

1 **Space-based observational constraints on NO₂ air pollution inequality from diesel**
2 **traffic in major U.S. cities**

3 **Mary Angelique G. Demetillo¹, Colin Harkins^{2,3}, Brian C. McDonald³, Philip S. Chodrow⁴,**
4 **Kang Sun^{5,6}, and Sally E. Pusede¹**

5 ¹Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA,

6 ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder,

7 Colorado, USA, ³NOAA Chemical Sciences Laboratory, Boulder, Colorado, USA, ⁴Department

8 of Mathematics, University of California Los Angeles, Los Angeles, California, USA,

9 ⁵Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo,

10 New York, USA, ⁶Research and Education in eNergy, Environment and Water (RENEW)

11 Institute, University at Buffalo, Buffalo, New York, USA

12

13 Corresponding author: Sally E. Pusede (sepusede@virginia.edu)

14

15 **Key Points:**

- 16 • On average, urban NO₂ inequalities of $28 \pm 2\%$ are observed with race-ethnicity and
17 income; disparities are much greater in many cities
- 18 • Diesel traffic is the dominant source of NO₂ disparities; a 62% reduction in diesel
19 emissions would decrease inequalities by more than 37%
- 20 • TROPOMI observations combined with oversampling resolve surface patterns in NO₂
21 disparities at the census-tract scale

23 Abstract

24 Air pollution disproportionately burdens communities of color and lower-income communities in
25 U.S. cities. We have generally lacked city-wide concentration measurements that resolve the steep
26 spatiotemporal gradients of primary pollutants required to describe intra-urban air pollution
27 inequality. Here, we use observations from the recently-launched TROPospheric Ozone
28 Monitoring Instrument (TROPOMI) satellite sensor and physics-based oversampling to describe
29 nitrogen dioxide (NO_2) disparities with race, ethnicity, and income in 52 U.S. cities (June 2018–
30 February 2020). We report average U.S.-urban census tract-level NO_2 inequalities of $28 \pm 2\%$
31 (race-ethnicity and income combined), with many populous cities experiencing even greater
32 inequalities. Using observations and inventories, we find diesel traffic is the dominant source of
33 NO_2 disparities, and that a 62% reduction in diesel emissions would decrease race-ethnicity and
34 income inequalities by 37%. We add evidence that TROPOMI resolves tract-scale NO_2 differences
35 using relationships with urban segregation patterns and spatial variability in column-to-surface
36 correlations.

37 Plain Language Summary

38 People of color and people with lower household incomes commonly experience higher levels of
39 air pollution and worsened health burdens from poor air quality in U.S. cities. We have lacked
40 direct observations of air pollution across cities with which to describe, explain, and guide policy
41 making on air pollution disparities. Nitrogen dioxide is an important combustion pollutant that is
42 co-emitted with many other toxic pollutants, and its concentrations are highly variable between
43 neighborhoods. Here, we use nitrogen dioxide measurements collected from space by the
44 TROPospheric Ozone Monitoring Instrument (TROPOMI) to describe inequalities within 52 U.S.
45 cities. TROPOMI captures greater spatial detail than previously possible, and the near-daily data
46 collection allows for interpretation of the specific polluting sources causing nitrogen dioxide
47 inequality, including diesel traffic emissions. Because satellite applications for air pollution
48 inequality analyses are nascent, we build on our past work to advance understanding of the extent
49 to which TROPOMI resolves inter-neighborhood nitrogen dioxide differences.

50 1 Introduction

51 In U.S. cities, the concentrations of many air pollutants have been observed, modeled, and inferred
52 to be higher in neighborhoods where residents are primarily people of color and have lower
53 household incomes (e.g., Ard, 2015; Bell & Ebisu, 2012; Bullard, 1987; Gwynn & Thurston, 2001;
54 Jerrett et al., 2005; Pope et al., 2016; Tessum et al., 2019). These disparities have been shown to
55 cause measurable differences in health and life expectancy (Adar & Kaufman, 2007; Di et al.,
56 2017; Lin et al., 2002; Lipfert & Wyzga, 2008). Heavy-duty diesel vehicles (HDDVs) are a major
57 driver of air pollution inequalities (Demetillo et al., 2020; Houston et al., 2004; 2008; 2011; 2014;
58 Lena et al., 2002; Levy et al., 2009; Nguyen & Marshall, 2018; Tessum et al., 2021), with HDDV
59 exhaust containing nitrogen oxides ($\text{NO}_x \equiv \text{NO} + \text{NO}_2$) and a myriad of hazardous co-emissions
60 (HEI, 2010). Source characterization of air quality disparities, including from diesel traffic
61 emissions, has been hindered by the lack of city-wide measurements resolving steep atmospheric
62 pollutant gradients and providing temporal information useful for source identification.

63 Nitrogen dioxide (NO_2) is a combustion product and a key control over atmospheric oxidation and
64 secondary pollutant formation. Communities of color and those with lower household incomes

often experience elevated NO₂ concentrations and exposures (Clark et al., 2014; 2017; Kerr et al., 2021; Kravitz-Wirtz et al., 2016; Rosofsky et al., 2018; Southerland et al., 2021). Epidemiological studies indicate an association between NO₂ exposure and/or its co-emissions and various adverse health effects (Brook et al., 2007; Brunekreef & Holgate, 2002; Burnett et al., 2004). NO₂ is a common surrogate for combustion pollution generally (Levy et al., 2014) and toxins in traffic exhaust specifically (HEI, 2010). HDDVs contribute a major portion of urban NO_x despite being a small fraction (3–6%) of the U.S. fleet in terms of distance traveled, as diesel engines produce $\times 7$ more NO_x per kg fuel burned than gasoline (McDonald et al., 2012; 2018). Because its sources are ubiquitous and distributed, NO₂ is highly variable in space and time, with typical distance-decay gradients away from sources of <0.5–2 km (Apte et al., 2017; Choi et al., 2012; Karner et al., 2010). A key advantage to focusing air pollution inequality analyses on NO₂ is that it has recently become possible to observe NO₂ daily from space at the scale of a few kilometers using the TROPospheric Ozone Monitoring Instrument (TROPOMI).

In Demetillo et al. (2020), we conducted a detailed evaluation of the use of TROPOMI observations to describe intra-urban NO₂ disparities, demonstrating that TROPOMI was indeed well-positioned to inform multiple aspects of NO₂ inequality research in Houston, Texas. We used fine spatial resolution (250 m x 500 m) airborne NO₂ remote sensing measurements from the GEOstationary Coastal and Air Pollution Events Airborne Simulator (GCAS) as a standard (Nowlan et al., 2018), showing that TROPOMI, oversampled to 0.01° x 0.01° using the physics-based algorithm employed here, resolved equivalent NO₂ relative inequalities as GCAS. We assessed the effects of observational uncertainties, retrieval biases, and time averaging on NO₂ inequality estimates, finding that although their influence led to underestimations in absolute census tract-level differences, TROPOMI still captured key variations in NO₂ spatial distribution between tracts. We also showed that spatial patterns in NO₂ columns reflected those at the surface, an essential aspect of their application to air quality environmental justice decision-making, and determined that column-based inequalities represented those that would be captured at the surface.

Here we expand this application of TROPOMI, describing NO₂ inequality in 52 major U.S. cities and using these observations as empirical constraints on the contribution of HDDV traffic to NO₂ disparities. We report neighborhood-level (census-tract) disparities with race, ethnicity, and income over an almost two-year period (June 2018–February 2020). We analyze weekday-weekend differences from both TROPOMI and NO_x emissions inventories to quantify the role of diesel traffic in NO₂ inequalities. We discuss results seasonally, as the NO₂ atmospheric lifetime is shorter in the summer, leading to greater co-location between NO_x emission sources and NO₂ columns than in the winter. We further explore analytical issues in the use of TROPOMI for observing tract-scale inequalities in cities where higher spatial resolution measurements are not available, investigating inequality relationships with urban segregation patterns and correlating column and surface measurements as a function of their spatial coincidence.

