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ABSTRACT. We study an extension of the Falconer distance problem in the
multiparameter setting. Given £ > 1 and R? = R x ... x R%, d; > 2. For

any compact set £ ¢ R? with Hausdorff dimension larger than d — % + i

if min(d;) is even, d— mi"édi) +i4s mirlx(d,;) if min(d;) is odd, we prove that the
multiparameter distance set of E has positive £-dimensional Lebesgue measure.
A key ingredient in the proof is a new multiparameter radial projection theorem
for fractal measures.

1. INTRODUCTION

Let d = (di,---,dp) and d = dy + -+ + dp with integers £ > 1 and d; > 2,
V1 < i < f. Denote z = (z1,--- ,2¢) € R" x ... x R¥* = R? For a compact set
E c RY, define its multiparameter distance set to be

AYE) == {(ler —ml, .- |we —yel) eRE: z,y € B}

We are interested in studying how large the Hausdorff dimension of E needs
to be in order to ensure that |A%(E)|s, the Lebesgue measure of AY(E) in RY, is
positive. In particular, when ¢ = 1, this is precisely the Falconer distance problem,

for which the conjecture [9] (still open in all dimensions d > 2) is that

dim(E) > g = |A(E)); >0,
where we have denoted in this case A(FE) := A%(E) for short. Here and throughout
the article, dim denotes the Hausdorff dimension, and oftentimes we write |-| = ||,
when the dimension of the Lebesgue measure is clear from the context.

The Falconer distance conjecture, which is a famous difficult problem in geomet-
ric measure theory, is a continuous version of the celebrated Erdos distinct distance
conjecture whose two-dimensional case was resolved by Guth and Katz [12]. The
study of the Falconer problem is naturally related to Fourier restriction theory,
projection theory of fractal measures, and incidence geometry. It has attracted a
great amount of attention over the decades (for instance [20, 2, 27, 8]) and has seen
some very recent breakthroughs. See [11, 6, 5, 7] and the references therein for
more details.

As far as we know, the multiparameter version of the Falconer distance problem
was first proposed by Hambrook—Tosevich-Rice [14], where the authors utilized a
group action method to turn the original question into the estimate of an integral
that resembles the Mattila integral [20] for the original Falconer problem. Moreover,
they observed that, by considering the construction of Falconer [9] in one hyperplane
crossed with full boxes in the other hyperplanes, for each 0 < s < d — d"é‘", where
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dmin 1= min(dy, - ,dy), there exists a compact set F such that dim(F) = s and

|A4(E)| = 0. It is unclear, however, whether one can show that the multiparameter
Mattila integral is bounded using spherical decay estimate of Fourier transform of
measures, as in the one-parameter case [15].

In the discrete setting, multiparameter Falconer-Erdés type distance problems
have also been studied both in the Euclidean spaces and finite fields, see [1, 16, 10].

In this article, we obtain the first result for the multiparameter Falconer distance
problem in the continuous setting, towards the conjectured dimensional threshold
d— men Our proof is based on a multiparameter extension of some key ideas arising
in recent works [11, 6] on the original Falconer distance problem, and in fact implies
the stronger pinned distance result. In the one-parameter case, these ideas have
proven to be useful in not only estimating the dimension of distance set [19, 26] but
also the study of restricted families of projections [13]. Hence the multiparameter
version of the framework obtained here is expected to be of independent interest
and may have further applications in other problems in geometric measure theory
that display non-isotropic dilation structure.

Theorem 1.1. Let d = dy + --- + dy with d; = 2, £ = 1 and denote dypy, =
min(dy,--- ,d¢). Then, for any compact set E = R satisfying

d— d,;jn + i’ dmin 28 even,
d— dnz)in + i + ﬁ7 dmin 1S 0odd,

dim(E) > {

there exists x € E such that
Ag(E) ={(Jz1 — w1l -, |lxe —ye|) € RY: ye E} > 0.

The assumption d; > 2 in the multiparameter Falconer problem is necessary.
In fact, if there is some d; = 1, then there are examples showing that in such
cases no nontrivial threshold can be obtained. To see this, assume that dy = 1,
then there exists Cantor type set E; < R% with arbitrarily large dimension such
that |A(E1)|; = 0. By considering the set E = E; x B x ... x B%_ where B
denotes the unit ball centered at the origin in R%, one can construct set in R? with

arbitrarily large dimension but satisfies |AY(E)|, = 0.

In the case that ¢ = 1, Theorem 1.1 recovers the best known result towards
the Falconer conjecture when d is even, originally proved in [11, 6]. When d is
odd, the conclusion given by Theorem 1.1 is inferior to the state-of-the-art result
(dimensional threshold % + i + WLL) towards the Falconer conjecture, proved in
[5, 7]. Both of these two works are based on Mattila’s framework which reduces the
Falconer problem to the spherical decay estimate of Fourier transform of measures
[20], and it remains to be understood whether a similar reduction can be achieved
via the multiparameter Mattila integral derived in [14].

In general, if the threshold d — d‘;‘“ + g can be obtained for the multiparameter

problem for some ¢ > 2 (in other words, for all compact £ — RY dim(E) >

d— %ain + §, implies that [AY(E)|, > 0), then, the threshold £ + &, can be obtained

for the original Falconer problem, by considering the set E := E x B x --- x B¢ ¢

R%. Indeed, it is direct to see that [A(E)[; > 0 if and only if [A%(E)|, > 0, and
dim(E) > ¢ + 6y implies that dim(E) > d¢ — ¢ + 6.
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Compared to the original one-parameter distance set, the multiparameter dis-
tance set captures the non-isotropic geometric information of the set. For in-
stance, consider two compact subsets in R? x R?: E; = [0,1]? x {(0,0)} and
Ey = [0,1]% x [0,1]%. Apparently, both |A(E1)|1, |A(E2)|; are positive. How-
ever, one can see that |AZ2)(E})|y = 0 while |A22)(Ey)[, > 0.

In addition, we point out that the multiparameter distance problem in the con-
tinuous setting is of a genuine multiparameter nature, and doesn’t seem to be
approachable using a tensor product type argument. This is significantly different
from the discrete setting, where one can use distance results with smaller num-
ber of parameters as blackboxes to study distance problems with more parameters.
Indeed, this is exactly the path taken in [16], where the authors applied the Guth—
Katz distinct distance result as a blackbox in the study of multiparameter distinct
distance problems.

At first sight, such a strategy might seem to work in the continuous case as
well. For example, given a set E < R? x R? with dim(E) >4 — 2 + 1 =3+ 1,
define £, = {y € R? : (x,y) € E}, Vox € R2. We call E, a good fiber if it
satisfies dim(E,) > 2. Suppose one could show that {z : E, good} has Hausdorff
dimension larger than %, then a Fubini type argument, combined with the two
dimensional Falconer result (dimensional threshold 2) of [11], would imply that
|IAG2)(E)|; > 0. However, this doesn’t hold true in general. In fact, there exists
example of a compact set with Hausdorff dimension 2 in the plane that is a graph
over an uncountable set of directions (see [4] for such a construction). One can
use this to easily build a set E < R? x R? with arbitrarily large dimension that
doesn’t satisfy the good fiber property. This seems to be a manifestation of the
fact that Hausdorff dimension does not always behave well when forming Cartesian
products, and is a key difference between the continuous and discrete versions of
the multiparameter distance problem.

1.1. Strategy and new difficulties in the multiparameter setting. The
strategy of the proof of Theorem 1.1 is inspired largely by [11, 6], where the authors
studied the original Falconer conjecture (i.e. ¢ = 1) in even dimensions. Here is
a sketch of the main framework. Fix a set E with dimension larger than «, one
starts with a choice of two disjoint subsets F;, E5 < E each of which supports a
Frostman measure of exponent «, denoted by 1, us respectively. Then, in Step 1,
one prunes the measure y; to get a new complex valued measure p,, and shows
that their L' error is small using a radial projection argument; in Step 2, via a
weighted restriction estimate, one shows that an L? quantity involving f1,g and fio
is finite by using a refined decoupling estimate proved in [11], which then implies
the desired result through an identity of Liu [18]. A particularly nice feature of this
strategy is that it deduces the stronger pinned distance result.

Unfortunately, neither of the two steps described above can be iterated directly
in the multiparameter setting, mainly because the slices of a Frostman measure
are in general not necessarily still Frostman measures satisfying desirable energy
estimates. More precisely, an iteration of the pruning process of the Frostman
measure in Step 1 doesn’t seem to produce a measure that is sufficiently nice. And
since the weight function, generated by the Frostman measure, is not necessarily
a tensor product, the weighted restriction estimate in Step 2 doesn’t follow from
iterating the one-parameter argument. In fact, even without the presence of the
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weight, one doesn’t seem to be able to iterate the refined decoupling inequality
in Step 2. The reason is that the application of the refined decoupling requires a
dyadic pigeonholing process, which, when performed in each variable separately in
the multiparameter setting, would yield a loss much worse than log.

In this article, we overcome the difficulties in Step 1 by studying multiparame-
ter versions of radial projections of fractal measures. In particular, we extend the
radial projection theorem of Orponen [25] to the multiparameter setting, which
allows us to identify an effective way to prune the Frostman measure in Step 1.
More precisely, the multiparameter radial projection theorem will be used to re-
move product bad wave packets from the Frostman measure. To the best of our
knowledge, such a theorem seems to be new, and is expected to be of independent
interest. See below for further discussions on the theorem and sample applications
to the visibility of sets. In addition, we prove new multiparameter weighted re-
striction estimate to tackle the difficulties arising in Step 2, which relies on a newly
observed multiparameter refined decoupling theorem.

