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a b s t r a c t

A coloring of edges of a graph G is injective if for any two distinct
edges e1 and e2, the colors of e1 and e2 are distinct if they
are at distance 1 in G or in a common triangle. Naturally, the
injective chromatic index of G, χ ′

inj(G), is the minimum number
of colors needed for an injective edge-coloring of G. We study
how large can be the injective chromatic index of G in terms
of maximum degree of G when we have restrictions on girth
and/or chromatic number of G. We also compare our bounds
with analogous bounds on the strong chromatic index.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Notation and definitions

For a positive integer n, we denote by [n] the set {1, . . . , n}. By ∆(G) we denote the maximum
degree of a graph G and by α(G) — the independence number of G.

For disjoint subsets A and B of vertices in a graph G, let EG(A, B) denote the set of edges in G with
one end in A and one in B. Also G[A] denotes the subgraph of G induced by A. By NG(v) we denote
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the neighborhood of vertex v in graph G, and let dG(v) = |NG(v)|. When the graph G is clear from
the context, we can drop the subscript.

A vertex coloring of a graph G is injective if for every vertex v of G, all the neighbors of v have
different colors. In other words, in injective coloring two vertices u and v must have distinct colors
if there is a u, v-path of length exactly 2. The injective chromatic number, χinj(G), of a graph G is the
minimum k such that G admits injective coloring with k colors.

Similarly, an edge coloring of a graph G is injective if any two edges e and f that are at distance
exactly 1 in G or are in a common triangle have distinct colors. The injective chromatic index of G,
χ ′
inj(G), is the minimum number of colors needed for an injective edge coloring of G.
Note that an injective edge coloring is not necessarily a proper edge-coloring. Also, χ ′

inj(G) may
significantly differ from the injective chromatic number of the line graph L(G) of G. In fact, if G has
no vertices of degree 2, the injective chromatic number of L(G) equals the strong chromatic index of
G. Recall that the strong chromatic index, χ ′

s(G), is the minimum k such that one can color the edges
of G with k colors so that every two edges at distance at most 1 have distinct colors. By definition,
χ ′
inj(G) ≤ χ ′

s(G) for every graph G and the difference between them can be large. For example, for
the star K1,n we have χ ′

inj(K1,n) = 1 and χinj(L(K1,n)) = χ ′
s(K1,n) = n.

1.2. Previous results

Injective vertex coloring was introduced and studied by Hahn, Kratochvíl, Sotteau and Širáň [17]
in 2002. In particular, they showed that for each graph G with maximum degree ∆,

∆ ≤ χinj(G) ≤ ∆(∆ − 1) + 1,

and both bounds are sharp.
The notion of injective edge coloring was introduced in 2015 by Cardoso, Cerdeira, Cruz,

and Dominic [12] motivated by a Packet Radio Network problem and independently in 2019 by
Axenovich, Dörr, Rollin, and Ueckerdt [1] (they called it induced star arboricity).

Cardoso et al. [12] proved that computing χ ′
inj(G) of a graph G is NP-hard and determined the

injective chromatic index for paths, cycles, wheels, Petersen graph and complete bipartite graphs.
They also proved that χ ′

inj(T ) ≤ 3 for each tree T and that χ ′
inj(K∆+1) =

∆(∆+1)
2 . Axenovich et al. [1]

concentrated more on another parameter, induced arboricity, but they also proved that the induced
star arboricity of each planar graph is at most 30 and can be as large as 18. Apart from this, they
presented bounds on the induced star arboricity of a graph in terms of its acyclic chromatic number
and treewidth.

Bu and Qi [10] gave upper bounds on injective chromatic index of graphs with maximum degree
3 and 4 and low maximum average degree. In particular, they showed that the injective chromatic
index of every subcubic graph with maximum average degree at most 18

7 (respectively, at most 5
2 )

is at most 6 (respectively, at most 5).
Ferdjallah, Kerdjoudj and Raspaud [16] used Proposition 2.2 of [12] to observe that the induced

star arboricity of a graph is exactly its injective chromatic index and proved a series of bounds on
injective chromatic index of ‘‘sparse’’ graphs. They proved that for every ∆ ≥ 3 and any graph G
with maximum degree at most ∆,

χ ′
inj(G) ≤ 2(∆ − 1)2. (1)

Ferdjallah, Kerdjoudj and Raspaud [16] posed the following conjecture.

Conjecture 1. For every subcubic graph G, χ ′
inj(G) ≤ 6.