102

103 **2 Data and Methods**

104 **2.1 TROPOMI**

105 The TROPospheric Monitoring Instrument (TROPOMI) detects various atmospheric trace gases
106 in the ultraviolet and visible, near-infrared, and shortwave infrared spectral regions (van Geffen et

107 al., 2018; Veefkind et al., 2012). TROPOMI samples at \sim 1:30 pm local time (LT) almost daily
 108 from onboard the sun-synchronous Copernicus Sentinel-5 Precursor satellite. NO_2 is retrieved by
 109 fitting the 405–465 nm band using an updated OMI DOMINO algorithm based on the QA4ECV
 110 project (Boersma et al., 2011; 2018; Lorente et al., 2017; van Geffen et al., 2015; Zara et al., 2018).
 111 Before 6 August 2019, NO_2 was retrieved at a nadir spatial resolution of 3.5 km \times 7 km. NO_2
 112 tropospheric vertical column densities (TVCDs) have since become available at 3.5 km \times 5.5 km.
 113 Precision of individual TVCDs over polluted scenes is on the order of 30–60% (Boersma et al.,
 114 2018) and dominated by uncertainties in air mass factor inputs, including clouds, NO_2 profile shape
 115 (daily $1^\circ \times 1^\circ$ TM5-MP output) (Williams et al., 2017), and surface albedo (monthly $0.5^\circ \times 0.5^\circ$
 116 OMI climatology) (Kleipool et al., 2008).

117 We use the TROPOMI Level 2 NO_2 product averaged to $0.01^\circ \times 0.01^\circ$ (\sim 1 km \times 1 km) with a
 118 physics-based oversampling algorithm (Sun et al., 2018). We include cloud-free scenes with $\text{qa} >$
 119 0.75. We calculate mean NO_2 TVCDs within census tract boundaries for 52 U.S. cities (Table S1)
 120 over June 2018–February 2020, summer (June–August), and winter (December–February) and
 121 separately analyze seasonal NO_2 TVCDs on weekdays and weekends. We define weekdays as
 122 Tuesdays–Fridays and weekends as Saturdays–Sundays. Monday and Saturday are considered
 123 transition days as they are influenced by carryover of yesterday’s NO_2 . We remove Mondays from
 124 our analysis but keep Saturdays to improve weekend statistics. The mean number of TROPOMI
 125 pixels rounded up to the nearest integer in each $0.01^\circ \times 0.01^\circ$ grid are as follows ($\pm 1\sigma$ standard
 126 deviation), 77 ± 24 (summer weekdays), 33 ± 10 (summer weekends), 33 ± 21 (winter weekdays),
 127 and 18 ± 11 (winter weekends), with reduced wintertime sampling statistics due to increased cloud
 128 cover (Table S2). TROPOMI observations are spatially continuous (discretized to $0.001^\circ \times$
 129 0.001°), giving NO_2 TVCDs within tracts smaller than 1 km^2 . Cities were selected to represent
 130 both the largest U.S. urban areas and mid-sized cities for broad country-wide coverage. Cities are
 131 defined as U.S. Census-designated ‘urbanized areas’ (UAs) with two exceptions: we separate New
 132 York–Newark, NJ–NY–CT along state lines into New York City, NY and Newark, NJ and San
 133 Francisco–Oakland, CA along the San Francisco Bay into San Francisco and Oakland, CA. With
 134 a population density threshold of 1,000 people mi^{-2} , UAs represent the urban core of metropolitan
 135 areas; therefore, results reflect intra-urban rather than urban-suburban differences (Demetillo et
 136 al., 2020).

137 2.2 Population-Weighted Census-Tract NO_2 Inequalities

138 We calculate population-weighted NO_2 census tract-averaged TVCDs with race and ethnicity and
 139 sort tracts by household poverty status or median household income using the U.S. Census
 140 database for 2019 (Text S1). Race-ethnicity groups are defined following the U.S. Census
 141 categories of Black and African Americans, Asians, American Indians and Native Alaskans,
 142 referred to in the text as Native Americans, and whites, excluding people from each racial group
 143 identifying as Hispanic or Latino, and Hispanics/Latinos, including all races also reporting as
 144 Hispanic and/or Latino. Poverty status is defined according to the U.S. Census Bureau definition
 145 using the household income-to-poverty ratio. Households are categorized as below the poverty
 146 line if their income is below the U.S. Federal Poverty Guidelines threshold, which scales with the
 147 number of people per household. Tracts are classified as follows: below the poverty line, $>20\%$ of
 148 tract households at or below an income-to-poverty ratio of one; near poverty, all tract households
 149 having an income-to-poverty ratio of 1–1.24; and above poverty, all tract households having an
 150 income-to-poverty ratio >1.24 . We discuss the sensitivity of our results to the 1.24 threshold in

151 Text S1. We combine race-ethnicity and income categories, reporting results for Black and African
152 Americans, Asians, Native Americans, and/or Hispanic/Latino residents in the lowest median
153 income quintile tracts (LINs) and for non-Hispanic/Latino whites residing in the highest median
154 income quintile tracts (HIWs). Household income quintiles are UA specific.

155 **2.3 NO_x Inventories**

156 The Fuel-based Inventory from Vehicle Emissions (FIVE18–19) is a U.S.-wide, 4 km x 4 km
157 mobile source (on-road and off-road, gasoline and diesel engines) NO_x emissions inventory
158 providing monthly mean hourly data on weekdays, Saturdays, and Sundays (Harkins et al., 2021;
159 McDonald et al., 2012; 2018). Emission rates are based on publicly available fuel sales reports,
160 road-level traffic counts, and time-resolved weigh-in-motion traffic counts. Fuel-use uncertainties
161 are determined from differences between fuel sale reports and truck travel and traffic count site-
162 selection and sample size. Emissions uncertainties are $\pm 16\%$ and $\pm 17\%$ for gasoline and diesel
163 vehicles, respectively, and are derived from a regression analysis of near-road infrared remote
164 sensing and tunnel studies (Jiang et al., 2018). Fuel sales reports are provided at the state level,
165 and we utilize separate link-level traffic counting datasets of light- and heavy-duty traffic (FHWA,
166 2020), downscaling to 4 km x 4 km following McDonald et al. (2014). Traffic counting datasets
167 are estimated to spatially resolve $\sim 70\%$ of passenger vehicle and $\sim 80\%$ of heavy-duty truck traffic.
168 The small remainder (20–30%) is spatially allocated using population as a surrogate. The
169 additional uncertainty associated with downscaling traffic results in higher urban-scale emission
170 uncertainties of $\pm 24\%$ for gasoline and $\pm 24\%$ for diesel vehicles (McDonald et al., 2014).

171 NO_x stationary source emissions are from the 2017 National Emissions Inventory (NEI17) updated
172 January 2021 Version (EPA, 2021). The NEI17 reports annual emission totals of point sources
173 including industrial facilities, electricity generating units, oil and gas operations, and airports. Data
174 for smaller industrial facilities, e.g., dry cleaners and gas stations, are voluntarily submitted by
175 state agencies and counted as area rather than point sources. Here, we focus on annual NEI17 point
176 source emissions and assume they exhibit no seasonal or day-to-day variability. A comparison of
177 monthly time resolved NEI point source NO_x emissions in July and January indicated differences
178 are indeed small ($\sim 5\%$). Emissions uncertainties in power plants are $\pm 25\%$ (Frost et al., 2006);
179 uncertainties in industrial facilities and other stationary sources are larger and assumed to be $\pm 50\%$
180 (Jiang et al., 2018).

