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a b s t r a c t

For 1 ≤ s1 ≤ s2 ≤ . . . ≤ sk and a graph G, a packing (s1, s2, . . . , sk)-coloring of G is
a partition of V (G) into sets V1, V2, . . . , Vk such that, for each 1 ≤ i ≤ k the distance
between any two distinct x, y ∈ Vi is at least si + 1. The packing chromatic number,
χp(G), of a graph G is the smallest k such that G has a packing (1, 2, . . . , k)-coloring. It is
known that there are trees of maximum degree 4 and subcubic graphs G with arbitrarily
large χp(G). Recently, there was a series of papers on packing (s1, s2, . . . , sk)-colorings
of subcubic graphs in various classes. We show that every 2-connected subcubic
outerplanar graph has a packing (1, 1, 2)-coloring and every subcubic outerplanar graph
is packing (1, 1, 2, 4)-colorable. Our results are sharp in the sense that there are
2-connected subcubic outerplanar graphs that are not packing (1, 1, 3)-colorable and
there are subcubic outerplanar graphs that are not packing (1, 1, 2, 5)-colorable. We
also show subcubic outerplanar graphs that are not packing (1, 2, 2, 4)-colorable and
not packing (1, 1, 3, 4)-colorable.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

For a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, a packing S-coloring of a graph G is a partition
of V (G) into sets V1, . . . , Vk such that, for each 1 ≤ i ≤ k, the distance between any two distinct x, y ∈ Vi is at least si + 1.
A packing k-coloring is a packing (1, 2, . . . , k)-coloring. The packing chromatic number, χp(G) (we will use the abbreviation
PCN for short), of a graph G is the minimum k such that G has a packing k-coloring.

Packing k-coloring was introduced in 2008 by Goddard, Hedetniemi, Hedetniemi, Harris and Rall [20] motivated
by frequency assignment problems in broadcast networks. There are more than 50 papers on the topic (e.g. [1,5,6,8–
17,19,23,24,27,28] and references in them). In particular, Fiala and Golovach [14] proved that finding the PCN of a graph
is NP-complete even in the class of trees. Sloper [27] showed that the infinite complete ternary tree (every vertex has 3
child vertices) has unbounded PCN.

The question whether PCN is bounded in the class of subcubic graphs was discussed in several papers (e.g., in [10,11,
19,25,27]) and answered in the negative in [2]. Brešar and Ferme [5] later provided an explicit family of subcubic graphs
with unbounded PCN. This stimulated studying subclasses of subcubic graphs with bounded PCN.
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One of the studied classes was the class of subdivisions of subcubic graphs. Recall that the subdivision, D(G), of a graph
G is the graph obtained from G by replacing each edge by a path of length two. In particular, Gastineau and Togni [19]
asked whether χp(D(G)) ≤ 5 for every subcubic graph G and Brešar, Klavžar, Rall, and Wash [10] later conjectured this.

Conjecture 1 (Brešar, Klavžar, Rall, and Wash [10]). Let G be a subcubic graph. Then χp(D(G)) ≤ 5.

In 2018 [3] it was shown that the PCN of the subdivision of every subcubic graph is at most 8. Gastineau and Togni [19]
pointed out at the following connection between the bounds on packing S-colorings of a graph G and the packing
S-colorings of D(G):

Proposition 2 (Gastineau and Togni [19], Proposition 1). Let G be a graph and S = (s1, . . . , sk) be a non-decreasing sequence
of integers. If G is packing S-colorable, then D(G) is packing (1, 2s1 + 1, . . . , 2sk + 1)-colorable.

They [19] also proved that the Petersen graph is not packing (1, 1, k, k′)-colorable for any k, k′ ≥ 2 and suggested the
study of packing (1, 1, 2, 2)-coloring to approach Conjecture 1. Brešar, Klavžar, Rall, and Wash [10] later verified that the
Petersen graph admits a packing (1, 2, 3, 4, 5)-coloring. Proposition 2 implies that if one can prove every subcubic graph
except the Petersen graph is packing (1, 1, 2, 2)-colorable then χp(D(G)) ≤ 5 for every subcubic graph. Gastineau and
Togni [19] also asked the question whether the stronger claim holds: every subcubic graph except the Petersen graph is
packing (1, 1, 2, 3)-colorable.

