212 
Hispanics/Latinos, 12 ± 2% higher for Asians, and 15 ± 2% higher for Native Americans compared 213 
to whites (city-level results are weighted by urban population size in the averaging). NO2 TVCDs 214 
are on average higher for people living below (17 ± 2%) and near the poverty line (10 ± 2%) than 215 
for those above. When race-ethnicity and income are combined, we report an average of 28 ± 2% 216 
greater population-weighted NO2 for LINs than HIWs, with the highest inequalities observed in 217 
Phoenix, Arizona (46 ± 2%), Los Angeles, California (43 ± 1%), and Newark, New Jersey (42 ± 218 
2%) (Figure 1). In only one city, San Antonio, Texas, is the sign of LIN-HIW inequality negative 219 
over June 2018–February 2020 (–6 ± 3%), although a small number of negative values are also 220 
observed for the other metrics. In the five most-populated UAs, representing ~35% of the 221 
population, NO2 TVCDs are 36 ± 3% higher for LINs compared to HIWs. Absolute NO2 disparities 222 
(molecules cm–2) are strongly associated with local city-level NO2 pollution (Figure 1h), with a 223 
Pearson correlation coefficient (r) of 0.82 for the combined race-ethnicity and income metric (LIN-224 
HIW). At the same time, relative inequalities (%) are only moderately associated with city-level 225 
NO2 (r = 0.46), suggesting that sustained NOx emission control will reduce but not eliminate NO2 226 
disparities, a result consistent with work investigating trends in NO2 inequality between 2000 and 227 
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2010 using land-use regression NO2 datasets (Clark et al., 2017) and before and during COVID-228 
19-related activity changes using TROPOMI NO2 TVCDs (Kerr et al., 2021).  229 

230 
Figure 1. Relative NO2 inequalities (percentage difference between population-weighted NO2 means) for 231 
52 major U.S. cities over all days in June 2018–February 2020. Marker size reflects the total city population 232 
with the smallest markers representing cities with <1.5 million residents and the largest markers for cities 233 
with >10 million residents. Average NO2 inequalities are shown for Black and African American (a), 234 
Hispanic/Latino (b), Asian (c), and Native American (d) compared to white residents. Inequalities are also 235 
mapped for people living near (e) and below (f) versus above the poverty line and for LINs compared to 236 
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HIWs (g). Displayed mean values for each group are weighted by urban population size. City-averaged 237 
NO2 TVCDs are shown (h). 238 

To observationally constrain city-wide effective contributions of HDDVs to NO2 disparities, we 239 
first compare TROPOMI NO2 inequalities on weekdays and weekends and then contextualize the 240 
measured changes using NOx emission weekday-weekend patterns predicted by the FIVE18–19 241 
(mobile sources) and NEI17 (point sources). HDDVs transport commercial goods and their 242 
emissions are substantially reduced on weekends; at the same time, passenger vehicles (largely 243 
gasoline powered in the U.S.) and point source emissions exhibit much less weekday-weekend 244 
variability, although the timing of their emissions may change (Marr & Harley, 2002; Russell et 245 
al., 2012; McDonald et al., 2014). Off-road diesel engines (e.g., construction) also vary weekday 246 
to weekend; however, their contribution to total urban NOx emissions is considerably smaller than 247 
on-road HDDVs. While HDDVs with NOx control are a growing portion of the vehicle fleet (Jiang 248 
et al., 2018), with reports of declining weekday-weekend NO2 differences (Demetillo et al., 2019), 249 
HDDVs still emit an important fraction of urban NOx. In the 52 UAs at the focus of this work, 250 
NO2 TVCDs are an average of 34 ± 17% (1s standard deviation) lower on weekends than 251 
weekdays (June 2018–February 2020).  252 

