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Key Points:

e On average, urban NO, inequalities of 28 + 2% are observed with race-ethnicity and
income; disparities are much greater in many cities

e Diesel traffic is the dominant source of NO, disparities; a 62% reduction in diesel
emissions would decrease inequalities by more than 37%

e TROPOMI observations combined with oversampling resolve surface patterns in NO,
disparities at the census-tract scale
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Abstract

Air pollution disproportionately burdens communities of color and lower-income communities in
U.S. cities. We have generally lacked city-wide concentration measurements that resolve the steep
spatiotemporal gradients of primary pollutants required to describe intra-urban air pollution
inequality. Here, we use observations from the recently-launched TROPospheric Ozone
Monitoring Instrument (TROPOMI) satellite sensor and physics-based oversampling to describe
nitrogen dioxide (NO,) disparities with race, ethnicity, and income in 52 U.S. cities (June 2018—
February 2020). We report average U.S.-urban census tract-level NO, inequalities of 28 + 2%
(race-ethnicity and income combined), with many populous cities experiencing even greater
inequalities. Using observations and inventories, we find diesel traffic is the dominant source of
NO; disparities, and that a 62% reduction in diesel emissions would decrease race-ethnicity and
income inequalities by 37%. We add evidence that TROPOMI resolves tract-scale NO, differences
using relationships with urban segregation patterns and spatial variability in column-to-surface
correlations.

Plain Language Summary

People of color and people with lower household incomes commonly experience higher levels of
air pollution and worsened health burdens from poor air quality in U.S. cities. We have lacked
direct observations of air pollution across cities with which to describe, explain, and guide policy
making on air pollution disparities. Nitrogen dioxide is an important combustion pollutant that is
co-emitted with many other toxic pollutants, and its concentrations are highly variable between
neighborhoods. Here, we use nitrogen dioxide measurements collected from space by the
TROPospheric Ozone Monitoring Instrument (TROPOMI) to describe inequalities within 52 U.S.
cities. TROPOMI captures greater spatial detail than previously possible, and the near-daily data
collection allows for interpretation of the specific polluting sources causing nitrogen dioxide
inequality, including diesel traffic emissions. Because satellite applications for air pollution
inequality analyses are nascent, we build on our past work to advance understanding of the extent
to which TROPOMI resolves inter-neighborhood nitrogen dioxide differences.

1 Introduction

In U.S. cities, the concentrations of many air pollutants have been observed, modeled, and inferred
to be higher in neighborhoods where residents are primarily people of color and have lower
household incomes (e.g., Ard, 2015; Bell & Ebisu, 2012; Bullard, 1987; Gwynn & Thurston, 2001;
Jerrett et al., 2005; Pope et al., 2016; Tessum et al., 2019). These disparities have been shown to
cause measurable differences in health and life expectancy (Adar & Kaufman, 2007; Di et al.,
2017; Lin et al., 2002; Lipfert & Wyzga, 2008). Heavy-duty diesel vehicles (HDDVs) are a major
driver of air pollution inequalities (Demetillo et al., 2020; Houston et al., 2004; 2008; 2011; 2014;
Lena et al., 2002; Levy et al., 2009; Nguyen & Marshall, 2018; Tessum et al., 2021), with HDDV
exhaust containing nitrogen oxides (NOx = NO + NO,) and a myriad of hazardous co-emissions
(HEI, 2010). Source characterization of air quality disparities, including from diesel traffic
emissions, has been hindered by the lack of city-wide measurements resolving steep atmospheric
pollutant gradients and providing temporal information useful for source identification.