The problem whether every subcubic graph except the Petersen graph is packing (1, 1, 2, 2)-colorable is intriguing by
itself. Some subclasses of subcubic graphs were shown to have such a coloring. In particular, Brešar, Klavžar, Rall, and
Wash [10] showed that if G is a generalized prism of a cycle, then G is packing (1, 1, 2, 2)-colorable if and only if G is not
the Petersen graph. Very recently, Liu, Liu, Rolek, and Yu [26] proved that every subcubic graph with maximum average
degree less than 30

11 is (1, 1, 2, 2)-colorable and thus confirmed Conjecture 1 for subcubic graph G with mad(G) < 30
11 .

Many similar colorings have also been considered (e.g. [3,7,18,19,21,22]). In particular, Gastineau and Togni [19]
showed that subcubic graphs are packing (1, 2, 2, 2, 2, 2, 2)-colorable and packing (1, 1, 2, 2, 2)-colorable. They also
showed that every 3-irregular (has no adjacent vertices of degree 3) subcubic graph is packing (1, 2, 2, 2)-colorable
and packing (1, 1, 2)-colorable. Gastineau [16] showed that determining whether a subcubic bipartite graph is packing
(1, 2, 2)-colorable and whether a subcubic graph is (1, 1, 2)-colorable are both NP-complete. In [3] it was proved that
subcubic graphs are packing (1, 1, 2, 2, 3, 3, k)-colorable with color k used at most once for each integer k ≥ 4, and that
2-degenerate subcubic graphs are packing (1, 1, 2, 2, 3, 3)-colorable. Borodin and Ivanova [4] proved that every subcubic
planar graph with girth at least 23 has a packing (2, 2, 2, 2)-coloring.

Packing colorings of subclasses of subcubic outerplanar graphs were first studied by Gastineau, Holub, and Togni [17],
who showed upper bounds for PCN of 2-connected subcubic outerplanar graphs with conditions on the number of internal
faces. Recently, Brešar, Gastineau and Togni [7] proved that the PCN of any 2-connected bipartite subcubic outerplanar
graph is bounded by 7, which gives a partial answer to the question posed in several papers concerning the boundedness
of the PCN in the class of planar subcubic graphs. Moreover, they proved that every triangle-free subcubic outerplanar
graph has a packing (1, 2, 2, 2)-coloring (and thus a packing (1, 1, 2, 2)-coloring) and their result is sharp in the sense that
there exists a subcubic outerplanar graph with no triangles that is not packing (1, 2, 2, 3)-colorable. They also showed
that every bipartite outerplanar graph admits a packing S-coloring for S = (1, 3, . . . , 3), where 3 appears ∆ (maximum
degree) times. Their result is sharp in the sense that if one of the integers 3 is replaced by 4 in the sequence S, then there
exist outerplanar bipartite graphs that do not admit a packing S-coloring. The following two interesting questions were
also suggested by Brešar, Gastineau and Togni [7] for future research.

Question 3 (Brešar, Gastineau and Togni [7]). Is the PCN bounded in the class of 2-connected outerplanar subcubic graphs and
is the PCN bounded in the class of 2-connected bipartite planar subcubic graphs?

In this paper, we prove that every 2-connected subcubic outerplanar graph is packing (1, 1, 2)-colorable and every
subcubic outerplanar graph is packing (1, 1, 2, 4)-colorable. Our results are sharp in the sense that there is a 2-connected
subcubic outerplanar graph G that is not (1, 1, 3)-colorable (see Example 5) and not (1, 2, 2)-colorable (see Example 6);
and there are subcubic outerplanar graphs that are neither (1, 2, 2, 4)-colorable, nor (1, 1, 3, 4)-colorable; there are also
subcubic outerplanar graphs that are not (1, 1, 2, 5)-colorable.

Theorem 4. Every 2-connected subcubic outerplanar graph G is packing (1, 1, 2)-colorable.

Example 5. Let G be the graph obtained by starting with a four cycle C such that V (C) = {u1, u2, u3, u4} and uiui+1 ∈ E(G)
for 1 ≤ i ≤ 4 (5 ≡ 1). Then we add a path u1v1u2 of length two from u1 to u2 and a path u3v2u4 from u3 to u4.

