

Packing $(1, 1, 2, 4)$ -coloring of subcubic outerplanar graphs

Alexandr Kostochka ^{a,b,1}, Xujun Liu ^{c,*2}

^a Department of Mathematics, University of Illinois at Urbana–Champaign, IL, USA

^b Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

^c Coordinated Science Laboratory, University of Illinois at Urbana–Champaign, IL, USA

ARTICLE INFO

Article history:

Received 12 May 2020

Received in revised form 25 May 2021

Accepted 26 May 2021

Available online 12 June 2021

Keywords:

Packing coloring

Cubic graphs

Independent sets

ABSTRACT

For $1 \leq s_1 \leq s_2 \leq \dots \leq s_k$ and a graph G , a $\text{packing } (s_1, s_2, \dots, s_k)$ -coloring of G is a partition of $V(G)$ into sets V_1, V_2, \dots, V_k such that, for each $1 \leq i \leq k$ the distance between any two distinct $x, y \in V_i$ is at least $s_i + 1$. The $\text{packing chromatic number}$, $\chi_p(G)$, of a graph G is the smallest k such that G has a packing $(1, 2, \dots, k)$ -coloring. It is known that there are trees of maximum degree 4 and subcubic graphs G with arbitrarily large $\chi_p(G)$. Recently, there was a series of papers on packing (s_1, s_2, \dots, s_k) -colorings of subcubic graphs in various classes. We show that every 2-connected subcubic outerplanar graph has a packing $(1, 1, 2)$ -coloring and every subcubic outerplanar graph is packing $(1, 1, 2, 4)$ -colorable. Our results are sharp in the sense that there are 2-connected subcubic outerplanar graphs that are not packing $(1, 1, 3)$ -colorable and there are subcubic outerplanar graphs that are not packing $(1, 1, 2, 5)$ -colorable. We also show subcubic outerplanar graphs that are not packing $(1, 2, 2, 4)$ -colorable and not packing $(1, 1, 3, 4)$ -colorable.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

For a non-decreasing sequence $S = (s_1, s_2, \dots, s_k)$ of positive integers, a $\text{packing } S$ -coloring of a graph G is a partition of $V(G)$ into sets V_1, \dots, V_k such that, for each $1 \leq i \leq k$, the distance between any two distinct $x, y \in V_i$ is at least $s_i + 1$. A $\text{packing } k$ -coloring is a packing $(1, 2, \dots, k)$ -coloring. The $\text{packing chromatic number}$, $\chi_p(G)$ (we will use the abbreviation PCN for short), of a graph G is the minimum k such that G has a packing k -coloring.

Packing k -coloring was introduced in 2008 by Goddard, Hedetniemi, Hedetniemi, Harris and Rall [20] motivated by frequency assignment problems in broadcast networks. There are more than 50 papers on the topic (e.g. [1, 5, 6, 8–17, 19, 23, 24, 27, 28] and references in them). In particular, Fiala and Golovach [14] proved that finding the PCN of a graph is NP-complete even in the class of trees. Sloper [27] showed that the infinite complete ternary tree (every vertex has 3 child vertices) has unbounded PCN.

The question whether PCN is bounded in the class of subcubic graphs was discussed in several papers (e.g., in [10, 11, 19, 25, 27]) and answered in the negative in [2]. Brešar and Ferme [5] later provided an explicit family of subcubic graphs with unbounded PCN. This stimulated studying subclasses of subcubic graphs with bounded PCN.

* Corresponding author.

E-mail addresses: kostochk@math.uiuc.edu (A. Kostochka), xliu150@illinois.edu (X. Liu).

¹ Research of this author is supported in part by NSF, United States Grant DMS-1600592, NSF RTG, United States Grant DMS-1937241, Award RB17164 of the UIUC Campus Research Board, United States, and Grant 19-01-00682 of the Russian Foundation for Basic Research.

² The work was partially done while X. Liu was a Ph.D. student at Department of Mathematics, University of Illinois at Urbana–Champaign. Research of this author was supported by NSF grant Emerging Frontiers of Science of Information (A2209)1-482031-239010-191100.

One of the studied classes was the class of subdivisions of subcubic graphs. Recall that the *subdivision*, $D(G)$, of a graph G is the graph obtained from G by replacing each edge by a path of length two. In particular, Gastineau and Togni [19] asked whether $\chi_p(D(G)) \leq 5$ for every subcubic graph G and Brešar, Klavžar, Rall, and Wash [10] later conjectured this.

Conjecture 1 (Brešar, Klavžar, Rall, and Wash [10]). *Let G be a subcubic graph. Then $\chi_p(D(G)) \leq 5$.*

In 2018 [3] it was shown that the PCN of the subdivision of every subcubic graph is at most 8. Gastineau and Togni [19] pointed out at the following connection between the bounds on packing S -colorings of a graph G and the packing S -colorings of $D(G)$:

Proposition 2 (Gastineau and Togni [19], Proposition 1). *Let G be a graph and $S = (s_1, \dots, s_k)$ be a non-decreasing sequence of integers. If G is packing S -colorable, then $D(G)$ is packing $(1, 2s_1 + 1, \dots, 2s_k + 1)$ -colorable.*

They [19] also proved that the Petersen graph is not packing $(1, 1, k, k')$ -colorable for any $k, k' \geq 2$ and suggested the study of packing $(1, 1, 2, 2)$ -coloring to approach **Conjecture 1**. Brešar, Klavžar, Rall, and Wash [10] later verified that the Petersen graph admits a packing $(1, 2, 3, 4, 5)$ -coloring. **Proposition 2** implies that if one can prove every subcubic graph except the Petersen graph is packing $(1, 1, 2, 2)$ -colorable then $\chi_p(D(G)) \leq 5$ for every subcubic graph. Gastineau and Togni [19] also asked the question whether the stronger claim holds: every subcubic graph except the Petersen graph is packing $(1, 1, 2, 3)$ -colorable.