1.2. Multiparameter radial projection and application to visibility of sets.
As the statement of the full version of the multiparameter radial projection theorem
(Theorem 4.5) is quite technical, here we only state a special case of it (“the large

« case”).

We first introduce some notation. Let d = d; + ---dp and d; > 2, £ > 1.
Denote by 7; : R? — R% the orthogonal projection. Given y = (yi,---,y¢) €
R% x ... x R% = R?, define the {-parameter radial projection PZSZ) RN\{z: 2; =
y; for some i =1,--- £} — Sh=1 x ... x §de—1 by

() _ (T~ Te— Y
A = (i )

In the following, M(R?) denotes the space of compactly supported Radon measures
on R

Theorem 1.2. For every a > d—1 and § > 2(d—1)—«, there exists p = p(a, 8) > 1
such that the following holds. Suppose that u,v e M(R?) satisfy

(1) mi(supp pu) nm(suppr) = @, Yi=1,...,¢;

(2) u(B(z,1)) < Colp)r®, v(B(x,r)) < Cg(v)rf, Vo e R, ¥r > 0.
Then,

J PO i1y B0 = ol i),
where the implicit constant depends only on d and the diameter of supp p U supp v.

As a remark, when ¢ = 1, Theorem 1.2 is simply a weaker version of Orponen’s
radial projection theorem [25], where the ball condition (2) in the above is replaced
by a weaker energy condition for the measures. This stronger ball condition is used
in an essential way in our argument to estimate a multiparameter analogue of the
energy of a measure.

Theorem 1.2 is sharp up to the endpoint, in the sense that the assumption
a > d—1 cannot be further relaxed. Indeed, this is because the condition is already
required in the one-parameter case. To see the sharpness, consider the following
{-parameter example: p = pq X MaXpds X o X MeX g where m; denotes the

Lebesgue measure on R%. The problem obviously splits into a tensor product of £



ON THE MULTIPARAMETER FALCONER DISTANCE PROBLEM 5

one-parameter problems. Consider an example of z1 satisfying H% ! (supp 1) = 0
and

sup{ay : p1(B(z, 7)) < r*, Ve e R Vr > 0} =d; — 1,
where H%~1 denotes the (d; — 1)-dimensional Hausdorff measure. Then, one has
that u satisfies the ball condition as in (2) of Theorem 1.2 for any o < d—1. For all

y1 € R% outside the support of p1, Vp > 1, one obviously has Hstll)ulHLp(Sdlq) =

c0. Hence, ||P?§é)uHL,,(Sd1_1X_,_Xsd[_l) = o, Yy € R? with y; ¢ mi(suppp), i =
1o 0

When a < d — 1, we prove a more involved version of Theorem 1.2 in Section
4 (Theorem 4.5) that incorporates multiparameter orthogonal projections in the
integral. Compared to the one-parameter setting, where the energy of the measure
is well preserved under the orthogonal projection onto almost every subspace (of
an appropriate dimension) according to the Marstrand projection theorem [17], the
energy of the measures under multiparameter orthogonal projections usually does
not behave so well. This is one of the main difficulties one is faced with in extending
Theorem 1.2 to Theorem 4.5. This is also one of the reasons why one would need
to work with multiparameter analogue of the energy in the proof of both theorems.

As an application, our multiparameter radial projection theorem can be used
to study (in-)visibility of sets in the multiparameter setting. More precisely, let
K c R =R% x ... x R¥* be a Borel set, where d; > 2, £ > 1 as before. We say K
is (-parameter invisible from x € R? if

HIHPO(K\{y : 2; = y; for some i = 1,--- ,£})) =0,

where H4t .= Hdl*llsdl_l X oo X ”Hd‘*l‘sde,l. The set K is said to be £-parameter
visible from z if it is not /-parameter invisible from x. Define

Inv?(K) = {z e R?: K is invisible from z}.

The basic question is to determine how large the set Inv®) (K) can be. The study
of invisibility is a classical problem in geometric measure theory. For instance, if
d—1 < dim(K) < d, Mattila and Orponen [23, 24] have proved the sharp estimate
dim(Inv®? (K)) < 2(d — 1) — dim(K). See Mattila’s survey [21, Section 6] for a
more detailed introduction to this line of research.

A corollary of our Theorem 1.2 is the following sharp estimate.

Corollary 1.3. Assume that the Borel set K < RY = R% x ... x R% satisfies
dim(K) > d — 1, where d; = 2, £ = 2. Then there holds

(1.1) dim(Inv? (K)) < 2(d — 1) — dim(K).

As far as the authors are aware of, this seems to be the first estimate of this
kind for visibility of sets in the multiparameter setting. In addition, this estimate
is sharp. Indeed, let K7 < R% be a sharp example for Mattila—Orponen’s estimate
in the one-parameter setting. Define K = Kj x Bfﬁ"'*dk. Then one can easily
check that K is a sharp example for (1.1).

Moreover, we have the following slightly stronger corollary, concerning the ana-
logue of the above for measures. Let R? = R% x ... x R% be the same as before,
d; =2,0>=2.

Corollary 1.4. Let e M(R?) satisfy for some o > d — 1 that
w(BY(x, 7)) S % VzeRd r>0.
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Define the set
S(Z)(u’) :{J? ERd Xy F Yis Vye suppu, 1= 1a 7£7
Py)u is not absolutely continuous w.r.t. HE*.

Then there holds
dim(S© (u)) < 2(d — 1) — .

The ¢ = 1 case of this (sharp) estimate is proved by Orponen [25]. And a similar
argument as above shows that this bound in the ¢-parameter setting, V¢ > 2, is
sharp as well. Both Corollary 1.3 and 1.4 are directly implied by Theorem 1.2. For
the sake of completeness, a justification is provided in Appendix A.

1.3. Structure of the paper and notations. We provide an outline of the proof
in Section 2 and discuss the pruning process of the Frostman measures in Section
3. Section 4 is devoted to the justification of the multiparameter radial projection
theorems (Theorem 1.2 and 4.5) which is independent of the rest of the article.
Finally, we prove the multiparameter weighted restriction estimate in Section 5
which will complete the proof of Theorem 1.1.

Throughout the article, we write A < B if A < CB for some absolute constant
C;:A~Bif A Band BS A AL . BifA<CBforalle>0; Ag B if
A< C.RB for any ¢ > 0, R > 1.

For any d > 1, B{ denotes the unit ball in R? centered at the origin, and B%(z, )
denotes the ball in R? centered at x of radius 7. For any 1 < m < n, G(n, m) denotes
the Grassmanian, the space of m-dimensional subspaces in R"”.

For a large parameter R, RapDec(R) denotes those quantities that are bounded
by a huge (absolute) negative power of R, i.e. RapDec(R) < CyR™Y for ar-
bitrarily large N > 0. Such quantities are negligible in our argument. Simi-
larly, RapDec(R;, ,--- ; Rj, ) denotes a quantity less than RapDec(Rj, ) for all
1 < s < k. We say a function is essentially supported in a region if (the appropri-
ate norm of) the tail outside the region is RapDec(R) for the underlying parameter
R.
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2. PROOF OF THEOREM 1.1: OUTLINE

Given E < R? with dim(E) > d — d‘g‘“, without loss of generality, assume E is
contained in the unit ball Bf. Let a € (d — %5, dim(E)), we will construct two

subsets E1, Fo < E each of which supports a probability measure g1, po such that
wi(B(z,r)) S r%, VeeRY Vr>0.

The key properties E7, Fs have are that their images under a fixed collection of

orthogonal projections remain well separated and the multiparameter radial pro-

jection theorem (Theorem 4.5) applies. The exact construction of the two sets is
explained at the end of the section.
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Let © € E5 be any fixed point and let d*(y) := (|1 — y1l,-- -, |xe — ye|) be its
induced multiparameter distance map determined by d = (dy,...,ds). Then, the
pushforward measure d%(p1), defined as

J Wb, te) % m) :j Wller — gl Loe — vel) dya (9),
R¢ Eq

is a natural measure that is supported on A4(E).

We will construct another complex valued measure u;,4 that is the good part
of py with respect to ps, and study how its pushforward under the map d” differs
from df(p1). The main result we will prove is the following.

Theorem 2.1. Letd = dy+---+dp withd; = 2, and E < R? be a compact set with
dim(E) > d — %. Then for any « € (d — d‘;‘“,dim(E)), there exist E1,Ey ¢ FE
with dist(Ey, Es) 2 1 such that the following are true.
(1) Fori= 1,2, E; has positive « dimensional Hausdorff measure and supports
a probability measure y; satisfying pu;(B(z,7)) < %, Vo e RY ¥r > 0;
(2) There exists a complex valued measure py 4 and a subset By < Eo so that
p2(Eh) =1 — 1555 and for each x € EY,

T X 1
2.1) |2 (1) = d5 (r1.0)l 22 < o5

(3) If in addition, one assumes that

d— dmn 41 drmin 4
dim(E) > a > {d IO T
2 4 4dmin7 min tl
then
(2:2) | 1z ) o) < +oe
2

It is easy to see that Theorem 1.1 immediately follows from Theorem 2.1. We
briefly sketch the argument below for the sake of completeness. The estimate (2.1)
and (2.2) above can be viewed as multiparameter versions of [11, Proposition 2.1
and 2.2]. Since the measures pi, o are not necessarily tensor products, and our
construction of ji; 4 will be more involved compared to its one-parameter analogue,
it doesn’t seem that one can iterate Proposition 2.1 and 2.2 of [11] directly to obtain
(2.1) and (2.2).