Nitrogen dioxide (NO,) is a combustion product and a key control over atmospheric oxidation and
secondary pollutant formation. Communities of color and those with lower household incomes
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often experience elevated NO, concentrations and exposures (Clark et al., 2014; 2017; Kerr et al.,
2021; Kravitz-Wirtz et al., 2016; Rosofsky et al., 2018; Southerland et al., 2021). Epidemiological
studies indicate an association between NO, exposure and/or its co-emissions and various adverse
health effects (Brook et al., 2007; Brunekreef & Holgate, 2002; Burnett et al., 2004). NO; is a
common surrogate for combustion pollution generally (Levy et al., 2014) and toxins in traffic
exhaust specifically (HEI, 2010). HDDVs contribute a major portion of urban NOy despite being
a small fraction (3—6%) of the U.S. fleet in terms of distance traveled, as diesel engines produce
x7 more NOy per kg fuel burned than gasoline (McDonald et al., 2012; 2018). Because its sources
are ubiquitous and distributed, NO, is highly variable in space and time, with typical distance-
decay gradients away from sources of <0.5-2 km (Apte et al., 2017; Choi et al., 2012; Karner et
al., 2010). A key advantage to focusing air pollution inequality analyses on NO; is that it has
recently become possible to observe NO, daily from space at the scale of a few kilometers using
the TROPospheric Ozone Monitoring Instrument (TROPOMI).

In Demetillo et al. (2020), we conducted a detailed evaluation of the use of TROPOMI
observations to describe intra-urban NO; disparities, demonstrating that TROPOMI was indeed
well-positioned to inform multiple aspects of NO; inequality research in Houston, Texas. We used
fine spatial resolution (250 m x 500 m) airborne NO, remote sensing measurements from the
GEOstationary Coastal and Air Pollution Events Airborne Simulator (GCAS) as a standard
(Nowlan et al., 2018), showing that TROPOMI, oversampled to 0.01° x 0.01° using the physics-
based algorithm employed here, resolved equivalent NO, relative inequalities as GCAS. We
assessed the effects of observational uncertainties, retrieval biases, and time averaging on NO,
inequality estimates, finding that although their influence led to underestimations in absolute
census tract-level differences, TROPOMI still captured key variations in NO, spatial distribution
between tracts. We also showed that spatial patterns in NO, columns reflected those at the surface,
an essential aspect of their application to air quality environmental justice decision-making, and
determined that column-based inequalities represented those that would be captured at the surface.

Here we expand this application of TROPOMI, describing NO, inequality in 52 major U.S. cities
and using these observations as empirical constraints on the contribution of HDDV traffic to NO,
disparities. We report neighborhood-level (census-tract) disparities with race, ethnicity, and
income over an almost two-year period (June 2018—February 2020). We analyze weekday-
weekend differences from both TROPOMI and NOy emissions inventories to quantify the role of
diesel traffic in NO, inequalities. We discuss results seasonally, as the NO, atmospheric lifetime
is shorter in the summer, leading to greater co-location between NOy emission sources and NO,
columns than in the winter. We further explore analytical issues in the use of TROPOMI for
observing tract-scale inequalities in cities where higher spatial resolution measurements are not
available, investigating inequality relationships with urban segregation patterns and correlating
column and surface measurements as a function of their spatial coincidence.

2 Data and Methods
2.1 TROPOMI

The TROPOspheric Monitoring Instrument (TROPOMI) detects various atmospheric trace gases
in the ultraviolet and visible, near-infrared, and shortwave infrared spectral regions (van Geffen et
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al., 2018; Veefkind et al., 2012). TROPOMI samples at ~1:30 pm local time (LT) almost daily
from onboard the sun-synchronous Copernicus Sentinel-5 Precursor satellite. NO; is retrieved by
fitting the 405—465 nm band using an updated OMI DOMINO algorithm based on the QA4ECV
project (Boersma et al., 2011; 2018; Lorente et al., 2017; van Geffen et al., 2015; Zara et al., 2018).
Before 6 August 2019, NO, was retrieved at a nadir spatial resolution of 3.5 km x 7 km. NO,
tropospheric vertical column densities (TVCDs) have since become available at 3.5 km x 5.5 km.
Precision of individual TVCDs over polluted scenes is on the order of 30—60% (Boersma et al.,
2018) and dominated by uncertainties in air mass factor inputs, including clouds, NO, profile shape
(daily 1° x 1° TM5-MP output) (Williams et al., 2017), and surface albedo (monthly 0.5° x 0.5°
OMI climatology) (Kleipool et al., 2008).

