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Abstract. We study an extension of the Falconer distance problem in the

multiparameter setting. Given ` ě 1 and Rd “ Rd1 ˆ ¨ ¨ ¨ ˆ Rd` , di ě 2. For

any compact set E Ă Rd with Hausdorff dimension larger than d´ minpdiq
2

` 1
4

if minpdiq is even, d´minpdiq
2

` 1
4
` 1

4minpdiq
if minpdiq is odd, we prove that the

multiparameter distance set of E has positive `-dimensional Lebesgue measure.

A key ingredient in the proof is a new multiparameter radial projection theorem
for fractal measures.

1. introduction

Let ~d “ pd1, ¨ ¨ ¨ , d`q and d “ d1 ` ¨ ¨ ¨ ` d` with integers ` ě 1 and di ě 2,
@1 ď i ď `. Denote x “ px1, ¨ ¨ ¨ , x`q P Rd1 ˆ ¨ ¨ ¨ ˆ Rd` “ Rd. For a compact set
E Ă Rd, define its multiparameter distance set to be

∆
~dpEq :“ tp|x1 ´ y1|, . . . , |x` ´ y`|q P R` : x, y P Eu.

We are interested in studying how large the Hausdorff dimension of E needs

to be in order to ensure that |∆
~dpEq|`, the Lebesgue measure of ∆

~dpEq in R`, is
positive. In particular, when ` “ 1, this is precisely the Falconer distance problem,
for which the conjecture [9] (still open in all dimensions d ě 2) is that

dimpEq ą
d

2
ùñ |∆pEq|1 ą 0,

where we have denoted in this case ∆pEq :“ ∆
~dpEq for short. Here and throughout

the article, dim denotes the Hausdorff dimension, and oftentimes we write | ¨ | “ | ¨ |`
when the dimension of the Lebesgue measure is clear from the context.

The Falconer distance conjecture, which is a famous difficult problem in geomet-
ric measure theory, is a continuous version of the celebrated Erdős distinct distance
conjecture whose two-dimensional case was resolved by Guth and Katz [12]. The
study of the Falconer problem is naturally related to Fourier restriction theory,
projection theory of fractal measures, and incidence geometry. It has attracted a
great amount of attention over the decades (for instance [20, 2, 27, 8]) and has seen
some very recent breakthroughs. See [11, 6, 5, 7] and the references therein for
more details.

As far as we know, the multiparameter version of the Falconer distance problem
was first proposed by Hambrook–Iosevich–Rice [14], where the authors utilized a
group action method to turn the original question into the estimate of an integral
that resembles the Mattila integral [20] for the original Falconer problem. Moreover,
they observed that, by considering the construction of Falconer [9] in one hyperplane
crossed with full boxes in the other hyperplanes, for each 0 ă s ă d´ dmin

2 , where
1
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dmin :“ minpd1, ¨ ¨ ¨ , d`q, there exists a compact set E such that dimpEq “ s and

|∆
~dpEq| “ 0. It is unclear, however, whether one can show that the multiparameter

Mattila integral is bounded using spherical decay estimate of Fourier transform of
measures, as in the one-parameter case [15].

In the discrete setting, multiparameter Falconer-Erdős type distance problems
have also been studied both in the Euclidean spaces and finite fields, see [1, 16, 10].

In this article, we obtain the first result for the multiparameter Falconer distance
problem in the continuous setting, towards the conjectured dimensional threshold
d´ dmin

2 . Our proof is based on a multiparameter extension of some key ideas arising
in recent works [11, 6] on the original Falconer distance problem, and in fact implies
the stronger pinned distance result. In the one-parameter case, these ideas have
proven to be useful in not only estimating the dimension of distance set [19, 26] but
also the study of restricted families of projections [13]. Hence the multiparameter
version of the framework obtained here is expected to be of independent interest
and may have further applications in other problems in geometric measure theory
that display non-isotropic dilation structure.

Theorem 1.1. Let d “ d1 ` ¨ ¨ ¨ ` d` with di ě 2, ` ě 1 and denote dmin “

minpd1, ¨ ¨ ¨ , d`q. Then, for any compact set E Ă Rd satisfying

dimpEq ą

#

d´ dmin

2 ` 1
4 , dmin is even,

d´ dmin

2 ` 1
4 `

1
4dmin

, dmin is odd,

there exists x P E such that
ˇ

ˇ

ˇ
∆
~d
xpEq :“ tp|x1 ´ y1|, . . . , |x` ´ y`|q P R` : y P Eu

ˇ

ˇ

ˇ
ą 0.

The assumption di ě 2 in the multiparameter Falconer problem is necessary.
In fact, if there is some di “ 1, then there are examples showing that in such
cases no nontrivial threshold can be obtained. To see this, assume that d1 “ 1,
then there exists Cantor type set E1 Ă Rd1 with arbitrarily large dimension such
that |∆pE1q|1 “ 0. By considering the set E “ E1 ˆ Bd21 ˆ ¨ ¨ ¨ ˆ Bd`1 , where Bdi1

denotes the unit ball centered at the origin in Rdi , one can construct set in Rd with

arbitrarily large dimension but satisfies |∆
~dpEq|` “ 0.

In the case that ` “ 1, Theorem 1.1 recovers the best known result towards
the Falconer conjecture when d is even, originally proved in [11, 6]. When d is
odd, the conclusion given by Theorem 1.1 is inferior to the state-of-the-art result
(dimensional threshold d

2 `
1
4 `

1
8d´4 ) towards the Falconer conjecture, proved in

[5, 7]. Both of these two works are based on Mattila’s framework which reduces the
Falconer problem to the spherical decay estimate of Fourier transform of measures
[20], and it remains to be understood whether a similar reduction can be achieved
via the multiparameter Mattila integral derived in [14].

In general, if the threshold d´ dmin

2 ` δ0 can be obtained for the multiparameter

problem for some ` ě 2 (in other words, for all compact Ẽ Ă Rd, dimpẼq ą

d´ dmin

2 `δ0 implies that |∆
~dpẼq|` ą 0), then, the threshold d

2 `δ0 can be obtained

for the original Falconer problem, by considering the set Ẽ :“ EˆBd1 ˆ ¨ ¨ ¨ˆB
d
1 Ă

Rd`. Indeed, it is direct to see that |∆pEq|1 ą 0 if and only if |∆
~dpẼq|` ą 0, and

dimpEq ą d
2 ` δ0 implies that dimpẼq ą d`´ d

2 ` δ0.
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Compared to the original one-parameter distance set, the multiparameter dis-
tance set captures the non-isotropic geometric information of the set. For in-
stance, consider two compact subsets in R2 ˆ R2: E1 “ r0, 1s2 ˆ tp0, 0qu and
E2 “ r0, 1s2 ˆ r0, 1s2. Apparently, both |∆pE1q|1, |∆pE2q|1 are positive. How-
ever, one can see that |∆p2,2qpE1q|2 “ 0 while |∆p2,2qpE2q|2 ą 0.

In addition, we point out that the multiparameter distance problem in the con-
tinuous setting is of a genuine multiparameter nature, and doesn’t seem to be
approachable using a tensor product type argument. This is significantly different
from the discrete setting, where one can use distance results with smaller num-
ber of parameters as blackboxes to study distance problems with more parameters.
Indeed, this is exactly the path taken in [16], where the authors applied the Guth–
Katz distinct distance result as a blackbox in the study of multiparameter distinct
distance problems.

At first sight, such a strategy might seem to work in the continuous case as
well. For example, given a set E Ă R2 ˆ R2 with dimpEq ą 4 ´ 2

2 `
1
4 “ 3 ` 1

4 ,

define Ex “ ty P R2 : px, yq P Eu, @x P R2. We call Ex a good fiber if it
satisfies dimpExq ą

5
4 . Suppose one could show that tx : Ex goodu has Hausdorff

dimension larger than 5
4 , then a Fubini type argument, combined with the two

dimensional Falconer result (dimensional threshold 5
4 ) of [11], would imply that

|∆p2,2qpEq|2 ą 0. However, this doesn’t hold true in general. In fact, there exists
example of a compact set with Hausdorff dimension 2 in the plane that is a graph
over an uncountable set of directions (see [4] for such a construction). One can
use this to easily build a set E Ă R2 ˆ R2 with arbitrarily large dimension that
doesn’t satisfy the good fiber property. This seems to be a manifestation of the
fact that Hausdorff dimension does not always behave well when forming Cartesian
products, and is a key difference between the continuous and discrete versions of
the multiparameter distance problem.

1.1. Strategy and new difficulties in the multiparameter setting. The
strategy of the proof of Theorem 1.1 is inspired largely by [11, 6], where the authors
studied the original Falconer conjecture (i.e. ` “ 1) in even dimensions. Here is
a sketch of the main framework. Fix a set E with dimension larger than α, one
starts with a choice of two disjoint subsets E1, E2 Ă E each of which supports a
Frostman measure of exponent α, denoted by µ1, µ2 respectively. Then, in Step 1,
one prunes the measure µ1 to get a new complex valued measure µ1,g and shows
that their L1 error is small using a radial projection argument; in Step 2, via a
weighted restriction estimate, one shows that an L2 quantity involving µ1,g and µ2

is finite by using a refined decoupling estimate proved in [11], which then implies
the desired result through an identity of Liu [18]. A particularly nice feature of this
strategy is that it deduces the stronger pinned distance result.

Unfortunately, neither of the two steps described above can be iterated directly
in the multiparameter setting, mainly because the slices of a Frostman measure
are in general not necessarily still Frostman measures satisfying desirable energy
estimates. More precisely, an iteration of the pruning process of the Frostman
measure in Step 1 doesn’t seem to produce a measure that is sufficiently nice. And
since the weight function, generated by the Frostman measure, is not necessarily
a tensor product, the weighted restriction estimate in Step 2 doesn’t follow from
iterating the one-parameter argument. In fact, even without the presence of the
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weight, one doesn’t seem to be able to iterate the refined decoupling inequality
in Step 2. The reason is that the application of the refined decoupling requires a
dyadic pigeonholing process, which, when performed in each variable separately in
the multiparameter setting, would yield a loss much worse than log.

In this article, we overcome the difficulties in Step 1 by studying multiparame-
ter versions of radial projections of fractal measures. In particular, we extend the
radial projection theorem of Orponen [25] to the multiparameter setting, which
allows us to identify an effective way to prune the Frostman measure in Step 1.
More precisely, the multiparameter radial projection theorem will be used to re-
move product bad wave packets from the Frostman measure. To the best of our
knowledge, such a theorem seems to be new, and is expected to be of independent
interest. See below for further discussions on the theorem and sample applications
to the visibility of sets. In addition, we prove new multiparameter weighted re-
striction estimate to tackle the difficulties arising in Step 2, which relies on a newly
observed multiparameter refined decoupling theorem.

1.2. Multiparameter radial projection and application to visibility of sets.
As the statement of the full version of the multiparameter radial projection theorem
(Theorem 4.5) is quite technical, here we only state a special case of it (“the large
α case”).

We first introduce some notation. Let d “ d1 ` ¨ ¨ ¨ d` and di ě 2, ` ě 1.
Denote by πi : Rd Ñ Rdi the orthogonal projection. Given y “ py1, ¨ ¨ ¨ , y`q P

Rd1 ˆ ¨ ¨ ¨ ˆ Rd` “ Rd, define the `-parameter radial projection P
p`q
y : Rdztx : xi “

yi for some i “ 1, ¨ ¨ ¨ , `u Ñ Sd1´1 ˆ ¨ ¨ ¨ ˆ Sd`´1 by

P p`qy pxq “

ˆ

x1 ´ y1

|x1 ´ y1|
, ¨ ¨ ¨ ,

x` ´ y`
|x` ´ y`|

˙

.

In the following, MpRdq denotes the space of compactly supported Radon measures
on Rd.

Theorem 1.2. For every α ą d´1 and β ą 2pd´1q´α, there exists p “ ppα, βq ą 1
such that the following holds. Suppose that µ, ν PMpRdq satisfy

(1) πipsuppµq X πipsupp νq “ ∅, @i “ 1, . . . , `;
(2) µpBpx, rqq ď Cαpµqr

α, νpBpx, rqq ď Cβpνqr
β, @x P Rd, @r ą 0.

Then,
ż

}P p`qy µ}p
LppSd1´1ˆ¨¨¨ˆSd`´1q

dνpyq À Cαpµq
pCβpνq,

where the implicit constant depends only on d and the diameter of suppµY supp ν.

As a remark, when ` “ 1, Theorem 1.2 is simply a weaker version of Orponen’s
radial projection theorem [25], where the ball condition (2) in the above is replaced
by a weaker energy condition for the measures. This stronger ball condition is used
in an essential way in our argument to estimate a multiparameter analogue of the
energy of a measure.