Proof of Theorem 1.1 assuming Theorem 2.1. According to conclusions (2) and (3)
of Theorem 2.1, there is a point x € Fs satisfying (2.1) and |[d%(u1,4)|r2 < +0.
Since di(u1) is a probability measure, one has from (2.1) that [df(u1,4)llzr =

1 —1/1000. Note that d% (1) is supported on Ag(E), hence

[ il = [zGua) = [ i)
AL(E) Ag(E)*

$(E)

1 2
>1———— | |d} —d >1—-——.
00— | M) = ) = 1= s

On the other hand,

R 1/2
23 [ izl < 820 (i)
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Since {[d%p1 4|? is finite, it follows that |AL(E)| is positive. O

Now we present the details of the construction of F; and Fs.

Let E ¢ R* = R% x ... x R% be the fixed compact set as before, satisfying
dim(E) > d — %zin. For any o € (d — 43>, dim(E)), the a-dimensional Hausdorff
measure of F is positive. Next, for each i = 1,--- ¢, we arbitrarily fix an m;-
dimensional subspace W; < R%, where m; := d; — d"7 + 1 if dp, 1S even, and
d; — dm% + % if dpin is odd. Tt is easy to see that there always holds o > d — m;.
We then construct subsets E7, F; € E according to the following lemma.

Lemma 2.2. Let E ¢ R = R% x ... x R% be a compact set with positive a-
dimensional Hausdorff measure, and W; an m;-dimensional subspace in R% | where
a>d—m;, Yi=1,---,L. Then there exist subsets E1, E5 c E so that

(1) both Ey, Es have positive a-dimensional Hausdorff measures;

(2) dist(mw, o mi(Ey), mw, omi(E2)) = 1, Vi =1,--- £, where m; : RY — R% and
mw, : R% — W, denote the orthogonal projections.

Proof. We first construct a pair of subsets Ef, E3 < E so that they both have
positive a-dimensional Hausdorff measures and their projections onto W7 are sep-
arated. Let u' be the pushforward measure of H®|x under the projection my, omy.
By the assumption that o > d — my, the support of u' has at least two distinct
points, and so we can take two separated balls Ell and E21 in Wy around these
points of positive y' measure. Then their preimages E} := (mw, om ) H(E}) n E
and Fj := (mw, om) ' (E}) N E satisfy the desired properties.

Next, we construct E? < E} and E5 < E} so that they both have positive a-
dimensional Hausdorff measures and their projections onto W5 are separated. Let
M? be the pushforward measure of H®| E} under the projection 7wy, o ma, j = 1,2.
By the assumption that o > d — ma, there are one point in the support of y? and
another point in the support of y, and so in Wy around these points we can take
two separated balls: E? of positive 3 measure and E3 of positive y3 measure. Then
their preimages E? := (my, o m2) H(E?) n E} and E} := (mw, o m) Y(E2) n E}
satisfy the desired properties.

By repeating the argument in each of the rest of the variables, one eventually
obtains subsets EY, Ef c E satisfying the desired conditions. O

3. STEP 1: CONSTRUCTION OF i1 4 AND PROOF OF (2.1)

The good measure ji1,4 is going to be defined by eliminating different types of
bad multiparameter wave packets from 7. .

Let Ry be alarge number that will be determined later, and let ij = (Rj,, -, Rj,)
with Rj, := 2Ji Ry. In each of the ¢ components, cover the annulus Rj,_1 < |w;| <
R;, in R% by rectangular blocks 7; with dimensions approximately R]l/ 2% x

le/ % x R;,, with the long direction of each block 7; being the radial direction.

Then, choose a partition of unity subordinate to this cover for each i so that

1= % + 2 1/]ji17—i’

ji=1,7;
Let 6 > 0 be a small constant to be determined later (more precisely, § depends
on o and will be determined in the proof of (2.2) in Section 5). For each (j;, 73), cover
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the unit ball Bf with tubes T; of dimensions approximately Rﬁl/2+5 X - R71/2+6
2 with the long axis parallel to the long axis of 7;. This covering has umformly
bounded overlap. Denote the collection of all these tubes in the i-th component as

T;z - Let n, be a smooth cutoff function essentially supported on 7; and with

Fourier transform compactly supported in the rectangle of dimensions Rl/ 2y x
le/ % x 2 with the short side pointing in the long direction of T}, so that for each
choice of j; and 7, ZT eTi. N1, is equal to 1 on the ball of radius 2. More precisely,
N7, rapidly decays out51de the concentric tube of T; with a constant multiple of the

radius.
For each T; € T define an operator acting on the i-th variable:

JiyTi)
Mg f =, Fi [, n Fi( )]
where F; denotes the Fourier transform in the i-th variable. Roughly speaking, the
operator M7, maps f in the i-th variable to the part of it that has Fourier support
in 7; and physical support in T;. Define also M{f := Eﬁl[wéfi(f)]. We denote
= U, ']I‘]“ Cand T? = UJ >1']I‘§i. Hence, for any L' function f supported on
the unit ball up to a small tail, f can be decomposed in terms of these operators.

Lemma 3.1. Letd =d; +---+dy and f € L' be a function supported on the unit
ball B{. Then

f= [M§+ D M}ll o | ME+ > Mg, | £ + RapDec(Ro) frai

TheT?t TeTt
where the tail satisfies || frailrr < | flz:-

This decomposition essentially follows from iterating [11, Lemma 3.4]. Since the
tail term becomes more complicated in the multiparameter case, we provide the
proof below for the sake of completeness.

Proof. We prove the case ¢ = 2 here. The proof of the general multiparameter case
proceeds similarly. By applying [11, Lemma 3.4] iteratively (first in the 2 variable,
then in x5), one obtains

f =M + 3, Mj,]f +RapDec(Ro) fig

TleTl
= lMOl + Z M}ll lMg + Z M%z f—|—RaupDec(Ro)ft(:i)1 +RapDec(R0)ft(;i)l,
T16T1 T2€T2
where
18w, < 1F Gzl
and
£ o, < |3+ Y ME TS|
Ty eT? @3
Therefore,
1
£l < 1w
and

1f &z < | f — RapDec(Ro) £yl o1 < £l 2+ + RapDec(Ro)| f]1: -
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We now define different types of bad product tubes. Let c¢(«) > 0 be a large
constant to be determined later, and for each i, let 4T; denote the concentric tube
of four times the radius. For any given 1 < k < £ and components 1 <i; < -+ <
ir < ¢, we say a product tube (T3,,--- ,T;,) € '11‘21 X oee X ']I‘j»’:k is (i1, ,ix )-bad if

d

I—Ik *(%*d“‘ii“)Jrc(a)é

k
R,
AT, Bl) | = ¢ e, ’
H2 <(sl:[1 i) % ( H ) 1 )> Z Hl;:lR;Ed;‘**%*i)Jrc(a)s

iy,

dmin 18 even;

,  dmin 18 odd.

A product tube (T3, -+ ,T3,) i (i1, ,ix)-good if it is not (iy,--- ,ix)-bad.

We are now ready to construct the complex valued measure p; 4, by removing
all bad product wave packets from pq. Define the good part of the measure p; with
respect to po as
(3.1)

4
_ % i1 ik
f1.y = Z Z ( H Mo) ( Z M- M Ml)-
k=01<i1<-<ip<l Ni#i1,,ik (Til7"',Tik)ETil XX Tk
(i1, ,ik)-good

Here, the k = 0 term is M}M¢--- M§u; by convention. We point out that us

is only a complex valued measure, and is essentially supported in the R, /245 _

neighborhood of F; with a rapidly decaying tail away from it (see Lemma [11,
Lemma 5.2] for the proof of the analogue in the one-parameter case, which implies
our claim by iteration).

3.1. Proof of (2.1). Fix a point & € E5, one has by definition that
(i) = di(a,g) o

¢
<RapDec(Ry) + Z Z Z
k=1

1Si < <ip <L Jig oo Jiy, =1

T 1 il lk
e [( [T MMz ...MT%M}
(Tsy ,Tik)eT_él ><»--><Tj£?k

iiL, ik
(i1, ix)-bad

(3.2)

Ll

In the following, we will first reduce the quantity above to the p; measure of
certain bad regions, which are unions of bad product tubes of different types. Such
reduction follows very closely the one-parameter case treated in Section 3 of [11].
Many arguments below for this reduction are iterations of their corresponding one-
parameter analogues. However, it is sometimes impossible to directly iterate the
one-parameter result (see for instance Lemma 3.3 below), and even if it is possible,
oftentimes there are various rapidly decaying tails involved in the reduction, which
makes the iteration process quite delicate. Therefore, for the sake of completeness
and clarity, we include a sketch of the reduction and provide necessary details for
handling new complications in the multiparameter setting.

To estimate the pushforward measures defined for each product tube, we first
need the following lemma.