Weekday-weekend differences in city-level census-tract absolute TROPOMI NO2 inequalities are 253 
fit using a weighted bivariate linear regression model (York et al., 2004), with weights derived 254 
from errors in city-level NO2 for the different residential populations (Table S4). Because NO2 255 
concentrations better correlate with NOx emission rates when the NO2 atmospheric lifetime is 256 
short, we evaluate correlations separately in the summer and winter. We determine the ‘effective’ 257 
HDDV contributions to inequalities from the regression slope, a combined function of changes in 258 
both the total NOx emissions and the nonlinear NO2-dependent NO2 chemical lifetime. This 259 
method weights cities equally regardless of population. LIN-HIW disparities decrease by 37 ± 3% 260 
on weekends in the summer and 32 ± 2% in the winter (Figure 2a). Weekday and weekend 261 
inequalities are more strongly correlated in the summer (r = 0.93) than winter (r = 0.51), a function 262 
of seasonal differences in NO2 lifetime and reduced wintertime sampling statistics. For race-263 
ethnicity and poverty metrics, weekday-weekend differences are 28–46% in the summer (mapped 264 
in Figure S3) and more variable in the winter (0–41%). We observe weekend NO2 decreases to be 265 
spatially variable within cities and larger in census tracts where residents are primarily people of 266 
color or have lower household incomes. Weekday-weekend NO2 differences indicate greater 267 
weekend NOx emission reductions in the most polluted neighborhoods, as summertime weekend 268 
NO2 decreases are 50% larger in the highest quintile NO2 census tracts than the lowest quintile 269 
NO2 tracts. Comparable weekday-weekend decreases are observed in the winter for the highest 270 
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and lowest quintile NO2 tracts, consistent with longer NO2 lifetimes and NO2 TCVDs being more 271 
distributed from NOx emission sources in space and time.  272 

 273 

Figure 2. Absolute differences (molecules cm–2) in population-weighted TVCDs NO2 between LINs and 274 
HIWs on weekdays and weekends (a) in the summer (black) and winter (light blue). Percent contributions 275 
of on-road HDDVs to NOx emission density-based LIN-HIW inequalities during summer months from the 276 
FIVE18–19 and NEI17 (b). The mean HDDV contribution to emissions inequality, weighted by UA 277 
population, is also displayed. 278 

Observed weekday-weekend differences in NO2 TCVDs are a function of both the direct change 279 
in NOx emissions and the subsequent indirect effects on the NOx-dependent NO2 lifetime. 280 
Weekday-weekend differences in NOx emissions are driven by the fraction of total HDDVs that 281 
are parked on weekends, and, to a smaller extent, concurrent changes in spatiotemporal patterns 282 
of other vehicle types. To attribute measured differences in NO2 disparities to a specific reduction 283 
in diesel traffic, we compare TROPOMI-based results with changes in NOx emission densities 284 
(metric tons NOx day–1 km–2), and their resulting inequalities, derived from the FIVE18–19 and 285 
NEI17. We first degrade the 0.01° x 0.01° oversampled TROPOMI product and FIVE18–19 286 
database (4 km x 4 km) to the same 0.04° x 0.04° grid, average each to underlying census tracts, 287 
and calculate inequalities as described in Section 2.2. NEI17 sources are represented as points and 288 
summed within their respective tracts. Tract-level FIVE18–19 and NEI17 are combined and 289 
normalized by tract areas to produce NOx emissions densities. We analyze inventory-based results, 290 
and their comparison with TROPOMI, separately in the summer and winter.  291 