Assume G has a packing (1, 1, 3)-coloring. Since both u1, u2, v1 and u3, u4, v2 form triangle, at least one vertex of
u1, u2, v1 and one vertex of u3, u4, v2 are colored with 3 respectively. But the diameter of G is 3, a contradiction.

Example 6. Let G be the same graph as used in Example 5. We show that G is not (1, 2, 2)-colorable.
Assume G has a packing (1, 2, 2)-coloring. Say the colors are 1, 2a, 2b. Since both u1, u2, v1 and u3, u4, v2 form triangles,

all three colors are used exactly once on u1, u2, v1 and u3, u4, v2 respectively. By symmetry, we assume that u2 is colored
with a color in {2a, 2b}, say 2a. This contradicts the fact that 2a is used on the triangle u3v2u4.
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Theorem 7. Every subcubic outerplanar graph has a packing (1, 1, 2, 4)-coloring f such that
(A) Color 4 is used at most once within each block.
(B) if v is a vertex of degree at most 2 and is colored with 2, then there is no vertex of color 4 within distance two from v.

By Proposition 2, we also have the following immediate corollary, which confirms Conjecture 1 for subcubic outerplanar
graphs.

Corollary 8. If G is a subcubic outerplanar graph, then χp(D(G)) ≤ 5. Moreover, if H is a 2-connected subcubic outerplanar
graph, then χp(D(G)) ≤ 4.

Proof. Proposition 2 implies that if G is packing (1, 1, 2, 2)-colorable then D(G) is packing (1, 3, 3, 5, 5)-colorable,
which implies a packing (1, 2, 3, 4, 5)-coloring of D(G). Similarly, since H is packing (1, 1, 2)-colorable, D(G) is packing
(1, 3, 3, 5)-colorable and thus (1, 2, 3, 4)-colorable. □

The result of Liu, Liu, Rolek, and Yu [26] implies that every subcubic planar graph with girth at least 8 is packing
(1, 1, 2, 2)-colorable. We would also like to ask the following questions.

Question 9. Is it true that every subcubic planar graph is packing (1, 1, 2, 2)-colorable?

Question 10. Is it true that every subcubic 2-connected outerplanar graph is packing (1, 2, 2, 2)-colorable?

2. Notation and preliminaries

We use Nd
G(u) to denote the set of all vertices that are at distance d from u. We will work with outerplane graphs, that

is, outerplanar graphs with a fixed drawing where all vertices are on the outer face.
A block of a graph G is an inclusion maximal subgraph with no cut vertices. By definition, each block is either

2-connected or a K2. In the former case, we call the block nontrivial. A block in a graph G is pendant if it contains at
most one cut vertex of G.

Given an outerplane graph G, the weak dual graph, T (G), is the graph that has a vertex for every bounded face of the
embedding, and an edge for every pair of bounded faces sharing at least one edge. Below when we say ‘‘face’’ we will
mean an internal face, unless we explicitly say ‘‘outer face’’. For a face F in an outerplane graph G, we denote by C(F ) the
chordless cycle in G that bounds F . It is well known that

a plane graph is outerplane if and only if its weak dual is a forest. (1)

By an i-face we will mean a face of length i. In view of (1), we say that an internal face F in a outerplane graph G is
pendant, if either F corresponds to a leaf in T (G) and C(F ) contains no cut vertices of G or C(F ) induces a pendant block
in G.

Claim 11. Each 3-face in a 2-connected subcubic outerplane graph is pendant.

Proof. Let F be a 3-face with C(F ) = xyzx in a 2-connected subcubic outerplane graph G. If, say d(x) = 2, then the edges
xy and xz are on the boundary of the outer face, and so F is pendant.

So, suppose d(x) = d(y) = d(z) = 3. Let x′, y′ and z ′ be the neighbors of x, y and z respectively outside of {x, y, z}
(some of them can coincide). Since G is 2-connected, all x′, y′ and z ′ are in the same component of G − {x, y, z}. But then
G contains a K4-minor, which implies that G is not outerplane, a contradiction. □

3. Proof of Theorem 4

All our (1, 1, 2)-colorings will use the colors 1a, 1b and 2.