Lemma 3.2. For any given 1 < k < ¢, any components 1 < iy <--- <1, </{, and
any product tube (T;,,--+,T;, ) € T;:l X - X T;"k . Let f be a function supported in
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the unit ball, then there holds
(3.3)

|MZ Mz floo$ [1  RepDec(r ‘ (HW*)

Sc{l ok} \sefl, kRS ses L
Moreover, for any i =1,... £, there holds
(3.4) Ml < [ f]er
Proof. Estimate (3.3) follows from the one-parameter analogous result in [11, Lemma
3.2] and induction on k. Without loss of generality, assume that {i1,- - i} =
{1,--- ,k}. First consider the case k = 1. Denote 2" = (23, - ,2¢) and d"’ =

dy + -+ + dy. By applying [11, Lemma 3.2] to the variable x; one obtains that
04 Fls S| 1FCo ") ea, @ri) + RapDec(Ry, )| F (2" g, )|,

<HfHLl(lede”) + RapDec(R;, )| f]z: -

Note that even though we have chosen to work with non compactly supported cutoff
functions 7, in the definition of M%i, [11, Lemma 3.2] still holds true.

Now assume that (3.3) holds in the cases k = 1,2,--- ,m — 1 and we prove it in
the case k = m. Applying (3.3) in the case k = m — 1 to the function M7 f, one
has

| Mz, - ME £l

DY []  RapDec(Rr 'MT (]_[ xm)

Sc{l,--,m—1} \se{l, - ,m—1}\S s€S

)

Ll

s

+ RapDec(R

Lt L1

M7 f (H X2Ts>
(H X2T >
seS
For the second estimate (3.4), by definition,

seS
MSf = F; '[oFi(f)] = Fi (@) = f.

and for each L' norm on the right hand side there holds
<|f <n X2TS> X2T,,
sesS
from which (3.3) in the case k = m follows.
Since F; 1(¢6) is essentially supported in a ball in R% centered at the origin with
radius Ry ', and satisfies |F; *(1§)|z: < 1, one concludes (3.4). O

A direct consequence of the lemma above is that for each T}, € ']I‘; ,s=1,---k,

|1 e “-Méi,cm}

FELy g

L1

DY [] RapDec(R (HQT <(J] B‘fi)).

Sc{1,,k} \se{l, ,k}\S seS i#is, VSES
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There is another piece of information needed for us to bound the total contri-
bution of the bad tubes, that is, it suffices to consider those tubes that are close
to the fixed point z, at least in one of the variables. In the one-parameter setting
studied in [11], let d*(y) := |z — y| be the one-parameter distance map, T' € T} ,
be a one-parameter tube of radius R;l/ 20 With long direction given by the block
7, and Mp be the associated operator that morally restricts the support of the
input function to 7" and its Fourier support to 7. It is shown in Lemma 3.1 of [11]
that |df (Mrp1)|rr < RapDec(R;) if ¢ 2T. In the lemma below, we explore the
multiparameter extension of this phenomenon.

Lemma 3.3. For any given 1 < k < ¢, any components 1 < iy <--- <ix <{, and
any product tube (T;,, -+ ,T;,) € ']I‘;-:I X eee X ']I‘;’“k Let © € E5. Suppose that for
Ac{l,---,k}, one has x;, ¢ 2T;,, Ya € A. Then,

a’

ds [( [T MMz, "'M%fkul]

L1, ik

< (1_1[4 RapDec(Rjiu)> .
H RapDec(Rj, ) | 1 <(H2ﬂ) x ( H Bfi)) .

Sc{l, kPA \se{l, k}\(SuA) seS iis, VSES

Lt

Proof. By a standard limiting argument, it suffices to study the case that du; =
w1 (y)dy. In this case, according to Lemma 3.2, it suffices to prove that

d; [( [T Mo)mz "'M%ﬁkm]

1AL,

(3.5) v

< (H RapDec(R;,, )) ( IT M) [] Mz )m

acA PFGL, ik se{l,- ,k}\A I
We will in fact prove a more general estimate: for any f € L' with compact support
and such that dist(x;, 7;(suppf)) 2 1, Vi = 1,--- , £, there holds

ds, lﬂ Mz, f} < (1‘[ RapDec(Rm) I flze-
Ll

acA acA

(3.6)

It is easy to see that (3.5) will follow from (3.6) by taking
F=C T M T1 M
TFLL, Uk se{l,- ,k}\A
For the sake of brevity, we assume that £ = 2, {iy, -+ ,ix} = {1,2} and A = {1, 2}
(i.e. x; ¢ 2T;, i = 1,2). Then the desired estimate becomes
(3.7) |d5 (Mg, M7, f)| 1+ < RapDec(R;,, Rj,)| f] L1

The general case can be justified in the exact same way.

Estimate (3.7) will follow from iterating its one-parameter counterpart ([11,
Lemma 3.1]). More precisely, the proof of [11, Lemma 3.1] implies the follow-
ing result in the one-parameter setting: for any g € L' with compact support such
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that dist(z,suppg) 2 1, if « ¢ 2T (where T; € T}), then
|ds(Mz,9)[ 2+ < RapDec(R;)|g]z:.
Back in the multiparameter setting, by definition, one has

g (Mf, M3, f)(t1,ta) =Mz, M7, f =0 Ny, @ Ay, (21, 22)
:J J M, M3, f(y1,y2) de, (y2)dAe, (y1),
Sdlfl(xl,tl) Sd271($2,t2)

where d);, denotes the surface measure on S%~'(x;,t;) and *() stands for the
convolution in the i-th variable. This suggests that

diy (Mg, M3, f)(t1,t2) = d32 [MF, (d5* (Mg, ) (t1)](t2)-
By Fubini, the desired bound (3.7) then follows from applying the one-parameter
estimate first to g = di* (M7, f)(t1) in the 25 variable and then to g = f in the 2,

variable.
O

We are now ready to go back and bound the expression (3.2). Since there are
finitely many choices of 1 < k < fand 1 < i < --- < i < £, it suffices to show
that the term corresponding to each fixed k and {i1,--- , 4} is bounded as desired.

Fix a choice of 1 < k < £ and components 1 < i; < --- < i < £. Because of
symmetry, we assume that {i1,--- ,ix} = {1, -+, k} without loss of generality. Our
goal is thus to show that there exists a subset Ef) < Fs so that us(F)) = 1—
and for each = € E) there holds

38) > >

1 Gk (Ty e TR)ET) 3o x T,
(1, ,k)-bad

_1
1000C

1

< .
1000C%

| ([T} TT |

i=1 i=k+1

Ll

for sufficiently large Ry, where Cy is some large constant depending on £.
For any point « € Ey and j;,,- -+, ji, = 1, the inner sum on the LHS of the above
can be bounded as

2

dz: [(ﬁM;)(ﬁ Moz')m]

(le",Tk)G'Jl';lx-ux']l'fk i=1 —k+t1 1
(1, k)-bad
k L
x i i
<L > | ()T Mom
AL, R} (T, T)ET] ) X x T, i=1 ikt 1 i

(1, ,k)-bad,
To,¢2T,,VacA,
24€2T,, Vae{l, - ,k}\ A

< 2 Z 1_[ RapDec(R;,)

Ac{l, k} Sc{1, kP\A \se{l,- k}\S

5 w(em TT m).
(Ty - 7Tk_)e']r;l x .,.X']r;?k seS i#s,VseS

(1, k)-bad,
rs€2Ts,VseS

where we have applied Lemma 3.3 in the second inequality.



14 X. DU, Y. OU, AND R. ZHANG

In the following, we will fix a choice of A and S, which is fine since there are only
finitely many possibilities. Without loss of generality, assume that S = {1,--- ,m},
m < k. For any given tubes T; € ']Tj-i, i=m+1,---  k, define the set

Bad] ™ i {(.2) € By x By ATy, Th) €Ty x oo x T, st

Ty x - xTyis (1,--- ,k)-bad, y;, 2, € 2T;, Vi=1,--- ,m}.

Then, observing that the sets E1, E5 are separated by distance = 1 in every variable
(as a consequence of Lemma 2.2) hence the tubes T; being measured have only finite
overlap (up to constant R‘;idi), one thus has

(3.9)

k m
2 ( 1_[ RapDec(Rji)> 2 o3 ((n 1_[ B) )
Jissde=1 \i=m+1 (Ty, ~~,Tk)e’]1‘}1><~ .xTk i=1 i=m+1

(1, k)-bad,
z;€2T;, 1<i<m

k
Y ( H RapDec(Rji)> (ﬁiji)-
J1yJk=1

i=m+1 =1

S oowlC U T B9

TieT;i,m+1Sisk (Tl,...,Tm)eTj.lx xT™ :i=1 i=m+1

Jm
T1><-~~><Tk- (1,' ,k) bad
x;€2T;,1<i<m

Jide=1 \i=m+1 i=1 T,-e’]l‘;l_,m+1<i<k
i

Here, we have used the notation Bad: ’"“’Jk T *(z) to denote the slice of the set

Bad: m“’j;’ at z € EBs.
The key estimate of the subsection is the following.