Theorem 1.2 is sharp up to the endpoint, in the sense that the assumption
α ą d´1 cannot be further relaxed. Indeed, this is because the condition is already
required in the one-parameter case. To see the sharpness, consider the following
`-parameter example: µ “ µ1 ˆ m2χBd21

ˆ ¨ ¨ ¨ ˆ m`χBd`1
, where mi denotes the

Lebesgue measure on Rdi . The problem obviously splits into a tensor product of `
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one-parameter problems. Consider an example of µ1 satisfying Hd1´1psuppµ1q “ 0
and

suptα1 : µ1pBpx, rqq À rα1 , @x P Rd1 ,@r ą 0u “ d1 ´ 1,

where Hd1´1 denotes the (d1 ´ 1)-dimensional Hausdorff measure. Then, one has
that µ satisfies the ball condition as in (2) of Theorem 1.2 for any α ă d´1. For all

y1 P Rd1 outside the support of µ1, @p ą 1, one obviously has }P
p1q
y1 µ1}LppSd1´1q “

8. Hence, }P
p`q
y µ}LppSd1´1ˆ¨¨¨ˆSd`´1q “ 8, @y P Rd with yi R πipsuppµq, i “

1, ¨ ¨ ¨ , `.
When α ď d ´ 1, we prove a more involved version of Theorem 1.2 in Section

4 (Theorem 4.5) that incorporates multiparameter orthogonal projections in the
integral. Compared to the one-parameter setting, where the energy of the measure
is well preserved under the orthogonal projection onto almost every subspace (of
an appropriate dimension) according to the Marstrand projection theorem [17], the
energy of the measures under multiparameter orthogonal projections usually does
not behave so well. This is one of the main difficulties one is faced with in extending
Theorem 1.2 to Theorem 4.5. This is also one of the reasons why one would need
to work with multiparameter analogue of the energy in the proof of both theorems.

As an application, our multiparameter radial projection theorem can be used
to study (in-)visibility of sets in the multiparameter setting. More precisely, let
K Ă Rd “ Rd1 ˆ ¨ ¨ ¨ ˆRd` be a Borel set, where di ě 2, ` ě 1 as before. We say K
is `-parameter invisible from x P Rd if

Hd´`pP p`qx pKzty : xi “ yi for some i “ 1, ¨ ¨ ¨ , `uqq “ 0,

where Hd´` :“ Hd1´1
ˇ

ˇ

Sd1´1ˆ¨ ¨ ¨ˆHd`´1
ˇ

ˇ

Sd`´1 . The set K is said to be `-parameter
visible from x if it is not `-parameter invisible from x. Define

Invp`qpKq “ tx P Rd : K is invisible from xu.

The basic question is to determine how large the set Invp`qpKq can be. The study
of invisibility is a classical problem in geometric measure theory. For instance, if
d´ 1 ă dimpKq ď d, Mattila and Orponen [23, 24] have proved the sharp estimate

dimpInvp1qpKqq ď 2pd ´ 1q ´ dimpKq. See Mattila’s survey [21, Section 6] for a
more detailed introduction to this line of research.

A corollary of our Theorem 1.2 is the following sharp estimate.

Corollary 1.3. Assume that the Borel set K Ă Rd “ Rd1 ˆ ¨ ¨ ¨ ˆ Rd` satisfies
dimpKq ą d´ 1, where di ě 2, ` ě 2. Then there holds

(1.1) dimpInvp`qpKqq ď 2pd´ 1q ´ dimpKq.

As far as the authors are aware of, this seems to be the first estimate of this
kind for visibility of sets in the multiparameter setting. In addition, this estimate
is sharp. Indeed, let K1 Ă Rd1 be a sharp example for Mattila–Orponen’s estimate
in the one-parameter setting. Define K “ K1 ˆ Bd2`¨¨¨`d`1 . Then one can easily
check that K is a sharp example for (1.1).

Moreover, we have the following slightly stronger corollary, concerning the ana-
logue of the above for measures. Let Rd “ Rd1 ˆ ¨ ¨ ¨ ˆ Rd` be the same as before,
di ě 2, ` ě 2.

Corollary 1.4. Let µ PMpRdq satisfy for some α ą d´ 1 that

µpBdpx, rqq À rα, @x P Rd, r ą 0.
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Define the set

Sp`qpµq “tx P Rd : xi ‰ yi, @y P suppµ, i “ 1, ¨ ¨ ¨ , `,

P p`qx µ is not absolutely continuous w.r.t. Hd´`u.

Then there holds
dimpSp`qpµqq ď 2pd´ 1q ´ α.

The ` “ 1 case of this (sharp) estimate is proved by Orponen [25]. And a similar
argument as above shows that this bound in the `-parameter setting, @` ě 2, is
sharp as well. Both Corollary 1.3 and 1.4 are directly implied by Theorem 1.2. For
the sake of completeness, a justification is provided in Appendix A.

1.3. Structure of the paper and notations. We provide an outline of the proof
in Section 2 and discuss the pruning process of the Frostman measures in Section
3. Section 4 is devoted to the justification of the multiparameter radial projection
theorems (Theorem 1.2 and 4.5) which is independent of the rest of the article.
Finally, we prove the multiparameter weighted restriction estimate in Section 5
which will complete the proof of Theorem 1.1.

Throughout the article, we write A À B if A ď CB for some absolute constant
C; A „ B if A À B and B À A; A Àε B if A ď CεB for all ε ą 0; A Æ B if
A ď CεR

εB for any ε ą 0, R ą 1.
For any d ě 1, Bd1 denotes the unit ball in Rd centered at the origin, and Bdpx, rq

denotes the ball in Rd centered at x of radius r. For any 1 ď m ď n, Gpn,mq denotes
the Grassmanian, the space of m-dimensional subspaces in Rn.

For a large parameter R, RapDecpRq denotes those quantities that are bounded
by a huge (absolute) negative power of R, i.e. RapDecpRq ď CNR

´N for ar-
bitrarily large N ą 0. Such quantities are negligible in our argument. Simi-
larly, RapDecpRji1 , ¨ ¨ ¨ , Rjik q denotes a quantity less than RapDecpRjis q for all

1 ď s ď k. We say a function is essentially supported in a region if (the appropri-
ate norm of) the tail outside the region is RapDecpRq for the underlying parameter
R.

Acknowledgements. XD is supported by NSF DMS-2107729. YO is supported
by NSF DMS-2042109. RZ is supported by the NSF grant DMS-1856541, DMS-
1926686 and by the Ky Fan and Yu-Fen Fan Endowment Fund at the Institute for
Advanced Study. We would like to thank Tuomas Orponen for pointing us to the
example of Davies–Fast [4] and Alex Iosevich for helpful discussions over the course
of the project. We are also grateful to the anonymous referee whose suggestions have
greatly improved the accuracy and exposition of the article.

2. Proof of Theorem 1.1: outline

Given E Ă Rd with dimpEq ą d ´ dmin

2 , without loss of generality, assume E is

contained in the unit ball Bd1 . Let α P pd ´ dmin

2 , dimpEqq, we will construct two
subsets E1, E2 Ă E each of which supports a probability measure µ1, µ2 such that

µipBpx, rqq À rα, @x P Rd, @r ą 0.

The key properties E1, E2 have are that their images under a fixed collection of
orthogonal projections remain well separated and the multiparameter radial pro-
jection theorem (Theorem 4.5) applies. The exact construction of the two sets is
explained at the end of the section.
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Let x P E2 be any fixed point and let dxpyq :“ p|x1 ´ y1|, . . . , |x` ´ y`|q be its

induced multiparameter distance map determined by ~d “ pd1, . . . , d`q. Then, the
pushforward measure dx˚pµ1q, defined as

ż

R`
ψpt1, ¨ ¨ ¨ , t`q d

x
˚pµ1q “

ż

E1

ψp|x1 ´ y1|, . . . , |x` ´ y`|q dµ1pyq,

is a natural measure that is supported on ∆
~d
xpEq.

We will construct another complex valued measure µ1,g that is the good part
of µ1 with respect to µ2, and study how its pushforward under the map dx differs
from dx˚pµ1q. The main result we will prove is the following.

Theorem 2.1. Let d “ d1`¨ ¨ ¨`d` with di ě 2, and E Ă Rd be a compact set with
dimpEq ą d ´ dmin

2 . Then for any α P pd ´ dmin

2 , dimpEqq, there exist E1, E2 Ă E
with distpE1, E2q Á 1 such that the following are true.

(1) For i “ 1, 2, Ei has positive α dimensional Hausdorff measure and supports
a probability measure µi satisfying µipBpx, rqq À rα, @x P Rd, @r ą 0;

(2) There exists a complex valued measure µ1,g and a subset E12 Ă E2 so that
µ2pE

1
2q ě 1´ 1

1000 and for each x P E12,

(2.1) }dx˚pµ1q ´ d
x
˚pµ1,gq}L1 ă

1

1000
.

(3) If in addition, one assumes that

dimpEq ą α ą

#

d´ dmin

2 ` 1
4 , dmin is even,

d´ dmin

2 ` 1
4 `

1
4dmin

, dmin is odd,

then

(2.2)

ż

E2

}dx˚pµ1,gq}
2
L2dµ2pxq ă `8.

It is easy to see that Theorem 1.1 immediately follows from Theorem 2.1. We
briefly sketch the argument below for the sake of completeness. The estimate (2.1)
and (2.2) above can be viewed as multiparameter versions of [11, Proposition 2.1
and 2.2]. Since the measures µ1, µ2 are not necessarily tensor products, and our
construction of µ1,g will be more involved compared to its one-parameter analogue,
it doesn’t seem that one can iterate Proposition 2.1 and 2.2 of [11] directly to obtain
(2.1) and (2.2).

Proof of Theorem 1.1 assuming Theorem 2.1. According to conclusions (2) and (3)
of Theorem 2.1, there is a point x P E2 satisfying (2.1) and }dx˚pµ1,gq}L2 ă `8.
Since dx˚pµ1q is a probability measure, one has from (2.1) that }dx˚pµ1,gq}L1 ě

1´ 1{1000. Note that dx˚pµ1q is supported on ∆
~d
xpEq, hence

ż

∆~d
xpEq

|dx˚µ1,g| “

ż

|dx˚pµ1,gq| ´

ż

∆~d
xpEq

c

|dx˚pµ1,gq|

ě 1´
1

1000
´

ż

|dx˚pµ1q ´ d
x
˚pµ1,gq| ě 1´

2

1000
.

On the other hand,

(2.3)

ż

∆~d
xpEq

|dx˚µ1,g| ď |∆
~d
xpEq|

1{2

ˆ
ż

|dx˚µ1,g|
2

˙1{2

.
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Since
ş

|dx˚µ1,g|
2 is finite, it follows that |∆

~d
xpEq| is positive. �

Now we present the details of the construction of E1 and E2.
Let E Ă Rd “ Rd1 ˆ ¨ ¨ ¨ ˆ Rd` be the fixed compact set as before, satisfying

dimpEq ą d ´ dmin

2 . For any α P pd ´ dmin

2 , dimpEqq, the α-dimensional Hausdorff
measure of E is positive. Next, for each i “ 1, ¨ ¨ ¨ , `, we arbitrarily fix an mi-
dimensional subspace Wi Ă Rdi , where mi :“ di ´

dmin

2 ` 1 if dmin is even, and

di ´
dmin

2 ` 1
2 if dmin is odd. It is easy to see that there always holds α ą d ´mi.

We then construct subsets E1, E2 Ă E according to the following lemma.

Lemma 2.2. Let E Ă Rd “ Rd1 ˆ ¨ ¨ ¨ ˆ Rd` be a compact set with positive α-
dimensional Hausdorff measure, and Wi an mi-dimensional subspace in Rdi , where
α ą d´mi, @i “ 1, ¨ ¨ ¨ , `. Then there exist subsets E1, E2 Ă E so that

(1) both E1, E2 have positive α-dimensional Hausdorff measures;
(2) distpπWi

˝ πipE1q, πWi
˝ πipE2qq Á 1, @i “ 1, ¨ ¨ ¨ , `, where πi : Rd Ñ Rdi and

πWi : Rdi ÑWi denote the orthogonal projections.

Proof. We first construct a pair of subsets E1
1 , E

1
2 Ă E so that they both have

positive α-dimensional Hausdorff measures and their projections onto W1 are sep-
arated. Let µ1 be the pushforward measure of Hα|E under the projection πW1 ˝π1.
By the assumption that α ą d ´ m1, the support of µ1 has at least two distinct
points, and so we can take two separated balls Ẽ1

1 and Ẽ1
2 in W1 around these

points of positive µ1 measure. Then their preimages E1
1 :“ pπW1

˝ π1q
´1pẼ1

1q X E

and E1
2 :“ pπW1

˝ π1q
´1pẼ1

2q X E satisfy the desired properties.
Next, we construct E2

1 Ă E1
1 and E2

2 Ă E1
2 so that they both have positive α-

dimensional Hausdorff measures and their projections onto W2 are separated. Let
µ2
j be the pushforward measure of Hα|E1

j
under the projection πW2 ˝ π2, j “ 1, 2.

By the assumption that α ą d´m2, there are one point in the support of µ2
1 and

another point in the support of µ2
2, and so in W2 around these points we can take

two separated balls: Ẽ2
1 of positive µ2

1 measure and Ẽ2
2 of positive µ2

2 measure. Then

their preimages E2
1 :“ pπW2 ˝ π2q

´1pẼ2
1q X E1

1 and E1
2 :“ pπW2 ˝ π2q

´1pẼ2
2q X E1

2

satisfy the desired properties.
By repeating the argument in each of the rest of the variables, one eventually

obtains subsets E`1, E
`
2 Ă E satisfying the desired conditions. �

3. Step 1: construction of µ1,g and proof of (2.1)

The good measure µ1,g is going to be defined by eliminating different types of
bad multiparameter wave packets from µ1. .