Proof. Suppose the theorem is false and G is a smallest 2-connected subcubic outerplane graph that has no (1, 1, 2)-
coloring. Let n = |V (G)|. Then n ≥ 4, since otherwise we can color all vertices of G with different colors.

Claim 12. Each pendant face in G is a 3-face.

Proof. Suppose F is a pendant face in G with C(F ) = u1u2 . . . uku1 where k ≥ 4. If V (G) = {u1, u2, . . . , uk} then we color
u1 with 2 and the remaining vertices alternately with 1a and 1b. So suppose d(u1) = d(uk) = 3 and d(u2) = d(u3) = · · · =
d(uk−1) = 2. Let G′ = G − {u2, . . . , uk−1}. Then G′ is a 2-connected outerplane graph. By the minimality of G, G′ has a
packing (1, 1, 2)-coloring f .

We can extend f to the vertices u2, . . . , uk−1 by coloring them alternately with 1a and 1b, unless k is odd and
{f (u1), f (uk)} = {1a, 1b}. In this exceptional case, assuming f (u1) = 1a, f (uk) = 1b, we let f (u2) = 1b, f (u3) = 2, and
color u4, u5, . . . , uk−1 alternately with 1a and 1b. Thus when k ≥ 4, in all cases , we get a packing (1, 1, 2)-coloring of G,
a contradiction. □
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Claim 13. G has no face of even length.

Proof. Suppose G has a face F0 with C(F0) = u1u2 . . . uku1, where k is even. Let G1, . . . ,Gℓ be the components of
G−{u1, u2 . . . uk}. Since G is 2-connected and outerplane, each Gi has exactly two neighbors on C(F0), and these neighbors
are consecutive on C(F0). Let these neighbors be uj(i) and uj(i)+1, and let the neighbors of uj(i) and uj(i)+1 in V (Gi) be vi and
v′
i (possibly, v

′
i = vi). If v′

i ̸= vi and viv
′
i /∈ E(G) then we define G′

i = Gi + viv
′
i , otherwise we let G′

i = Gi.
With these definitions, if v′

i = vi then, by Claim 11, G′
i is a single vertex; otherwise, G′

i is a 2-connected outerplane
graph. So by the minimality of G, each G′

i has a packing (1, 1, 2)-coloring f ′
i such that

if v′
i ̸= vi, then f ′

i (v
′
i ) ̸= f ′

i (vi). (2)

We now define a (1, 1, 2)-coloring f of G as follows:
(i) For 1 ≤ j ≤ k

2 , we let f (u2j−1) = 1a and f (u2j) = 1b.
(ii) If 1 ≤ i ≤ ℓ and v′

i = vi, then G′
i is a single vertex vi and we let f (vi) = 2.

(iii) If 1 ≤ i ≤ ℓ and v′
i ̸= vi, then by (2) and the fact that {f (uj(i)), f (uj(i)+1)} = {1a, 1b}, we can switch the names of

the colors 1a and 1b in f ′
i so that f ′

i (vi) ̸= f (uj(i)) and f ′
i (v

′
i ) ̸= f (uj(i)+1). In this case, we let f (v) = f ′

i (v) for each v ∈ V (Gi).
By construction, f is a packing (1, 1, 2)-coloring on G, since the vertices of color 2 in different Gi are at distance at

least 3. □

If G has only one face apart from the outer face, then G is an odd cycle, say u1u2 . . . u2k+1u1, and we can color its
vertices apart from u2k+1 alternately with 1a and 1b and let f (u2k+1) = 2. Thus, suppose G has at least two faces. Let F0
be a pendant face corresponding to an end vertex in a longest path in T (G). By Claim 12, C(F0) is a 3-cycle.

Let F ′
0 be the unique face adjacent to F0. By our choice of F0,

F ′
0 is adjacent to at most one non-pendant face. (3)

If |C(F ′
0)| = 3, then, by Claim 11, G = K4 − e. In this case, we color the two vertices of degree 2 in G with 1a and the

remaining two vertices with 1b and 2.
Thus, we may assume F ′

0 is a face with an odd length k ≥ 5. Since F ′
0 is an odd face and each face adjacent to F ′

0 (apart
from the outer face) shares exactly two vertices with F ′

0, at least one vertex in C(F ′
0) has degree two in G. Fix one such

vertex, say w1. Let C(F ′
0) = w1w2 . . . wkw1.