Lemma 3.4. Let o > d — “““ , there exists sujﬁczently large c(a) > 0 such that
for all j1, -+ ,jk =1 and all ( ity 5 Tk) € T":’tll - X T;Cw
T, T o
m Lk 725d1
(3'10) K1 X MQ(Badjl,.J-r-l,jk k) < C(ij+1’ T aRjk) H Rji .
i=1

Proof of estimate (2.1) using Lemma 3.4. According to the reduction explained above,
it suffices to show that there exists F) < Eo with ps(ES) = 1 — Wlocp such that
Vx € EY, there holds that

k m
D ( I1 RapDeC(Rji)> (ﬂ R?ff') D g (Bad 0 T (1)

Ji,,ge=1 \i=m+1 i=1 TiE']I‘;,,m+1$i<k
i
<71
~
1000C, ’

if Ry is chosen sufficiently large.
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Note that
m41, Tk m1 T
pr ¢ pa(Bad 75 = [ (Bad [ (@) o)

Then, by (3.10), one is able to choose a subset B Trmi1ooTk = By 5o that

“5Jk
k
pa(Bi25 ™) HR ECTT &)

and for all z € Ep\B; "1 T,

m
(Badh,:m’,j;,:rk(x)) < C(ij+1,-~- 1—[ R HR 3/2)6d)
i=m+1 i=1
Here, Nyy41,- -+, Ni are sufficiently large numbers that are chosen so that
k
X mB T < [ R0P
i=1

Tie’]I‘§1_,m+1<i<k

Define

mer( U U st

g1, de=1 T,ie']I‘;.i ,m+1<i<k

By taking Ry sufficiently large, one has ps(ES) > 1 — m as desired. Moreover,
for each x € EY, there holds

k m
> ( I1 RapDec(Rji)> (ﬂiji) > g (Bad 0 T (1)

Jiyede=1 \i=m+1 i=1 Ti€T} , m+1<i<k

< Z nRéd—(3/2)6d 1—[ RapDec(R;,) < Ry (1/2)6d

J1, gk =11=1 1=m+1

Hence the desired bound follows by choosing Ry sufficiently large.
O

The crucial ingredient in the proof of Lemma 3.4 is a new multiparameter radial
projection theorem (Theorem 4.5), which extends the one-parameter version proved
by Orponen [25]. Theorem 4.5 is in fact more general than Orponen’s theorem, as
it includes the case that « is small as well. The statement and the proof of Theorem
4.5, as well as the proof of Lemma 3.4, will be given in the next section.

4. PROOF OF THE MULTIPARAMETER RADIAL PROJECTION THEOREM

We prove the new multiparameter radial projection theorem in this section,
which may be of independent interest. We first prove the special case of the theorem,
Theorem 1.2, where « is assumed to be very large. It is then extended to the general
case later. The proof of Lemma 3.4, which implies estimate (2.1), is presented at
the end of the section.

Below are several ingredients used in the proof of Theorem 1.2.
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Denote e = (eq, -+ ,ep) € SU=1 x ... x §%~1 and consider the orthogonal
projection

Te=Te, X+ XM, :RT=RY x ... x RY¥ e x--- x ef,
where e € G(d;,d; — 1) is the orthogonal complement of the vector e; in R% and

e, : R — eiL is the corresponding orthogonal projection. Given y € M(R?) and
y € RY with y; ¢ m;(supp u), define

4
ﬂy(x) = th"' ,de H |xz - yi|1ididﬂ(aﬂ’)’

i=1

where Cy, ... q, is chosen to make Lemma 4.1 below true.

,de

Lemma 4.1. Let € C.(R%) and v € M(R?) with 7;(supp u) N 7;(suppv) = @,
Vi=1,...,£. Then, for p e (0,00),

(£) _
J”P MyHLp Sd1—1x.. ><Sd€*1) dl/(y) - J\Sd1*1><~-~><5d2*

—¢
) ”7"6#”1£p(7re,,)d7{d (6)»
where HAt .= Hd1_1|sd1,1 X oo X Hde—1|sdz,1.

Lemma 4.1 follows from exactly the same argument as its known one-parameter
analogue, see [25, Lemma 3.1]. We will also use the following generalized formula
for integration in polar coordinates, see [22, (24.2)]:

Lemma 4.2. For any non-negative Borel function f on R™,
@y || el @ an @) = G [l ) dy,
Glnk) Jvt n

where vy, i is the Haar measure on G(n, k).

Lemma 4.3. Let 0 < a < d. Let p € M(R?) with u(B(z,7)) < Co(u)r®, Yo e RY,
Vr > 0. Then

_dp(z)dp(y) )
S~ | e A s Ca(w)?,
R JR4 Hz 1 |331 yil" R [ [ [&]%
whenever 0 < t; < a—d+d;,Vi = 1,--- ,£. Here the implicit constant in < can

depend on the diameter of the support of .

Proof. Let the diameter of the support of 4 be L. Note that for (ry,--- ,7,) with
rj =min{r; :i=1,--- £} and r; < L, Vi,

I (Bd1 (z1,71) X -+ X Bd’f(xg,rg))
d; 14
r —d+d; d; —d+d;
Calirs TT(2) = ot TTrit < Cati [ Tre
1#] 1#] =1
Then, by decomposing into regions 277 1L < |z; — y;| < 277 L, we get that

2_.71(0‘ d+d;)

0 14
y) < 2 2
< Gy (ﬂ) < Ca(ﬂ) »
J]Rd Rd HZ 1 |:cl Z]:Z 0 n 2—Jits

Yi 1, i=1

provided that t; < o« —d + d;,Vi =1,--- , £, as desired. O
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Lemma 4.4. Let ve M(R?). Let 0 € M(S4~1 x ... x S4=1) with
o (B (21,m1) x -+ x B¥(zg,7)) 0 (ST x o x SU1)) <t ot

Then
J J J dﬂ'zy(z)dﬂev(w) do(e)
Sd1—tx..xSde=t Jet x-xef Jer x-xef Hi:1|zi 1K
J (z)dv(y)
R¢ JRd Hz 1|30z yilts
whenever t; < B;,Vi=1,--- L.

Proof. We first notice that
J : do(e) <— 1 .
str=coxstet [ oy |me ()l [Ty il
Indeed, for fixed z; € R%, the subset {e; € S%~! : |m,(2;)| < 277 |2;|} is con-

tained in a spherical cap of radius ~ 277, and hence, by decomposing into regions
2797 | < |me, (m)| < 277|4], we get that

4

do(e) Z 1—[ 2 Jibs 1
-~ 7 @<
J;; ¥4 . 2 Ji I’L| |£: |t ’

di-yx st [Tizy [me, ()]t T je=0 i= 1

provided that t; < §;,Vi =1,--- L.
Therefore,

f f J drev(Z)dmer(w) 4o
Sd1-1x...xShe=1 Jed x..xet Jet

L
1 7 X Xey Hi:l |2

f f dvladvly) o
stn—tcenste—t Jra Jra TT [me, (s — o)

‘[ @)ivly)
R JR4 Hz 1|$z yil"

(]

Proof of Theorem 1.2. Fix a > d — 1 and 8 > 2(d — 1) — o, we choose § > 0 such
that o — (d — 1) > § > (d — 1) — 8. We'll prove that

JHP(Z /’LHLP Sd1-1x.. x Sde—1) dv(y) <€ Ca(p)"Ca(v),

whenever

(4.2) 1<p<min{ 2(di — 1) Bdﬂii--_l,..,e}.

20d;—1)—6 di—1-0 '
Note that the choice of § guarantees that the right hand side of (4.2) lies in (1, 2),
so the range of p is nonempty.

Let {1, : n € N} be a standard approximation of identity on R?. Given p €
M(RY), gy, 1= p* b, — p weakly and so Py),un — P?Se)u weakly for y € suppv,
due to the assumption that the supports of p and v have separated projections.
Then, by Fatou’s Lemma,

J 1RO iy () <t [ 1P g1y 0.
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Note that Cu(pn) < Col(p),Vn € N. Therefore, to prove Theorem 1.2, we may
assume that u € C%(R?), and hence meu € CP(ef x -+ x ef) for ee SH—1 x ... x
SdF1 From Lemma 4.1 it follows that

f IPOUIE g1 gty d(0)

< j HPZSZ My”ip(sdlfl x-ox Sde—1) dl/(y) = f

Sdl—l X“_Xsdg—l

HWeMHip(ﬂe,,)de_z(e) .

Next, for fixed e € S 71 x ... x §4~1 we estimate || mept| 1o (x,,). By duality, we
can choose non-negative f with | f|za(..,) = 1 and ¢ = p’ such that

(4.4)

|‘7T€/’[/HLP(TI'QV) = f Tefb - fdﬂ-el/
et x-xef
P 1/2 P 1/2
< (f G| |5Z-|‘5d£> < f [fdrev(©P [ 16177 d&)
ef X xef i=1 el xxer i=1
Moreover,

4
(4. Joo. ., P T
<[ [ Hm w9 i (2)dr ()
1/p
< <ffl_[ |2i — w; [PO~%i+D) dwel/(z)dwey(w)> ,
i=1

where the second inequality follows from Holder’s inequality.
Now, in view of (4.3), by duality again, we can choose non-negative g with
|9l a(sar-1x...xgae-1y = 1 and 2 < g = p’ such that

1
P(Z p /p
” MHLp Sd1—1x.. deefl) V(y)

< f et Lo oy 9 () dH () < AV2BY?
Sdl—lx . XSd@—l

where the second inequality follows from the estimate of |mep|p(r,.) as in (4.4)
and (4.5), and

A= Ik 5 d—t
J>Sd171><.4.><sdg—1 fo---x |7Te/’(‘ | n|€z| dfd% ( )

=1

d 1/p
B = J <JJH |2 — wi|P(6—di+1) d’/Tel/(Z)dﬂ'eI/(w)> 9(6)2d7-ld_e(e) .
Sd1—1x...xSde—1 bl

To complete the proof of Theorem 1.2, we will show that A < C,(p)? and B <
Cp(v)*/P.
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Note that for (£1,---,&) € et x -+ x ef,
(71—61 Xowee XT(E@M)A(glv"' 755)
=(Id]Rd1 X ey X oo+ X ﬂ-ez,u)/\(nlaééf" 76@) =" :ﬁ(nla 7"75)7

where 7; = &; is viewed as a point in R%. Hence, by applying Lemma 4.2 repeatedly
in each variable and then applying Lemma 4.3, we get that