We use the TROPOMI Level 2 NO, product averaged to 0.01° x 0.01° (~1 km x 1 km) with a
physics-based oversampling algorithm (Sun et al., 2018). We include cloud-free scenes with qa >
0.75. We calculate mean NO, TVCDs within census tract boundaries for 52 U.S. cities (Table S1)
over June 2018—February 2020, summer (June—August), and winter (December—February) and
separately analyze seasonal NO, TVCDs on weekdays and weekends. We define weekdays as
Tuesdays—Fridays and weekends as Saturdays—Sundays. Monday and Saturday are considered
transition days as they are influenced by carryover of yesterday’s NO,. We remove Mondays from
our analysis but keep Saturdays to improve weekend statistics. The mean number of TROPOMI
pixels rounded up to the nearest integer in each 0.01° x 0.01° grid are as follows (= 1 ¢ standard
deviation), 77 &+ 24 (summer weekdays), 33 £ 10 (summer weekends), 33 + 21 (winter weekdays),
and 18 + 11 (winter weekends), with reduced wintertime sampling statistics due to increased cloud
cover (Table S2). TROPOMI observations are spatially continuous (discretized to 0.001° x
0.001°), giving NO, TVCDs within tracts smaller than 1 km?”. Cities were selected to represent
both the largest U.S. urban areas and mid-sized cities for broad country-wide coverage. Cities are
defined as U.S. Census-designated ‘urbanized areas’ (UAs) with two exceptions: we separate New
York-Newark, NJ-NY—CT along state lines into New York City, NY and Newark, NJ and San
Francisco—Oakland, CA along the San Francisco Bay into San Francisco and Oakland, CA. With
a population density threshold of 1,000 people mi 2, UAs represent the urban core of metropolitan
areas; therefore, results reflect intra-urban rather than urban-suburban differences (Demetillo et
al., 2020).

2.2 Population-Weighted Census-Tract NO; Inequalities

We calculate population-weighted NO; census tract-averaged TVCDs with race and ethnicity and
sort tracts by household poverty status or median household income using the U.S. Census
database for 2019 (Text S1). Race-ethnicity groups are defined following the U.S. Census
categories of Black and African Americans, Asians, American Indians and Native Alaskans,
referred to in the text as Native Americans, and whites, excluding people from each racial group
identifying as Hispanic or Latino, and Hispanics/Latinos, including all races also reporting as
Hispanic and/or Latino. Poverty status is defined according to the U.S. Census Bureau definition
using the household income-to-poverty ratio. Households are categorized as below the poverty
line if their income is below the U.S. Federal Poverty Guidelines threshold, which scales with the
number of people per household. Tracts are classified as follows: below the poverty line, >20% of
tract households at or below an income-to-poverty ratio of one; near poverty, all tract households
having an income-to-poverty ratio of 1-1.24; and above poverty, all tract households having an
income-to-poverty ratio >1.24. We discuss the sensitivity of our results to the 1.24 threshold in



151
152
153
154

155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171
172
173
174
175
176
177
178
179
180

181

182
183
184
185
186
187
188
189
190
191
192
193

manuscript submitted to Geophysical Research Letters

Text S1. We combine race-ethnicity and income categories, reporting results for Black and African
Americans, Asians, Native Americans, and/or Hispanic/Latino residents in the lowest median
income quintile tracts (LINs) and for non-Hispanic/Latino whites residing in the highest median
income quintile tracts (HIWs). Household income quintiles are UA specific.

2.3 NOy Inventories

The Fuel-based Inventory from Vehicle Emissions (FIVE18-19) is a U.S.-wide, 4 km x 4 km
mobile source (on-road and off-road, gasoline and diesel engines) NOy emissions inventory
providing monthly mean hourly data on weekdays, Saturdays, and Sundays (Harkins et al., 2021;
McDonald et al., 2012; 2018). Emission rates are based on publicly available fuel sales reports,
road-level traffic counts, and time-resolved weigh-in-motion traffic counts. Fuel-use uncertainties
are determined from differences between fuel sale reports and truck travel and traffic count site-
selection and sample size. Emissions uncertainties are +16% and +17% for gasoline and diesel
vehicles, respectively, and are derived from a regression analysis of near-road infrared remote
sensing and tunnel studies (Jiang et al., 2018). Fuel sales reports are provided at the state level,
and we utilize separate link-level traffic counting datasets of light- and heavy-duty traffic (FHWA,
2020), downscaling to 4 km x 4 km following McDonald et al. (2014). Traffic counting datasets
are estimated to spatially resolve ~70% of passenger vehicle and ~80% of heavy-duty truck traffic.
The small remainder (20-30%) is spatially allocated using population as a surrogate. The
additional uncertainty associated with downscaling traffic results in higher urban-scale emission
uncertainties of £24% for gasoline and +24% for diesel vehicles (McDonald et al., 2014).