LetR0 be a large number that will be determined later, and let R~j :“ pRj1 , ¨ ¨ ¨ , Rj`q

with Rji :“ 2jiR0. In each of the ` components, cover the annulus Rji´1 ď |ωi| ď

Rji in Rdi by rectangular blocks τi with dimensions approximately R
1{2
ji
ˆ ¨ ¨ ¨ ˆ

R
1{2
ji
ˆ Rji , with the long direction of each block τi being the radial direction.

Then, choose a partition of unity subordinate to this cover for each i so that

1 “ ψi0 `
ÿ

jiě1,τi

ψji,τi .

Let δ ą 0 be a small constant to be determined later (more precisely, δ depends
on α and will be determined in the proof of (2.2) in Section 5). For each pji, τiq, cover
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the unit ball Bdi1 with tubes Ti of dimensions approximately R
´1{2`δ
ji

ˆ¨ ¨ ¨R
´1{2`δ
ji

ˆ

2 with the long axis parallel to the long axis of τi. This covering has uniformly
bounded overlap. Denote the collection of all these tubes in the i-th component as
Tiji,τi . Let ηTi be a smooth cutoff function essentially supported on Ti and with

Fourier transform compactly supported in the rectangle of dimensions R
1{2
ji
ˆ ¨ ¨ ¨ ˆ

R
1{2
ji
ˆ 2 with the short side pointing in the long direction of Ti, so that for each

choice of ji and τi,
ř

TiPTiji,τi
ηTi is equal to 1 on the ball of radius 2. More precisely,

ηTi rapidly decays outside the concentric tube of Ti with a constant multiple of the
radius.

For each Ti P Tiji,τi , define an operator acting on the i-th variable:

M i
Tif :“ ηTiF´1

i rψji,τiFipfqs,
where Fi denotes the Fourier transform in the i-th variable. Roughly speaking, the
operator M i

Ti
maps f in the i-th variable to the part of it that has Fourier support

in τi and physical support in Ti. Define also M i
0f :“ F´1

i rψi0Fipfqs. We denote
Tiji “

Ť

τi
Tiji,τi and Ti “

Ť

jiě1 Tiji . Hence, for any L1 function f supported on
the unit ball, up to a small tail, f can be decomposed in terms of these operators.

Lemma 3.1. Let d “ d1 ` ¨ ¨ ¨ ` d` and f P L1 be a function supported on the unit
ball Bd1 . Then

f “

«

M1
0 `

ÿ

T1PT1

M1
T1

ff

¨ ¨ ¨

»

–M `
0 `

ÿ

T`PT`
M `
T`

fi

fl f ` RapDecpR0qftail

where the tail satisfies }ftail}L1 À }f}L1 .

This decomposition essentially follows from iterating [11, Lemma 3.4]. Since the
tail term becomes more complicated in the multiparameter case, we provide the
proof below for the sake of completeness.

Proof. We prove the case ` “ 2 here. The proof of the general multiparameter case
proceeds similarly. By applying [11, Lemma 3.4] iteratively (first in the x1 variable,
then in x2), one obtains

f “
“

M1
0 `

ÿ

T1PT1

M1
T1

‰

f ` RapDecpR0qf
p1q
tail

“

«

M1
0 `

ÿ

T1PT1

M1
T1

ff«

M2
0 `

ÿ

T2PT2

M2
T2

ff

f ` RapDecpR0qf
p2q
tail ` RapDecpR0qf

p1q
tail ,

where
}f
p1q
tailp¨, x2q}L1

x1
ď }fp¨, x2q}L1

x1
,

and
}f
p2q
tailpx1, ¨q}L1

x2
ď

›

›

›

“

M1
0 `

ÿ

T1PT1

M1
T1

‰

fpx1, ¨q
›

›

›

L1
x2

.

Therefore,

}f
p1q
tail}L1 ď }f}L1 ,

and

}f
p2q
tail}L1 ď }f ´ RapDecpR0qf

p1q
tail}L1 ď }f}L1 ` RapDecpR0q}f}L1 .

�
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We now define different types of bad product tubes. Let cpαq ą 0 be a large
constant to be determined later, and for each i, let 4Ti denote the concentric tube
of four times the radius. For any given 1 ď k ď ` and components 1 ď i1 ă ¨ ¨ ¨ ă
ik ď `, we say a product tube pTi1 , ¨ ¨ ¨ , Tikq P T

i1
ji1
ˆ ¨ ¨ ¨ ˆTikjik is (i1, ¨ ¨ ¨ , ik)-bad if

µ2

˜

`

k
ź

s“1

4Tis
˘

ˆ
`

ź

i‰i1,¨¨¨ ,ik

Bdi1

˘

¸

ě

$

&

%

śk
s“1R

´p
dis
2 ´

dmin
4 q`cpαqδ

jis
, dmin is even;

śk
s“1R

´p
dis
2 ´

dmin
4 ´ 1

4 q`cpαqδ
jis

, dmin is odd.

A product tube pTi1 , ¨ ¨ ¨ , Tikq is (i1, ¨ ¨ ¨ , ik)-good if it is not (i1, ¨ ¨ ¨ , ik)-bad.
We are now ready to construct the complex valued measure µ1,g, by removing

all bad product wave packets from µ1. Define the good part of the measure µ1 with
respect to µ2 as
(3.1)

µ1,g “
ÿ̀

k“0

ÿ

1ďi1ă¨¨¨ăikď`

ˆ

ź

i‰i1,¨¨¨ ,ik

M i
0

˙ˆ

ÿ

pTi1 ,¨¨¨ ,Tik qPT
i1ˆ¨¨¨ˆTik

pi1,¨¨¨ ,ikq-good

M i1
Ti1
¨ ¨ ¨M ik

Tik
µ1

˙

.

Here, the k “ 0 term is M1
0M

2
0 ¨ ¨ ¨M

`
0µ1 by convention. We point out that µ1,g

is only a complex valued measure, and is essentially supported in the R
´1{2`δ
0 -

neighborhood of E1 with a rapidly decaying tail away from it (see Lemma [11,
Lemma 5.2] for the proof of the analogue in the one-parameter case, which implies
our claim by iteration).

3.1. Proof of (2.1). Fix a point x P E2, one has by definition that

}dx˚pµ1q ´ d
x
˚pµ1,gq}L1

ďRapDecpR0q `
ÿ̀

k“1

ÿ

1ďi1ă¨¨¨ăikď`

ÿ

ji1 ,¨¨¨ ,jikě1

ÿ

pTi1 ,¨¨¨ ,Tik qPT
i1
ji1
ˆ¨¨¨ˆTikjik

pi1,¨¨¨ ,ikq-bad

›

›

›

›

›

dx˚

«

`

ź

i‰i1,¨¨¨ ,ik

M i
0

˘

M i1
Ti1
¨ ¨ ¨M ik

Tik
µ1

ff
›

›

›

›

›

L1

.

(3.2)

In the following, we will first reduce the quantity above to the µ1 measure of
certain bad regions, which are unions of bad product tubes of different types. Such
reduction follows very closely the one-parameter case treated in Section 3 of [11].
Many arguments below for this reduction are iterations of their corresponding one-
parameter analogues. However, it is sometimes impossible to directly iterate the
one-parameter result (see for instance Lemma 3.3 below), and even if it is possible,
oftentimes there are various rapidly decaying tails involved in the reduction, which
makes the iteration process quite delicate. Therefore, for the sake of completeness
and clarity, we include a sketch of the reduction and provide necessary details for
handling new complications in the multiparameter setting.

To estimate the pushforward measures defined for each product tube, we first
need the following lemma.

Lemma 3.2. For any given 1 ď k ď `, any components 1 ď i1 ă ¨ ¨ ¨ ă ik ď `, and
any product tube pTi1 , ¨ ¨ ¨ , Tikq P T

i1
ji1
ˆ ¨ ¨ ¨ ˆTikjik . Let f be a function supported in
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the unit ball, then there holds
(3.3)

}M i1
Ti1
¨ ¨ ¨M ik

Tik
f}L1 À

ÿ

SĂt1,¨¨¨ ,ku

¨

˝

ź

sPt1,¨¨¨ ,kuzS

RapDecpRjis q

˛

‚

›

›

›

›

›

f

˜

ź

sPS

χ2Tis

¸
›

›

›

›

›

L1

.

Moreover, for any i “ 1, . . . , `, there holds

(3.4) }M i
0f}L1 À }f}L1 .

Proof. Estimate (3.3) follows from the one-parameter analogous result in [11, Lemma
3.2] and induction on k. Without loss of generality, assume that ti1, ¨ ¨ ¨ , iku “
t1, ¨ ¨ ¨ , ku. First consider the case k “ 1. Denote x2 “ px2, ¨ ¨ ¨ , x`q and d2 “
d2 ` ¨ ¨ ¨ ` d`. By applying [11, Lemma 3.2] to the variable x1 one obtains that

}M1
T1
f}L1 À

›

›

›
}fp¨, x2q}L1

x1
p2T1q ` RapDecpRj1q}fp¨, x

2q}L1
x1
pRd1 q

›

›

›

L1
x2

ď}f}L1p2T1ˆRd2 q ` RapDecpRj1q}f}L1 .

Note that even though we have chosen to work with non compactly supported cutoff
functions ηTi in the definition of M i

Ti
, [11, Lemma 3.2] still holds true.

Now assume that (3.3) holds in the cases k “ 1, 2, ¨ ¨ ¨ ,m´ 1 and we prove it in
the case k “ m. Applying (3.3) in the case k “ m ´ 1 to the function Mm

Tm
f , one

has

}M1
T1
¨ ¨ ¨Mm

Tmf}L1

À
ÿ

SĂt1,¨¨¨ ,m´1u

¨

˝

ź

sPt1,¨¨¨ ,m´1uzS

RapDecpRjsq

˛

‚

›

›

›

›

›

Mm
Tmf

˜

ź

sPS

χ2Ts

¸
›

›

›

›

›

L1

,

and for each L1 norm on the right hand side there holds
›

›

›

›

›

Mm
Tmf

˜

ź

sPS

χ2Ts

¸›

›

›

›

›

L1

À

›

›

›

›

›

f

˜

ź

sPS

χ2Ts

¸

χ2Tm

›

›

›

›

›

L1

` RapDecpRjmq

›

›

›

›

›

f

˜

ź

sPS

χ2Ts

¸
›

›

›

›

›

L1

,

from which (3.3) in the case k “ m follows.
For the second estimate (3.4), by definition,

M i
0f :“ F´1

i rψi0Fipfqs “ F´1
i pψi0q ˚ f.

Since F´1
i pψi0q is essentially supported in a ball in Rdi centered at the origin with

radius R´1
0 , and satisfies }F´1

i pψi0q}L1 À 1, one concludes (3.4). �

A direct consequence of the lemma above is that for each Tis P T
is
jis

, s “ 1, ¨ ¨ ¨ , k,
›

›

›

›

›

dx˚

«

`

ź

i‰i1,¨¨¨ ,ik

M i
0

˘

M i1
Ti1
¨ ¨ ¨M ik

Tik
µ1

ff
›

›

›

›

›

L1

À
ÿ

SĂt1,¨¨¨ ,ku

¨

˝

ź

sPt1,¨¨¨ ,kuzS

RapDecpRjis q

˛

‚µ1

˜

`

ź

sPS

2Tis
˘

ˆ
`

ź

i‰is, @sPS

Bdi1

˘

¸

.
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There is another piece of information needed for us to bound the total contri-
bution of the bad tubes, that is, it suffices to consider those tubes that are close
to the fixed point x, at least in one of the variables. In the one-parameter setting
studied in [11], let dxpyq :“ |x ´ y| be the one-parameter distance map, T P Tj,τ
be a one-parameter tube of radius R

´1{2`δ
j with long direction given by the block

τ , and MT be the associated operator that morally restricts the support of the
input function to T and its Fourier support to τ . It is shown in Lemma 3.1 of [11]
that }dx˚pMTµ1q}L1 À RapDecpRjq if x R 2T . In the lemma below, we explore the
multiparameter extension of this phenomenon.

Lemma 3.3. For any given 1 ď k ď `, any components 1 ď i1 ă ¨ ¨ ¨ ă ik ď `, and
any product tube pTi1 , ¨ ¨ ¨ , Tikq P Ti1ji1 ˆ ¨ ¨ ¨ ˆ Tikjik . Let x P E2. Suppose that for

A Ă t1, ¨ ¨ ¨ , ku, one has xia R 2Tia , @a P A. Then,
›

›

›

›

›

dx˚

«

`

ź

i‰i1,¨¨¨ ,ik

M i
0

˘

M i1
Ti1
¨ ¨ ¨M ik

Tik
µ1

ff
›

›

›

›

›

L1

À

˜

ź

aPA

RapDecpRjia q

¸

¨

ÿ

SĂt1,¨¨¨ ,kuzA

¨

˝

ź

sPt1,¨¨¨ ,kuzpSYAq

RapDecpRjis q

˛

‚µ1

˜

`

ź

sPS

2Tis
˘

ˆ
`

ź

i‰is, @sPS

Bdi1

˘

¸

.