181 **2.4 Segregation Extent and Structure**

182 We compute three complementary metrics to quantify and describe city-level racial segregation
183 extent and structure, with segregation structure classified as clustered (mega-regions of
184 segregation) or patch worked (micro-regions of segregation), based on the same 2019 U.S. Census
185 tract-level demographics and UA boundaries as the inequality results. We calculate the Shannon
186 Entropy Index, a measure of diversity and prevalence. Cities with low entropy have a small number
187 of prominent groups, whereas cities with high entropy have roughly equal proportions of groups
188 (Reardon & Firebaugh, 2002). We describe the extent of urban segregation through the
189 Information Theory Index (Reardon & Firebaugh, 2002, Theil & Finizza, 1971), reflecting the
190 amount of information that an individual's location carries about their demographic group. This is
191 an aspatial metric describing the extent of segregation by comparing the demographic
192 representation of a geographic unit to the overall city average (Reardon & O'Sullivan, 2004,
193 Roberto, 2018). We compute the mean local information density, a measure of the spatial scale of

194 segregation, generating urban segregation structure estimates based on the Fisher information
195 between spatial and demographic variables (Chodrow, 2017).

196 2.5 Surface NO₂* Measurements

197 We use NO₂* surface measurements from 97 non-roadway monitors in 20 UAs identified as
198 having at least three NO₂ monitoring stations operating during June 2018–February 2020 (Table
199 S3). Almost all of these NO₂ instruments operate by first decomposing NO₂ to NO over a heated
200 molybdenum catalyst and measuring NO by chemiluminescence. NO₂ data collected with this
201 technique have a known positive interference from oxidized and reduced nitrogen compounds,
202 which also thermally decompose across the catalyst but at non-unity efficiency (Dunlea et al.,
203 2007). The nomenclature NO₂* is used in acknowledgement of this interference. Past research has
204 shown the instruments capture NO₂ temporal patterns (Russell et al., 2010) and NO₂ mixing ratios
205 before substantial oxidation has occurred. Because we are interested in the distance dependence of
206 correlations between surface NO₂* and the overhead TROPOMI TVCDs, rather than the surface
207 NO₂ mixing ratios themselves, we do not apply a correction factor to the NO₂* dataset.

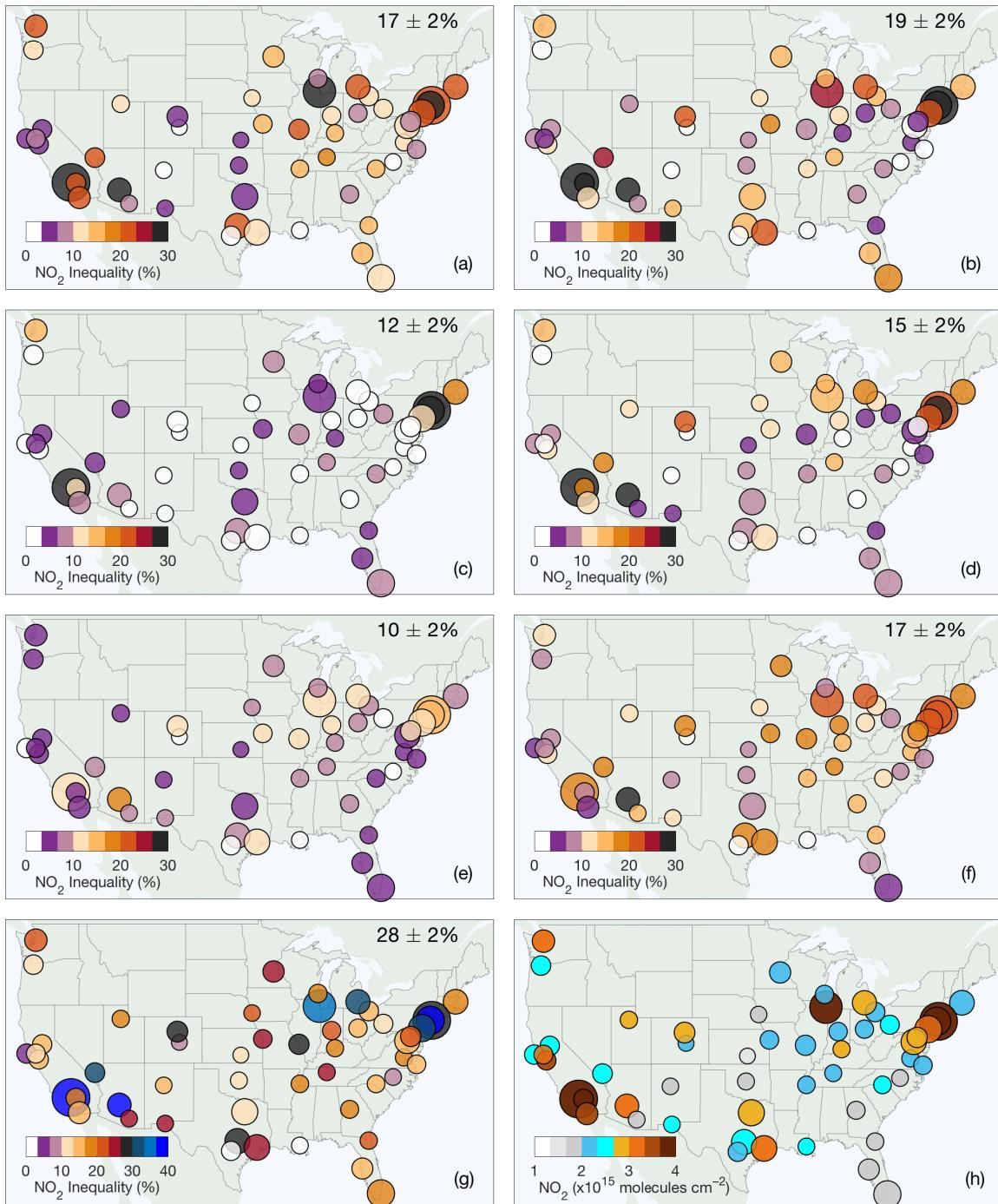
208

209 3 Results and Discussion

210 3.1 NO₂ Inequality and the Role of Diesel NO_x Emissions

211 Across the 52 cities in our study, representing 130 million residents, population-weighted NO₂
212 TVCDs are on average $17 \pm 2\%$ higher for Black and African Americans, $19 \pm 2\%$ higher for
213 Hispanics/Latinos, $12 \pm 2\%$ higher for Asians, and $15 \pm 2\%$ higher for Native Americans compared
214 to whites (city-level results are weighted by urban population size in the averaging). NO₂ TVCDs
215 are on average higher for people living below ($17 \pm 2\%$) and near the poverty line ($10 \pm 2\%$) than
216 for those above. When race-ethnicity and income are combined, we report an average of $28 \pm 2\%$
217 greater population-weighted NO₂ for LINs than HIWs, with the highest inequalities observed in
218 Phoenix, Arizona ($46 \pm 2\%$), Los Angeles, California ($43 \pm 1\%$), and Newark, New Jersey ($42 \pm$
219 2%) (Figure 1). In only one city, San Antonio, Texas, is the sign of LIN-HIW inequality negative
220 over June 2018–February 2020 ($-6 \pm 3\%$), although a small number of negative values are also
221 observed for the other metrics. In the five most-populated UAs, representing $\sim 35\%$ of the
222 population, NO₂ TVCDs are $36 \pm 3\%$ higher for LINs compared to HIWs. Absolute NO₂ disparities
223 (molecules cm⁻²) are strongly associated with local city-level NO₂ pollution (Figure 1h), with a
224 Pearson correlation coefficient (r) of 0.82 for the combined race-ethnicity and income metric (LIN-
225 HIW). At the same time, relative inequalities (%) are only moderately associated with city-level
226 NO₂ ($r = 0.46$), suggesting that sustained NO_x emission control will reduce but not eliminate NO₂
227 disparities, a result consistent with work investigating trends in NO₂ inequality between 2000 and

228 2010 using land-use regression NO₂ datasets (Clark et al., 2017) and before and during COVID-
 229 19-related activity changes using TROPOMI NO₂ TVCDs (Kerr et al., 2021).