NOx stationary source emissions are from the 2017 National Emissions Inventory (NEI17) updated
January 2021 Version (EPA, 2021). The NEI17 reports annual emission totals of point sources
including industrial facilities, electricity generating units, oil and gas operations, and airports. Data
for smaller industrial facilities, e.g., dry cleaners and gas stations, are voluntarily submitted by
state agencies and counted as area rather than point sources. Here, we focus on annual NEI17 point
source emissions and assume they exhibit no seasonal or day-to-day variability. A comparison of
monthly time resolved NEI point source NOy emissions in July and January indicated differences
are indeed small (~5%). Emissions uncertainties in power plants are £25% (Frost et al., 2006);
uncertainties in industrial facilities and other stationary sources are larger and assumed to be +50%
(Jiang et al., 2018).

2.4 Segregation Extent and Structure

We compute three complementary metrics to quantify and describe city-level racial segregation
extent and structure, with segregation structure classified as clustered (mega-regions of
segregation) or patch worked (micro-regions of segregation), based on the same 2019 U.S. Census
tract-level demographics and UA boundaries as the inequality results. We calculate the Shannon
Entropy Index, a measure of diversity and prevalence. Cities with low entropy have a small number
of prominent groups, whereas cities with high entropy have roughly equal proportions of groups
(Reardon & Firebaugh, 2002). We describe the extent of urban segregation through the
Information Theory Index (Reardon & Firebaugh, 2002, Theil & Finizza, 1971), reflecting the
amount of information that an individual’s location carries about their demographic group. This is
an aspatial metric describing the extent of segregation by comparing the demographic
representation of a geographic unit to the overall city average (Reardon & O’Sullivan, 2004,
Roberto, 2018). We compute the mean local information density, a measure of the spatial scale of
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segregation, generating urban segregation structure estimates based on the Fisher information
between spatial and demographic variables (Chodrow, 2017).

2.5 Surface NO,* Measurements

We use NO,* surface measurements from 97 non-roadway monitors in 20 UAs identified as
having at least three NO, monitoring stations operating during June 2018—February 2020 (Table
S3). Almost all of these NO; instruments operate by first decomposing NO, to NO over a heated
molybdenum catalyst and measuring NO by chemiluminescence. NO, data collected with this
technique have a known positive interference from oxidized and reduced nitrogen compounds,
which also thermally decompose across the catalyst but at non-unity efficiency (Dunlea et al.,
2007). The nomenclature NO,* is used in acknowledgement of this interference. Past research has
shown the instruments capture NO, temporal patterns (Russell et al., 2010) and NO, mixing ratios
before substantial oxidation has occurred. Because we are interested in the distance dependence of
correlations between surface NO,* and the overhead TROPOMI TVCDs, rather than the surface
NO; mixing ratios themselves, we do not apply a correction factor to the NO,* dataset.

3 Results and Discussion
3.1 NO; Inequality and the Role of Diesel NO, Emissions

Across the 52 cities in our study, representing 130 million residents, population-weighted NO,
TVCDs are on average 17 + 2% higher for Black and African Americans, 19 + 2% higher for
Hispanics/Latinos, 12 + 2% higher for Asians, and 15 + 2% higher for Native Americans compared
to whites (city-level results are weighted by urban population size in the averaging). NO, TVCDs
are on average higher for people living below (17 = 2%) and near the poverty line (10 = 2%) than
for those above. When race-ethnicity and income are combined, we report an average of 28 + 2%
greater population-weighted NO, for LINs than HIWs, with the highest inequalities observed in
Phoenix, Arizona (46 + 2%), Los Angeles, California (43 + 1%), and Newark, New Jersey (42 +
2%) (Figure 1). In only one city, San Antonio, Texas, is the sign of LIN-HIW inequality negative
over June 2018—February 2020 (-6 + 3%), although a small number of negative values are also
observed for the other metrics. In the five most-populated UAs, representing ~35% of the
population, NO, TVCDs are 36 + 3% higher for LINs compared to HIWs. Absolute NO, disparities
(molecules cm ) are strongly associated with local city-level NO, pollution (Figure 1h), with a
Pearson correlation coefficient () of 0.82 for the combined race-ethnicity and income metric (LIN-
HIW). At the same time, relative inequalities (%) are only moderately associated with city-level
NO; (r = 0.46), suggesting that sustained NOy emission control will reduce but not eliminate NO,
disparities, a result consistent with work investigating trends in NO, inequality between 2000 and
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228 2010 using land-use regression NO, datasets (Clark et al., 2017) and before and during COVID-
229 19-related activity changes using TROPOMI NO, TVCDs (Kerr et al., 2021).
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230
231  Figure 1. Relative NO, inequalities (percentage difference between population-weighted NO, means) for