Proof. By a standard limiting argument, it suffices to study the case that dµ1 “

µ1pyqdy. In this case, according to Lemma 3.2, it suffices to prove that
›

›

›

›

›

dx˚

«

`

ź

i‰i1,¨¨¨ ,ik

M i
0

˘

M i1
Ti1
¨ ¨ ¨M ik

Tik
µ1

ff›

›

›

›

›

L1

À

˜

ź

aPA

RapDecpRjia q

¸

›

›

›

›

›

›

`

ź

i‰i1,¨¨¨ ,ik

M i
0

˘`

ź

sPt1,¨¨¨ ,kuzA

M is
Tis

˘

µ1

›

›

›

›

›

›

L1

.

(3.5)

We will in fact prove a more general estimate: for any f P L1 with compact support
and such that distpxi, πipsuppfqq Á 1, @i “ 1, ¨ ¨ ¨ , `, there holds

(3.6)

›

›

›

›

›

dx˚

«

ź

aPA

M ia
Tia
f

ff
›

›

›

›

›

L1

À

˜

ź

aPA

RapDecpRjia q

¸

}f}L1 .

It is easy to see that (3.5) will follow from (3.6) by taking

f “ p
ź

i‰i1,¨¨¨ ,ik

M i
0qp

ź

sPt1,¨¨¨ ,kuzA

M is
Tis
qµ1.

For the sake of brevity, we assume that ` “ 2, ti1, ¨ ¨ ¨ , iku “ t1, 2u and A “ t1, 2u
(i.e. xi R 2Ti, i “ 1, 2). Then the desired estimate becomes

(3.7) }dx˚pM
1
T1
M2
T2
fq}L1 À RapDecpRj1 , Rj2q}f}L1 .

The general case can be justified in the exact same way.
Estimate (3.7) will follow from iterating its one-parameter counterpart ([11,

Lemma 3.1]). More precisely, the proof of [11, Lemma 3.1] implies the follow-
ing result in the one-parameter setting: for any g P L1 with compact support such
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that distpx, suppgq Á 1, if x R 2Tj (where Tj P Tj), then

}dx˚pMTjgq}L1 À RapDecpRjq}g}L1 .

Back in the multiparameter setting, by definition, one has

dx˚pM
1
T1
M2
T2
fqpt1, t2q “M

1
T1
M2
T2
f ˚p1q λt1 ˚

p2q λt2px1, x2q

“

ż

Sd1´1px1,t1q

ż

Sd2´1px2,t2q

M1
T1
M2
T2
fpy1, y2q dλt2py2qdλt1py1q,

where dλti denotes the surface measure on Sdi´1pxi, tiq and ˚piq stands for the
convolution in the i-th variable. This suggests that

dx˚pM
1
T1
M2
T2
fqpt1, t2q “ dx2

˚ rM
2
T2
pdx1
˚ pM

1
T1
fqqpt1qspt2q.

By Fubini, the desired bound (3.7) then follows from applying the one-parameter
estimate first to g “ dx1

˚ pM
1
T1
fqpt1q in the x2 variable and then to g “ f in the x1

variable.
�

We are now ready to go back and bound the expression (3.2). Since there are
finitely many choices of 1 ď k ď ` and 1 ď i1 ă ¨ ¨ ¨ ă ik ď `, it suffices to show
that the term corresponding to each fixed k and ti1, ¨ ¨ ¨ , iku is bounded as desired.

Fix a choice of 1 ď k ď ` and components 1 ď i1 ă ¨ ¨ ¨ ă ik ď `. Because of
symmetry, we assume that ti1, ¨ ¨ ¨ , iku “ t1, ¨ ¨ ¨ , ku without loss of generality. Our
goal is thus to show that there exists a subset E12 Ă E2 so that µ2pE

1
2q ě 1´ 1

1000C`
and for each x P E12 there holds

(3.8)
ÿ

j1,¨¨¨ ,jkě1

ÿ

pT1,¨¨¨ ,TkqPT1
j1
ˆ¨¨¨ˆTkjk

p1,¨¨¨ ,kq-bad

›

›

›

›

›

dx˚

«

`

k
ź

i“1

M i
Ti

˘`

ź̀

i“k`1

M i
0

˘

µ1

ff
›

›

›

›

›

L1

ď
1

1000C`
.

for sufficiently large R0, where C` is some large constant depending on `.
For any point x P E2 and ji1 , ¨ ¨ ¨ , jik ě 1, the inner sum on the LHS of the above

can be bounded as

ÿ

pT1,¨¨¨ ,TkqPT1
j1
ˆ¨¨¨ˆTkjk

p1,¨¨¨ ,kq-bad

›

›

›

›

›

dx˚

«

`

k
ź

i“1

M i
Ti

˘`

ź̀

i“k`1

M i
0

˘

µ1

ff
›

›

›

›

›

L1

ď
ÿ

AĂt1,¨¨¨ ,ku

ÿ

pT1,¨¨¨ ,TkqPT1
j1
ˆ¨¨¨ˆTkjk

p1,¨¨¨ ,kq-bad,
xaR2Ta, @aPA,

xaP2Ta, @aPt1,¨¨¨ ,kuzA

›

›

›

›

›

dx˚

«

`

k
ź

i“1

M i
Ti

˘`

ź̀

i“k`1

M i
0

˘

µ1

ff
›

›

›

›

›

L1

ď
ÿ

AĂt1,¨¨¨ ,ku

ÿ

SĂt1,¨¨¨ ,kuzA

¨

˝

ź

sPt1,¨¨¨ ,kuzS

RapDecpRjsq

˛

‚¨

ÿ

pT1,¨¨¨ ,TkqPT1
j1
ˆ¨¨¨ˆTkjk

p1,¨¨¨ ,kq-bad,
xsP2Ts, @sPS

µ1

˜

`

ź

sPS

2Ts
˘

ˆ
`

ź

i‰s, @sPS

Bdi1

˘

¸

,

where we have applied Lemma 3.3 in the second inequality.
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In the following, we will fix a choice of A and S, which is fine since there are only
finitely many possibilities. Without loss of generality, assume that S “ t1, ¨ ¨ ¨ ,mu,
m ď k. For any given tubes Ti P Tiji , i “ m` 1, ¨ ¨ ¨ , k, define the set

Bad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

:“
 

py, xq P E1 ˆ E2 : DpT1, ¨ ¨ ¨ , Tmq P T1
j1 ˆ ¨ ¨ ¨ ˆ Tmjm s.t.

T1 ˆ ¨ ¨ ¨ ˆ Tk is (1, ¨ ¨ ¨ , k)-bad, yi, xi P 2Ti, @i “ 1, ¨ ¨ ¨ ,m
(

.

Then, observing that the sets E1, E2 are separated by distance Á 1 in every variable
(as a consequence of Lemma 2.2) hence the tubes Ti being measured have only finite

overlap (up to constant Rδdiji
), one thus has

ÿ

j1,¨¨¨ ,jkě1

˜

k
ź

i“m`1

RapDecpRjiq

¸

ÿ

pT1,¨¨¨ ,TkqPT1
j1
ˆ¨¨¨ˆTkjk

p1,¨¨¨ ,kq-bad,
xiP2Ti, 1ďiďm

µ1

˜

`

m
ź

i“1

2Ti
˘

ˆ
`

ź̀

i“m`1

Bdi1

˘

¸

À
ÿ

j1,¨¨¨ ,jkě1

˜

k
ź

i“m`1

RapDecpRjiq

¸˜

m
ź

i“1

Rδdiji

¸

¨

ÿ

TiPTiji ,m`1ďiďk

µ1

¨

˚

˚

˚

˚

˚

˝

`

ď

pT1,¨¨¨ ,TmqPT1
j1
ˆ¨¨¨ˆTmjm :

T1ˆ¨¨¨ˆTk p1,¨¨¨ ,kq-bad,
xiP2Ti, 1ďiďm

m
ź

i“1

2Ti
˘

ˆ
`

ź̀

i“m`1

Bdi1

˘

˛

‹

‹

‹

‹

‹

‚

“
ÿ

j1,¨¨¨ ,jkě1

˜

k
ź

i“m`1

RapDecpRjiq

¸˜

m
ź

i“1

Rδdiji

¸

ÿ

TiPTiji ,m`1ďiďk

µ1pBad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

pxqq.

(3.9)

Here, we have used the notation Bad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

pxq to denote the slice of the set

Bad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

at x P E2.
The key estimate of the subsection is the following.

Lemma 3.4. Let α ą d ´ dmin

2 , there exists sufficiently large cpαq ą 0 such that

for all j1, ¨ ¨ ¨ , jk ě 1 and all pTm`1, ¨ ¨ ¨ , Tkq P Tm`1
jm`1

ˆ ¨ ¨ ¨ ˆ Tkjk ,

(3.10) µ1 ˆ µ2pBad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

q ď CpRjm`1 , ¨ ¨ ¨ , Rjkq
m
ź

i“1

R´2δdi
ji

.

Proof of estimate (2.1) using Lemma 3.4. According to the reduction explained above,
it suffices to show that there exists E12 Ă E2 with µ2pE

1
2q ě 1 ´ 1

1000C`
such that

@x P E12, there holds that

ÿ

j1,¨¨¨ ,jkě1

˜

k
ź

i“m`1

RapDecpRjiq

¸˜

m
ź

i“1

Rδdiji

¸

ÿ

TiPTiji ,m`1ďiďk

µ1pBad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

pxqq

ď
1

1000C`
,

if R0 is chosen sufficiently large.
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Note that

µ1 ˆ µ2pBad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

q “

ż

µ1pBad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

pxqqdµ2pxq.

Then, by (3.10), one is able to choose a subset B
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

Ă E2 so that

µ2pB
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

q ď
`

m
ź

i“1

R
´p1{2qδdi
ji

˘`

k
ź

i“m`1

R´Niji

˘

and for all x P E2zB
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

,

µ1pBad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

pxqq ď CpRjm`1
, ¨ ¨ ¨ , Rjkq

`

k
ź

i“m`1

RNiji
˘`

m
ź

i“1

R
´p3{2qδdi
ji

˘

.

Here, Nm`1, ¨ ¨ ¨ , Nk are sufficiently large numbers that are chosen so that

ÿ

TiPTiji ,m`1ďiďk

µ2pB
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

q ď

k
ź

i“1

R
´p1{2qδdi
ji

.

Define

E12 “ E2z

¨

˝

ď

j1,¨¨¨ ,jkě1

ď

TiPTiji ,m`1ďiďk

B
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

˛

‚.

By taking R0 sufficiently large, one has µ2pE
1
2q ě 1´ 1

1000C`
as desired. Moreover,

for each x P E12, there holds

ÿ

j1,¨¨¨ ,jkě1

˜

k
ź

i“m`1

RapDecpRjiq

¸˜

m
ź

i“1

Rδdiji

¸

ÿ

TiPTiji ,m`1ďiďk

µ1pBad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

pxqq

À
ÿ

j1,¨¨¨ ,jkě1

m
ź

i“1

R
δdi´p3{2qδdi
ji

¨

k
ź

i“m`1

RapDecpRjiq À R
´p1{2qδdi
0 .

Hence the desired bound follows by choosing R0 sufficiently large.
�

The crucial ingredient in the proof of Lemma 3.4 is a new multiparameter radial
projection theorem (Theorem 4.5), which extends the one-parameter version proved
by Orponen [25]. Theorem 4.5 is in fact more general than Orponen’s theorem, as
it includes the case that α is small as well. The statement and the proof of Theorem
4.5, as well as the proof of Lemma 3.4, will be given in the next section.

4. Proof of the multiparameter radial projection theorem

We prove the new multiparameter radial projection theorem in this section,
which may be of independent interest. We first prove the special case of the theorem,
Theorem 1.2, where α is assumed to be very large. It is then extended to the general
case later. The proof of Lemma 3.4, which implies estimate (2.1), is presented at
the end of the section.

Below are several ingredients used in the proof of Theorem 1.2.
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Denote e “ pe1, ¨ ¨ ¨ , e`q P Sd1´1 ˆ ¨ ¨ ¨ ˆ Sd`´1, and consider the orthogonal
projection

πe “ πe1 ˆ ¨ ¨ ¨ ˆ πe` : Rd “ Rd1 ˆ ¨ ¨ ¨ ˆ Rd` Ñ eK1 ˆ ¨ ¨ ¨ ˆ e
K
` ,

where eKi P Gpdi, di ´ 1q is the orthogonal complement of the vector ei in Rdi and
πei : Rdi Ñ eKi is the corresponding orthogonal projection. Given µ PMpRdq and
y P Rd with yi R πipsuppµq, define

µypxq “ Cd1,¨¨¨ ,d`
ź̀

i“1

|xi ´ yi|
1´didµpxq,

where Cd1,¨¨¨ ,d` is chosen to make Lemma 4.1 below true.

Lemma 4.1. Let µ P CcpRdq and ν P MpRdq with πipsuppµq X πipsupp νq “ ∅,
@i “ 1, . . . , `. Then, for p P p0,8q,

ż

}P p`qy µy}
p

LppSd1´1ˆ¨¨¨ˆSd`´1q
dνpyq “

ż

Sd1´1ˆ¨¨¨ˆSd`´1

}πeµ}
p
Lppπeνq

dHd´`peq ,

where Hd´` :“ Hd1´1
ˇ

ˇ

Sd1´1 ˆ ¨ ¨ ¨ ˆHd`´1
ˇ

ˇ

Sd`´1 .