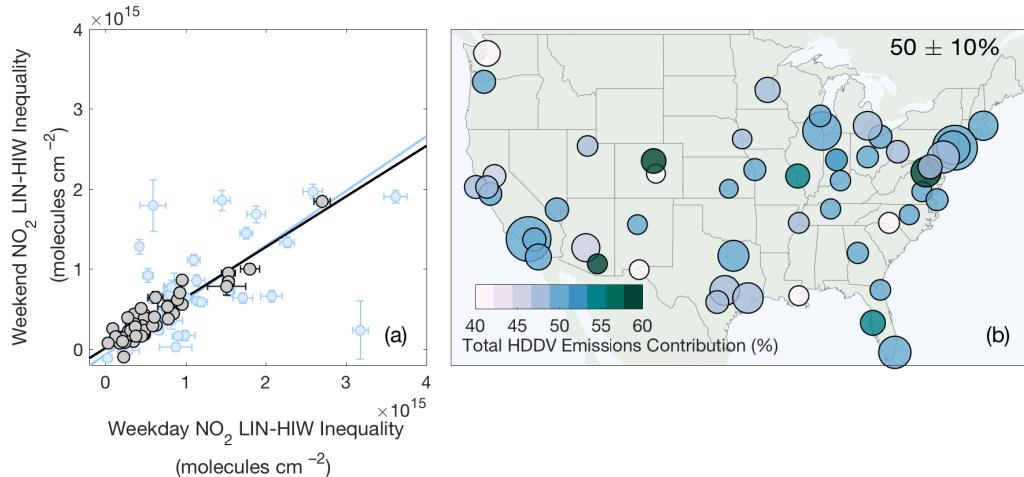
230
 231 **Figure 1.** Relative NO₂ inequalities (percentage difference between population-weighted NO₂ means) for
 232 52 major U.S. cities over all days in June 2018–February 2020. Marker size reflects the total city population
 233 with the smallest markers representing cities with <1.5 million residents and the largest markers for cities
 234 with >10 million residents. Average NO₂ inequalities are shown for Black and African American (a),
 235 Hispanic/Latino (b), Asian (c), and Native American (d) compared to white residents. Inequalities are also
 236 mapped for people living near (e) and below (f) versus above the poverty line and for LINs compared to

237 HIWs (g). Displayed mean values for each group are weighted by urban population size. City-averaged
238 NO₂ TVCDs are shown (h).

239 To observationally constrain city-wide effective contributions of HDDVs to NO₂ disparities, we
240 first compare TROPOMI NO₂ inequalities on weekdays and weekends and then contextualize the
241 measured changes using NO_x emission weekday-weekend patterns predicted by the FIVE18–19
242 (mobile sources) and NEI17 (point sources). HDDVs transport commercial goods and their
243 emissions are substantially reduced on weekends; at the same time, passenger vehicles (largely
244 gasoline powered in the U.S.) and point source emissions exhibit much less weekday-weekend
245 variability, although the timing of their emissions may change (Marr & Harley, 2002; Russell et
246 al., 2012; McDonald et al., 2014). Off-road diesel engines (e.g., construction) also vary weekday
247 to weekend; however, their contribution to total urban NO_x emissions is considerably smaller than
248 on-road HDDVs. While HDDVs with NO_x control are a growing portion of the vehicle fleet (Jiang
249 et al., 2018), with reports of declining weekday-weekend NO₂ differences (Demetillo et al., 2019),
250 HDDVs still emit an important fraction of urban NO_x. In the 52 UAs at the focus of this work,
251 NO₂ TVCDs are an average of $34 \pm 17\%$ (1σ standard deviation) lower on weekends than
252 weekdays (June 2018–February 2020).

253 Weekday-weekend differences in city-level census-tract absolute TROPOMI NO₂ inequalities are
254 fit using a weighted bivariate linear regression model (York et al., 2004), with weights derived
255 from errors in city-level NO₂ for the different residential populations (Table S4). Because NO₂
256 concentrations better correlate with NO_x emission rates when the NO₂ atmospheric lifetime is
257 short, we evaluate correlations separately in the summer and winter. We determine the ‘effective’
258 HDDV contributions to inequalities from the regression slope, a combined function of changes in
259 both the total NO_x emissions and the nonlinear NO₂-dependent NO₂ chemical lifetime. This
260 method weights cities equally regardless of population. LIN-HIW disparities decrease by $37 \pm 3\%$
261 on weekends in the summer and $32 \pm 2\%$ in the winter (Figure 2a). Weekday and weekend
262 inequalities are more strongly correlated in the summer ($r = 0.93$) than winter ($r = 0.51$), a function
263 of seasonal differences in NO₂ lifetime and reduced wintertime sampling statistics. For race-
264 ethnicity and poverty metrics, weekday-weekend differences are 28–46% in the summer (mapped
265 in Figure S3) and more variable in the winter (0–41%). We observe weekend NO₂ decreases to be
266 spatially variable within cities and larger in census tracts where residents are primarily people of
267 color or have lower household incomes. Weekday-weekend NO₂ differences indicate greater
268 weekend NO_x emission reductions in the most polluted neighborhoods, as summertime weekend
269 NO₂ decreases are 50% larger in the highest quintile NO₂ census tracts than the lowest quintile
270 NO₂ tracts. Comparable weekday-weekend decreases are observed in the winter for the highest

271 and lowest quintile NO₂ tracts, consistent with longer NO₂ lifetimes and NO₂ TCVDs being more
272 distributed from NO_x emission sources in space and time.



273

274 **Figure 2.** Absolute differences (molecules cm⁻²) in population-weighted TVCDs NO₂ between LINs and
275 HIWs on weekdays and weekends **(a)** in the summer (**black**) and winter (**light blue**). Percent contributions
276 of on-road HDDVs to NO_x emission density-based LIN-HIW inequalities during summer months from the
277 FIVE18–19 and NEI17 **(b)**. The mean HDDV contribution to emissions inequality, weighted by UA
278 population, is also displayed.

279 Observed weekday-weekend differences in NO₂ TCVDs are a function of both the direct change
280 in NO_x emissions and the subsequent indirect effects on the NO_x-dependent NO₂ lifetime.
281 Weekday-weekend differences in NO_x emissions are driven by the fraction of total HDDVs that
282 are parked on weekends, and, to a smaller extent, concurrent changes in spatiotemporal patterns
283 of other vehicle types. To attribute measured differences in NO₂ disparities to a specific reduction
284 in diesel traffic, we compare TROPOMI-based results with changes in NO_x emission densities
285 (metric tons NO_x day⁻¹ km⁻²), and their resulting inequalities, derived from the FIVE18–19 and
286 NEI17. We first degrade the 0.01° x 0.01° oversampled TROPOMI product and FIVE18–19
287 database (4 km x 4 km) to the same 0.04° x 0.04° grid, average each to underlying census tracts,
288 and calculate inequalities as described in Section 2.2. NEI17 sources are represented as points and
289 summed within their respective tracts. Tract-level FIVE18–19 and NEI17 are combined and
290 normalized by tract areas to produce NO_x emissions densities. We analyze inventory-based results,
291 and their comparison with TROPOMI, separately in the summer and winter.