If one of w2, wk has degree two, say w2, then we delete w1, w2 and add the edge w3wk (it is not in E(G) since F ′
0 has

length at least five). This results in a 2-connected subcubic outerplane graph G′ with fewer vertices. By the minimality of
G, G′ has a packing (1, 1, 2)-coloring f ′. If 2 /∈ {f ′(w3), f ′(wk)}, say f ′(w3) = 1a and f ′(wk) = 1b, then we color w1, w2 with
1a, 1b. If 2 ∈ {f ′(w3), f ′(wk)}, say f ′(w3) = 2 and f ′(wk) = 1b, then we color w1, w2 with 1a, 1b.

Thus, we may assume that both neighbors of w1, i.e., w2 and wk, have degree three. Let G1, . . . ,Gℓ be the components
of G − {w1, w2 . . . wk}. Since k ≥ 5 and d(w2) = d(wk) = 3, ℓ ≥ 2. As in the proof of Claim 13, each Gi has exactly
two neighbors on C(F0), and these neighbors are consecutive on C(F0). Let these neighbors be wj(i) and wj(i)+1, and let the
neighbors of wj(i) and wj(i)+1 in V (Gi) be vi and v′

i (possibly, v
′
i = vi). We can rename Gis so that j(1) < j(2) < · · · < j(ℓ).

By (3) and Claim 12, at most one of G1, . . . ,Gℓ is not a single vertex. By the symmetry between w2 and wk, we may
assume that G1 is a single vertex.

We start coloring by letting f (w2) = 2 and coloring the remaining vertices of C(F ′
0) alternately with 1a and 1b.

Then let f (v1) = 1b and color the unique vertex in each other single-vertex Gi with 2. If G − {w1, w2 . . . wk} has no
larger components, then we are done. Otherwise, suppose Gi0 is the unique ‘‘large’’ component of G − {w1, w2 . . . wk}. If
vi0v

′
i0

/∈ E(G), then we define G′
i0

= Gi0 + vi0v
′
i0
, otherwise we let G′

i0
= Gi0 . By the minimality of G, G′

i0
has a packing

(1, 1, 2)-coloring f ′ such that f ′(v′
i0
) ̸= f ′(vi0 ). As in the proof of Claim 13, the facts that {f (wj(i0)), f (wj(i0)+1)} = {1a, 1b} and

f ′(v′
i0
) ̸= f ′(vi0 ), we can switch the names of the colors 1a and 1b in f ′ so that f ′(vi0 ) ̸= f (wj(i0)) and f ′(v′

i0
) ̸= f (wj(i0)+1).

After that, we let f (v) = f ′(v) for each v ∈ V (Gi0 ).
So, we obtain a packing (1, 1, 2)-coloring of G. This contradicts the choice of G and proves the theorem.

4. Proof of Theorem 7

By a feasible coloring of G we call a coloring of G with colors 1a, 1b, 2, 4 such that the distance between two vertices
of color ix is at least i + 1 for all i ∈ {1, 2, 4} and x ∈ {a, b}, and f satisfies conditions (A) and (B) of Theorem 7.

Suppose, Theorem 7 fails and G is a smallest outerplane graph not admitting a feasible coloring. Clearly,

G is connected and δ(G) ≥ 2. (4)

It follows that every pendant block is nontrivial. So if G has only one non-trivial block, then it has no other blocks. In
this case, G has a packing (1, 1, 2)-coloring by Theorem 4. Hence we may assume that G has at least two blocks, and thus
at least two pendant blocks (which are nontrivial).

Claim 14. Each pendant face in G is a 3-face.

11
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Proof. Suppose F is a pendant face with C(F ) = u1u2 . . . uku1 where k ≥ 4. If F does not contain a cut vertex of G, then we
can repeat the proof of Claim 12 word by word. Note that when we color u3 with 2 in the second paragraph of Claim 12,
it is at distance at least two from u1 and uk respectively, and thus condition (B) in Theorem 7 is satisfied. So, suppose u1

is a cut vertex of G, and its neighbor outside of C(F ) is v. Recall that by the definition of pendant faces, in this case C(F )
induces a pendant block in G.