Lemma 4.1 follows from exactly the same argument as its known one-parameter
analogue, see [25, Lemma 3.1]. We will also use the following generalized formula
for integration in polar coordinates, see [22, (24.2)]:

Lemma 4.2. For any non-negative Borel function f on Rn,

(4.1)

ż

Gpn,kq

ż

V K
|x|afpxq dHn´kpxqdγn,kpV q “ Cn,k

ż

Rn
|y|a´kfpyq dy,

where γn,k is the Haar measure on Gpn, kq.

Lemma 4.3. Let 0 ă α ď d. Let µ PMpRdq with µpBpx, rqq ď Cαpµqr
α, @x P Rd,

@r ą 0. Then
ż

Rd

ż

Rd

dµpxqdµpyq
ś`
i“1 |xi ´ yi|

ti
«

ż

Rd

|pµpξq|2
ś`
i“1 |ξi|

di´ti
dξ À Cαpµq

2 ,

whenever 0 ă ti ă α ´ d ` di,@i “ 1, ¨ ¨ ¨ , `. Here the implicit constant in À can
depend on the diameter of the support of µ.

Proof. Let the diameter of the support of µ be L. Note that for pr1, ¨ ¨ ¨ , r`q with
rj “ mintri : i “ 1, ¨ ¨ ¨ , `u and ri À L,@i,

µ
`

Bd1px1, r1q ˆ ¨ ¨ ¨ ˆB
d`px`, r`q

˘

ÀCαpµqr
α
j

ź

i‰j

ˆ

ri
rj

˙di

“ Cαpµqr
α´d`dj
j

ź

i‰j

rdii À Cαpµq
ź̀

i“1

rα´d`dii .

Then, by decomposing into regions 2´ji´1L ă |xi ´ yi| ď 2´jiL, we get that

ż

Rd

ż

Rd

dµpxqdµpyq
ś`
i“1 |xi ´ yi|

ti
À Cαpµq

2
8
ÿ

j1,¨¨¨ ,j`“0

ź̀

i“1

2´jipα´d`diq

2´jiti
À Cαpµq

2 ,

provided that ti ă α´ d` di,@i “ 1, ¨ ¨ ¨ , `, as desired. �
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Lemma 4.4. Let ν PMpRdq. Let σ PMpSd1´1 ˆ ¨ ¨ ¨ ˆ Sd`´1q with

σ
`

pBd1px1, r1q ˆ ¨ ¨ ¨ ˆB
d`px`, r`qq X pS

d1´1 ˆ ¨ ¨ ¨ ˆ Sd`´1q
˘

À rβ1

1 ¨ ¨ ¨ rβ`` .

Then
ż

Sd1´1ˆ¨¨¨ˆSd`´1

ż

eK1 ˆ¨¨¨ˆe
K
`

ż

eK1 ˆ¨¨¨ˆe
K
`

dπeνpzqdπeνpwq
ś`
i“1 |zi ´ wi|

ti
dσpeq

À

ż

Rd

ż

Rd

dνpxqdνpyq
ś`
i“1 |xi ´ yi|

ti
,

whenever ti ă βi,@i “ 1, ¨ ¨ ¨ , `.

Proof. We first notice that
ż

Sd1´1ˆ¨¨¨ˆSd`´1

dσpeq
ś`
i“1 |πeipxiq|

ti
À

1
ś`
i“1 |xi|

ti
.

Indeed, for fixed xi P Rdi , the subset tei P S
di´1 : |πeipxiq| ď 2´ji |xi|u is con-

tained in a spherical cap of radius „ 2´ji , and hence, by decomposing into regions
2´ji´1|xi| ă |πeipxiq| ď 2´ji |xi|, we get that

ż

Sd1´1ˆ¨¨¨ˆSd`´1

dσpeq
ś`
i“1 |πeipxiq|

ti
À

8
ÿ

j1,¨¨¨ ,j`“0

ź̀

i“1

2´jiβi

p2´ji |xi|qti
À

1
ś`
i“1 |xi|

ti
,

provided that ti ă βi,@i “ 1, ¨ ¨ ¨ , `.
Therefore,

ż

Sd1´1ˆ¨¨¨ˆSd`´1

ż

eK1 ˆ¨¨¨ˆe
K
`

ż

eK1 ˆ¨¨¨ˆe
K
`

dπeνpzqdπeνpwq
ś`
i“1 |zi ´ wi|

ti
dσpeq

“

ż

Sd1´1ˆ¨¨¨ˆSd`´1

ż

Rd

ż

Rd

dνpxqdνpyq
ś`
i“1 |πeipxi ´ yiq|

ti
dσpeq

À

ż

Rd

ż

Rd

dνpxqdνpyq
ś`
i“1 |xi ´ yi|

ti
.

�

Proof of Theorem 1.2. Fix α ą d ´ 1 and β ą 2pd ´ 1q ´ α, we choose δ ą 0 such
that α´ pd´ 1q ą δ ą pd´ 1q ´ β. We’ll prove that

ż

}P p`qy µ}p
LppSd1´1ˆ¨¨¨ˆSd`´1q

dνpyq À Cαpµq
pCβpνq,

whenever

(4.2) 1 ă p ă min

"

2pdi ´ 1q

2pdi ´ 1q ´ δ
,
β ´ d` di
di ´ 1´ δ

: i “ 1, ¨ ¨ ¨ , `

*

.

Note that the choice of δ guarantees that the right hand side of (4.2) lies in p1, 2q,
so the range of p is nonempty.

Let tψn : n P Nu be a standard approximation of identity on Rd. Given µ P

MpRdq, µn :“ µ ˚ ψn Ñ µ weakly and so P
p`q
y µn Ñ P

p`q
y µ weakly for y P supp ν,

due to the assumption that the supports of µ and ν have separated projections.
Then, by Fatou’s Lemma,
ż

}P p`qy µ}p
LppSd1´1ˆ¨¨¨ˆSd`´1q

dνpyq ď lim inf
nÑ8

ż

}P p`qy µn}
p

LppSd1´1ˆ¨¨¨ˆSd`´1q
dνpyq .
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Note that Cαpµnq ď Cαpµq,@n P N. Therefore, to prove Theorem 1.2, we may
assume that µ P C8c pRdq, and hence πeµ P C

8
c pe

K
1 ˆ ¨ ¨ ¨ ˆ e

K
` q for e P Sd1´1 ˆ ¨ ¨ ¨ ˆ

Sd`´1. From Lemma 4.1 it follows that

ż

}P p`qy µ}p
LppSd1´1ˆ¨¨¨ˆSd`´1q

dνpyq

(4.3)

À

ż

}P p`qy µy}
p

LppSd1´1ˆ¨¨¨ˆSd`´1q
dνpyq “

ż

Sd1´1ˆ¨¨¨ˆSd`´1

}πeµ}
p
Lppπeνq

dHd´`peq .

Next, for fixed e P Sd1´1ˆ¨ ¨ ¨ˆSd`´1, we estimate }πeµ}Lppπeνq. By duality, we
can choose non-negative f with }f}Lqpπeνq “ 1 and q “ p1 such that

}πeµ}Lppπeνq “

ż

eK1 ˆ¨¨¨ˆe
K
`

πeµ ¨ fdπeν

(4.4)

ď

˜

ż

eK1 ˆ¨¨¨ˆe
K
`

|yπeµpξq|
2
ź̀

i“1

|ξi|
δ dξ

¸1{2 ˜
ż

eK1 ˆ¨¨¨ˆe
K
`

|{fdπeνpξq|
2
ź̀

i“1

|ξi|
´δ dξ

¸1{2

.

Moreover,

ż

eK1 ˆ¨¨¨ˆe
K
`

|{fdπeνpξq|
2
ź̀

i“1

|ξi|
´δ dξ(4.5)

«

ż ż

fpzqfpwq
ź̀

i“1

|zi ´ wi|
δ´di`1 dπeνpzqdπeνpwq

ď

˜

ż ż

ź̀

i“1

|zi ´ wi|
ppδ´di`1q dπeνpzqdπeνpwq

¸1{p

,

where the second inequality follows from Hölder’s inequality.
Now, in view of (4.3), by duality again, we can choose non-negative g with

}g}LqpSd1´1ˆ¨¨¨ˆSd`´1q “ 1 and 2 ă q “ p1 such that

ˆ
ż

}P p`qy µ}p
LppSd1´1ˆ¨¨¨ˆSd`´1q

dνpyq

˙1{p

À

ż

Sd1´1ˆ¨¨¨ˆSd`´1

}πeµ}LppπeνqgpeqdH
d´`peq ď A1{2B1{2 ,

where the second inequality follows from the estimate of }πeµ}Lppπeνq as in (4.4)
and (4.5), and

A “

ż

Sd1´1ˆ¨¨¨ˆSd`´1

ż

eK1 ˆ¨¨¨ˆe
K
`

|yπeµpξq|
2
ź̀

i“1

|ξi|
δ dξdHd´`peq,

B “

ż

Sd1´1ˆ¨¨¨ˆSd`´1

˜

ż ż

ź̀

i“1

|zi ´ wi|
ppδ´di`1q dπeνpzqdπeνpwq

¸1{p

gpeq2dHd´`peq .

To complete the proof of Theorem 1.2, we will show that A À Cαpµq
2 and B À

Cβpνq
2{p.
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Note that for pξ1, ¨ ¨ ¨ , ξ`q P e
K
1 ˆ ¨ ¨ ¨ ˆ e

K
` ,

pπe1 ˆ ¨ ¨ ¨ ˆ πe`µq
^pξ1, ¨ ¨ ¨ , ξ`q

“pIdRd1 ˆ πe2 ˆ ¨ ¨ ¨ ˆ πe`µq
^pη1, ξ2, ¨ ¨ ¨ , ξ`q “ ¨ ¨ ¨ “ pµpη1, ¨ ¨ ¨ , η`q ,

where ηi “ ξi is viewed as a point in Rdi . Hence, by applying Lemma 4.2 repeatedly
in each variable and then applying Lemma 4.3, we get that

(4.6) A À

ż

Rd
|pµpηq|2

ź̀

i“1

|ηi|
δ´1 dη À Cαpµq

2 ,

provided that di` δ´ 1 ă α´ d` di,@i “ 1, ¨ ¨ ¨ , `, i.e. α ą d´ 1` δ, which indeed
holds by our choice of δ.

To estimate B, we first apply Hölder’s inequality

Bp ď

ż

Sd1´1ˆ¨¨¨ˆSd`´1

ż ż

ź̀

i“1

|zi ´ wi|
ppδ´di`1q dπeνpzqdπeνpwqgpeq

pdHd´`peq

and observe that
ż

pBd1 px1,r1qˆ¨¨¨ˆB
d` px`,r`qqXpSd1´1ˆ¨¨¨ˆSd`´1q

gpeqpdHd´`peq

ď

ˆ
ż

Sd1´1ˆ¨¨¨ˆSd`´1

gpeqqdHd´`peq

˙p{q
`

Hd´`pBd1px1, r1q ˆ ¨ ¨ ¨ ˆB
d`px`, r`qq

˘2´p

À
ź̀

i“1

r
pdi´1qp2´pq
i .

Therefore, by Lemma 4.4 and Lemma 4.3,

(4.7) Bp À

ż

Rd

ż

Rd

dνpxqdνpyq
ś`
i“1 |xi ´ yi|

ppdi´1´δq
À Cβpνq

2 ,

as desired, provided that

ppdi ´ 1´ δq ă pdi ´ 1qp2´ pq, i.e. p ă
2pdi ´ 1q

2pdi ´ 1q ´ δ
, @i “ 1, ¨ ¨ ¨ , ` ,

and

ppdi ´ 1´ δq ă β ´ d` di, i.e. p ă
β ´ d` di
di ´ 1´ δ

, @i “ 1, ¨ ¨ ¨ , ` ,

which is indeed the case by our choice of p as in (4.2). �

When α ď d´1, Theorem 1.2 is not applicable. However, we will show below that
by combining with orthogonal projections, the multiparameter radial projection
result does hold true on a set of product subspaces of certain dimensions depending
on α. Here is some notation.

Fix ~d “ pd1, ¨ ¨ ¨ , d`q and ~k “ pk1, ¨ ¨ ¨ , k`q with ` ě 1 and 2 ď ki ď di. Let
d “ d1 ` ¨ ¨ ¨ d` and k “ k1 ` ¨ ¨ ¨ ` k`. Denote

V “ pV1, ¨ ¨ ¨ , V`q P Gpd1, k1q ˆ ¨ ¨ ¨ ˆGpd`, k`q “: G,

and
dγpV q “ dγd1,k1pV1q ¨ ¨ ¨ dγd`,k`pV`q.