Because we expect the coarser 0.04° x 0.04° grid to influence the observed inter-tract differences, 292 
we first compare tract-averaged disparities based on the 0.01° x 0.01° oversampled TVCDs to 293 
those determined using the 0.04° x 0.04° TVCDs. We calculate the normalized mean biases and 294 
errors in the absolute and relative inequalities separately on summer and winter weekdays, using 295 
the 0.01° x 0.01° TROPOMI-based results as our reference values. Despite the loss of spatial detail, 296 
U.S.-wide normalized mean biases for the different inequality metrics are just <1–6% (Figure S1, 297 
Table S5). We generally calculate slightly higher NO2 inequalities with the coarser-resolution NO2 298 
product than the 0.01° x 0.01° TVCDs, suggesting larger pixels have the effect of distributing NOx 299 
emissions over spatial areas with similar demographic and income characteristics. The greatest 300 
city-level normalized mean biases (8–22%) are observed in Oakland, San Diego, and San 301 
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Francisco, CA, all cities that encompass narrow geographical areas along coasts that may even 302 
challenge the satellite analysis at 0.01° x 0.01°. While normalized mean biases are low on average 303 
across UAs, normalized mean errors for each metric are higher (3–13%), indicating inaccuracies 304 
are larger in individual cities because of the loss of spatial resolution. That said, we find the 0.04° 305 
x 0.04° TVCDs give comparable weekday-weekend NO2 differences to the 0.01° x 0.01° product 306 
for all inequality metrics (Table S5). Coarse-resolution TVCDs yield weekday-weekend decreases 307 
in LIN-HIW disparities of 37 ± 4% and 38 ± 2% in the summer and winter, respectively, equaling 308 
results with the 0.01° x 0.01° TVCDs within uncertainties in the summer. Agreement is similar for 309 
the other metrics, indicating datasets resolved to 0.04° x 0.04° still capture tract-scale patterns in 310 
the intra-urban spatiotemporal distribution. 311 

Using the FIVE18–19 and NEI17, we calculate mean summertime weekday-weekend reductions 312 
in LIN-HIW disparities in NOx emissions densities of 43 ± 4% (includes all source sectors), in 313 
agreement with TROPOMI-based weekday-weekend differences using the 0.04° x 0.04° TVCDs 314 
within associated uncertainties (Table S4). For race-ethnicity and poverty status, weekday to 315 
weekend decreases in emissions disparities equal empirical estimates to within 3–15%, with the 316 
inventories generally predicting comparable or slightly larger weekend reductions than 317 
TROPOMI. There is greater disagreement between NO2 TVCDs and the inventories in the winter, 318 
with TROPOMI weekday-weekend differences for some race-ethnicity metrics being much 319 
smaller than estimated by the FIVE18–19 and NEI17. These wintertime discrepancies are 320 
consistent with seasonal patterns in NO2 mesoscale transport (greater day-to-day carryover), 321 
further NO2 displacement away from NOx sources, and more NOx-suppressed chemistry, but may 322 
also be related to the reduced wintertime sampling statistics on weekdays and weekends.  323 