292 Because we expect the coarser 0.04° x 0.04° grid to influence the observed inter-tract differences,
293 we first compare tract-averaged disparities based on the 0.01° x 0.01° oversampled TVCDs to
294 those determined using the 0.04° x 0.04° TVCDs. We calculate the normalized mean biases and
295 errors in the absolute and relative inequalities separately on summer and winter weekdays, using
296 the 0.01° x 0.01° TROPOMI-based results as our reference values. Despite the loss of spatial detail,
297 U.S.-wide normalized mean biases for the different inequality metrics are just <1–6% (Figure S1,
298 Table S5). We generally calculate slightly higher NO₂ inequalities with the coarser-resolution NO₂
299 product than the 0.01° x 0.01° TVCDs, suggesting larger pixels have the effect of distributing NO_x
300 emissions over spatial areas with similar demographic and income characteristics. The greatest
301 city-level normalized mean biases (8–22%) are observed in Oakland, San Diego, and San

302 Francisco, CA, all cities that encompass narrow geographical areas along coasts that may even
303 challenge the satellite analysis at $0.01^\circ \times 0.01^\circ$. While normalized mean biases are low on average
304 across UAs, normalized mean errors for each metric are higher (3–13%), indicating inaccuracies
305 are larger in individual cities because of the loss of spatial resolution. That said, we find the 0.04°
306 $\times 0.04^\circ$ TVCDs give comparable weekday-weekend NO_2 differences to the $0.01^\circ \times 0.01^\circ$ product
307 for all inequality metrics (Table S5). Coarse-resolution TVCDs yield weekday-weekend decreases
308 in LIN-HIW disparities of $37 \pm 4\%$ and $38 \pm 2\%$ in the summer and winter, respectively, equaling
309 results with the $0.01^\circ \times 0.01^\circ$ TVCDs within uncertainties in the summer. Agreement is similar for
310 the other metrics, indicating datasets resolved to $0.04^\circ \times 0.04^\circ$ still capture tract-scale patterns in
311 the intra-urban spatiotemporal distribution.

312 Using the FIVE18–19 and NEI17, we calculate mean summertime weekday-weekend reductions
313 in LIN-HIW disparities in NO_x emissions densities of $43 \pm 4\%$ (includes all source sectors), in
314 agreement with TROPOMI-based weekday-weekend differences using the $0.04^\circ \times 0.04^\circ$ TVCDs
315 within associated uncertainties (Table S4). For race-ethnicity and poverty status, weekday to
316 weekend decreases in emissions disparities equal empirical estimates to within 3–15%, with the
317 inventories generally predicting comparable or slightly larger weekend reductions than
318 TROPOMI. There is greater disagreement between NO_2 TVCDs and the inventories in the winter,
319 with TROPOMI weekday-weekend differences for some race-ethnicity metrics being much
320 smaller than estimated by the FIVE18–19 and NEI17. These wintertime discrepancies are
321 consistent with seasonal patterns in NO_2 mesoscale transport (greater day-to-day carryover),
322 further NO_2 displacement away from NO_x sources, and more NO_x -suppressed chemistry, but may
323 also be related to the reduced wintertime sampling statistics on weekdays and weekends.

324 Finally, we partition NO_x emission inequalities and their weekday-weekend differences by source
325 sector, focusing on the role of HDDVs. We limit the analysis to summer months, when NO_2
326 TVCDs are most responsive to NO_x emissions changes. On weekdays, on-road HDDVs cause on
327 average (unweighted by UA population) $45 \pm 5\%$ of LIN-HIW NO_x emissions-based inequalities
328 (Figure 2b; Table S6). The remainder is due to on-road gasoline-powered vehicles ($38 \pm 5\%$),
329 gasoline and diesel off-road vehicles ($13 \pm 6\%$), and stationary sources ($4 \pm 6\%$), largely electricity
330 generation. HDDVs contribute significantly to mean (weighted by UA population) NO_x emissions
331 inequalities for Black and African Americans ($63 \pm 13\%$), Hispanics/Latinos ($52 \pm 10\%$), Asians
332 ($36 \pm 7\%$), and Native Americans ($62 \pm 12\%$) and for people living below and near the poverty
333 line ($56 \pm 11\%$) (Figure S3). While HDDVs are the largest source of UA-level disparities,
334 stationary sources may be more important across more suburban metropolitan areas. Regulatory
335 controls on gasoline-powered vehicles and electricity generation between 2000 and 2010
336 decreased absolute, although not relative, NO_2 inequalities from these sources across the U.S.
337 (Clark et al., 2017), and an analysis exploiting COVID-19-related reductions in passenger vehicle
338 traffic suggest HDDV emissions dominate relative NO_2 inequalities in recent years (Kerr et al.,
339 2021). Based on the FIVE18–19, summertime HDDV NO_x emission densities decrease by $62 \pm$
340 2% on weekends, with diesel traffic still causing $26 \pm 6\%$ of LIN-HIW NO_x emissions inequalities
341 on weekends. Therefore, if the entire observed effective weekday-weekend change in NO_2 TVCD
342 disparities is caused by HDDVs, then a $62 \pm 2\%$ reduction in summertime weekday on-road HDDV
343 emissions leads to a $37 \pm 3\%$ decrease in NO_2 LIN-HIW disparities. While we find that on average
344 LIN-HIW NO_x emission densities from the other major source of emissions-based inequalities,
345 gasoline-powered vehicles, decrease by 10% weekday to weekend, NO_x emission inequalities
346 change by less than 1% (Table S6), indicating that weekday-weekend differences in disparities are

347 driven by HDDVs. If HDDV emissions were fully controlled—or their distribution was
 348 equalized—summer weekday LIN-HIW NO_x emissions inequalities would decrease by almost
 349 50%. Likewise, elimination of on-road HDDV inequalities would lower disparities with race-
 350 ethnicity and poverty by 59% and 49%, respectively (Table S7). These predicted changes represent
 351 upper bounds, as U.S. urban chemical oxidation is trending toward NO_x-limitation (Laughner &
 352 Cohen, 2019).

353 3.2 Resolving Census Tract-Scale Inequality from Space

354 Application of satellite remote sensing to NO₂ inequality requires demonstration that both
 355 oversampled TROPOMI TVCDs capture inter-census-tract differences and that spatial patterns in
 356 NO₂ columns reflect those that would be measured at the surface. In Demetillo et al. (2020), we
 357 found TROPOMI-based results were comparable to NO₂ tract-scale disparities determined using
 358 the high spatial resolution airborne sensor GCAS in Houston, TX, and used in situ NO₂ aircraft
 359 profiles and surface data to show the spatial patterns in NO₂ columns reflected those at the surface.
 360 Because we do not have aircraft measurements for the 52 cities in our domain, we instead test the
 361 dependence of tract-level NO₂ inequalities on spatial heterogeneities in UA demographics. To
 362 evaluate relationships between column and surface NO₂ spatial distributions, we analyze Pearson
 363 correlation coefficients of TVCDs and surface NO₂* mixing ratios as a function of observation
 364 proximity.

365 Because of historical and contemporary racial discrimination, U.S. cities are segregated by race,
 366 ethnicity, and income—without segregation, air pollution disparities would not be possible. We
 367 find city-level race-ethnicity NO₂ inequalities are weakly associated with overall segregation
 368 extent ($r = 0.35$; $p = 0.010$) (Figure S4), suggesting UAs are sufficiently segregated to support
 369 intra-urban NO₂ disparities, and that NO₂ inequalities are more sensitive to changes in overall NO₂
 370 pollution level. Segregation structure can be characterized along an axis between clustered
 371 segregation, where segregated tracts spatially aggregate into larger contiguous regions, and patch-
 372 worked segregation, where the spatial scale of segregated tracts is small and adjacent tracts are
 373 more likely to have different demographic populations (Chodrow, 2017; Lee et al., 2008; Reardon
 374 & O’Sullivan, 2004). For reference, Atlanta, GA typifies clustering, while New York City, NY
 375 exhibits patch-worked segregation (Figure S5). This structural distinction is informative for the
 376 application of TROPOMI, as the $0.01^\circ \times 0.01^\circ$ spatial resolution is coarser than many densely-
 377 populated tracts and oversampling has the effect of smoothing spatial gradients through averaging.
 378 Because NO₂ spatially varies at sub-census-tract scales (e.g., Miller et al., 2020), if the tract unit
 379 challenges the TROPOMI resolution, NO₂ disparities would positively correlate with increasing
 380 clustering, providing a test of the TROPOMI resolution at the tract scale. Here, we compare race-
 381 ethnicity summer weekday NO₂ inequalities with urban race-ethnicity segregation structure
 382 (Figure S4). We find that city-level race-ethnicity NO₂ disparities are uncorrelated with
 383 segregation structure ($r = 0.07$, $p = 0.619$) and not positively associated with clustering, implying
 384 TROPOMI is indeed able to resolve inter-tract differences even when segregated tracts do not
 385 spatially aggregate. Past research has shown city-level NO₂ co-varies with urban form and density
 386 (Bechle et al., 2011, 2017; Larkin et al., 2017). However, because we focus on the urban core, we
 387 cross-cut this variability, largely excluding urban-suburban form and density gradients.