By the minimality of G, G − {u1, u2, . . . , uk} has a feasible coloring f . We extend f to G as follows. First choose
f (u1) ∈ {1a, 1b} − f (v). By symmetry, assume f (u1) = 1b. If k is even, then we can color u2, . . . , uk alternately with
1a and 1b. Otherwise, let f (u2) = 1a, f (u3) = 2 and color u4, . . . , uk alternately with 1b and 1a. In both cases, we obtain a
feasible coloring of G, a contradiction. □

Let G0 be one of the pendant blocks. Let the cut edge connecting G0 and G− G0 be u1v1 with v1 ∈ V (G0). Let F0 be the
face in G0 containing v1 with C(F0) = v1v2 . . . vkv1. Let N(u1) = {u2, u3, v1}. By the minimality of G, graph G′ = G − G0

has a feasible coloring f .
Case 1: G0 is a cycle. By Claim 14, k = 3.
Case 1.1: f (u1) ∈ {1a, 1b}, say f (u1) = 1a. We let f (v1) = 1b, f (v2) = 1a and f (v3) = 2.
Case 1.2: f (u1) = 2. Since f is a feasible coloring of G′ and dG′ (u1) ≤ 2, by (B) in the claim of Theorem 7, there is no

vertex in G − G0 colored with 4 within distance two from u1. Then we let f (v1) = 1a, f (v2) = 1b and f (v3) = 4.
Case 1.3: f (u1) = 4. If 2 ∈ {f (u2), f (u3)}, say f (u2) = 2 and f (u3) = 1a, then we recolor u1 with 1b and obtain Case 1.1.

Thus we may assume that {f (u2), f (u3)} = {1a, 1b}. In this case, Then we let f (v1) = 2, f (v2) = 1b and f (v3) = 1a.
Case 2: F0 is adjacent in T (G0) only to pendant faces. Let these faces be F1, . . . , Fℓ ordered so that the indices of

the vertices in V (Fi) ∩ V (F0) are larger than the indices of the vertices in V (Fj) ∩ V (F0) if and only if i > j. Suppose
the common vertices of C(F0) and C(F1) are vp and vp+1. By Claim 14, each Fi is a 3-face. If k is even, we can choose
f (v1) ∈ {1a, 1b} − f (u1), then color alternately with 1a and 1b all vertices v2, . . . , vk, and for each i = 1, . . . , ℓ, color the
unique vertex wi ∈ C(Fi) − C(F0) with 2. So we may assume k is odd.

Case 2.1: f (u1) ̸= 2. Let f (vp) = 2 and color alternately with 1a and 1b all vertices in V (F0) − vp so that f (v1) ̸= f (u1).
For all 2 ≤ i ≤ ℓ, color wi with 2 and choose f (w1) ∈ {1a, 1b} − f (vp+1).

Case 2.2: f (u1) = 2. As in Case 1.2, within distance two of u1 there is no vertex in G − G0 colored with 4. We color
vertices in G0 almost as in Case 2.1, except we color vp with 4. Observe that conditions (A) and (B) in the claim of Theorem 7
hold for the new coloring, and that vp is at distance at least 2 from u1 which in turn is at distance at least 5 from other
vertices of color 4.

Case 3: F0 is adjacent to some non-pendant face. Let R be a pendant face of G0 that has the largest distance from F0 in
the weak dual of G0. By the description of Case 3, this distance is at least two. Let R0 be the face that R is adjacent to. By
the choice of R, R0 is adjacent to only one non-pendant face, say R′

0.
Let C(R0) = x1x2 . . . xrx1 and V (R0) ∩ V (R′

0) = {x1, x2}. Let R1, . . . , Rm be the pendant faces that are adjacent to R0

arranged in the order of C(R0). Recall that by Claim 14, each pendant Ri is a 3-face. Assume that for i = 1, . . . ,m,
V (Ri) ∩ V (R0) = {xqi , xqi+1} and V (Ri) \ V (R0) = {yi}.