14
(46) As [ AP inl" do s Calu.

i=1
provided that d; +d—1 < a—d+d;,Vi=1,--- £, i.e. « > d—14 6, which indeed
holds by our choice of §.
To estimate B, we first apply Holder’s inequality

¢
B? < J ffn |zi — wi PO~ dr o (2)drov(w)g(e)PdHI ()
Sd1—lx...xGde—1 i=1
and observe that

| gle)Pami=(e)
(B (z1,r1) x--x B (z4,r0))n(S41 1 x... x Sde—1)

p/q
(J g(e)qd’Hd_e(e)> (”;’-ld_z(B”l1 (T1,71) X -+ X B (mg,w)))
§d1—1x...x Sde—1

N

‘
< H rl(dﬁl)(%p) )
i=1
Therefore, by Lemma 4.4 and Lemma 4.3,

(4.7) BP $J' i dv(z)dv(y) < O,
re Jre [[;_; |z; — y[P(di=1-9)
as desired, provided that
: 2(di — 1) :
1 1) (2—p), le p< T =,
p(d’b 6)<(d1 )( p)7le p<2(d1—1)—5’ V’L ) aev

and dtd

pldi—1—-8) < B—d+d, ie p< %, Vim0,
which is indeed the case by our choice of p as in (4.2). O

When a < d—1, Theorem 1.2 is not applicable. However, we will show below that
by combining with orthogonal projections, the multiparameter radial projection
result does hold true on a set of product subspaces of certain dimensions depending
on «a. Here is some notation.

Fix d = (dy,--- ,dg) and k = (ky,--- ,k¢) with £ > 1 and 2 < k; < d;. Let
d=dy+---dpand k = ky; + --- + kg. Denote

V= (Vl,"~ ,W)EG(dl,kl) X oo XG(dz,kz) =: G,

and

dV(V) = d’ydlqkl (Vl) T d’ydz,kz (w)
Let m; : R* —» R%, Ty, R% — V; and

Ty =my X x 7y, RE=R¥ x oo x RY 5 V) x - x V= RF
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be orthogonal projections. Given V = (Vi,---, V) € G and w = (wy, -+ ,wp) €
Vi x --- x Vy, define the ¢-parameter radial projection

P,Ef) Vix - xVi\{z: 2 =w; forsomei=1,--- £} — SF171 ... x ghe—l
by

PO (A z—we )
v =\ mel Tl

Theorem 4.5 (Multiparameter radial projection theorem). Let M := max{d—d;+
ki—1:1=1,---£}. Supposea > M, 3 >2M—«a and 8 > M—(k;—1),Vi=1,--- L.
Then there exists p = p(a, ) > 1 such that the following holds. Suppose that
w,v e M(R) with

(1) ﬂ-i(supp#) N ’/Ti(supp V) = @, Vi = ]-7 s 76;

(2) u(B(z,7)) < Colp)r®, v(B(x,r)) < Cg(v)rf, Yo e R, ¥r > 0.
Let G = {V = (V1,---, Vo) € G : my, omi(supp p) N 7wy, o m(suppv) = &, Vi =
1,-+-,£}. Then,

1/p
L 1Pmentty g gy dmvv() ) d2(V) 5 Cal)Cat)
1 X0 4
where the implicit constant depends only on d and the diameter of supp p U supp v.

Proof. By the conditions that o > M, § > 2M —« and 8 > M — (k; — 1),Vi =
1,---,¢, we can choose 6 > 0 such that «a — M >6 > M —Fand k; — 1 > §,Vi =
1,---,£. We’ll prove that

1/p
L POl s gy () ) V) < Cal)C)
’ 1x X Vo
whenever
. Ak —1) B—d+di
4. 1 2 =1, .
(4.8) <p<m1n{72(ki1)57ki15 i , ,K}

Note that the choice of § guarantees that the right hand side of (4.8) lies in (1, 2],
so the range of p is nonempty. By a similar limiting argument as in the proof of
Theorem 1.2, we may assume that p € C%(R?).

Following the proof of Theorem 1.2 up to (4.6) and (4.7), we can tell that

1/p
(J ”PQ(f)WVN”Z/;p(skrlX.».xskrl) dwvu(w)) < AV2BY?.
Vix--xVp

where
¢

(4.9) R

V1><~~><Vg i=1
and

[T (n)?
P

(4.10) BP < f 7 ToE—— ,

Vix--xVy Hi:l |77z p

provided that p(k; —1—90) < (k; —1)(2—p), i.e. p < %,Vi =1,.--,/, which
indeed holds by our choice of p.
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Therefore,

1/p
‘
Jf(fvl XV, ”P’SJ)WV“”Z;P(SM1X...xsw—1)d7rvu(w)) dvy(V)

<(J, ) ([ o)

and hence it suffices to prove that

| Advy s o and | Bavw) < Ca0)7.
G G

Indeed, because of (4.9) and (4.10), by applying Lemma 4.2 repeatedly in each
variable and then applying Lemma 4.3, we get that

A
Ady(V) <
L S T e

provided that k; —1+d <a—d+d;,ie. a>d—d;+k;—1+6,Vi=1,---,¢,
which is indeed the case by the choice of §, and

dé < Ca(p)?,

g (o)L :
(] Bevn) < | mravy < [ i 4 < O

provided that p(k; — 1 —6) < 8 —d +d;, i.e. p < £=55% Wi = 1,-- £, which is

guaranteed by the choice of p. This completes the proof (I

With Theorem 4.5 in tow, we are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. Recall from the construction of sets Fi, Esy, that for each
i=1,---,¢, there is a pre-selected k; dlmen51onal subbpace W; < R% (with k;
equal to dl — "’T + 1 when dpiy, is even, d; — % +3 L when dyy is odd) such that
the projections of 7, F5 onto each W; are separated by distance 2 1.

For each j = 1,2, there exists a Frostman measure p; supported on E; satisfying

p;(B(z,r)) < r®, VreRY ¥r>0.

For each 1 < ¢ < ¢, since my, o m;(E1), mw, o m;(E3) are well separated, one has
that dist(my, o m;(E1), my, o m;(Eg)) 2 1 for all V; in a small enough neighborhood
of W; in G(d;, k; ) the Grassmanian of k;-dimensional subspaces in R%:.

Since o > d — ®min | the pair of measures p1, 2 satisfy the conditions in Theorem
4.5. Therefore, applymg Theorem 4.5, there must exist some V; € G(d;,k;) in a
small neighborhood of W;, i = 1,--- | £, such that the inner integral in the concluded
estimate in Theorem 4.5 is finite, in other words, for some p > 1,

4
(4.11) f IPOT 2L, g 1oy dmv i (w) < +oo.
Vix--xVy
Our goal is to estimate the set Bad}; ’”“’ Tk by a properly defined bad region
in V1 x -+ x Vy and to apply (4.11).
More precisely, note that for each ¢ = 1,--- ,m and each j; > 1, each tube

T; € Ti under consideration is projected by my, to a tube of comparable dimen-

sions (with side length ~ 1 in the long direction, and ~ R Rl in the rest of
the directions). This is because that if T; appears in a product bad tube, then

by definition of Bad; m“’J; Tk it must intersect both m;(E1) and m;(E,), where
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mi : R? — R% denotes the orthogonal projection. Therefore, the collection T%
gives rise to a collection T; of tubes in V;. We also denote T* = ujizlfl’;-i
For every (T1,--- ,Tm) € le-l X e X ﬁ‘;’:ﬂ, define it to be bad if
‘2 7 Vm+1 Vg
myp2(4Ty x -+ x 4T, x B ><---><Bl)2

di _ dpin
L —-min 4 e(q)d .
1 1R 3 ) Te@) , dmin is even;

CO(ij o ;Rj ) . dyin ,
" I R DT s odd.

where B)" denotes the unit ball in V; centered at the origin.

Then, it is easy to see that for any given (Tp,41,---,Tk) € T;’;tll cee X 'H‘;fk,

[ % IJQ(B m+1;k",T ) < Ty X Wvug(Badjl)...Jm),

with the bad region defined as

]?;lajl’. _{ y, E ™V El) X 7T\/(E2) : H(Tl, ,Tm) € 'TI‘]II X - X ’]Ty:n s.t.

T1><--~><Tm is bad, §;,%; € 203, Vi = 1,--- ,m}.

Indeed, if (T1,- -+ ,T) € ']I‘}1 x T is such that Ty x - - x Tj; is (1,- -+, k)-bad,
then there holds

Ty e (Amy (T1) % -+ x 4y (Thy) x BY™* x -+ x BY?)
>1p(ATy % -+ x ATy x B{™*' x - x Bd)
>p0(ATy x -+ x AT, x B x ... x B%).

Hence, the image of T x --- x T}, under the projection 7y is contained in some

bad Ty x -+ x T, if one chooses
k Ri(% nnn)+c(a)6 d . )
Co(R; R:. )= Hi:erl ji s min 18 €VEN;
0( Jm+10 """ ,]k) = di _dmin 1 .
k —(F—=gin — ) +c(a)d .
[ — R, ,  dmin 18 odd.