The problem whether every subcubic graph except the Petersen graph is packing $(1, 1, 2, 2)$ -colorable is intriguing by itself. Some subclasses of subcubic graphs were shown to have such a coloring. In particular, Brešar, Klavžar, Rall, and Wash [10] showed that if G is a generalized prism of a cycle, then G is packing $(1, 1, 2, 2)$ -colorable if and only if G is not the Petersen graph. Very recently, Liu, Liu, Rolek, and Yu [26] proved that every subcubic graph with maximum average degree less than $\frac{30}{11}$ is $(1, 1, 2, 2)$ -colorable and thus confirmed **Conjecture 1** for subcubic graph G with $mad(G) < \frac{30}{11}$.

Many similar colorings have also been considered (e.g. [3, 7, 18, 19, 21, 22]). In particular, Gastineau and Togni [19] showed that subcubic graphs are packing $(1, 2, 2, 2, 2, 2, 2)$ -colorable and packing $(1, 1, 2, 2, 2)$ -colorable. They also showed that every 3-irregular (has no adjacent vertices of degree 3) subcubic graph is packing $(1, 2, 2, 2)$ -colorable and packing $(1, 1, 2)$ -colorable. Gastineau [16] showed that determining whether a subcubic bipartite graph is packing $(1, 1, 2)$ -colorable and whether a subcubic graph is $(1, 1, 2)$ -colorable are both NP-complete. In [3] it was proved that subcubic graphs are packing $(1, 1, 2, 2, 3, 3, k)$ -colorable with color k used at most once for each integer $k \geq 4$, and that 2-degenerate subcubic graphs are packing $(1, 1, 2, 2, 3, 3)$ -colorable. Borodin and Ivanova [4] proved that every subcubic planar graph with girth at least 23 has a packing $(2, 2, 2, 2)$ -coloring.

Packing colorings of subclasses of subcubic outerplanar graphs were first studied by Gastineau, Holub, and Togni [17], who showed upper bounds for PCN of 2-connected subcubic outerplanar graphs with conditions on the number of internal faces. Recently, Brešar, Gastineau and Togni [7] proved that the PCN of any 2-connected bipartite subcubic outerplanar graph is bounded by 7, which gives a partial answer to the question posed in several papers concerning the boundedness of the PCN in the class of planar subcubic graphs. Moreover, they proved that every triangle-free subcubic outerplanar graph has a packing $(1, 2, 2, 2)$ -coloring (and thus a packing $(1, 1, 2, 2)$ -coloring) and their result is sharp in the sense that there exists a subcubic outerplanar graph with no triangles that is not packing $(1, 2, 2, 3)$ -colorable. They also showed that every bipartite outerplanar graph admits a packing S -coloring for $S = (1, 3, \dots, 3)$, where 3 appears Δ (maximum degree) times. Their result is sharp in the sense that if one of the integers 3 is replaced by 4 in the sequence S , then there exist outerplanar bipartite graphs that do not admit a packing S -coloring. The following two interesting questions were also suggested by Brešar, Gastineau and Togni [7] for future research.

Question 3 (Brešar, Gastineau and Togni [7]). *Is the PCN bounded in the class of 2-connected outerplanar subcubic graphs and is the PCN bounded in the class of 2-connected bipartite planar subcubic graphs?*

In this paper, we prove that every 2-connected subcubic outerplanar graph is packing $(1, 1, 2)$ -colorable and every subcubic outerplanar graph is packing $(1, 1, 2, 4)$ -colorable. Our results are sharp in the sense that there is a 2-connected subcubic outerplanar graph G that is not $(1, 1, 3)$ -colorable (see **Example 5**) and not $(1, 2, 2)$ -colorable (see **Example 6**); and there are subcubic outerplanar graphs that are neither $(1, 2, 2, 4)$ -colorable, nor $(1, 1, 3, 4)$ -colorable; there are also subcubic outerplanar graphs that are not $(1, 1, 2, 5)$ -colorable.

Theorem 4. *Every 2-connected subcubic outerplanar graph G is packing $(1, 1, 2)$ -colorable.*

Example 5. Let G be the graph obtained by starting with a four cycle C such that $V(C) = \{u_1, u_2, u_3, u_4\}$ and $u_iu_{i+1} \in E(G)$ for $1 \leq i \leq 4$ ($5 \equiv 1$). Then we add a path $u_1v_1u_2$ of length two from u_1 to u_2 and a path $u_3v_2u_4$ from u_3 to u_4 .

Assume G has a packing $(1, 1, 3)$ -coloring. Since both u_1, u_2, v_1 and u_3, u_4, v_2 form triangles, at least one vertex of u_1, u_2, v_1 and one vertex of u_3, u_4, v_2 are colored with 3 respectively. But the diameter of G is 3, a contradiction.

Example 6. Let G be the same graph as used in **Example 5**. We show that G is not $(1, 2, 2)$ -colorable.

Assume G has a packing $(1, 2, 2)$ -coloring. Say the colors are $1, 2_a, 2_b$. Since both u_1, u_2, v_1 and u_3, u_4, v_2 form triangles, all three colors are used exactly once on u_1, u_2, v_1 and u_3, u_4, v_2 respectively. By symmetry, we assume that u_2 is colored with a color in $\{2_a, 2_b\}$, say 2_a . This contradicts the fact that 2_a is used on the triangle $u_3v_2u_4$.

Theorem 7. Every subcubic outerplanar graph has a packing $(1, 1, 2, 4)$ -coloring f such that

(A) Color 4 is used at most once within each block.

(B) if v is a vertex of degree at most 2 and is colored with 2, then there is no vertex of color 4 within distance two from v .

By [Proposition 2](#), we also have the following immediate corollary, which confirms [Conjecture 1](#) for subcubic outerplanar graphs.

Corollary 8. If G is a subcubic outerplanar graph, then $\chi_p(D(G)) \leq 5$. Moreover, if H is a 2-connected subcubic outerplanar graph, then $\chi_p(D(G)) \leq 4$.