232 52 major U.S. cities over all days in June 2018—February 2020. Marker size reflects the total city population
233 with the smallest markers representing cities with <1.5 million residents and the largest markers for cities
234  with >10 million residents. Average NO, inequalities are shown for Black and African American (a),
235  Hispanic/Latino (b), Asian (¢), and Native American (d) compared to white residents. Inequalities are also
236  mapped for people living near (e) and below (f) versus above the poverty line and for LINs compared to
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HIWSs (g). Displayed mean values for each group are weighted by urban population size. City-averaged
NO,; TVCDs are shown (h).

To observationally constrain city-wide effective contributions of HDDVs to NO,; disparities, we
first compare TROPOMI NO, inequalities on weekdays and weekends and then contextualize the
measured changes using NOy emission weekday-weekend patterns predicted by the FIVE18-19
(mobile sources) and NEI17 (point sources). HDDVs transport commercial goods and their
emissions are substantially reduced on weekends; at the same time, passenger vehicles (largely
gasoline powered in the U.S.) and point source emissions exhibit much less weekday-weekend
variability, although the timing of their emissions may change (Marr & Harley, 2002; Russell et
al., 2012; McDonald et al., 2014). Off-road diesel engines (e.g., construction) also vary weekday
to weekend; however, their contribution to total urban NOy emissions is considerably smaller than
on-road HDDVs. While HDDVs with NOy control are a growing portion of the vehicle fleet (Jiang
et al., 2018), with reports of declining weekday-weekend NO, differences (Demetillo et al., 2019),
HDDWVs still emit an important fraction of urban NOy. In the 52 UAs at the focus of this work,
NO; TVCDs are an average of 34 £ 17% (lo standard deviation) lower on weekends than
weekdays (June 2018—February 2020).

Weekday-weekend differences in city-level census-tract absolute TROPOMI NO, inequalities are
fit using a weighted bivariate linear regression model (York et al., 2004), with weights derived
from errors in city-level NO, for the different residential populations (Table S4). Because NO,
concentrations better correlate with NOy emission rates when the NO, atmospheric lifetime is
short, we evaluate correlations separately in the summer and winter. We determine the ‘effective’
HDDYV contributions to inequalities from the regression slope, a combined function of changes in
both the total NOy emissions and the nonlinear NO,-dependent NO, chemical lifetime. This
method weights cities equally regardless of population. LIN-HIW disparities decrease by 37 +3%
on weekends in the summer and 32 + 2% in the winter (Figure 2a). Weekday and weekend
inequalities are more strongly correlated in the summer (» = 0.93) than winter (= 0.51), a function
of seasonal differences in NO, lifetime and reduced wintertime sampling statistics. For race-
ethnicity and poverty metrics, weekday-weekend differences are 28—46% in the summer (mapped
in Figure S3) and more variable in the winter (0—41%). We observe weekend NO, decreases to be
spatially variable within cities and larger in census tracts where residents are primarily people of
color or have lower household incomes. Weekday-weekend NO, differences indicate greater
weekend NOy emission reductions in the most polluted neighborhoods, as summertime weekend
NO; decreases are 50% larger in the highest quintile NO, census tracts than the lowest quintile
NO, tracts. Comparable weekday-weekend decreases are observed in the winter for the highest
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and lowest quintile NO; tracts, consistent with longer NO, lifetimes and NO, TCVDs being more
distributed from NOy emission sources in space and time.
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Figure 2. Absolute differences (molecules cm ) in population-weighted TVCDs NO, between LINs and
HIWs on weekdays and weekends (a) in the summer (black) and winter (light blue). Percent contributions
of on-road HDDVs to NO, emission density-based LIN-HIW inequalities during summer months from the
FIVE18-19 and NEI17 (b). The mean HDDV contribution to emissions inequality, weighted by UA
population, is also displayed.