Finally, we partition NOx emission inequalities and their weekday-weekend differences by source 324 
sector, focusing on the role of HDDVs. We limit the analysis to summer months, when NO2 325 
TVCDs are most responsive to NOx emissions changes. On weekdays, on-road HDDVs cause on 326 
average (unweighted by UA population) 45 ± 5% of LIN-HIW NOx emissions-based inequalities 327 
(Figure 2b; Table S6). The remainder is due to on-road gasoline-powered vehicles (38 ± 5%), 328 
gasoline and diesel off-road vehicles (13 ± 6%), and stationary sources (4 ± 6%), largely electricity 329 
generation. HDDVs contribute significantly to mean (weighted by UA population) NOx emissions 330 
inequalities for Black and African Americans (63 ± 13%), Hispanics/Latinos (52 ± 10%), Asians 331 
(36 ± 7%), and Native Americans (62 ± 12%) and for people living below and near the poverty 332 
line (56 ± 11%) (Figure S3). While HDDVs are the largest source of UA-level disparities, 333 
stationary sources may be more important across more suburban metropolitan areas. Regulatory 334 
controls on gasoline-powered vehicles and electricity generation between 2000 and 2010 335 
decreased absolute, although not relative, NO2 inequalities from these sources across the U.S. 336 
(Clark et al., 2017), and an analysis exploiting COVID-19-related reductions in passenger vehicle 337 
traffic suggest HDDV emissions dominate relative NO2 inequalities in recent years (Kerr et al., 338 
2021). Based on the FIVE18–19, summertime HDDV NOx emission densities decrease by 62 ± 339 
2% on weekends, with diesel traffic still causing 26 ± 6% of LIN-HIW NOx emissions inequalities 340 
on weekends. Therefore, if the entire observed effective weekday-weekend change in NO2 TVCD 341 
disparities is caused by HDDVs, then a 62 ± 2% reduction in summertime weekday on-road HDDV 342 
emissions leads to a 37 ± 3% decrease in NO2 LIN-HIW disparities. While we find that on average 343 
LIN-HIW NOx emission densities from the other major source of emissions-based inequalities, 344 
gasoline-powered vehicles, decrease by 10% weekday to weekend, NOx emission inequalities 345 
change by less than 1% (Table S6), indicating that weekday-weekend differences in disparities are 346 
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driven by HDDVs. If HDDV emissions were fully controlled—or their distribution was 347 
equalized—summer weekday LIN-HIW NOx emissions inequalities would decrease by almost 348 
50%. Likewise, elimination of on-road HDDV inequalities would lower disparities with race-349 
ethnicity and poverty by 59% and 49%, respectively (Table S7). These predicted changes represent 350 
upper bounds, as U.S. urban chemical oxidation is trending toward NOx-limitation (Laughner & 351 
Cohen, 2019).  352 

3.2 Resolving Census Tract-Scale Inequality from Space  353 

Application of satellite remote sensing to NO2 inequality requires demonstration that both 354 
oversampled TROPOMI TVCDs capture inter-census-tract differences and that spatial patterns in 355 
NO2 columns reflect those that would be measured at the surface. In Demetillo et al. (2020), we 356 
found TROPOMI-based results were comparable to NO2 tract-scale disparities determined using 357 
the high spatial resolution airborne sensor GCAS in Houston, TX, and used in situ NO2 aircraft 358 
profiles and surface data to show the spatial patterns in NO2 columns reflected those at the surface. 359 
Because we do not have aircraft measurements for the 52 cities in our domain, we instead test the 360 
dependence of tract-level NO2 inequalities on spatial heterogeneities in UA demographics. To 361 
evaluate relationships between column and surface NO2 spatial distributions, we analyze Pearson 362 
correlation coefficients of TVCDs and surface NO2* mixing ratios as a function of observation 363 
proximity.  364 

Because of historical and contemporary racial discrimination, U.S. cities are segregated by race, 365 
ethnicity, and income—without segregation, air pollution disparities would not be possible. We 366 
find city-level race-ethnicity NO2 inequalities are weakly associated with overall segregation 367 
extent (r = 0.35; p = 0.010) (Figure S4), suggesting UAs are sufficiently segregated to support 368 
intra-urban NO2 disparities, and that NO2 inequalities are more sensitive to changes in overall NO2 369 
pollution level. Segregation structure can be characterized along an axis between clustered 370 
segregation, where segregated tracts spatially aggregate into larger contiguous regions, and patch-371 
worked segregation, where the spatial scale of segregated tracts is small and adjacent tracts are 372 
more likely to have different demographic populations (Chodrow, 2017; Lee et al., 2008; Reardon 373 
& O’Sullivan, 2004). For reference, Atlanta, GA typifies clustering, while New York City, NY 374 
exhibits patch-worked segregation (Figure S5). This structural distinction is informative for the 375 
application of TROPOMI, as the 0.01° x 0.01° spatial resolution is coarser than many densely-376 
populated tracts and oversampling has the effect of smoothing spatial gradients through averaging. 377 
Because NO2 spatially varies at sub-census-tract scales (e.g., Miller et al., 2020), if the tract unit 378 
challenges the TROPOMI resolution, NO2 disparities would positively correlate with increasing 379 
clustering, providing a test of the TROPOMI resolution at the tract scale. Here, we compare race-380 
ethnicity summer weekday NO2 inequalities with urban race-ethnicity segregation structure 381 
(Figure S4). We find that city-level race-ethnicity NO2 disparities are uncorrelated with 382 
segregation structure (r = 0.07, p = 0.619) and not positively associated with clustering, implying 383 
TROPOMI is indeed able to resolve inter-tract differences even when segregated tracts do not 384 
spatially aggregate. Past research has shown city-level NO2 co-varies with urban form and density 385 
(Bechle et al., 2011, 2017; Larkin et al., 2017). However, because we focus on the urban core, we 386 
cross-cut this variability, largely excluding urban-suburban form and density gradients.  387 