388 To assess whether spatial distributions in NO₂ TVCDs reflect those at the surface, we compare
 389 NO₂ columns and mean daytime (12–3 pm LT) NO₂* surface mixing ratios as a function of the

390 spatial proximity between tract-averaged TVCDs and the NO_2^* nearest monitor (Figure S6)
 391 (Bechle et al., 2013; Demetillo et al., 2020). Census tract coverage is spatially continuous;
 392 however, there are instances where no tracts are identified within a given 1-km interval (i). Here,
 393 tract-averaged TVCDs are set equal the column value in the $i + 1$ distance interval, or infrequently
 394 the $i + 2$ interval. This largely occurs when comparing directly overhead tract-averaged TVCDs,
 395 so we limit the correction to columns ≤ 1 km from the nearest NO_2^* monitor. The highest mean r
 396 values are observed when TVCDs and surface measurements are spatially coincident, 0.69 ± 0.05
 397 in the summer and 0.60 ± 0.09 in the winter. However, we anticipate that r values (≤ 1 km) would
 398 be even higher if comparisons were instead based on the $0.01^\circ \times 0.01^\circ$ product. At distances of 6–
 399 10 km, r values fall to 0.42 ± 0.07 (summer) and 0.30 ± 0.09 (winter). These results indicate that
 400 TROPOMI TVCDs capture similar spatial patterns as measured at the surface, but also highlight
 401 that the NO_2^* network is too spatially sparse to collect locally-relevant NO_2^* levels for most
 402 residents.

403

404 **4 Summary**

405 We use TROPOMI observations to quantify NO_2 inequality in 52 major U.S. cities over June
 406 2018–February 2020. We report average census tract-level population-weighted NO_2 disparities
 407 for Black and African Americans ($17 \pm 2\%$), Hispanics/Latinos ($19 \pm 2\%$), Asians ($12 \pm 2\%$), and
 408 Native Americans ($15 \pm 2\%$) compared to non-Hispanic/Latino whites, and for people living below
 409 ($17 \pm 2\%$) and near the poverty line ($10 \pm 2\%$) compared to those living above. Higher inequalities
 410 are found when race-ethnicity and income are combined, with $28 \pm 2\%$ greater population-
 411 weighted NO_2 for LINs than HIWs. For all metrics, much greater disparities are observed in some
 412 larger U.S. cities. Absolute NO_2 inequalities are strongly associated with UA NO_2 pollution;
 413 however, correlations between relative inequalities and city-level NO_2 are weaker. We use
 414 weekday-weekend differences in NO_2 TVCDs as empirical constraints on the impact of regulating
 415 HDDV NO_x emissions, showing that a 62% reduction in on-road diesel traffic leads to a 37%
 416 decrease in LIN-HIW inequalities. While HDDV emissions contribute to the majority of NO_2
 417 inequalities— $63 \pm 13\%$ for Black and African Americans, $52 \pm 10\%$ for Hispanics/Latinos, $36 \pm$
 418 7% for Asians, $62 \pm 12\%$ for Native Americans, and $56 \pm 11\%$ for people living below or near
 419 poverty line—controlling them entirely would not eliminate NO_2 disparities. Finally, we provide
 420 additional evidence that oversampled TROPOMI observations resolve key patterns in the census
 421 tract-scale NO_2 distribution with NO_2 disparities being invariant with segregation structure and
 422 that spatial patterns in directly-overhead NO_2 columns reflect surface-level NO_2 spatial patterns.

423

424 **Acknowledgments and Data**

425 This research was funded by the NASA New Investigator Program in Earth Science (20-NIP20-
 426 0056) and an NSF CAREER Award (AGS 2047150) to SEP. MAGD was supported by a NASA
 427 Future Investigator NASA Earth and Space Science and Technology (FINESST) Graduate
 428 Research Fellowship (19-EARTH20-0242) and the Virginia Space Grant Consortium. TROPOMI
 429 NO_2 Level 2 TVCDs can be accessed at: <https://earthdata.nasa.gov/earth-observation-data>. EPA
 430 NO_2^* surface data can be downloaded at: https://aqs.epa.gov/aqsweb/airdata/download_files.html.
 431 The U.S. Census database is accessible from the IPUMS National Historical Geographic

432 Information System (<https://www.nhgis.org>) and census tract polygons are available as
433 TIGER/Line shapefiles from the Data.gov library ([https://www.census.gov/cgi-
434 bin/geo/shapefiles/index.php](https://www.census.gov/cgi-bin/geo/shapefiles/index.php)). The NEI17 can be accessed at: [https://www.epa.gov/air-emissions-
435 inventories/2017-national-emissions-inventory-nei-data](https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data). The FIVE18–19 mobile source inventory
436 was developed with support from NOAA NRDD Project 19533 and can be downloaded from the
437 NOAA Chemical Sciences Laboratory COVID-AQS database
438 (<https://csl.noaa.gov/groups/csl7/measurements/2020covid-aqs/emissions/>).

439 **References**

440 Adar, S. D., & Kaufman, J. D. (2007). Cardiovascular disease and air pollutants: Evaluating and improving
441 epidemiological data implicating traffic exposure. *Inhal. Toxicol.*, 19, 135-149.

442 Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., et al. (2017). High-Resolution
443 Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. *Environ. Sci. Technol.*, 51(12),
444 6999-7008.

445 Ard, K. (2015). Trends in exposure to industrial air toxins for different racial and socioeconomic groups: A spatial
446 and temporal examination of environmental inequality in the U.S. from 1995 to 2004. *Social Sci. Res.*, 53,
447 375-390.

448 Bechle, M. J., Millet, D. B., & Marshall, J. D. (2011). Effects of Income and Urban Form on Urban NO₂: Global
449 Evidence from Satellites. *Environ. Sci. Technol.*, 45(11), 4914-4919.

450 Bechle, M. J., Millet, D. B., & Marshall, J. D. (2013). Remote sensing of exposure to NO₂: Satellite versus ground-
451 based measurement in a large urban area. *Atmos. Environ.*, 69, 345-353.

452 Bechle, M. J., Millet, D. B., & Marshall, J. D. (2017). Does Urban Form Affect Urban NO₂? Satellite-Based Evidence
453 for More than 1200 Cities. *Environ. Sci. Technol.*, 51(21), 12707-12716.

454 Bell, M. L., & Ebisu, K. (2012). Environmental Inequality in Exposures to Airborne Particulate Matter Components
455 in the United States. *Environ. Health Perspect.*, 120(12), 1699-1704.

456 Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., et al. (2011). An improved
457 tropospheric NO₂ column retrieval algorithm for the Ozone Monitoring Instrument. *Atmos. Meas. Tech.*, 4(9),
458 1905-1928.

459 Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., et al. (2018). Improving algorithms and
460 uncertainty estimates for satellite NO₂ retrievals: results from the quality assurance for the essential climate
461 variables (QA4ECV) project. *Atmos. Meas. Tech.*, 11(12), 6651-6678.