Observed weekday-weekend differences in NO, TCVDs are a function of both the direct change
in NOy emissions and the subsequent indirect effects on the NOy-dependent NO, lifetime.
Weekday-weekend differences in NOy emissions are driven by the fraction of total HDDVs that
are parked on weekends, and, to a smaller extent, concurrent changes in spatiotemporal patterns
of other vehicle types. To attribute measured differences in NO, disparities to a specific reduction
in diesel traffic, we compare TROPOMI-based results with changes in NOy emission densities
(metric tons NOy day ' km ™), and their resulting inequalities, derived from the FIVE18-19 and
NEI17. We first degrade the 0.01° x 0.01° oversampled TROPOMI product and FIVE18-19
database (4 km x 4 km) to the same 0.04° x 0.04° grid, average each to underlying census tracts,
and calculate inequalities as described in Section 2.2. NEI17 sources are represented as points and
summed within their respective tracts. Tract-level FIVE18-19 and NEI17 are combined and
normalized by tract areas to produce NOy emissions densities. We analyze inventory-based results,
and their comparison with TROPOMI, separately in the summer and winter.

Because we expect the coarser 0.04° x 0.04° grid to influence the observed inter-tract differences,
we first compare tract-averaged disparities based on the 0.01° x 0.01° oversampled TVCDs to
those determined using the 0.04° x 0.04° TVCDs. We calculate the normalized mean biases and
errors in the absolute and relative inequalities separately on summer and winter weekdays, using
the 0.01° x 0.01° TROPOMI-based results as our reference values. Despite the loss of spatial detail,
U.S.-wide normalized mean biases for the different inequality metrics are just <1-6% (Figure S1,
Table S5). We generally calculate slightly higher NO, inequalities with the coarser-resolution NO,
product than the 0.01° x 0.01° TVCDs, suggesting larger pixels have the effect of distributing NOx
emissions over spatial areas with similar demographic and income characteristics. The greatest
city-level normalized mean biases (8-22%) are observed in Oakland, San Diego, and San
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Francisco, CA, all cities that encompass narrow geographical areas along coasts that may even
challenge the satellite analysis at 0.01° x 0.01°. While normalized mean biases are low on average
across UAs, normalized mean errors for each metric are higher (3—13%), indicating inaccuracies
are larger in individual cities because of the loss of spatial resolution. That said, we find the 0.04°
x 0.04° TVCDs give comparable weekday-weekend NO, differences to the 0.01° x 0.01° product
for all inequality metrics (Table S5). Coarse-resolution TVCDs yield weekday-weekend decreases
in LIN-HIW disparities of 37 + 4% and 38 + 2% in the summer and winter, respectively, equaling
results with the 0.01° x 0.01° TVCDs within uncertainties in the summer. Agreement is similar for
the other metrics, indicating datasets resolved to 0.04° x 0.04° still capture tract-scale patterns in
the intra-urban spatiotemporal distribution.

Using the FIVE18-19 and NEI17, we calculate mean summertime weekday-weekend reductions
in LIN-HIW disparities in NOx emissions densities of 43 + 4% (includes all source sectors), in
agreement with TROPOMI-based weekday-weekend differences using the 0.04° x 0.04° TVCDs
within associated uncertainties (Table S4). For race-ethnicity and poverty status, weekday to
weekend decreases in emissions disparities equal empirical estimates to within 3—15%, with the
inventories generally predicting comparable or slightly larger weekend reductions than
TROPOMLI. There is greater disagreement between NO, TVCDs and the inventories in the winter,
with TROPOMI weekday-weekend differences for some race-ethnicity metrics being much
smaller than estimated by the FIVE18-19 and NEI17. These wintertime discrepancies are
consistent with seasonal patterns in NO, mesoscale transport (greater day-to-day carryover),
further NO, displacement away from NOy sources, and more NOy-suppressed chemistry, but may
also be related to the reduced wintertime sampling statistics on weekdays and weekends.