Proof. [Proposition 2](#) implies that if G is packing $(1, 1, 2, 2)$ -colorable then $D(G)$ is packing $(1, 3, 3, 5, 5)$ -colorable, which implies a packing $(1, 2, 3, 4, 5)$ -coloring of $D(G)$. Similarly, since H is packing $(1, 1, 2)$ -colorable, $D(G)$ is packing $(1, 3, 3, 5)$ -colorable and thus $(1, 2, 3, 4)$ -colorable. \square

The result of Liu, Liu, Rolek, and Yu [26] implies that every subcubic planar graph with girth at least 8 is packing $(1, 1, 2, 2)$ -colorable. We would also like to ask the following questions.

Question 9. Is it true that every subcubic planar graph is packing $(1, 1, 2, 2)$ -colorable?

Question 10. Is it true that every subcubic 2-connected outerplanar graph is packing $(1, 2, 2, 2)$ -colorable?

2. Notation and preliminaries

We use $N_G^d(u)$ to denote the set of all vertices that are at distance d from u . We will work with *outerplane* graphs, that is, outerplanar graphs with a fixed drawing where all vertices are on the outer face.

A *block* of a graph G is an inclusion maximal subgraph with no cut vertices. By definition, each block is either 2-connected or a K_2 . In the former case, we call the block *nontrivial*. A block in a graph G is *pendant* if it contains at most one cut vertex of G .

Given an outerplane graph G , the *weak dual graph*, $\mathcal{T}(G)$, is the graph that has a vertex for every bounded face of the embedding, and an edge for every pair of bounded faces sharing at least one edge. Below when we say “face” we will mean an internal face, unless we explicitly say “outer face”. For a face F in an outerplane graph G , we denote by $C(F)$ the chordless cycle in G that bounds F . It is well known that

$$\text{a plane graph is outerplane if and only if its weak dual is a forest.} \quad (1)$$

By an i -face we will mean a face of length i . In view of (1), we say that an internal face F in a outerplane graph G is *pendant*, if either F corresponds to a leaf in $\mathcal{T}(G)$ and $C(F)$ contains no cut vertices of G or $C(F)$ induces a pendant block in G .

Claim 11. Each 3-face in a 2-connected subcubic outerplane graph is pendant.

Proof. Let F be a 3-face with $C(F) = xyz$ in a 2-connected subcubic outerplane graph G . If, say $d(x) = 2$, then the edges xy and xz are on the boundary of the outer face, and so F is pendant.

So, suppose $d(x) = d(y) = d(z) = 3$. Let x' , y' and z' be the neighbors of x , y and z respectively outside of $\{x, y, z\}$ (some of them can coincide). Since G is 2-connected, all x' , y' and z' are in the same component of $G - \{x, y, z\}$. But then G contains a K_4 -minor, which implies that G is not outerplane, a contradiction. \square

3. Proof of Theorem 4

All our $(1, 1, 2)$ -colorings will use the colors 1_a , 1_b and 2.

Proof. Suppose the theorem is false and G is a smallest 2-connected subcubic outerplane graph that has no $(1, 1, 2)$ -coloring. Let $n = |V(G)|$. Then $n \geq 4$, since otherwise we can color all vertices of G with different colors.

Claim 12. Each pendant face in G is a 3-face.

Proof. Suppose F is a pendant face in G with $C(F) = u_1u_2 \dots u_ku_1$ where $k \geq 4$. If $V(G) = \{u_1, u_2, \dots, u_k\}$ then we color u_1 with 2 and the remaining vertices alternately with 1_a and 1_b . So suppose $d(u_1) = d(u_k) = 3$ and $d(u_2) = d(u_3) = \dots = d(u_{k-1}) = 2$. Let $G' = G - \{u_2, \dots, u_{k-1}\}$. Then G' is a 2-connected outerplane graph. By the minimality of G , G' has a packing $(1, 1, 2)$ -coloring f .

We can extend f to the vertices u_2, \dots, u_{k-1} by coloring them alternately with 1_a and 1_b , unless k is odd and $\{f(u_1), f(u_k)\} = \{1_a, 1_b\}$. In this exceptional case, assuming $f(u_1) = 1_a$, $f(u_k) = 1_b$, we let $f(u_2) = 1_b$, $f(u_3) = 2$, and color u_4, u_5, \dots, u_{k-1} alternately with 1_a and 1_b . Thus when $k \geq 4$, in all cases, we get a packing $(1, 1, 2)$ -coloring of G , a contradiction. \square

Claim 13. *G has no face of even length.*

Proof. Suppose G has a face F_0 with $C(F_0) = u_1u_2\dots u_ku_1$, where k is even. Let G_1, \dots, G_ℓ be the components of $G - \{u_1, u_2 \dots u_k\}$. Since G is 2-connected and outerplane, each G_i has exactly two neighbors on $C(F_0)$, and these neighbors are consecutive on $C(F_0)$. Let these neighbors be $u_{j(i)}$ and $u_{j(i)+1}$, and let the neighbors of $u_{j(i)}$ and $u_{j(i)+1}$ in $V(G_i)$ be v_i and v'_i (possibly, $v'_i = v_i$). If $v'_i \neq v_i$ and $v_i v'_i \notin E(G)$ then we define $G'_i = G_i + v_i v'_i$, otherwise we let $G'_i = G_i$.

With these definitions, if $v'_i = v_i$ then, by [Claim 11](#), G'_i is a single vertex; otherwise, G'_i is a 2-connected outerplane graph. So by the minimality of G , each G'_i has a packing $(1, 1, 2)$ -coloring f'_i such that

$$\text{if } v'_i \neq v_i, \text{ then } f'_i(v'_i) \neq f'_i(v_i). \quad (2)$$

We now define a $(1, 1, 2)$ -coloring f of G as follows:

- (i) For $1 \leq j \leq \frac{k}{2}$, we let $f(u_{2j-1}) = 1_a$ and $f(u_{2j}) = 1_b$.
- (ii) If $1 \leq i \leq \ell$ and $v'_i = v_i$, then G'_i is a single vertex v_i and we let $f(v_i) = 2$.
- (iii) If $1 \leq i \leq \ell$ and $v'_i \neq v_i$, then by (2) and the fact that $\{f(u_{j(i)}), f(u_{j(i)+1})\} = \{1_a, 1_b\}$, we can switch the names of the colors 1_a and 1_b in f'_i so that $f'_i(v_i) \neq f(u_{j(i)})$ and $f'_i(v'_i) \neq f(u_{j(i)+1})$. In this case, we let $f(v) = f'_i(v)$ for each $v \in V(G_i)$.