Let πi : Rd Ñ Rdi , πVi : Rdi Ñ Vi and

πV “ πV1
ˆ ¨ ¨ ¨ ˆ πV` : Rd “ Rd1 ˆ ¨ ¨ ¨ ˆ Rd` Ñ V1 ˆ ¨ ¨ ¨ ˆ V` “ Rk ,
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be orthogonal projections. Given V “ pV1, ¨ ¨ ¨ , V`q P G and w “ pw1, ¨ ¨ ¨ , w`q P
V1 ˆ ¨ ¨ ¨ ˆ V`, define the `-parameter radial projection

P p`qw : V1 ˆ ¨ ¨ ¨ ˆ V`ztz : zi “ wi for some i “ 1, ¨ ¨ ¨ , `u Ñ Sk1´1 ˆ ¨ ¨ ¨ ˆ Sk`´1

by

P p`qw pzq “

ˆ

z1 ´ w1

|z1 ´ w1|
, ¨ ¨ ¨ ,

z` ´ w`
|z` ´ w`|

˙

.

Theorem 4.5 (Multiparameter radial projection theorem). Let M :“ maxtd´di`
ki´1 : i “ 1, ¨ ¨ ¨ `u. Suppose α ąM , β ą 2M´α and β ąM´pki´1q,@i “ 1, ¨ ¨ ¨ , `.
Then there exists p “ ppα, βq ą 1 such that the following holds. Suppose that
µ, ν PMpRdq with

(1) πipsuppµq X πipsupp νq “ ∅, @i “ 1, . . . , `;
(2) µpBpx, rqq ď Cαpµqr

α, νpBpx, rqq ď Cβpνqr
β, @x P Rd, @r ą 0.

Let G1 “ tV “ pV1, ¨ ¨ ¨ , V`q P G : πVi ˝ πipsuppµq X πVi ˝ πipsupp νq “ ∅,@i “
1, ¨ ¨ ¨ , `u. Then,

ż

G1

ˆ
ż

V1ˆ¨¨¨ˆV`

}P p`qw πV µ}
p

LppSk1´1ˆ¨¨¨ˆSk`´1q
dπV νpwq

˙1{p

dγpV q À CαpµqCβpνq
1{p,

where the implicit constant depends only on d and the diameter of suppµY supp ν.

Proof. By the conditions that α ą M , β ą 2M ´ α and β ą M ´ pki ´ 1q,@i “
1, ¨ ¨ ¨ , `, we can choose δ ą 0 such that α ´M ą δ ą M ´ β and ki ´ 1 ą δ,@i “
1, ¨ ¨ ¨ , `. We’ll prove that

ż

G1

ˆ
ż

V1ˆ¨¨¨ˆV`

}P p`qw πV µ}
p

LppSk1´1ˆ¨¨¨ˆSk`´1q
dπV νpwq

˙1{p

dγpV q À CαpµqCβpνq
1{p,

whenever

(4.8) 1 ă p ă min

"

2,
2pki ´ 1q

2pki ´ 1q ´ δ
,
β ´ d` di
ki ´ 1´ δ

: i “ 1, ¨ ¨ ¨ , `

*

.

Note that the choice of δ guarantees that the right hand side of (4.8) lies in p1, 2s,
so the range of p is nonempty. By a similar limiting argument as in the proof of
Theorem 1.2, we may assume that µ P C8c pRdq.

Following the proof of Theorem 1.2 up to (4.6) and (4.7), we can tell that

ˆ
ż

V1ˆ¨¨¨ˆV`

}P p`qw πV µ}
p

LppSk1´1ˆ¨¨¨ˆSk`´1q
dπV νpwq

˙1{p

À A1{2B1{2 ,

where

(4.9) A À

ż

V1ˆ¨¨¨ˆV`

|yπV µpηq|
2
ź̀

i“1

|ηi|
δ´1 dη ,

and

(4.10) Bp À

ż

V1ˆ¨¨¨ˆV`

|yπV νpηq|
2

ś`
i“1 |ηi|

ki´ppki´1´δq
dη ,

provided that ppki´1´ δq ă pki´1qp2´pq, i.e. p ă 2pki´1q
2pki´1q´δ ,@i “ 1, ¨ ¨ ¨ , `, which

indeed holds by our choice of p.
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Therefore,
ż

G1

ˆ
ż

V1ˆ¨¨¨ˆV`

}P p`qw πV µ}
p

LppSk1´1ˆ¨¨¨ˆSk`´1q
dπV νpwq

˙1{p

dγpV q

À

ˆ
ż

G

AdγpV q

˙1{2 ˆż

G

BdγpV q

˙1{2

,

and hence it suffices to prove that
ż

G

AdγpV q À Cαpµq
2 and

ż

G

BdγpV q À Cβpνq
2{p.

Indeed, because of (4.9) and (4.10), by applying Lemma 4.2 repeatedly in each
variable and then applying Lemma 4.3, we get that

ż

G

AdγpV q À

ż

Rd

|pµpξq|2
ś`
i“1 |ξi|

di´ki`1´δ
dξ À Cαpµq

2 ,

provided that ki ´ 1 ` δ ă α ´ d ` di, i.e. α ą d ´ di ` ki ´ 1 ` δ,@i “ 1, ¨ ¨ ¨ , `,
which is indeed the case by the choice of δ, and

ˆ
ż

G

BdγpV q

˙p

ď

ż

G

BpdγpV q À

ż

Rd

|pνpξq|2
ś`
i“1 |ξi|

di´ppki´1´δq
dξ À Cβpνq

2 ,

provided that ppki ´ 1 ´ δq ă β ´ d ` di, i.e. p ă β´d`di
ki´1´δ ,@i “ 1, ¨ ¨ ¨ , `, which is

guaranteed by the choice of p. This completes the proof. �

With Theorem 4.5 in tow, we are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. Recall from the construction of sets E1, E2, that for each
i “ 1, ¨ ¨ ¨ , `, there is a pre-selected ki-dimensional subspace Wi Ă Rdi (with ki
equal to di´

dmin

2 ` 1 when dmin is even, di´
dmin

2 ` 1
2 when dmin is odd) such that

the projections of E1, E2 onto each Wi are separated by distance Á 1.
For each j “ 1, 2, there exists a Frostman measure µj supported on Ej satisfying

µjpBpx, rqq À rα, @x P Rd, @r ą 0.

For each 1 ď i ď `, since πWi
˝ πipE1q, πWi

˝ πipE2q are well separated, one has
that distpπVi ˝ πipE1q, πVi ˝ πipE2qq Á 1 for all Vi in a small enough neighborhood
of Wi in Gpdi, kiq, the Grassmanian of ki-dimensional subspaces in Rdi .

Since α ą d´ dmin

2 , the pair of measures µ1, µ2 satisfy the conditions in Theorem
4.5. Therefore, applying Theorem 4.5, there must exist some Vi P Gpdi, kiq in a
small neighborhood of Wi, i “ 1, ¨ ¨ ¨ , `, such that the inner integral in the concluded
estimate in Theorem 4.5 is finite, in other words, for some p ą 1,

(4.11)

ż

V1ˆ¨¨¨ˆV`

}P p`qw πV µ2}
p

LppSk1´1ˆ¨¨¨ˆSk`´1q
dπV µ1pwq ă `8.

Our goal is to estimate the set Bad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

by a properly defined bad region

in V1 ˆ ¨ ¨ ¨ ˆ V` and to apply (4.11).
More precisely, note that for each i “ 1, ¨ ¨ ¨ ,m and each ji ě 1, each tube

Ti P Tiji under consideration is projected by πVi to a tube of comparable dimen-

sions (with side length „ 1 in the long direction, and „ R
´ 1

2`δ
ji

in the rest of

the directions). This is because that if Ti appears in a product bad tube, then

by definition of Bad
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

it must intersect both πipE1q and πipE2q, where
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πi : Rd Ñ Rdi denotes the orthogonal projection. Therefore, the collection Tiji
gives rise to a collection T̃iji of tubes in Vi. We also denote T̃i “ Yjiě1T̃iji .

For every pT̃1, ¨ ¨ ¨ , T̃mq P T̃1
j1
ˆ ¨ ¨ ¨ ˆ T̃mjm , define it to be bad if

πV µ2p4T̃1 ˆ ¨ ¨ ¨ ˆ 4T̃m ˆB
Vm`1

1 ˆ ¨ ¨ ¨ ˆBV`1 q ě

C0pRjm`1
, ¨ ¨ ¨ , Rjkq ¨

$

&

%

śm
i“1R

´p
di
2 ´

dmin
4 q`cpαqδ

ji
, dmin is even;

śm
i“1R

´p
di
2 ´

dmin
4 ´ 1

4 q`cpαqδ
ji

, dmin is odd.
,

where BVi1 denotes the unit ball in Vi centered at the origin.
Then, it is easy to see that for any given pTm`1, ¨ ¨ ¨ , Tkq P Tm`1

jm`1
ˆ ¨ ¨ ¨ ˆ Tkjk ,

µ1 ˆ µ2pB
Tm`1,¨¨¨ ,Tk
j1,¨¨¨ ,jk

q ď πV µ1 ˆ πV µ2pĄBadj1,¨¨¨ ,jmq,

with the bad region defined as

ĄBadj1,¨¨¨ ,jm :“
 

pỹ, x̃q P πV pE1q ˆ πV pE2q : DpT̃1, ¨ ¨ ¨ , T̃mq P T̃1
j1 ˆ ¨ ¨ ¨ ˆ T̃mjm s.t.

T̃1 ˆ ¨ ¨ ¨ ˆ T̃m is bad, ỹi, x̃i P 2T̃i, @i “ 1, ¨ ¨ ¨ ,m
(

.

Indeed, if pT1, ¨ ¨ ¨ , Tmq P T1
j1
ˆ¨ ¨ ¨Tmjm is such that T1ˆ¨ ¨ ¨ˆTk is (1, ¨ ¨ ¨ , k)-bad,

then there holds

πV µ2p4πV pT1q ˆ ¨ ¨ ¨ ˆ 4πV pTmq ˆB
Vm`1

1 ˆ ¨ ¨ ¨ ˆBV`1 q

ěµ2p4T1 ˆ ¨ ¨ ¨ ˆ 4Tm ˆB
dm`1

1 ˆ ¨ ¨ ¨ ˆBd`1 q

ěµ2p4T1 ˆ ¨ ¨ ¨ ˆ 4Tk ˆB
dk`1

1 ˆ ¨ ¨ ¨ ˆBd`1 q.

Hence, the image of T1 ˆ ¨ ¨ ¨ ˆ Tm under the projection πV is contained in some
bad T̃1 ˆ ¨ ¨ ¨ ˆ T̃m, if one chooses

C0pRjm`1
, ¨ ¨ ¨ , Rjkq “

$

&

%

śk
i“m`1R

´p
di
2 ´

dmin
4 q`cpαqδ

ji
, dmin is even;

śk
i“m`1R

´p
di
2 ´

dmin
4 ´ 1

4 q`cpαqδ
ji

, dmin is odd.
.

It thus suffices to estimate πV µ1 ˆ πV µ2pĄBadj1,¨¨¨ ,jmq.
Write

πV µ1 ˆ πV µ2pĄBadj1,¨¨¨ ,jmq “

ż

πV µ2pĄBadj1,¨¨¨ ,jmpỹqq dπV µ1pỹq

ď

ż

P
p`q
ỹ πV µ2

´

P
p`q
ỹ

`

ĄBadj1,¨¨¨ ,jmpỹq
˘

¯

dπV µ1pỹq,

where

ĄBadj1,¨¨¨ ,jmpỹq “

¨

˚

˚

˚

˝

ď

pT̃1ˆ¨¨¨ˆT̃mqPT̃1
j1
ˆ¨¨¨ˆT̃mjm bad

ỹiP2T̃i, i“1,¨¨¨ ,m

2T̃1 ˆ ¨ ¨ ¨ ˆ 2T̃m

˛

‹

‹

‹

‚

ˆ

˜

ź̀

i“m`1

BVi1

¸

.
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Then, by Hölder’s inequality and the multiparameter radial projection estimate
(4.11), we get that

πV µ1 ˆ πV µ2pĄBadj1,¨¨¨ ,jmq

ď sup
ỹ

ˇ

ˇ

ˇ
P
p`q
ỹ

`

ĄBadj1,¨¨¨ ,jmpỹq
˘

ˇ

ˇ

ˇ

1´ 1
p

ż

}P
p`q
ỹ πV µ2}Lp dπV µ1pỹq

À sup
ỹ

ˇ

ˇ

ˇ
P
p`q
ỹ

`

ĄBadj1,¨¨¨ ,jmpỹq
˘

ˇ

ˇ

ˇ

1´ 1
p

.

It remains to estimate
ˇ

ˇ

ˇ
P
p`q
ỹ

`

ĄBadj1,¨¨¨ ,jmpỹq
˘

ˇ

ˇ

ˇ
. For every ỹ P V1 ˆ ¨ ¨ ¨ ˆ V` and

T̃i P T̃iji , let ApT̃iq be the cap on the sphere Ski´1 Ă Vi whose center corresponds

to the direction of the long axis of T̃i and with radius „ R
´ 1

2`δ
ji

. Since distpπVi ˝

πipE1q, πVi ˝πipE2qq Á 1, one has PỹipπVi ˝πipE2qX4T̃iq Ă ApT̃iq, where Pỹi denotes
the one-parameter radial projection map centered at ỹi P Vi. Similarly, it is easy
to see that the product cap ApT̃1q ˆ ¨ ¨ ¨ ˆApT̃mq ˆ S

km`1´1 ˆ ¨ ¨ ¨ ˆ Sk`´1 contains

the image of 4T̃1ˆ ¨ ¨ ¨ ˆ 4T̃mˆB
Vm`1

1 ˆ ¨ ¨ ¨ ˆBV`1 under the radial projection P
p`q
ỹ .