Finally, we partition NOy emission inequalities and their weekday-weekend differences by source
sector, focusing on the role of HDDVs. We limit the analysis to summer months, when NO,
TVCDs are most responsive to NOy emissions changes. On weekdays, on-road HDDVs cause on
average (unweighted by UA population) 45 + 5% of LIN-HIW NOy emissions-based inequalities
(Figure 2b; Table S6). The remainder is due to on-road gasoline-powered vehicles (38 £ 5%),
gasoline and diesel off-road vehicles (13 + 6%), and stationary sources (4 + 6%), largely electricity
generation. HDDVs contribute significantly to mean (weighted by UA population) NO emissions
inequalities for Black and African Americans (63 + 13%), Hispanics/Latinos (52 + 10%), Asians
(36 = 7%), and Native Americans (62 + 12%) and for people living below and near the poverty
line (56 £ 11%) (Figure S3). While HDDVs are the largest source of UA-level disparities,
stationary sources may be more important across more suburban metropolitan areas. Regulatory
controls on gasoline-powered vehicles and electricity generation between 2000 and 2010
decreased absolute, although not relative, NO, inequalities from these sources across the U.S.
(Clark et al., 2017), and an analysis exploiting COVID-19-related reductions in passenger vehicle
traffic suggest HDDV emissions dominate relative NO; inequalities in recent years (Kerr et al.,
2021). Based on the FIVE18-19, summertime HDDV NOy emission densities decrease by 62 +
2% on weekends, with diesel traffic still causing 26 + 6% of LIN-HIW NOy emissions inequalities
on weekends. Therefore, if the entire observed effective weekday-weekend change in NO, TVCD
disparities is caused by HDDVs, then a 62 + 2% reduction in summertime weekday on-road HDDV
emissions leads to a 37 + 3% decrease in NO, LIN-HIW disparities. While we find that on average
LIN-HIW NOy emission densities from the other major source of emissions-based inequalities,
gasoline-powered vehicles, decrease by 10% weekday to weekend, NOx emission inequalities
change by less than 1% (Table S6), indicating that weekday-weekend differences in disparities are
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driven by HDDVs. If HDDV emissions were fully controlled—or their distribution was
equalized—summer weekday LIN-HIW NOy emissions inequalities would decrease by almost
50%. Likewise, elimination of on-road HDDV inequalities would lower disparities with race-
ethnicity and poverty by 59% and 49%, respectively (Table S7). These predicted changes represent
upper bounds, as U.S. urban chemical oxidation is trending toward NOy-limitation (Laughner &
Cohen, 2019).

3.2 Resolving Census Tract-Scale Inequality from Space

Application of satellite remote sensing to NO, inequality requires demonstration that both
oversampled TROPOMI TVCDs capture inter-census-tract differences and that spatial patterns in
NO; columns reflect those that would be measured at the surface. In Demetillo et al. (2020), we
found TROPOMI-based results were comparable to NO, tract-scale disparities determined using
the high spatial resolution airborne sensor GCAS in Houston, TX, and used in situ NO, aircraft
profiles and surface data to show the spatial patterns in NO, columns reflected those at the surface.
Because we do not have aircraft measurements for the 52 cities in our domain, we instead test the
dependence of tract-level NO, inequalities on spatial heterogeneities in UA demographics. To
evaluate relationships between column and surface NO,; spatial distributions, we analyze Pearson
correlation coefficients of TVCDs and surface NO,* mixing ratios as a function of observation
proximity.