To assess whether spatial distributions in NO2 TVCDs reflect those at the surface, we compare 388 
NO2 columns and mean daytime (12−3 pm LT) NO2* surface mixing ratios as a function of the 389 
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spatial proximity between tract-averaged TVCDs and the NO2* nearest monitor (Figure S6) 390 
(Bechle et al., 2013; Demetillo et al., 2020). Census tract coverage is spatially continuous; 391 
however, there are instances where no tracts are identified within a given 1-km interval (i). Here, 392 
tract-averaged TVCDs are set equal the column value in the i + 1 distance interval, or infrequently 393 
the i + 2 interval. This largely occurs when comparing directly overhead tract-averaged TVCDs, 394 
so we limit the correction to columns ≤1 km from the nearest NO2* monitor. The highest mean r 395 
values are observed when TVCDs and surface measurements are spatially coincident, 0.69 ± 0.05 396 
in the summer and 0.60 ± 0.09 in the winter. However, we anticipate that r values (≤1 km) would 397 
be even higher if comparisons were instead based on the 0.01° x 0.01° product. At distances of 6–398 
10 km, r values fall to 0.42 ± 0.07 (summer) and 0.30 ± 0.09 (winter). These results indicate that 399 
TROPOMI TVCDs capture similar spatial patterns as measured at the surface, but also highlight 400 
that the NO2* network is too spatially sparse to collect locally-relevant NO2* levels for most 401 
residents.  402 

 403 

4 Summary 404 

We use TROPOMI observations to quantify NO2 inequality in 52 major U.S. cities over June 405 
2018–February 2020. We report average census tract-level population-weighted NO2 disparities 406 
for Black and African Americans (17 ± 2%), Hispanics/Latinos (19 ± 2%), Asians (12 ± 2%), and 407 
Native Americans (15 ± 2%) compared to non-Hispanic/Latino whites, and for people living below 408 
(17 ± 2%) and near the poverty line (10 ± 2%) compared to those living above. Higher inequalities 409 
are found when race-ethnicity and income are combined, with 28 ± 2% greater population-410 
weighted NO2 for LINs than HIWs. For all metrics, much greater disparities are observed in some 411 
larger U.S. cities. Absolute NO2 inequalities are strongly associated with UA NO2 pollution; 412 
however, correlations between relative inequalities and city-level NO2 are weaker. We use 413 
weekday-weekend differences in NO2 TVCDs as empirical constraints on the impact of regulating 414 
HDDV NOx emissions, showing that a 62% reduction in on-road diesel traffic leads to a 37% 415 
decrease in LIN-HIW inequalities. While HDDV emissions contribute to the majority of NO2 416 
inequalities—63 ± 13% for Black and African Americans, 52 ± 10% for Hispanics/Latinos, 36 ± 417 
7% for Asians, 62 ± 12% for Native Americans, and 56 ± 11% for people living below or near 418 
poverty line—controlling them entirely would not eliminate NO2 disparities. Finally, we provide 419 
additional evidence that oversampled TROPOMI observations resolve key patterns in the census 420 
tract-scale NO2 distribution with NO2 disparities being invariant with segregation structure and 421 
that spatial patterns in directly-overhead NO2 columns reflect surface-level NO2 spatial patterns. 422 
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