Case 3.1: R′
0 has only three vertices; say the common neighbor of x1 and x2 in R′

0 is x0. Then by our construction,⋃m

i=0 V (Ri) ∪ {x0} comprises V (G0), and x0 is the vertex in G0 that is adjacent to u1. By the minimality of G, G′ has a
feasible coloring f . Recall that the neighbor of x0 in V (G − G0) is u1.

Case 3.1.1: f (u1) ∈ {1a, 1b}. Then we color x1 with 2 and x0, x2, x3, . . . , xr alternately with 1a and 1b so that
f (x0) ̸= f (u1). After that, we let f (ym) = 4, and f (yi) = 2 for all 1 ≤ i ≤ m − 1. Then the coloring will be a packing
(1, 1, 2, 4)-coloring and the conditions (A) and (B) will hold.

Case 3.1.2: f (u1) = 2. Since dG′ (u1) ≤ 2, the distance from u1 to a vertex of color 4 in G′ is at least 3. Then we color x1
with 4 and color xqm+1 with 2, x0, x2, x3, . . . , xqm , ym alternately with 1a and 1b, xqm+2, . . . , xr (if qm + 1 < r) alternatively
with 1a and 1b. After that, if m ≥ 2 then we let f (yi) = 2 for all 1 ≤ i ≤ m − 1.

Case 3.1.3: f (u1) = 4. If {f (u2), f (u3)} ̸= {1a, 1b}, then we can recolor u1 with a color in {1a, 1b} \ {f (u2), f (u3)} and get
Case 3.1.1. Otherwise, 2 /∈ {f (u2), f (u3)}. By Theorem 4, G0 has a packing (1, 1, 2)-coloring f0. Since the vertices x0, x1, x2
have degree 3 in G, the coloring f ∪ f0 will be a packing (1, 1, 2, 4)-coloring of G satisfying (A) and (B).

Case 3.2: R′
0 has at least four vertices. For j = 1, 2, let x′

j be the neighbor of xj on C(R′
0) distinct from x3−j. By the case,

x′
2 ̸= x′

1. Let G
′′ be obtained from G −

⋃m

i=0 V (Ri) by adding edge x′
1x

′
2 if this edge is not in G. By the minimality of G, the

subcubic outerplane graph G′′ has a feasible coloring f . Since x′
1x

′
2 ∈ E(G′′), by symmetry, we may assume f (x′

2) ̸= 2. We
color xq1 with 2 and the remaining vertices of R0 alternately with 1a and 1b so that f (x1) ̸= f (x′

1) and hence f (x2) ̸= f (x′
2).

We can provide the two last inequalities because if f (x′
1), f (x

′
2) ∈ {1a, 1b}, then f (x′

1) ̸= f (x′
2).

After that, we choose f (y1) ∈ {1a, 1b} − f (xq1+1) and let f (yj) = 2 for j = 2, 3, . . . ,m. We obtain a feasible coloring of
G, a contradiction. This proves Theorem 7.

5. Sharpness of the bound

To show the sharpness of our result that every subcubic outerplanar graph is (1, 1, 2, 4)-colorable, we show that there
are subcubic outerplanar graphs that are not (1, 1, 2, 5)-colorable, not (1, 2, 2, 4)-colorable, and not (1, 1, 3, 4)-colorable.

We first show that there is a subcubic outerplanar graph that is not (1, 1, 2, 5)-colorable.

12
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Fig. 1. Gadget G2 .

Fig. 2. Gadget G1 .

Fig. 3. The construction.

Example 15. Our construction is the graph G in Fig. 3, where each of the gadgets G2 is the graph in Fig. 1 without the
vertex x1 (the graph surrounded by the rectangle), where each of the gadgets G1 used in G2 is the graph in Fig. 2 without
the vertex z6 (the graph surrounded by the rectangle). We show that G is not packing (1, 1, 2, 5)-colorable.

Claim 16. In any packing (1, 1, 2, 5)-coloring of G1 vertex z6 cannot be colored with 5.

Proof. Suppose z6 is colored with 5. Then no vertex in G1 can be colored with 5 since the farthest vertices from z6 are
u6, v6, each of them is at distance 5 from z6. Then exactly one vertex of each of the four triangles, u1u2u3, u4u5u6, v1v2v3,

13
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Fig. 4. Gadget G3 .