Because of historical and contemporary racial discrimination, U.S. cities are segregated by race,
ethnicity, and income—without segregation, air pollution disparities would not be possible. We
find city-level race-ethnicity NO, inequalities are weakly associated with overall segregation
extent (r = 0.35; p = 0.010) (Figure S4), suggesting UAs are sufficiently segregated to support
intra-urban NO, disparities, and that NO; inequalities are more sensitive to changes in overall NO,
pollution level. Segregation structure can be characterized along an axis between clustered
segregation, where segregated tracts spatially aggregate into larger contiguous regions, and patch-
worked segregation, where the spatial scale of segregated tracts is small and adjacent tracts are
more likely to have different demographic populations (Chodrow, 2017; Lee et al., 2008; Reardon
& O’Sullivan, 2004). For reference, Atlanta, GA typifies clustering, while New York City, NY
exhibits patch-worked segregation (Figure S5). This structural distinction is informative for the
application of TROPOMI, as the 0.01° x 0.01° spatial resolution is coarser than many densely-
populated tracts and oversampling has the effect of smoothing spatial gradients through averaging.
Because NO; spatially varies at sub-census-tract scales (e.g., Miller et al., 2020), if the tract unit
challenges the TROPOMI resolution, NO, disparities would positively correlate with increasing
clustering, providing a test of the TROPOMI resolution at the tract scale. Here, we compare race-
ethnicity summer weekday NO; inequalities with urban race-ethnicity segregation structure
(Figure S4). We find that city-level race-ethnicity NO, disparities are uncorrelated with
segregation structure (» = 0.07, p = 0.619) and not positively associated with clustering, implying
TROPOMI is indeed able to resolve inter-tract differences even when segregated tracts do not
spatially aggregate. Past research has shown city-level NO; co-varies with urban form and density
(Bechle et al., 2011, 2017; Larkin et al., 2017). However, because we focus on the urban core, we
cross-cut this variability, largely excluding urban-suburban form and density gradients.

To assess whether spatial distributions in NO, TVCDs reflect those at the surface, we compare
NO; columns and mean daytime (12—3 pm LT) NO,* surface mixing ratios as a function of the
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spatial proximity between tract-averaged TVCDs and the NO,* nearest monitor (Figure S6)
(Bechle et al., 2013; Demetillo et al., 2020). Census tract coverage is spatially continuous;
however, there are instances where no tracts are identified within a given 1-km interval (7). Here,
tract-averaged TVCDs are set equal the column value in the i + 1 distance interval, or infrequently
the 7 + 2 interval. This largely occurs when comparing directly overhead tract-averaged TVCDs,
so we limit the correction to columns <I km from the nearest NO,* monitor. The highest mean r
values are observed when TVCDs and surface measurements are spatially coincident, 0.69 + 0.05
in the summer and 0.60 £ 0.09 in the winter. However, we anticipate that » values (<1 km) would
be even higher if comparisons were instead based on the 0.01° x 0.01° product. At distances of 6—
10 km, » values fall to 0.42 = 0.07 (summer) and 0.30 + 0.09 (winter). These results indicate that
TROPOMI TVCDs capture similar spatial patterns as measured at the surface, but also highlight
that the NO,* network is too spatially sparse to collect locally-relevant NO,* levels for most
residents.

4 Summary

We use TROPOMI observations to quantify NO; inequality in 52 major U.S. cities over June
2018—February 2020. We report average census tract-level population-weighted NO, disparities
for Black and African Americans (17 £+ 2%), Hispanics/Latinos (19 + 2%), Asians (12 + 2%), and
Native Americans (15 +2%) compared to non-Hispanic/Latino whites, and for people living below
(17 £ 2%) and near the poverty line (10 + 2%) compared to those living above. Higher inequalities
are found when race-ethnicity and income are combined, with 28 + 2% greater population-
weighted NO, for LINs than HIWs. For all metrics, much greater disparities are observed in some
larger U.S. cities. Absolute NO; inequalities are strongly associated with UA NO, pollution;
however, correlations between relative inequalities and city-level NO, are weaker. We use
weekday-weekend differences in NO, TVCDs as empirical constraints on the impact of regulating
HDDV NOy emissions, showing that a 62% reduction in on-road diesel traffic leads to a 37%
decrease in LIN-HIW inequalities. While HDDV emissions contribute to the majority of NO,
inequalities—63 + 13% for Black and African Americans, 52 + 10% for Hispanics/Latinos, 36 +
7% for Asians, 62 = 12% for Native Americans, and 56 + 11% for people living below or near
poverty line—controlling them entirely would not eliminate NO, disparities. Finally, we provide
additional evidence that oversampled TROPOMI observations resolve key patterns in the census
tract-scale NO, distribution with NO, disparities being invariant with segregation structure and
that spatial patterns in directly-overhead NO, columns reflect surface-level NO, spatial patterns.
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