By construction, f is a packing $(1, 1, 2)$ -coloring on G , since the vertices of color 2 in different G_i are at distance at least 3. \square

If G has only one face apart from the outer face, then G is an odd cycle, say $u_1u_2\dots u_{2k+1}u_1$, and we can color its vertices apart from u_{2k+1} alternately with 1_a and 1_b and let $f(u_{2k+1}) = 2$. Thus, suppose G has at least two faces. Let F_0 be a pendant face corresponding to an end vertex in a longest path in $\mathcal{T}(G)$. By [Claim 12](#), $C(F_0)$ is a 3-cycle.

Let F'_0 be the unique face adjacent to F_0 . By our choice of F_0 ,

$$F'_0 \text{ is adjacent to at most one non-pendant face.} \quad (3)$$

If $|C(F'_0)| = 3$, then, by [Claim 11](#), $G = K_4 - e$. In this case, we color the two vertices of degree 2 in G with 1_a and the remaining two vertices with 1_b and 2.

Thus, we may assume F'_0 is a face with an odd length $k \geq 5$. Since F'_0 is an odd face and each face adjacent to F'_0 (apart from the outer face) shares exactly two vertices with F'_0 , at least one vertex in $C(F'_0)$ has degree two in G . Fix one such vertex, say w_1 . Let $C(F'_0) = w_1w_2\dots w_kw_1$.

If one of w_2, w_k has degree two, say w_2 , then we delete w_1, w_2 and add the edge w_3w_k (it is not in $E(G)$ since F'_0 has length at least five). This results in a 2-connected subcubic outerplane graph G' with fewer vertices. By the minimality of G , G' has a packing $(1, 1, 2)$ -coloring f' . If $2 \notin \{f'(w_3), f'(w_k)\}$, say $f'(w_3) = 1_a$ and $f'(w_k) = 1_b$, then we color w_1, w_2 with $1_a, 1_b$. If $2 \in \{f'(w_3), f'(w_k)\}$, say $f'(w_3) = 2$ and $f'(w_k) = 1_b$, then we color w_1, w_2 with $1_a, 1_b$.

Thus, we may assume that both neighbors of w_1 , i.e., w_2 and w_k , have degree three. Let G_1, \dots, G_ℓ be the components of $G - \{w_1, w_2 \dots w_k\}$. Since $k \geq 5$ and $d(w_2) = d(w_k) = 3$, $\ell \geq 2$. As in the proof of [Claim 13](#), each G_i has exactly two neighbors on $C(F_0)$, and these neighbors are consecutive on $C(F_0)$. Let these neighbors be $w_{j(i)}$ and $w_{j(i)+1}$, and let the neighbors of $w_{j(i)}$ and $w_{j(i)+1}$ in $V(G_i)$ be v_i and v'_i (possibly, $v'_i = v_i$). We can rename G_i s so that $j(1) < j(2) < \dots < j(\ell)$. By (3) and [Claim 12](#), at most one of G_1, \dots, G_ℓ is not a single vertex. By the symmetry between w_2 and w_k , we may assume that G_1 is a single vertex.

We start coloring by letting $f(w_2) = 2$ and coloring the remaining vertices of $C(F'_0)$ alternately with 1_a and 1_b . Then let $f(v_1) = 1_b$ and color the unique vertex in each other single-vertex G_i with 2. If $G - \{w_1, w_2 \dots w_k\}$ has no larger components, then we are done. Otherwise, suppose G_{i_0} is the unique “large” component of $G - \{w_1, w_2 \dots w_k\}$. If $v_{i_0}v'_{i_0} \notin E(G)$, then we define $G'_{i_0} = G_{i_0} + v_{i_0}v'_{i_0}$, otherwise we let $G'_{i_0} = G_{i_0}$. By the minimality of G , G'_{i_0} has a packing $(1, 1, 2)$ -coloring f' such that $f'(v'_{i_0}) \neq f'(v_{i_0})$. As in the proof of [Claim 13](#), the facts that $\{f(w_{j(i_0)}), f(w_{j(i_0)+1})\} = \{1_a, 1_b\}$ and $f'(v'_{i_0}) \neq f'(v_{i_0})$, we can switch the names of the colors 1_a and 1_b in f' so that $f'(v_{i_0}) \neq f(w_{j(i_0)})$ and $f'(v'_{i_0}) \neq f(w_{j(i_0)+1})$. After that, we let $f(v) = f'(v)$ for each $v \in V(G_{i_0})$.

So, we obtain a packing $(1, 1, 2)$ -coloring of G . This contradicts the choice of G and proves the theorem.

4. Proof of Theorem 7

By a *feasible* coloring of G we call a coloring of G with colors $1_a, 1_b, 2, 4$ such that the distance between two vertices of color i_x is at least $i + 1$ for all $i \in \{1, 2, 4\}$ and $x \in \{a, b\}$, and f satisfies conditions (A) and (B) of [Theorem 7](#).

Suppose, [Theorem 7](#) fails and G is a smallest outerplane graph not admitting a feasible coloring. Clearly,

$$G \text{ is connected and } \delta(G) \geq 2. \quad (4)$$

It follows that every pendant block is nontrivial. So if G has only one non-trivial block, then it has no other blocks. In this case, G has a packing $(1, 1, 2)$ -coloring by [Theorem 4](#). Hence we may assume that G has at least two blocks, and thus at least two pendant blocks (which are nontrivial).