It thus suffices to estimate my 1 x my e (Badh, )
Write

7TV/,[/1 X 7TV/,L2 (Ba’dj17"' yjm,) = J‘TFVMQ (Badj17"' 7j7n (g>) dﬂ'Vﬂl (g)

< [ Pmvna (P (B, ())) drvin (),

where
. 3 } ¢
Badj, ... ;,,(9) = U 2Ty x -+ x 2Ty, | X ( I B¥i> -
i=m+1

(Ty ><---><Tm)~e’f;1 x---x’ﬁ‘;’jn bad
gie2Ts i1, m
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Then, by Holder’s inequality and the multiparameter radial projection estimate
(4.11), we get that

7TV,U1 X 7TV,LL2(Ba»d]17 7j'm)

—~— 1-1
<sup [P (Bad, .5, @)] " [ 1P 7yl drv i ()
Y

1—1
P

0w _
<sup | Py (Bady,....;,,(9))|
]
It remains to estimate ‘Pg([) (E&ijh...dm (gj))‘ For every g € V4 x --- x V; and

T; € T;w let A(ﬂ) be the cap on the sphere S*~! — V; whose center corresponds

to the direction of the long axis of T; and with radius ~ Rj:_%”. Since dist(my; o
mi(E1), my, 0omi(E2)) 2 1, one has Py, (my, om; (E2) n4T;) < A(T;), where Py, denotes
the one-parameter radial projection map centered at y; € V;. Similarly, it is easy
to see that the product cap A(Ty) x --- x A(T},) x SFm+171 x ... x k=1 contains
the image of 4T} x - - - x 4T}, X BY’"“ X oo X BYZ under the radial projection Py@.

Therefore, one can cover Pg(l) (é&iﬁ,.., jm () by product caps of the form A(Ty) x

- x A(Ty,) x SFme1=1 5 ..o 5 §ke=1 wwhere each Ty x --- x Ty, is bad. For any
such product cap, there holds

Pg(e)wvﬂg (A(Tl) X oo X A(Tm) % GEme1=1 o ..« Ske—1>

>7rvu2(41~’1 x -+ x AT, x BY’”“ X oo X BY‘)

d;  dp;
m —(F—"min)te(w)d .

>C R R Hi:1 Rj,y 2 4 5 dmin 1S even,
= 0( Jm+1s """ ]k) m _ %—d’ii“—%)-ﬁ-c(a)é .

12, R, , dmin is odd.

By the Vitali covering lemma, there exists a disjoint subcollection C of such prod-

uct caps so that their dilations by a constant (say, 5) cover Pg(e) (]%Hjl,i.. g (D))
Hence, the total number of disjoint product caps in this covering is bounded by

d .
m =k — i —c(a)d e .
#C < CO(Rj,,L+17 L. >Rjk)_1 . Hi:1 Rziwilic(;)é dmm 1S even;
I, Rz 4 , dmin is odd.
Therefore,
) (53 ~ o —146 ki—1
’Pg( )(Badj1,~~~,jm (y))‘ < (1—[ Rg.i 2 T9)( )) C#C
i=1
T (e(a)—d;+ “min)s
§C(ij+1, T 7Rjk) H Rji ’ ’
i=1
where | - | denotes the product surface measure on S¥1 7! x ... x %=1 Then the

desired estimate (3.10) follows by taking c¢(«a) sufficiently large.
O

5. STEP 2: PROOF OF (2.2)

In this section, we prove (2.2), which will conclude the proof of our main theorem.
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Recall the setup. Let d = dy + -+ + dy with £ > 1 and dpi, = min{d; : i =
78} > 2. Let El,EQ (e Bd(O,l) with diSt(Wl'(El),’lTi(EQ)) = 1,VZ = 1, ,E,
And p; is a probability measure supported on E; such that

wi(B(x, 7)) Sr®, VYeeRLVr>0, wherej=1,2.
The good part of p; with respect to us is defined as
mo=y X (I ow)( S v w),
k=01<i1<--<ip<l Ni#i1, - ,ik (Tiy s 7Tik)ejﬂl oo x Tk
(i1, ik )-good
We want to prove that

(5.1) j Id2 2
E>

12dps(z) < 0,

if
. d— d";" + l dmin 18 even,
d— g 4 44 2 di is odd.
By the definition of a pushforward measure, we have
dopyg(ty, - ) = t‘lilfl . 'tzﬁllil,g (1) o1, £(2) Oty - - £ oy, (x),

where o, denotes the normalized surface measure on ;9% =1 and () stands for the
convolution in the i-th variable. Because of the assumption that dist(m;(E1), m(E2)) 2
1,Vi=1,--- £ we only need to consider t1,--- ,t; ~ 1. Hence,

GRS e
E>
NJ L iy D oy, +@ oo s g ()P iy ()
Es5 R+
:J J iy D 57 2@ D 5 ()BT g g ()
Es Ri

| g0 s R ey
T 2

where the second equation follows by applying an L? identity of Liu [18, Theorem
1.9] iteratively in each variable. For each fixed r = (r1,--- ,7,) € R%, we have the
following multiparameter weighted Fourier extension estimate for the above inner
integral over E5. Denote ¢, = 0,, ® -+ - Q 0y,

M;izlv...,g}zw. Let

Lemma 5.1. Let p = max{

di—1 min—1
2(d - — dz) dl dmin 2
77i=7*(5*74 )1--)
p p
when duyin 18 even, and
2(d —a—d;) d;  dmin 1 2
"= (G- T - 2)
P 2 4 4 P

when duyin s odd. Then, for any 0 < o < d and any € > 0 with e +n; < 0,Vi =
£, there exists a constant C. such that the following holds. For any r =
(rla"' ,7'() ER&,
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(5.3) J 1,g # 6 +®) O G0 ()7 dppa(2)
E>
: +e—(d;—1)
<05< min (77T > |1 |24, dE
[ Jmin )]
where ,
(&) = [ von (&).
i=1

Here, each ), is a weight function that is ~ 1 on the annulus r; —1 < |&| < r; +1
and decays off it. To be precise, we could take

U, (&) = (1+ |y — |&]])100%
Then, from (5.2), Lemma 5.1, and the inequality’

ni+€

)

1 o
f Tfi_lwm (&)dr; +J T?iﬂwm (&)dr; <&
0 1

it follows that
¢

f 2 2o dpin () <. f merT e
By R i=1

where the right hand side is finite, by Lemma 4.3, provided that

n:i+€ df,

di+m <a—d+d;, ie. a>d+n, Yi=1,.-- L

By a direct calculation, o > d + n; if and only if

. d— 7 + % dmin 1s even,
d—% + 5+ 77—, dumn is odd,
which concludes the desired result (5.1).
It remains to prove Lemma 5.1. A crucial tool is a multiparameter refined

decoupling theorem.

Here is the setup. Let d = dy + -+ +dp with £ > 1 and d; > 2,Vi = 1,--- L.
Let S; ¢ R% be a compact and strictly convex C? hypersurface with Gaussian
curvature ~ 1. For any ¢ > 0, choose 0 < § < €. For any R; > 1, decompose the
1-neighborhood of R;S; in R% into blocks 6; of dimensions Ri/z X oo X R;/z
For each 0;, let Ty, be a finitely overlapping covering of B%(0,1) by tubes T} of
dimensions R, 1/2+5 cee X R:1/2+5 x 1 with long axis perpendicular to ;, and let
T; = Uy, To,. Each T € T, belongs to Ty, for a single 6;, and we let 6(T;) denote
this 0;. Let T={T =Ty x---xTy: T, € T;}. For T =T, x --- x Ty € T, denote
0(T) = 6(T1) x --- x O8(Ty). We say that f is microlocalized to (T,6(T)) if f is

essentially supported in 27 and f is essentially supported in 20(T).

ni+e

If in the integral over the interval [0, 1] the factor rd “lis replaced by 7 , then this inequal-

ity no longer holds in the case that n; < —1. This is the reason that we put mm(rm+6 (di=1) 1)

instead of 7‘"1+6 (@i=1) o the right hand side of the estimate in Lemma 5.1.
A correctlon for the one parameter case in higher dimensions: in [6, Lemma 4.1] we also
_d __(d-Da_ g
need to deal with a similar issue, and the factor r 2(d+1)  d+1 +e—(d-1) should be changed

—EDe e (d-1)

__d
to min(r 2(d+1D) ,1). The new estimate still holds following the proof there.
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Theorem 5.2 ({-parameter refined decoupling). Let p > 2. Let f = > oy fr,
where W < T and fr is microlocalized to (T,0(T)). Let'Y be a union of boxes
q=q % xqgin B each of which intersects at most M product tubes T € W,

where g;’s are R;l/Q—cubes in B%. Then,
(1) Ve >0,

¢ 1/p
e < OG(HR?*G)MH( 3 |fo;) |
i=1

Tew

(2) Suppose further that |fr|rr is roughly constant among all T € W and
denote W = |W|. Then, Ve > 0,

¢ M -2 1/2
W < e (TTR) (37) (2 1sein)

1=1 Tew
Here
2(d;+1
0, 2 <p< 2itl)
Vi T ) dim1 i+t S 2(dit1)
1 w0 PZ g1 -

Note that the power ~; of R; is the same as that in the classical decoupling
theorem for the corresponding p. The two parts of Theorem 5.2 are equivalent: part
(1) implies part (2) trivially; conversely, part (1) follows from part (2) combined
with a dyadic pigeonholing about the quantity | fr|re.

The proof of Theorem 5.2 follows in the exact same way as that of its one-
parameter analogue [11, Corollary 4.3], except that the use of the classical decou-
pling theorem is replaced by its iterated version. The details are left to interested
readers.