462 Brook, J. R., Burnett, R. T., Dann, T. F., Cakmak, S., Goldberg, M. S., Fan, X. H., & Wheeler, A. J. (2007). Further
463 interpretation of the acute effect of nitrogen dioxide observed in Canadian time-series studies. *J. Exposure
464 Sci. Environ. Epidemiol.*, 17, S36-S44.

465 Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. *Lancet*, 360(9341), 1233-1242.

466 Bullard, R. D. (1987). *Invisible Houston: the Black experience in boom and bust*. College Station: Texas A & M
467 University Press.

468 Burnett, R. T., Stieb, D., Brook, J. R., Cakmak, S., Dales, R., Raizenne, M., et al. (2004). Associations between short-
469 term changes in nitrogen dioxide and mortality in Canadian cities. *Archives Environ. Health*, 59(5), 228-236.

470 Chodrow, P. S. (2017). Structure and information in spatial segregation. *Proc. Natl. Acad. Sci.*, 114(44), 11591-11596.

471 Choi, W., He, M., Barbesant, V., Kozawa, K., Mara, S., Winer, A., & Paulson, S. (2012). Prevalence of wide area
472 impacts downwind of freeways under pre-sunrise stable atmospheric conditions. *Atmos. Environ.*, 62, 318-
473 327.

474 Clark, L. P., Millet, D. B., & Marshall, J. D. (2014). National Patterns in Environmental Injustice and Inequality:
475 Outdoor NO₂ Air Pollution in the United States. *PLOS ONE*, 9(4), e94431.

476 Clark, L. P., Millet, D. B., & Marshall, J. D. (2017). Changes in Transportation-Related Air Pollution Exposures by
477 Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in the United States in 2000 and 2010.
478 *Environ. Health Perspect.*, 125(9).

479 Demetillo, M. A. G., Anderson, J. F., Geddes, J. A., Najacht, E., Herrera, S. A., Kabasares, K., et al. (2019). Observing
480 severe drought influences on ozone air pollution in California. *Environ. Sci. Technol.*, 53(39), 4695-4706.

481 Demetillo, M. A. G., Navarro, A., Knowles, K. K., Fields, K. P., Geddes, J. A., Nowlan, C. R., et al. (2020). Observing
482 Nitrogen Dioxide Air Pollution Inequality Using High-Spatial-Resolution Remote Sensing Measurements in
483 Houston, Texas. *Environ. Sci. Technol.*, 54(16), 9882-9895.

484 Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., et al. (2017). Air Pollution and Mortality in the
485 Medicare Population. *New Eng. J. Med.*, 376(26), 2513-2522.

486 Dunlea, E. J., Herndon, S. C., Nelson, D. D., Volkamer, R. M., San Martini, F., Sheehy, P. M., et al. (2007). Evaluation
487 of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. *Atmos. Chem. Phys.*,
488 7(10), 2691-2704.

489 Federal Highway Administration (FHWA), (2020). 2018 HPMS Public Release. Washington, D.C.: Office of
490 Highway Policy Information, Federal Highway Administration, U.S. Department of Transportation.

491 Frost, G. J., McKeen, S. A., Trainer, M., Ryerson, T. B., Neuman, J. A., Roberts, J. M., et al. (2006). Effects of
492 changing power plant NO_x emissions on ozone in the eastern United States: Proof of concept. *J. Geophys.
493 Res.-Atmos.*, 111(D12).

494 Gwynn, R. C., & Thurston, G. D. (2001). The burden of air pollution: Impacts among racial minorities. *Environ. Health Perspect.*, 109, 501-506.

495 Harkins, C., McDonald, B. C., Henze, D. K., & Wiedinmyer, C. (2021). A fuel-based method for updating mobile

496 source emissions during the COVID-19 pandemic. *Environ. Res. Lett.*, 16, 065018.

497 Health Effects Institute (HEI), (2010). Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions,

498 Exposure, and Health Effects. (Special Report 17).

499 Houston, D., Krudysz, M., & Winer, A. (2008). Diesel Truck Traffic in Low-Income and Minority Communities

500 Adjacent to Ports: Environmental Justice Implications of Near-Roadway Land Use Conflicts. *Transport. Res. Record*, 2067(1), 38-46.

501 Houston, D., Li, W., & Wu, J. (2014). Disparities in Exposure to Automobile and Truck Traffic and Vehicle Emissions

502 Near the Los Angeles–Long Beach Port Complex. *Amer. J. Public Health*, 104(1), 156-164.

503 Houston, D., Ong, P., Jaimes, G., & Winer, A. (2011). Traffic exposure near the Los Angeles–Long Beach port

504 complex: using GPS-enhanced tracking to assess the implications of unreported travel and locations. *J. Transport Geo.*, 19(6), 1399-1409.

505 Houston, D., Wu, J., Ong, P., & Winer, A. (2004). Structural disparities of urban traffic in Southern California:

506 Implications for vehicle-related air pollution exposure in minority and high-poverty neighborhoods. *J. Urban*

507 *Affairs*, 26(5), 565-592.

508 Jerrett, M., Burnett, R. T., Ma, R. J., Pope, C. A., Krewski, D., Newbold, K. B., et al. (2005). Spatial analysis of air

509 pollution and mortality in Los Angeles. *Epidemiol.*, 16(6), 727-736.

510 Jiang, Z., McDonald, B. C., Worden, H., Worden, J. R., Miyazaki, K., Qu, Z., et al. (2018). Unexpected slowdown of

511 US pollutant emission reduction in the past decade. *Proc. Natl. Acad. Sci.*, 115(20), 5099-5104.

512 Karner, A. A., Eisinger, D. S., & Niemeier, D. A. (2010). Near-Roadway Air Quality: Synthesizing the Findings from

513 Real-World Data. *Environ. Sci. Technol.*, 44(14), 5334-5344.

514 Kerr, G. H., Goldberg, D. H., & Anenberg, S. C. (2021). COVID-19 pandemic reveals persistent disparities in nitrogen

515 dioxide pollution. *Proc. Natl. Acad. Sci.*, 118(30), e2022409118.

516 Kleipool, Q. L., Dobber, M. R., de Haan, J. F., & Levelt, P. F. (2008). Earth surface reflectance climatology from 3

517 years of OMI data. *J. Geophys. Res.-Atmos.*, 113(D18).

518 Kravitz-Wirtz, N., Crowder, K., Hajat, A., & Sass, V. (2016). The Long-Term Dynamics of Racial/Ethnic Inequality

519 in Neighborhood Air Pollution Exposure, 1990–2009. *Du Bois Rev.*, 13(2), 237-259.

520 Larkin, A., Geddes, J. A., Martin, R. V., Xiao, Q., Liu, Y., Marshall, J. D., et al. (2017). Global Land Use Regression

521 Model for Nitrogen Dioxide Air Pollution. *Environ. Sci. Technol.*, 51(12), 6957-6964.

522 Lee, B. A., Reardon, S. F., Firebaugh, G., Farrell, C. R., Matthews, S. A., & O'Sullivan, D. (2008). Beyond the Census

523 Tract: Patterns and Determinants of Racial Segregation at Multiple Geographic Scales. *Amer. Sociol. Rev.*,

524 73(5), 766-791.

525 Lena, T. S., Ochieng, V., Carter, M., Holguín-Veras, J., & Kinney, P. L. (2002). Elemental carbon and PM_{2.5} levels in

526 an urban community heavily impacted by truck traffic. *Environ. Health Perspect.*, 110(10), 1009-1015.

527 Levy, I., Mihele, C., Lu, G., Narayan, J., & Brook, J. R. (2014). Evaluating Multipollutant Exposure and Urban Air

528 Quality: Pollutant Interrelationships, Neighborhood Variability, and Nitrogen Dioxide as a Proxy Pollutant.

529 *Environ. Health Perspect.*, 122(1), 65-72.