Claim 14. *Each pendant face in G is a 3-face.*

Proof. Suppose F is a pendant face with $C(F) = u_1u_2 \dots u_ku_1$ where $k \geq 4$. If F does not contain a cut vertex of G , then we can repeat the proof of [Claim 12](#) word by word. Note that when we color u_3 with 2 in the second paragraph of [Claim 12](#), it is at distance at least two from u_1 and u_k respectively, and thus condition (B) in [Theorem 7](#) is satisfied. So, suppose u_1 is a cut vertex of G , and its neighbor outside of $C(F)$ is v . Recall that by the definition of pendant faces, in this case $C(F)$ induces a pendant block in G .

By the minimality of G , $G - \{u_1, u_2, \dots, u_k\}$ has a feasible coloring f . We extend f to G as follows. First choose $f(u_1) \in \{1_a, 1_b\} - f(v)$. By symmetry, assume $f(u_1) = 1_b$. If k is even, then we can color u_2, \dots, u_k alternately with 1_a and 1_b . Otherwise, let $f(u_2) = 1_a, f(u_3) = 2$ and color u_4, \dots, u_k alternately with 1_b and 1_a . In both cases, we obtain a feasible coloring of G , a contradiction. \square

Let G_0 be one of the pendant blocks. Let the cut edge connecting G_0 and $G - G_0$ be u_1v_1 with $v_1 \in V(G_0)$. Let F_0 be the face in G_0 containing v_1 with $C(F_0) = v_1v_2 \dots v_kv_1$. Let $N(u_1) = \{u_2, u_3, v_1\}$. By the minimality of G , graph $G' = G - G_0$ has a feasible coloring f .

Case 1: G_0 is a cycle. By [Claim 14](#), $k = 3$.

Case 1.1: $f(u_1) \in \{1_a, 1_b\}$, say $f(u_1) = 1_a$. We let $f(v_1) = 1_b, f(v_2) = 1_a$ and $f(v_3) = 2$.

Case 1.2: $f(u_1) = 2$. Since f is a feasible coloring of G' and $d_{G'}(u_1) \leq 2$, by (B) in the claim of [Theorem 7](#), there is no vertex in $G - G_0$ colored with 4 within distance two from u_1 . Then we let $f(v_1) = 1_a, f(v_2) = 1_b$ and $f(v_3) = 4$.

Case 1.3: $f(u_1) = 4$. If $2 \in \{f(u_2), f(u_3)\}$, say $f(u_2) = 2$ and $f(u_3) = 1_a$, then we recolor u_1 with 1_b and obtain Case 1.1. Thus we may assume that $\{f(u_2), f(u_3)\} = \{1_a, 1_b\}$. In this case, Then we let $f(v_1) = 2, f(v_2) = 1_b$ and $f(v_3) = 1_a$.

Case 2: F_0 is adjacent in $\mathcal{T}(G_0)$ only to pendant faces. Let these faces be F_1, \dots, F_ℓ ordered so that the indices of the vertices in $V(F_i) \cap V(F_0)$ are larger than the indices of the vertices in $V(F_j) \cap V(F_0)$ if and only if $i > j$. Suppose the common vertices of $C(F_0)$ and $C(F_1)$ are v_p and v_{p+1} . By [Claim 14](#), each F_i is a 3-face. If k is even, we can choose $f(v_1) \in \{1_a, 1_b\} - f(u_1)$, then color alternately with 1_a and 1_b all vertices v_2, \dots, v_k , and for each $i = 1, \dots, \ell$, color the unique vertex $w_i \in C(F_i) - C(F_0)$ with 2. So we may assume k is odd.

Case 2.1: $f(u_1) \neq 2$. Let $f(v_p) = 2$ and color alternately with 1_a and 1_b all vertices in $V(F_0) - v_p$ so that $f(v_1) \neq f(u_1)$. For all $2 \leq i \leq \ell$, color w_i with 2 and choose $f(w_i) \in \{1_a, 1_b\} - f(v_{p+1})$.

Case 2.2: $f(u_1) = 2$. As in Case 1.2, within distance two of u_1 there is no vertex in $G - G_0$ colored with 4. We color vertices in G_0 almost as in Case 2.1, except we color v_p with 4. Observe that conditions (A) and (B) in the claim of [Theorem 7](#) hold for the new coloring, and that v_p is at distance at least 2 from u_1 which in turn is at distance at least 5 from other vertices of color 4.

Case 3: F_0 is adjacent to some non-pendant face. Let R be a pendant face of G_0 that has the largest distance from F_0 in the weak dual of G_0 . By the description of Case 3, this distance is at least two. Let R_0 be the face that R is adjacent to. By the choice of R , R_0 is adjacent to only one non-pendant face, say R'_0 .

Let $C(R_0) = x_1x_2 \dots x_rx_1$ and $V(R_0) \cap V(R'_0) = \{x_1, x_2\}$. Let R_1, \dots, R_m be the pendant faces that are adjacent to R_0 arranged in the order of $C(R_0)$. Recall that by [Claim 14](#), each pendant R_i is a 3-face. Assume that for $i = 1, \dots, m$, $V(R_i) \cap V(R_0) = \{x_{q_i}, x_{q_i+1}\}$ and $V(R_i) \setminus V(R_0) = \{y_i\}$.

Case 3.1: R'_0 has only three vertices; say the common neighbor of x_1 and x_2 in R'_0 is x_0 . Then by our construction, $\bigcup_{i=0}^m V(R_i) \cup \{x_0\}$ comprises $V(G_0)$, and x_0 is the vertex in G_0 that is adjacent to u_1 . By the minimality of G , G' has a feasible coloring f . Recall that the neighbor of x_0 in $V(G - G_0)$ is u_1 .