Proof of Lemma 5.1. Given r = (r1,---,ry) € RY, suppose 7; > 10Ry for i €
{il,"' ,ik} and T < IORO for 4 ¢ {il,"' ,ik}. Here 0 < k < fand 1 < il <
<o < 4 < £. To ease the notation, in the following we’ll consider the case
{ir, - ,ix} = {1, -+ ,k} (the computation for the most general case is similar).
Then, by definition (3.1) of 1 4, one has that u; 4+ & #2) .. () 57 is equal to

4
7 1 k 1) —~ 2 l) —~
3 (n M0)< v MT1-~~MTku1)*()07-1*“~~*”%-
Rj, ~71, i=k+1 (Ty,- ,Tk)e']rjl,l X...X']I‘j;g
Ry~ (1, ,k)-good
2(d; +1)

Fix p = max{ﬁ ti=1,-- ,K} = %. Let 11 be a bump function

adapted to the unit ball B and define fr,..7;, to be

¢
771(< H MS) (Mil“l"'Méc‘kﬂl) «D g 1) O @)

i=k+1

Denote = = (2/,2"), where ' = (21, -+ ,x) and 2" = (xg41, - ,2¢). Then for
fixed «”, fr,..7,(-,2") is microlocalized in (T, 6(T')), where T =Ty x --- x T}, and
0(T) = 0(Ty) x -+ x 8(T}), following the same deduction in [11, Section 5].
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For the sake of convenience, we write A £ B if A < C. (Hi;l R§> B,Ve > 0.
When rgi1,--- ,7¢ < 10Ry, we want to prove that

k
J |1 .g W g @O G ()2 dpo (2) € <Hr?i_(di—1)) J|//H|2wr d¢,
By i=1

where 7; is as given in Lemma 5.1. Applying dyadic pigeonholing, one can find A
such that

(5-4) JE g # W  +® O G (@) dpz () 5 flfx(r)IZduz(xL

where

=2  fnene

Ty X XTReW )

Here, we define W, to be

U {Tl X oo x Ty (T, -+ ,Tk)Ele-l X o x’]l‘?k is (1,--- , k)-good,
Rjy ~r1,
'“,Rjk’\/’l‘k

Hle"'TkHLP(dm) ~ )\} )

and denote W = |W,|.

Next, we pigeonhole to obtain the region Y, as a union of boxes ¢ = ¢; X -+ X g,
each of which intersects ~ M product tubes 7' € W, where ¢;’s are R, Y
B% | such that

2 .
-cubes in

(5.5) Jin@ran@s [ 6@k o).

Here d” = dj41 + -+ - + dy.

To bound the right hand side of (5.5), we notice that the Fourier support of fy
is essentially contained in the 1-neighborhood of 8% ~! x ... x r,S%~1 So we
can replace pi2 by g2 * 1 .. 1, where ni .. 1 is a bump function with integral

1 "k

T’ T

1 essentially supported on B‘E X - X Bcﬁ X B‘f". Then, by Holder we get that

1 Tl

| ih@Pduste)
Y xB§{

2 1—2

P P

(5.6) s(j |fA<x>|pdx) (f m*nl...lw’%dx) .
YXB?” YXB?” T ’rk

To bound the second factor in (5.6), denote z = (a1, ,zk, ") and rpax =
max{ry,---,7,}. By the choice of n1 . 1 and the property of s, we get that

J o xns .. 2lde < po (/\/%’__,%(Y) x B?N)
YXB?N Ty Th T T
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and

dy dj d 1 d 1 d" .
oy o (@) Sy (B (2, —) - x B (ay, —) x BY (a",1)

PT 71 Tk

« k 7" 4

$'rﬁll"'rlccl (7, ) (H max )( 1_[ r;iniax) =r§ﬂ;}<§<rf—a...rg—a,
max =1 T i=k+1
Here N1 .. 1 (V) := {(yl,---,yk):fl(xl,---,xk)eYs.t. |z —yil < 5 L vi= ,k}
Ty’ 0T

Therefore,

1—2
(5.7) (J lug o .. 1|72 dx)
YXB{W 10 Ty

k - 2 7 172
S(HT’Z@ (X)P><M2(N11(Y)XBI11>) p.
im1 T

Now we bound the first factor in (5.6). Let 2 = (2/,2”) € Y x B%'. For each
fixed 2", we apply k-parameter refined decoupling in Theorem 5.2 (part (1)) to get

that
(e f“?“)"’dm)p ([, 1peeor arar)”
§ Ml( |f ( /7 //)|pd 'd ”>P
(HT ) T;)V)\ JBf”j T\, T x dx
di4*1_dL2+1 M 1—;‘;( \ )
~ S 13 - f it 7
(ﬂr ><W> T§VA 1 F7 s 4z

where the last inequality follows from the condition that |fr|pr(z) ~ A for all
T € W,. Furthermore, by the definition of f7 we have that

1
| frll oany S 1T % BE 7] frlloo

1

[N

’T x BY|" 13, (0(T) x 14y STH171 x -+ x 1 8%1)

(LI, ) o )|

Hence, an orthogonality argument similarly as in [11, (5.3)] implies that

L2(dé,) .

(5.8)

(] » |Ja<ac>|pawc>2
(HT“ | )(%)li<ﬁrf(d_l) )(ﬁn“‘”)ﬁmwrda

where the implicit constant depends on Ry.
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«w My

Finally, we have the following incidence estimate for the term “7”.

ering the quantity
oD m (Nﬁ,.“;(q) x Bf”) :

qY TeEW \:qnT+#2 F

By consid-

one has
M - o (/\/i (V) x B;”) < W - max po (4T1 X - x ATy x Bl"> .
T 0T TeWy
Then apply the (1,--- , k)-good condition to get
o —(G—dmin,
=l —~ > dmin IS even,
M #Q(N;,...,L(Y)XBii >
(5.9) SRS Mg i o
w e TR ,
i=1 i , dmin is odd.
na(Na o sy
1 Tk

From the estimates (5.4)-(5.9) it follows that

K2

k
JE g * M 575 +® - 4O 5 () dpia(a) S (
2 =1

J““""”) Jluﬁl% dt,

where 7); is as given in Lemma 5.1, as desired. (]

APPENDIX A. PROOF OF COROLLARY 1.3 AND 1.4

First, notice that Corollary 1.4 follows directly from Theorem 1.2. Indeed, by
tracking the value of p in the proof of Theorem 1.2, one observes that for p € (1,2),

dim({xe R®: 2 # y;, Yy € suppp, i = 1,--- , £, pa(f)u¢ LP(Sh—1 x ... x del)})
<L2(d—1)—a+d(p),

where §(p) — 0 as p — 1. Corollary 1.4 then follows immediately.
We now proceed to prove Corollary 1.3. Fix set K = R such that dim(K) >
d — 1. We first show that

(A.1) dim(Inv'¥ (K)\Cross(K)) < 2(d — 1) — dim(K),
where
Cross(K) := {x € R?: 3i, 3y € K, such that z; = y;}.

To see this, fix any a € (d — 1,dim(K)), let u be a Frostman measure supported
on K satisfying u(B%(x,r)) < r® for all z € R?, 7 > 0. Then one observes that

(A.2) Inv® (K)\Cross(K) < S® (1),
recalling that
S(é)(ﬂ’) :{(E € Rd LT # Y, Vy € suppu, i = 1; 767
nge)u is not absolutely continuous w.r.t. ”Hd_e}.
Indeed, for all x € Inv(‘})(K)\Cross(K), by definition, H?* (Pé‘)(K)) = 0.

Hence, ngl) p must not be absolutely continuous w.r.t. H? ¢ as pu is a probability
measure.
Therefore, according to Corollary 1.4, (A.1) holds true.
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Next, we estimate the part Inv(?) (K) n Cross(K). Note that for any o € (d —
1,dim(K)), there exists a finite collection of subsets Ki,---, K, < K such that
H*(K;) > 0, Vj and the following property holds: for all z € Cross( ), there exists
Jj so that x ¢ Cross(Kj).

To see this, recall that we have assumed that d; > 2, Vi = 1,---,¢. Hence,
a>d—1>d—d;, Vi. Therefore, according to Lemma 2.2, there exist Fy, Fs ¢ K
with H*(E;) > 0, j = 1, 2, satisfying that E1, Ey are well separated in each of the /¢
components. Applying Lemma 2.2 again to E; (or E3), one can find Ey 1, Fh 2 < Ey
with H“(El,j) > 0, 7 = 1,2, and so that F; 1, L2 are well separated in each
component too. Continuing the process, one can then find subsets K1, , Kpi1 C
K such that HY(K;) > 0, Vj, satisfying that their projections onto each R% are
pairwise well separated. Now, for any = € Cross(K), each z; is in at most one of
m;(K;), for each ¢ = 1,---,£. Therefore, as there are £ + 1 of the K;’s in total,
there must exist some K; such that = ¢ Cross(kKj).

One then has that

(A.3) Inv® (K) n Cross(K U Inv(e) K;)\Cross(K;)).

Indeed, suppose x is not contained in the union on the right hand side. It suffices
to consider the case that z € Cross(K), as otherwise it is not contained in the left
hand side as desired. Using the property above, one has that there is some j such
that = ¢ Cross(K;). Since z ¢ Inv (K )\Cross(K), there holds z ¢ Inv(® (K;).
This means that K; is /-parameter vrsrble from z. Therefore, because K; < K, one
also has K is (-parameter visible from z, i.e. z ¢ Inv(¥) (K).

Now, applying (A.2) to each K, one has from (A.3) that

dim(Inv'¥ (K) n Cross(K)) < 2(d — 1) —

Since this holds for arbitrary a < dim(K), the desired estimate follows.
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