Therefore, one can cover P
p`q
ỹ

`

ĄBadj1,¨¨¨ ,jmpỹq
˘

by product caps of the form ApT̃1qˆ

¨ ¨ ¨ ˆ ApT̃mq ˆ Skm`1´1 ˆ ¨ ¨ ¨ ˆ Sk`´1, where each T̃1 ˆ ¨ ¨ ¨ ˆ T̃m is bad. For any
such product cap, there holds

P
p`q
ỹ πV µ2

´

ApT̃1q ˆ ¨ ¨ ¨ ˆ ApT̃mq ˆ S
km`1´1 ˆ ¨ ¨ ¨ ˆ Sk`´1

¯

ěπV µ2p4T̃1 ˆ ¨ ¨ ¨ ˆ 4T̃m ˆB
Vm`1

1 ˆ ¨ ¨ ¨ ˆBV`1 q

ěC0pRjm`1
, ¨ ¨ ¨ , Rjkq ¨

$

&

%

śm
i“1R

´p
di
2 ´

dmin
4 q`cpαqδ

ji
, dmin is even;

śm
i“1R

´p
di
2 ´

dmin
4 ´ 1

4 q`cpαqδ
ji

, dmin is odd.

By the Vitali covering lemma, there exists a disjoint subcollection C of such prod-

uct caps so that their dilations by a constant (say, 5) cover P
p`q
ỹ

`

ĄBadj1,¨¨¨ ,jmpỹq
˘

.
Hence, the total number of disjoint product caps in this covering is bounded by

#C ď C0pRjm`1
, ¨ ¨ ¨ , Rjkq

´1 ¨

$

&

%

śm
i“1R

di
2 ´

dmin
4 ´cpαqδ

ji
, dmin is even;

śm
i“1R

di
2 ´

dmin
4 ´ 1

4´cpαqδ
ji

, dmin is odd.

Therefore,

ˇ

ˇ

ˇ
P
p`q
ỹ

`

ĄBadj1,¨¨¨ ,jmpỹq
˘

ˇ

ˇ

ˇ
À

˜

m
ź

i“1

R
p´ 1

2`δqpki´1q
ji

¸

¨#C

ÀCpRjm`1
, ¨ ¨ ¨ , Rjkq

m
ź

i“1

R
´pcpαq´di`

dmin
2 qδ

ji
,

where | ¨ | denotes the product surface measure on Sk1´1 ˆ ¨ ¨ ¨ ˆ Sk`´1. Then the
desired estimate (3.10) follows by taking cpαq sufficiently large.

�

5. Step 2: proof of (2.2)

In this section, we prove (2.2), which will conclude the proof of our main theorem.
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Recall the setup. Let d “ d1 ` ¨ ¨ ¨ ` d` with ` ě 1 and dmin “ mintdi : i “
1, ¨ ¨ ¨ , `u ě 2. Let E1, E2 Ă Bdp0, 1q with distpπipE1q, πipE2qq Á 1,@i “ 1, ¨ ¨ ¨ , `.
And µj is a probability measure supported on Ej such that

µjpBpx, rqq À rα, @x P Rd,@r ą 0, where j “ 1, 2.

The good part of µ1 with respect to µ2 is defined as

µ1,g “
ÿ̀

k“0

ÿ

1ďi1ă¨¨¨ăikď`

ˆ

ź

i‰i1,¨¨¨ ,ik

M i
0

˙ˆ

ÿ

pTi1 ,¨¨¨ ,Tik qPT
i1ˆ¨¨¨ˆTik

pi1,¨¨¨ ,ikq-good

M i1
Ti1
¨ ¨ ¨M ik

Tik
µ1

˙

.

We want to prove that

(5.1)

ż

E2

}dx˚µ1,g}
2
L2dµ2pxq ă 8 ,

if

α ą

#

d´ dmin

2 ` 1
4 , dmin is even,

d´ dmin

2 ` 1
4 `

1
4dmin

, dmin is odd.

By the definition of a pushforward measure, we have

dx˚µ1,gpt1, ¨ ¨ ¨ , t`q “ td1´1
1 ¨ ¨ ¨ td`´1

` µ1,g ˚
p1q σt1 ˚

p2q σt2 ¨ ¨ ¨ ˚
p`q σt`pxq ,

where σti denotes the normalized surface measure on tiS
di´1 and ˚piq stands for the

convolution in the i-th variable. Because of the assumption that distpπipE1q, πipE2qq Á

1,@i “ 1, ¨ ¨ ¨ , `, we only need to consider t1, ¨ ¨ ¨ , t` „ 1. Hence,
ż

E2

}dx˚µ1,g}
2
L2dµ2pxq(5.2)

„

ż

E2

ż

R`
`

|µ1,g ˚
p1q σt1 ˚

p2q ¨ ¨ ¨ ˚p`q σt`pxq|
2td1´1

1 ¨ ¨ ¨ td`´1
` dt dµ2pxq

“

ż

E2

ż

R`
`

|µ1,g ˚
p1q

xσr1 ˚
p2q ¨ ¨ ¨ ˚p`q xσr`pxq|

2rd1´1
1 ¨ ¨ ¨ rd`´1

` dr dµ2pxq

“

ż

R`
`

ż

E2

|µ1,g ˚
p1q

xσr1 ˚
p2q ¨ ¨ ¨ ˚p`q xσr`pxq|

2 dµ2pxq r
d1´1
1 ¨ ¨ ¨ rd`´1

` dr ,

where the second equation follows by applying an L2 identity of Liu [18, Theorem
1.9] iteratively in each variable. For each fixed r “ pr1, ¨ ¨ ¨ , r`q P R``, we have the
following multiparameter weighted Fourier extension estimate for the above inner
integral over E2. Denote ~σr “ σr1 b ¨ ¨ ¨ b σr` .

Lemma 5.1. Let p “ max
!

2pdi`1q
di´1 : i “ 1, ¨ ¨ ¨ , `

)

“
2pdmin`1q
dmin´1 . Let

ηi “
2pd´ α´ diq

p
´ p

di
2
´
dmin

4
qp1´

2

p
q

when dmin is even, and

ηi “
2pd´ α´ diq

p
´ p

di
2
´
dmin

4
´

1

4
qp1´

2

p
q

when dmin is odd. Then, for any 0 ă α ď d and any ε ą 0 with ε ` ηi ă 0,@i “
1, ¨ ¨ ¨ , `, there exists a constant Cε such that the following holds. For any r “
pr1, ¨ ¨ ¨ , r`q P R``,
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ż

E2

|µ1,g ˚
p1q

xσr1 ˚
p2q ¨ ¨ ¨ ˚p`q xσr`pxq|

2 dµ2pxq(5.3)

ďCε

ˆ

ź̀

i“1

min
´

r
ηi`ε´pdi´1q
i , 1

¯

˙
ż

|xµ1|
2ψr dξ ,

where

ψrpξq “
ź̀

i“1

ψripξiq.

Here, each ψri is a weight function that is „ 1 on the annulus ri´ 1 ď |ξi| ď ri` 1
and decays off it. To be precise, we could take

ψripξiq “ p1` |ri ´ |ξi||q
´100di .

Then, from (5.2), Lemma 5.1, and the inequality†

ż 1

0

rdi´1
i ψripξiqdri `

ż 8

1

rηi`εi ψripξiqdri À |ξi|
ηi`ε ,

it follows that
ż

E2

}dx˚µ1,g}
2
L2dµ2pxq Àε

ż

Rd
|xµ1pξq|

2
ź̀

i“1

|ξi|
ηi`ε dξ ,

where the right hand side is finite, by Lemma 4.3, provided that

di ` ηi ă α´ d` di, i.e. α ą d` ηi, @i “ 1, ¨ ¨ ¨ , `.

By a direct calculation, α ą d` ηi if and only if

α ą

#

d´ di
2 `

1
4 , dmin is even,

d´ di
2 `

1
4 `

1
4dmin

, dmin is odd,

which concludes the desired result (5.1).
It remains to prove Lemma 5.1. A crucial tool is a multiparameter refined

decoupling theorem.
Here is the setup. Let d “ d1 ` ¨ ¨ ¨ ` d` with ` ě 1 and di ě 2,@i “ 1, ¨ ¨ ¨ , `.

Let Si Ă Rdi be a compact and strictly convex C2 hypersurface with Gaussian
curvature „ 1. For any ε ą 0, choose 0 ă δ ! ε. For any Ri ě 1, decompose the

1-neighborhood of RiSi in Rdi into blocks θi of dimensions R
1{2
i ˆ ¨ ¨ ¨ ˆ R

1{2
i ˆ 1.

For each θi, let Tθi be a finitely overlapping covering of Bdip0, 1q by tubes Ti of

dimensions R
´1{2`δ
i ˆ ¨ ¨ ¨ ˆR

´1{2`δ
i ˆ 1 with long axis perpendicular to θi, and let

Ti “
Ť

θi
Tθi . Each Ti P Ti belongs to Tθi for a single θi, and we let θpTiq denote

this θi. Let T “ tT “ T1 ˆ ¨ ¨ ¨ ˆ T` : Ti P Tiu. For T “ T1 ˆ ¨ ¨ ¨ ˆ T` P T, denote
θpT q “ θpT1q ˆ ¨ ¨ ¨ ˆ θpT`q. We say that f is microlocalized to pT, θpT qq if f is

essentially supported in 2T and pf is essentially supported in 2θpT q.

†If in the integral over the interval r0, 1s the factor r
di´1
i is replaced by r

ηi`ε
i , then this inequal-

ity no longer holds in the case that ηi ă ´1. This is the reason that we put minpr
ηi`ε´pdi´1q
i , 1q

instead of r
ηi`ε´pdi´1q
i on the right hand side of the estimate in Lemma 5.1.

A correction for the one parameter case in higher dimensions: in [6, Lemma 4.1] we also

need to deal with a similar issue, and the factor r
´ d

2pd`1q
´
pd´1qα
d`1

`ε´pd´1q
should be changed

to minpr
´ d

2pd`1q
´
pd´1qα
d`1

`ε´pd´1q
, 1q. The new estimate still holds following the proof there.
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Theorem 5.2 (`-parameter refined decoupling). Let p ě 2. Let f “
ř

TPW fT ,
where W Ă T and fT is microlocalized to pT, θpT qq. Let Y be a union of boxes
q “ q1 ˆ ¨ ¨ ¨ ˆ q` in Bd1 each of which intersects at most M product tubes T P W,

where qi’s are R
´1{2
i -cubes in Bdi1 . Then,

(1) @ε ą 0,

}f}LppY q ď Cε

ˆ

ź̀

i“1

Rγi`εi

˙

M
1
2´

1
p

ˆ

ÿ

TPW
}fT }

p
Lp

˙1{p

.

(2) Suppose further that }fT }Lp is roughly constant among all T P W and
denote W “ |W|. Then, @ε ą 0,

}f}LppY q ď Cε

ˆ

ź̀

i“1

Rγi`εi

˙ˆ

M

W

˙
1
2´

1
p
ˆ

ÿ

TPW
}fT }

2
Lp

˙1{2

.

Here

γi “

#

0, 2 ď p ď 2pdi`1q
di´1 ,

di´1
4 ´ di`1

2p , p ě 2pdi`1q
di´1 .

Note that the power γi of Ri is the same as that in the classical decoupling
theorem for the corresponding p. The two parts of Theorem 5.2 are equivalent: part
(1) implies part (2) trivially; conversely, part (1) follows from part (2) combined
with a dyadic pigeonholing about the quantity }fT }Lp .

The proof of Theorem 5.2 follows in the exact same way as that of its one-
parameter analogue [11, Corollary 4.3], except that the use of the classical decou-
pling theorem is replaced by its iterated version. The details are left to interested
readers.

Proof of Lemma 5.1. Given r “ pr1, ¨ ¨ ¨ , r`q P R``, suppose ri ą 10R0 for i P
ti1, ¨ ¨ ¨ , iku and ri ď 10R0 for i R ti1, ¨ ¨ ¨ , iku. Here 0 ď k ď ` and 1 ď i1 ă
¨ ¨ ¨ ă ik ď `. To ease the notation, in the following we’ll consider the case
ti1, ¨ ¨ ¨ , iku “ t1, ¨ ¨ ¨ , ku (the computation for the most general case is similar).
Then, by definition (3.1) of µ1,g, one has that µ1,g ˚

p1q
xσr1 ˚

p2q ¨ ¨ ¨ ˚p`q xσr` is equal to

ÿ

Rj1„r1,
¨¨¨ ,Rjk„rk

ˆ

ź̀

i“k`1

M i
0

˙ˆ

ÿ

pT1,¨¨¨ ,TkqPT1
j1
ˆ¨¨¨ˆTkj2

p1,¨¨¨ ,kq-good

M1
T1
¨ ¨ ¨Mk

Tk
µ1

˙

˚p1q xσr1 ˚
p2q ¨ ¨ ¨ ˚p`q xσr` .

Fix p “ max
!