Case 3.1.1: $f(u_1) \in \{1_a, 1_b\}$. Then we color x_1 with 2 and $x_0, x_2, x_3, \dots, x_r$ alternately with 1_a and 1_b so that $f(x_0) \neq f(u_1)$. After that, we let $f(y_m) = 4$, and $f(y_i) = 2$ for all $1 \leq i \leq m-1$. Then the coloring will be a packing $(1, 1, 2, 4)$ -coloring and the conditions (A) and (B) will hold.

Case 3.1.2: $f(u_1) = 2$. Since $d_{G'}(u_1) \leq 2$, the distance from u_1 to a vertex of color 4 in G' is at least 3. Then we color x_1 with 4 and color x_{q_m+1} with 2, $x_0, x_2, x_3, \dots, x_{q_m}, y_m$ alternately with 1_a and 1_b , x_{q_m+2}, \dots, x_r (if $q_m+1 < r$) alternatively with 1_a and 1_b . After that, if $m \geq 2$ then we let $f(y_i) = 2$ for all $1 \leq i \leq m-1$.

Case 3.1.3: $f(u_1) = 4$. If $\{f(u_2), f(u_3)\} \neq \{1_a, 1_b\}$, then we can recolor u_1 with a color in $\{1_a, 1_b\} \setminus \{f(u_2), f(u_3)\}$ and get Case 3.1.1. Otherwise, $2 \notin \{f(u_2), f(u_3)\}$. By [Theorem 4](#), G_0 has a packing $(1, 1, 2)$ -coloring f_0 . Since the vertices x_0, x_1, x_2 have degree 3 in G , the coloring $f \cup f_0$ will be a packing $(1, 1, 2, 4)$ -coloring of G satisfying (A) and (B).

Case 3.2: R'_0 has at least four vertices. For $j = 1, 2$, let x'_j be the neighbor of x_j on $C(R'_0)$ distinct from x_{3-j} . By the case, $x'_2 \neq x'_1$. Let G'' be obtained from $G - \bigcup_{i=0}^m V(R_i)$ by adding edge $x'_1x'_2$ if this edge is not in G . By the minimality of G , the subcubic outerplane graph G'' has a feasible coloring f . Since $x'_1x'_2 \in E(G'')$, by symmetry, we may assume $f(x'_2) \neq 2$. We color x_{q_1} with 2 and the remaining vertices of R_0 alternately with 1_a and 1_b so that $f(x_1) \neq f(x'_1)$ and hence $f(x_2) \neq f(x'_2)$. We can provide the two last inequalities because if $f(x'_1), f(x'_2) \in \{1_a, 1_b\}$, then $f(x'_1) \neq f(x'_2)$.

After that, we choose $f(y_1) \in \{1_a, 1_b\} - f(x_{q_1+1})$ and let $f(y_j) = 2$ for $j = 2, 3, \dots, m$. We obtain a feasible coloring of G , a contradiction. This proves [Theorem 7](#).

5. Sharpness of the bound

To show the sharpness of our result that every subcubic outerplanar graph is $(1, 1, 2, 4)$ -colorable, we show that there are subcubic outerplanar graphs that are not $(1, 1, 2, 5)$ -colorable, not $(1, 2, 2, 4)$ -colorable, and not $(1, 1, 3, 4)$ -colorable.

We first show that there is a subcubic outerplanar graph that is not $(1, 1, 2, 5)$ -colorable.

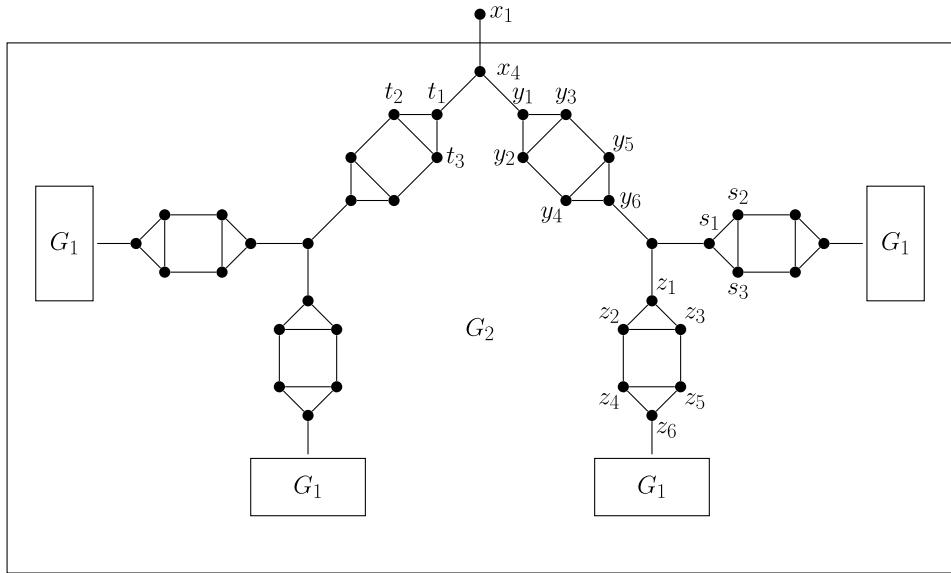
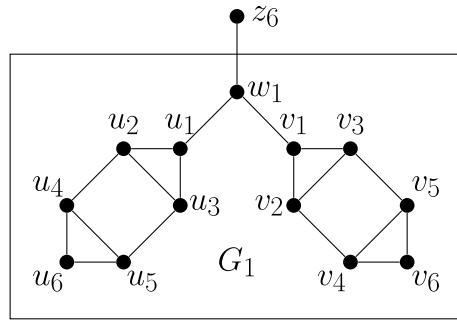
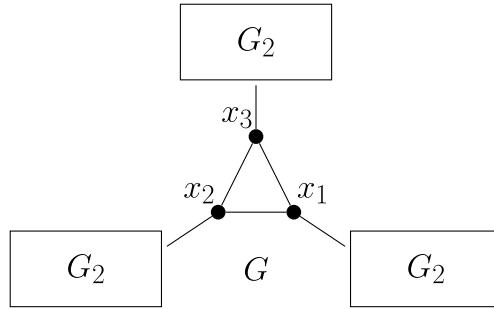
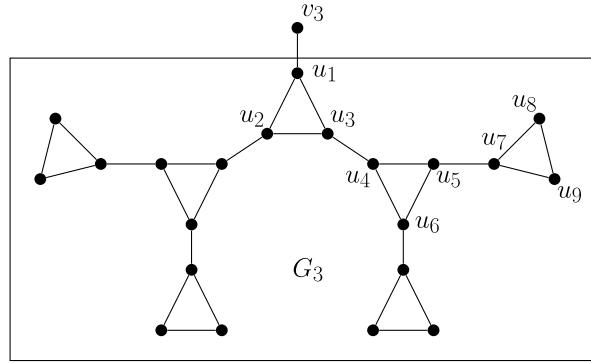
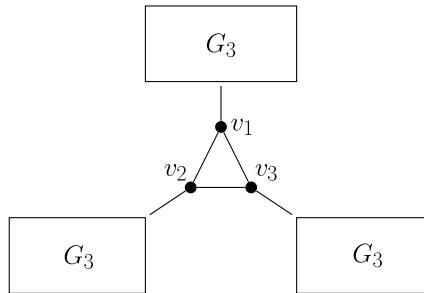
Fig. 1. Gadget G_2 .Fig. 2. Gadget G_1 .