Fig. 5. construction H .

v4v5v6 is colored with 2. But the only way to use color 2 in u1u2u3 and u4u5u6 is to color vertices u1 and u6 with 2, and
the only way to use color 2 in v1v2v3 and v4v5v6 is to color vertices v1 and v6 with 2, which is impossible since u1 and
v1 are at distance two. □

Suppose G has a packing (1, 1, 2, 5)-coloring f . Then

each of triangles in G has a vertex of color 2 or 5. (5)

In particular, a vertex in {x1, x2, x3} is colored with 2 or 5. By symmetry, we may assume f (x1) ∈ {2, 5}. By Claim 16
applied to the top of Fig. 1, we then have f (x1) = 2. Since triangles y1y2y3 and t1t2t3 are too close to each other to both
have a vertex of color 5, in view of (5) one of them has a vertex of color 2. By symmetry, we may assume it is y1y2y3.
Since y1 is at distance two from x1, one of y2 and y3, say y2, is colored with 2. Then {y4, y5, y6} does not have vertices
of color 2, and hence it has a vertex of color 5. By Claim 16 applied to right part of Fig. 1, this vertex is not y6 and thus
belongs to {y4, y5}. Then both triangles s1s2s3 and z1z2z3 have to use color 2, and since we cannot use 2 at z1 and s1 at
the same time, we may assume by symmetry that z2 is colored with 2. This implies we need to use 5 at a vertex of the
triangle z4z5z6 and this vertex must be z6 since z4 and z5 are at distance 5 from y4, which contradicts Claim 16.

Now we show there is a graph that is not (1, 2, 2, 4)-colorable and not (1, 1, 3, 4)-colorable.

Example 17. Our construction is the graph H in Fig. 5, where each of the gadgets G3 is the graph in Fig. 4 without
the vertex v3 (the graph surrounded by the rectangle). We now show that H is not (1, 2, 2, 4)-colorable and not
(1, 1, 3, 4)-colorable.

Claim 18. H is not (1, 2, 2, 4)-colorable.

Proof. Let the colors be 1, 2a, 2b, 4.
Case 1: The three colors used on v1, v2, v3 are 1, 2a, 2b. Say v3 is colored with 2b and v2 is colored with 2a. Then the

color 4 must be used on the triangle u1u2u3 and this vertex cannot be u1 since otherwise we cannot color the triangle
in the gadget hang on v2 which corresponds to u1u2u3 (we need to use color 4 on this triangle as well). We assume by
symmetry that u3 is colored with 4. Then one of u5 and u6 is colored with a color in {2a, 2b}, say u5 is colored with 2a.
But then we cannot use color 2a and color 4 on the triangle u7u8u9, a contradiction.

Case 2: The three colors used on v1, v2, v3 are 1, 2a, 4. Say v2 is colored with 4 and v3 is colored with 2a. Then the
vertices u1, u2, u3 have to choose colors from {1, 2b}, a contradiction.

14
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Case 3: The three colors used on v1, v2, v3 are 2a, 2b, 4. Say v2 is colored with 4 and v3 is colored with 2a. Similarly to
Case 2, we reach a contradiction. □

Claim 19. H is not (1, 1, 3, 4)-colorable.

Proof. Let the colors be 1a, 1b, 3, 4. Since v1v2v3 is a triangle, at least one of the vertices v1, v2, v3, say v3, is colored with
a color in {3, 4}.

Case 1: v3 is colored with 3. Then u1 cannot be colored with 4 since otherwise the triangle in the gadget hang on v2

which corresponds to u1u2u3 can only choose colors from {1a, 1b}, a contradiction. Thus one of the vertices in {u2, u3} is
colored with 4, say u3. Since v3 and u4 have distance 3, u4 cannot be colored with 3 and one of u5, u6 is colored with 3,
say u5. But then the vertices u7, u8, u9 have to choose colors from {1a, 1b}, a contradiction.

Case 2: v3 is colored with 4. Then one of the vertices in {u4, u5, u6} is colored with 3. But then the vertices u7, u8, u9

have to choose colors from {1a, 1b}, a contradiction. □
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