2pdi`1q
di´1 : i “ 1, ¨ ¨ ¨ , `

)

“
2pdmin`1q
dmin´1 . Let η1 be a bump function

adapted to the unit ball Bd1 and define fT1¨¨¨Tk to be

η1

ˆˆ

ź̀

i“k`1

M i
0

˙ˆ

M1
T1
¨ ¨ ¨Mk

Tk
µ1

˙

˚p1q xσr1 ˚
p2q ¨ ¨ ¨ ˚p`q xσr`

˙

.

Denote x “ px1, x2q, where x1 “ px1, ¨ ¨ ¨ , xkq and x2 “ pxk`1, ¨ ¨ ¨ , x`q. Then for
fixed x2, fT1¨¨¨Tkp¨, x

2q is microlocalized in pT, θpT qq, where T “ T1 ˆ ¨ ¨ ¨ ˆ Tk and
θpT q “ θpT1q ˆ ¨ ¨ ¨ ˆ θpTkq, following the same deduction in [11, Section 5].
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For the sake of convenience, we write A Æ B if A ď Cε

´

śk
i“1R

ε
i

¯

B,@ε ą 0.

When rk`1, ¨ ¨ ¨ , r` ď 10R0, we want to prove that

ż

E2

|µ1,g ˚
p1q

xσr1 ˚
p2q ¨ ¨ ¨ ˚p`q xσr`pxq|

2 dµ2pxq Æ

ˆ k
ź

i“1

r
ηi´pdi´1q
i

˙
ż

|xµ1|
2ψr dξ ,

where ηi is as given in Lemma 5.1. Applying dyadic pigeonholing, one can find λ
such that

(5.4)

ż

E2

|µ1,g ˚
p1q

xσr1 ˚
p2q ¨ ¨ ¨ ˚p`q xσr`pxq|

2 dµ2pxq Æ

ż

|fλpxq|
2 dµ2pxq,

where

fλ “
ÿ

T1ˆ¨¨¨ˆTkPWλ

fT1¨¨¨Tk .

Here, we define Wλ to be

ď

Rj1„r1,
¨¨¨ ,Rjk„rk

!

T1 ˆ ¨ ¨ ¨ ˆ Tk : pT1, ¨ ¨ ¨ , Tkq P T1
j1 ˆ ¨ ¨ ¨ ˆ Tkjk is (1, ¨ ¨ ¨ , k)-good,

}fT1¨¨¨Tk}Lppdxq „ λ
)

,

and denote W “ |Wλ|.
Next, we pigeonhole to obtain the region Y , as a union of boxes q “ q1ˆ¨ ¨ ¨ˆ qk

each of which intersects „M product tubes T PWλ, where qi’s are R
´1{2
i -cubes in

Bdi1 , such that

(5.5)

ż

|fλpxq|
2 dµ2pxq Æ

ż

YˆBd
2

1

|fλpxq|
2 dµ2pxq .

Here d2 “ dk`1 ` ¨ ¨ ¨ ` d`.
To bound the right hand side of (5.5), we notice that the Fourier support of fλ

is essentially contained in the 1-neighborhood of r1S
d1´1 ˆ ¨ ¨ ¨ ˆ r`S

d`´1. So we
can replace µ2 by µ2 ˚ η 1

r1
,¨¨¨ , 1

rk

, where η 1
r1
,¨¨¨ , 1

rk

is a bump function with integral

1 essentially supported on Bd11
r1

ˆ ¨ ¨ ¨ ˆBdk1
rk

ˆBd
2

1 . Then, by Hölder we get that

ż

YˆBd
2

1

|fλpxq|
2 dµ2pxq

ď

ˆ
ż

YˆBd
2

1

|fλpxq|
p dx

˙
2
p
ˆ
ż

YˆBd
2

1

|µ2 ˚ η 1
r1
,¨¨¨ , 1

rk

|
p
p´2 dx

˙1´ 2
p

.(5.6)

To bound the second factor in (5.6), denote x “ px1, ¨ ¨ ¨ , xk, x
2q and rmax “

maxtr1, ¨ ¨ ¨ , rku. By the choice of η 1
r1
,¨¨¨ , 1

rk

and the property of µ2, we get that

ż

YˆBd
2

1

|µ2 ˚ η 1
r1
,¨¨¨ , 1

rk

| dx À µ2

´

N 1
r1
,¨¨¨ , 1

rk

pY q ˆBd
2

1

¯
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and

|µ2 ˚ η 1
r1
,¨¨¨ , 1

rk

pxq| À rd11 ¨ ¨ ¨ rdkk µ2

ˆ

Bd1px1,
1

r1
q ˆ ¨ ¨ ¨ ˆBdkpxk,

1

rk
q ˆBd

2

px2, 1q

˙

À rd11 ¨ ¨ ¨ rdkk

ˆ

1

rmax

˙αˆ k
ź

i“1

`rmax

ri

˘di

˙ˆ

ź̀

i“k`1

rdimax

˙

“ rd´αmax ď rd´α1 ¨ ¨ ¨ rd´αk .

Here N 1
r1
,¨¨¨ , 1

rk

pY q :“
!

py1, ¨ ¨ ¨ , ykq : Dpx1, ¨ ¨ ¨ , xkq P Y s.t. |xi ´ yi| ă
1
ri
,@i “ 1, ¨ ¨ ¨ , k

)

.

Therefore,

ˆ
ż

YˆBd
2

1

|µ2 ˚ η 1
r1
,¨¨¨ , 1

rk

|
p
p´2 dx

˙1´ 2
p

(5.7)

À

ˆ k
ź

i“1

r
pd´αq 2p
i

˙ˆ

µ2

´

N 1
r1
,¨¨¨ , 1

rk

pY q ˆBd
2

1

¯

˙1´ 2
p

.

Now we bound the first factor in (5.6). Let x “ px1, x2q P Y ˆ Bd
2

1 . For each
fixed x2, we apply k-parameter refined decoupling in Theorem 5.2 (part (1)) to get
that

ˆ
ż

YˆBd
2

1

|fλpxq|
p dx

˙
2
p

“

ˆ
ż

Bd
2

1

ż

Y

|fλpx
1, x2q|p dx1 dx2

˙
2
p

Æ

ˆ k
ź

i“1

r
di´1

4 ´
di`1

2p

i

˙

M1´ 2
p

ˆ

ÿ

TPWλ

ż

Bd
2

1

ż

|fT px
1, x2q|p dx1 dx2

˙
2
p

„

ˆ k
ź

i“1

r
di´1

4 ´
di`1

2p

i

˙ˆ

M

W

˙1´ 2
p
ˆ

ÿ

TPWλ

}fT }
2
Lppdxq

˙

,

where the last inequality follows from the condition that }fT }Lppdxq „ λ for all
T PWλ. Furthermore, by the definition of fT we have that

}fT }Lppdxq Æ |T ˆB
d2

1 |
1
p }fT }8

À

ˇ

ˇ

ˇ

ˇ

T ˆBd
2

1

ˇ

ˇ

ˇ

ˇ

1
p
ˇ

ˇ

ˇ

ˇ

~σr
`

θpT q ˆ rk`1S
dk`1´1 ˆ ¨ ¨ ¨ ˆ r`S

d`´1
˘

ˇ

ˇ

ˇ

ˇ

1
2

¨

›

›

›

›

„ˆ

ź̀

i“k`1

M i
0

˙ˆ

M1
T1
¨ ¨ ¨Mk

Tk
µ1

˙^›
›

›

›

L2pd~σrq

.

Hence, an orthogonality argument similarly as in [11, (5.3)] implies that

ˆ
ż

YˆBd
2

1

|fλpxq|
p dx

˙
2
p

(5.8)

Æ

ˆ k
ź

i“1

r
di´1

4 ´
di`1

2p

i

˙ˆ

M

W

˙1´ 2
p
ˆ k
ź

i“1

r
´pdi´1qp 12`

1
p q

i

˙ˆ k
ź

i“1

r
´pdi´1q
i

˙
ż

|xµ1|
2ψr dξ ,

where the implicit constant depends on R0.
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Finally, we have the following incidence estimate for the term “MW ”. By consid-
ering the quantity

ÿ

qĂY

ÿ

TPWλ:qXT‰∅
µ2

´

N 1
r1
,¨¨¨ , 1

rk

pqq ˆBd
2

1

¯

,

one has

M ¨ µ2

´

N 1
r1
,¨¨¨ , 1

rk

pY q ˆBd
2

1

¯

ÀW ¨ max
TPWλ

µ2

´

4T1 ˆ ¨ ¨ ¨ ˆ 4Tk ˆB
d2

1

¯

.

Then apply the p1, ¨ ¨ ¨ , kq-good condition to get

(5.9)
M

W
Æ

$

’

’

’

’

’

&

’

’

’

’

’

%

śk
i“1 r

´p
di
2
´
dmin

4
q

i

µ2

ˆ

N 1
r1
,¨¨¨ , 1

rk

pY qˆBd
2

1

˙ , dmin is even,

śk
i“1 r

´p
di
2
´
dmin

4
´ 1

4
q

i

µ2

ˆ

N 1
r1
,¨¨¨ , 1

rk

pY qˆBd
2

1

˙ , dmin is odd.

From the estimates (5.4)-(5.9) it follows that

ż

E2

|µ1,g ˚
p1q

xσr1 ˚
p2q ¨ ¨ ¨ ˚p`q xσr`pxq|

2 dµ2pxq Æ

ˆ k
ź

i“1

r
ηi´pdi´1q
i

˙
ż

|xµ1|
2ψr dξ ,

where ηi is as given in Lemma 5.1, as desired. �

Appendix A. Proof of Corollary 1.3 and 1.4

First, notice that Corollary 1.4 follows directly from Theorem 1.2. Indeed, by
tracking the value of p in the proof of Theorem 1.2, one observes that for p P p1, 2q,

dim
`

tx P Rd : xi ‰ yi, @y P suppµ, i “ 1, ¨ ¨ ¨ , `, P p`qx µ R LppSd1´1 ˆ ¨ ¨ ¨ ˆ Sd`´1qu
˘

ď2pd´ 1q ´ α` δppq,

where δppq Ñ 0 as pÑ 1. Corollary 1.4 then follows immediately.
We now proceed to prove Corollary 1.3. Fix set K Ă Rd such that dimpKq ą

d´ 1. We first show that

(A.1) dimpInvp`qpKqzCrosspKqq ď 2pd´ 1q ´ dimpKq,

where

CrosspKq :“ tx P Rd : Di, Dy P K, such that xi “ yiu.

To see this, fix any α P pd´ 1, dimpKqq, let µ be a Frostman measure supported
on K satisfying µpBdpx, rqq À rα for all x P Rd, r ą 0. Then one observes that

(A.2) Invp`qpKqzCrosspKq Ă Sp`qpµq,

recalling that

Sp`qpµq “tx P Rd : xi ‰ yi, @y P suppµ, i “ 1, ¨ ¨ ¨ , `,

P p`qx µ is not absolutely continuous w.r.t. Hd´`u.

Indeed, for all x P Invp`qpKqzCrosspKq, by definition, Hd´`
´

P
p`q
x pKq

¯

“ 0.

Hence, P
p`q
x µ must not be absolutely continuous w.r.t. Hd´` as µ is a probability

measure.
Therefore, according to Corollary 1.4, (A.1) holds true.
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Next, we estimate the part Invp`qpKq X CrosspKq. Note that for any α P pd ´
1, dimpKqq, there exists a finite collection of subsets K1, ¨ ¨ ¨ ,Kn Ă K such that
HαpKjq ą 0, @j and the following property holds: for all x P CrosspKq, there exists
j so that x R CrosspKjq.

To see this, recall that we have assumed that di ě 2, @i “ 1, ¨ ¨ ¨ , `. Hence,
α ą d´ 1 ą d´ di, @i. Therefore, according to Lemma 2.2, there exist E1, E2 Ă K
with HαpEjq ą 0, j “ 1, 2, satisfying that E1, E2 are well separated in each of the `
components. Applying Lemma 2.2 again to E1 (or E2), one can find E1,1, E1,2 Ă E1

with HαpE1,jq ą 0, j “ 1, 2, and so that E1,1, E1,2 are well separated in each
component too. Continuing the process, one can then find subsets K1, ¨ ¨ ¨ ,K``1 Ă

K such that HαpKjq ą 0, @j, satisfying that their projections onto each Rdi are
pairwise well separated. Now, for any x P CrosspKq, each xi is in at most one of
πipKjq, for each i “ 1, ¨ ¨ ¨ , `. Therefore, as there are ` ` 1 of the Kj ’s in total,
there must exist some Kj such that x R CrosspKjq.

One then has that

(A.3) Invp`qpKq X CrosspKq Ă
n
ď

j“1

`

Invp`qpKjqzCrosspKjq
˘

.

Indeed, suppose x is not contained in the union on the right hand side. It suffices
to consider the case that x P CrosspKq, as otherwise it is not contained in the left
hand side as desired. Using the property above, one has that there is some j such

that x R CrosspKjq. Since x R Invp`qpKjqzCrosspKjq, there holds x R Invp`qpKjq.
This means that Kj is `-parameter visible from x. Therefore, because Kj Ă K, one

also has K is `-parameter visible from x, i.e. x R Invp`qpKq.
Now, applying (A.2) to each Kj , one has from (A.3) that

dimpInvp`qpKq X CrosspKqq ď 2pd´ 1q ´ α.

Since this holds for arbitrary α ă dimpKq, the desired estimate follows.
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