Fig. 3. The construction.

Example 15. Our construction is the graph G in Fig. 3, where each of the gadgets G_2 is the graph in Fig. 1 without the vertex x_1 (the graph surrounded by the rectangle), where each of the gadgets G_1 used in G_2 is the graph in Fig. 2 without the vertex z_6 (the graph surrounded by the rectangle). We show that G is not packing $(1, 1, 2, 5)$ -colorable.

Claim 16. In any packing $(1, 1, 2, 5)$ -coloring of G_1 vertex z_6 cannot be colored with 5.

Proof. Suppose z_6 is colored with 5. Then no vertex in G_1 can be colored with 5 since the farthest vertices from z_6 are u_6, v_6 , each of them is at distance 5 from z_6 . Then exactly one vertex of each of the four triangles, $u_1u_2u_3, u_4u_5u_6, v_1v_2v_3$,

Fig. 4. Gadget G_3 .Fig. 5. construction H .

$v_4v_5v_6$ is colored with 2. But the only way to use color 2 in $u_1u_2u_3$ and $u_4u_5u_6$ is to color vertices u_1 and u_6 with 2, and the only way to use color 2 in $v_1v_2v_3$ and $v_4v_5v_6$ is to color vertices v_1 and v_6 with 2, which is impossible since u_1 and v_1 are at distance two. \square

Suppose G has a packing $(1, 1, 2, 5)$ -coloring f . Then

each of triangles in G has a vertex of color 2 or 5. (5)

In particular, a vertex in $\{x_1, x_2, x_3\}$ is colored with 2 or 5. By symmetry, we may assume $f(x_1) \in \{2, 5\}$. By [Claim 16](#) applied to the top of [Fig. 1](#), we then have $f(x_1) = 2$. Since triangles $y_1y_2y_3$ and $t_1t_2t_3$ are too close to each other to both have a vertex of color 5, in view of (5) one of them has a vertex of color 2. By symmetry, we may assume it is $y_1y_2y_3$. Since y_1 is at distance two from x_1 , one of y_2 and y_3 , say y_2 , is colored with 2. Then $\{y_4, y_5, y_6\}$ does not have vertices of color 2, and hence it has a vertex of color 5. By [Claim 16](#) applied to right part of [Fig. 1](#), this vertex is not y_6 and thus belongs to $\{y_4, y_5\}$. Then both triangles $s_1s_2s_3$ and $z_1z_2z_3$ have to use color 2, and since we cannot use 2 at z_1 and s_1 at the same time, we may assume by symmetry that z_2 is colored with 2. This implies we need to use 5 at a vertex of the triangle $z_4z_5z_6$ and this vertex must be z_6 since z_4 and z_5 are at distance 5 from y_4 , which contradicts [Claim 16](#).

Now we show there is a graph that is not $(1, 2, 2, 4)$ -colorable and not $(1, 1, 3, 4)$ -colorable.

Example 17. Our construction is the graph H in [Fig. 5](#), where each of the gadgets G_3 is the graph in [Fig. 4](#) without the vertex v_3 (the graph surrounded by the rectangle). We now show that H is not $(1, 2, 2, 4)$ -colorable and not $(1, 1, 3, 4)$ -colorable.

Claim 18. H is not $(1, 2, 2, 4)$ -colorable.

Proof. Let the colors be $1, 2_a, 2_b, 4$.

Case 1: The three colors used on v_1, v_2, v_3 are $1, 2_a, 2_b$. Say v_3 is colored with 2_b and v_2 is colored with 2_a . Then the color 4 must be used on the triangle $u_1u_2u_3$ and this vertex cannot be u_1 since otherwise we cannot color the triangle in the gadget hang on v_2 which corresponds to $u_1u_2u_3$ (we need to use color 4 on this triangle as well). We assume by symmetry that u_3 is colored with 4. Then one of u_5 and u_6 is colored with a color in $\{2_a, 2_b\}$, say u_5 is colored with 2_a . But then we cannot use color 2_a and color 4 on the triangle $u_7u_8u_9$, a contradiction.

Case 2: The three colors used on v_1, v_2, v_3 are $1, 2_a, 4$. Say v_2 is colored with 4 and v_3 is colored with 2_a . Then the vertices u_1, u_2, u_3 have to choose colors from $\{1, 2_b\}$, a contradiction.

Case 3: The three colors used on v_1, v_2, v_3 are $2_a, 2_b, 4$. Say v_2 is colored with 4 and v_3 is colored with 2_a . Similarly to Case 2, we reach a contradiction. \square

Claim 19. H is not $(1, 1, 3, 4)$ -colorable.