530 Levy, J. I., Greco, S. L., Melly, S. J., & Mukhi, N. (2009). Evaluating Efficiency-Equality Tradeoffs for Mobile Source

531 Control Strategies in an Urban Area. *Risk Analysis*, 29(1), 34-47.

532 Lin, S., Munsie, J. P., Hwang, S. A., Fitzgerald, E., & Cayo, M. R. (2002). Childhood asthma hospitalization and

533 residential exposure to state route traffic. *Environ. Res.*, 88(2), 73-81.

534 Lipfert, F. W., & Wyzga, R. E. (2008). On exposure and response relationships for health effects associated with

535 exposure to vehicular traffic. *J. Exposure Sci. Environ. Epidemiol.*, 18(6), 588-599.

536 Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., et al. (2017). Structural uncertainty in

537 air mass factor calculation for NO₂ and HCHO satellite retrievals. *Atmos. Meas. Tech.*, 10(3), 759-782.

538 Marr, L. C., & Harley, R. A. (2002). Modeling the Effect of Weekday–Weekend Differences in Motor Vehicle

539 Emissions on Photochemical Air Pollution in Central California. *Environ. Sci. Technol.*, 36(19), 4099-4106.

540 McDonald, B. C., Dallmann, T. R., Martin, E. W., & Harley, R. A. (2012). Long-term trends in nitrogen oxide

541 emissions from motor vehicles at national, state, and air basin scales. *J. Geophys. Res.-Atmos.*, 117(D21).

542 McDonald, B. C., McBride, Z. C., Martin, E. W., & Harley, R. A. (2014). High-resolution mapping of motor vehicle

543 carbon dioxide emissions. *J. Geophys. Res.-Atmos.*, 119(9), 5283-5298.

544 McDonald, B. C., McKeen, S. A., Cui, Y. Y., Ahmadov, R., Kim, S.-W., Frost, G. J., et al. (2018). Modeling Ozone

545 in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory. *Environ. Sci. Technol.*, 52(13),

546 7360-7370.

550 Messier, K. P., Chambliss, S. E., Gani, S., Alvarez, R., Brauer, M., Choi, J. J., et al. (2018). Mapping Air Pollution
 551 with Google Street View Cars: Efficient Approaches with Mobile Monitoring and Land Use Regression.
 552 *Environ. Sci. Technol.*, 52(21), 12563-12572.

553 Miller, D. J., Atkinson, B., Padilla, L., Griffin, R. J., Moore, K., Lewis, P. G. T., et al. (2020). Characterizing Elevated
 554 Urban Air Pollutant Spatial Patterns with Mobile Monitoring in Houston, Texas. *Environ. Sci. Technol.*,
 555 54(4), 2133-2142.

556 Nguyen, N. P., & Marshall, J. D. (2018). Impact, efficiency, inequality, and injustice of urban air pollution: variability
 557 by emission location. *Environ. Res. Lett.*, 13(2), 024002.

558 Nowlan, C. R., Liu, X., Janz, S. J., Kowalewski, M. G., Chance, K., Follette-Cook, M. B., et al. (2018). Nitrogen
 559 dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-
 560 CAPE) Airborne Simulator over Houston, Texas. *Atmos. Meas. Tech.*, 11(11), 5941-5964.

561 O'Neill, M. S., Jerrett, M., Kawachi, L., Levy, J. L., Cohen, A. J., Gouveia, N., et al. (2003). Health, wealth, and air
 562 pollution: Advancing theory and methods. *Environ. Health Perspect.*, 111(16), 1861-1870.

563 Pope, R., Wu, J., & Boone, C. (2016). Spatial patterns of air pollutants and social groups: a distributive environmental
 564 justice study in the phoenix metropolitan region of USA. *Environ. Manage.*, 58(5), 753-766. journal article.

565 Reardon, S. F., & Firebaugh, G. (2002). Measures of Multigroup Segregation, *Sociol. Methodol.*, 32(1), 33-67.

566 Reardon, S. F., & O'Sullivan, D. (2004). Measures of Spatial Segregation. *Sociol. Methodol.*, 34(1), 121-162.

567 Rosofsky, A., Levy, J. I., Zanobetti, A., Janulewicz, P., & Fabiana, M. P. (2018). Temporal Trends in Air Pollution
 568 Exposure Inequality in Massachusetts, *Environ Res.*, 161, 76-86.

569 Russell, A. R., Valin, L. C., Bucsela, E. J., Wenig, M. O., & Cohen, R. C. (2010). Space-based Constraints on Spatial
 570 and Temporal Patterns of NO_x Emissions in California, 2005-2008. *Environ. Sci. Technol.*, 44(9), 3608-3615.

571 Russell, A. R., Valin, L. C., & Cohen, R. C. (2012). Trends in OMI NO₂ observations over the United States: effects
 572 of emission control technology and the economic recession, *Atmos. Chem. Phys.*, 12, 12197-12209.

573 Southerland, V. A., Anenberg, S. C., Harris, M., Apte, J., Hystad, P., van Donkelaar, A., Martin, R. V., Beyers, M.,
 574 & Roy, A. (2021). Assessing the Distribution of Air Pollution Health Risks within Cities: A Neighborhood-
 575 Scale Analysis Leveraging High-Resolution Data Sets in the Bay Area, California, *Environ. Health Perspect.*,
 576 doi:10.1289/EHP7679.

577 Sun, K., Zhu, L., Cady-Pereira, K., Chan Miller, C., Chance, K., Clarisse, L., et al. (2018). A physics-based approach
 578 to oversample multi-satellite, multispecies observations to a common grid. *Atmos. Meas. Tech.*, 11(12), 6679-
 579 6701.

580 Tessum, C. W., Apte, J. S., Goodkind, A. L., Muller, N. Z., Mullins, K. E., Paoletta, D. A., et al. (2019). Inequity in
 581 consumption of goods and services adds to racial-ethnic disparities in air pollution exposure. *Proc. Natl.
 582 Acad. Sci.*, 116(13), 6001-6006.

583 Tessum, C. W., Paoletta, D. A., Chambliss, S. E., Apte, J. S., Hill, J. D., & Marshall, J. D. (2021). PM_{2.5} polluters
 584 disproportionately and systemically affect people of color in the United States. *Sci. Advances*, EABF4491.

585 Theil, H., & Finizza, A. J. (1971). A note on the measurement of racial integration of schools by means of
 586 informational concepts, *J. Mathematical Sociol.*, 1(2), 187-193.

587 van Geffen, J. H. G., Boersma, K. F., Eskes, H. J., Maasakkers, J. D., & Veefkind, J. P. (2018). TROPOMI ATBD of
 588 the total and tropospheric NO₂ data products. Retrieved from <http://www.tropomi.eu>.

589 van Geffen, J. H. G. M., Boersma, K. F., Van Roozendael, M., Hendrick, F., Mahieu, E., De Smedt, I., et al. (2015).
 590 Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window. *Atmos. Meas. Tech.*,
 591 8(4), 1685-1699.

592 Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., et al. (2012). TROPOMI on the ESA
 593 Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate,
 594 air quality and ozone layer applications. *Remote Sensing Environment*, 120, 70-83.

595 Williams, J. E., Boersma, K. F., Le Sager, P., & Verstraeten, W. W. (2017). The high-resolution version of TM5-MP
 596 for optimized satellite retrievals: description and validation. *Geosci. Model Dev.*, 10(2), 721-750.

597 York, D., Evensen, N. M., Martínez, M. L., & Delgado, J. D. B. (2004). Unified Equations for the Slope, Intercept,
 598 and Standard Errors of the Best Straight Line. *Amer. J. Phys.*, 72(3), 367-375.

599 Zara, M., Boersma, K. F., De Smedt, I., Richter, A., Peters, E., van Geffen, J. H. G. M., et al. (2018). Improved slant
 600 column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV:
 601 intercomparison, uncertainty characterisation, and trends. *Atmos. Meas. Tech.*, 11(7), 4033-4058.

602
 603