Proof. Let the colors be $1_a, 1_b, 3, 4$. Since $v_1v_2v_3$ is a triangle, at least one of the vertices v_1, v_2, v_3 , say v_3 , is colored with a color in $\{3, 4\}$.

Case 1: v_3 is colored with 3. Then u_1 cannot be colored with 4 since otherwise the triangle in the gadget hang on v_2 which corresponds to $u_1u_2u_3$ can only choose colors from $\{1_a, 1_b\}$, a contradiction. Thus one of the vertices in $\{u_2, u_3\}$ is colored with 4, say u_3 . Since v_3 and u_4 have distance 3, u_4 cannot be colored with 3 and one of u_5, u_6 is colored with 3, say u_5 . But then the vertices u_7, u_8, u_9 have to choose colors from $\{1_a, 1_b\}$, a contradiction.

Case 2: v_3 is colored with 4. Then one of the vertices in $\{u_4, u_5, u_6\}$ is colored with 3. But then the vertices u_7, u_8, u_9 have to choose colors from $\{1_a, 1_b\}$, a contradiction. \square

Acknowledgments

We thank the referees for their valuable comments.

References

- [1] G. Argiroffo, G. Nasini, P. Torres, The packing coloring problem for lobsters and partner limited graphs, *Discrete Appl. Math.* 164 (2014) 373–382.
- [2] J. Balogh, A. Kostochka, X. Liu, Packing chromatic number of cubic graphs, *Discrete Math.* 341 (2018) 474–483.
- [3] J. Balogh, A. Kostochka, X. Liu, Packing chromatic number of subdivisions of cubic graphs, *Graphs Comb.* 35 (2) (2019) 513–537.
- [4] O. Borodin, A. Ivanova, 2-distance 4-coloring of planar subcubic graphs, *J. Appl. Ind. Math.* 5 (4) (2011) 535–541.
- [5] B. Brešar, J. Ferme, An infinite family of subcubic graphs with unbounded packing chromatic number, *Discrete Math.* 341 (2018) 2337–2343.
- [6] B. Brešar, J. Ferme, S. Klavžar, D.F. Rall, A survey on packing colorings, *Discuss. Math. Graph Theory* 40 (4) (2020) 923–970.
- [7] B. Brešar, N. Gastineau, O. Togni, Packing colorings of subcubic outerplanar graphs, *Aequationes Math.* 94 (5) (2020) 945–967.
- [8] B. Brešar, S. Klavžar, D.F. Rall, On the packing chromatic number of Cartesian products, hexagonal lattice, and trees, *Discrete Appl. Math.* 155 (2007) 2303–2311.
- [9] B. Brešar, S. Klavžar, D.F. Rall, Packing chromatic number of base-3 Sierpiński graphs, *Graphs Comb.* 32 (2016) 1313–1327.
- [10] B. Brešar, S. Klavžar, D.F. Rall, K. Wash, Packing chromatic number, $(1, 1, 2, 2)$ -colorings, and characterizing the Petersen graph, *Aequationes Math.* 91 (2017) 169–184.
- [11] B. Brešar, S. Klavžar, D.F. Rall, K. Wash, Packing chromatic number under local changes in a graph, *Discrete Math.* 340 (2017) 1110–1115.
- [12] B. Brešar, S. Klavžar, D.F. Rall, K. Wash, Packing chromatic number versus chromatic and clique number, *Aequationes Math.* 92 (3) (2018) 497–513.
- [13] J. Czap, S. Jendrol', Facial packing edge-coloring of plane graphs, *Discrete Appl. Math.* 213 (2016) 71–75.
- [14] J. Fiala, P.A. Golovach, Complexity of the packing coloring problem for trees, *Discrete Appl. Math.* 158 (2010) 771–778.
- [15] J. Fiala, S. Klavžar, B. Lidický, The packing chromatic number of infinite product graphs, *European J. Combin.* 30 (2009) 1101–1113.
- [16] N. Gastineau, Dichotomies properties on computational complexity of S-packing coloring problems, *Discrete Math.* 338 (2015) 1029–1041.
- [17] N. Gastineau, P. Holub, O. Togni, On packing chromatic number of subcubic outerplanar graphs, *Discrete Appl. Math.* 255 (2019) 209–221.
- [18] N. Gastineau, H. Kheddouci, O. Togni, Subdivision into i -packing and S-packing chromatic number of some lattices, *Ars Math. Contemp.* 9 (2015) 331–354.
- [19] N. Gastineau, O. Togni, S-packing colorings of cubic graphs, *Discrete Math.* 339 (2016) 2461–2470.
- [20] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris, D.F. Rall, Broadcast chromatic numbers of graphs, *Ars Combin.* 86 (2008) 33–49.
- [21] W. Goddard, H. Xu, The S-packing chromatic number of a graph, *Discuss. Math. Graph Theory* 32 (2012) 795–806.
- [22] W. Goddard, H. Xu, A note on S-packing colorings of lattices, *Discrete Appl. Math.* 166 (2014) 255–262.
- [23] D. Korž, A. Vesel, On the packing chromatic number of square and hexagonal lattice, *Ars Math. Contemp.* 7 (2014) 13–22.
- [24] D. Laiche, I. Bouchemakh, É. Sopena, On the packing coloring of undirected and oriented generalized theta graphs, *Australas. J. Combin.* 66 (2016) 310–329.
- [25] D. Laiche, I. Bouchemakh, É. Sopena, Packing coloring of some undirected and oriented corona graphs, *Discuss. Math. Graph Theory* 37 (3) (2017) 665–690.
- [26] R. Liu, X. Liu, M. Rolek, G. Yu, Packing $(1, 1, 2, 2)$ -coloring of some subcubic graphs, *Discrete Appl. Math.* 283 (2020) 626–630.
- [27] C. Sloper, An eccentric coloring of trees, *Australas. J. Combin.* 29 (2004) 309–321.
- [28] P. Torres, M. Valencia-Pabon, The packing chromatic number of hypercubes, *Discrete Appl. Math.* 190–191 (2015) 127–140.