Furthermore, for bipartite graphs, Ferdjallah et al. [16] proved stronger bounds: for any bipartite
graph G with maximum degree at most ∆,

χ ′
inj(G) ≤ ∆(∆ − 1) + 1, (2)

and for every subcubic bipartite graph G, χ ′
inj(G) ≤ 6. They posed the following conjecture:
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Conjecture 2. For every subcubic bipartite graph, χ ′
inj(G) ≤ 5.

If this conjecture is true, then 5 is tight (see [16]).
Ferdjallah et al. [16] also gave the exact upper bound of 5 for the injective chromatic index of

subcubic outerplanar graphs, and somewhat strengthened the result of Bu and Qi [10] for subcubic
graphs mentioned above.

For graphs without 4-cycles Mahdian [22] proved stronger upper bounds even for strong
chromatic index:

Theorem 3 (Mahdian [22]). For every C4-free graph G,

χ ′
s(G) ≤ (2 + o(1))

∆2

ln∆
.

The strong chromatic index of bipartite graphs was also studied. In particular, Faudree, Gyárfás,
Schelp and Tuza [15] in 1990 conjectured that χ ′

s(G) ≤ ∆2 for every bipartite graph G with
maximum degree ∆. Brualdi and Massey [9] posed in 1993 the refined conjecture that χ ′

s(G) ≤

∆(X)∆(Y ) for every bipartite graph G with parts X and Y , where ∆(X) (resp. ∆(Y )) is the maximum
degree of a vertex of X (resp. Y ). Partial cases of this conjecture were proved by Brualdi and
Massey [9], Nakprasit [23] and Huang, Yu and Zhou [19].

1.3. Our results

The goal of this paper is to present new bounds on the injective chromatic index of graphs with
given maximum degree involving chromatic number.

Our first results are two steps toward Conjecture 1:

Theorem 4. For every subcubic graph G, χ ′
inj(G) ≤ 7.

Theorem 5. For every planar subcubic graph G, χ ′
inj(G) ≤ 6.

The bound in Theorem 5 is exact: it is attained at K4 and the 3-prism.
The proof of this theorem yields a stronger bound for bipartite graphs which is a step forward

Conjecture 2: it implies that χ ′
inj(G) ≤ 4 for every bipartite planar subcubic graph. This bound is

attained at the 3-dimensional cube Q3 with any edge deleted.
The main result of this paper is the following bound significantly improving (2):

Theorem 6. Let 2 ≤ χ ≤ ∆. If G is a graph with maximum degree ∆ and chromatic number χ , then

χ ′
inj(G) ≤ (χ − 1)⌈27∆ ln∆⌉. (3)

In particular, if G is bipartite, then χ ′
inj(G) ≤ ⌈27∆ ln∆⌉.

We also discuss the bound of Theorem 6 and compare it with similar bounds for χ ′
s . First, we

show that without restrictions on the chromatic number, the bound is much weaker even for graphs
with large girth. In fact, the order of magnitude of the bound in Theorem 3 cannot be improved not
only for strong chromatic index but also for injective chromatic index even for graphs with arbitrary
girth:

Proposition 7. For every ∆ ≥ 3 and g ≥ 3, there exists a graph G with maximum degree ∆ and girth
at least g such that χ ′

inj(G) ≥
∆(∆−1)
4 ln∆

.

Then we show that the bound in Theorem 6 cannot be made less than ∆ even for bipartite graphs
with any girth.

Proposition 8. For every ∆-regular bipartite graph G, χ ′
inj(G) ≥ ∆.
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Finally, we show that the result of Theorem 6 does not hold for strong chromatic index.
Moreover, we show that there are bipartite ∆-regular graphs of large girth that do not have ‘‘too
large’’ induced matchings.

Proposition 9. For every ∆ ≥ 21 and g ≥ 3, there exists a ∆-regular bipartite graph G with girth at

least g such that the size of every induced matching in G is less than k = k(∆, n) =
⌈

3n ln∆

∆

⌉

, where n

is the number of vertices in each of the parts of G. In particular, for each such G,

χ ′
s(G) ≥

∆2

3 ln∆
.

In the next section, we prove Theorems 4 and 5, in Section 3 prove the main result, Theorem 6,
and in Section 4 Propositions 7–9 are proven.

2. Subcubic graphs

2.1. A bound for all subcubic graphs

Another way to define the injective chromatic index of a graph G is to consider the graph G(∗)

obtained from G as follows: V (G(∗)) = E(G) and two vertices of G(∗) are adjacent if the edges of G
corresponding to these two vertices of G(∗) are at distance 1 in G or in a triangle.

Then

χ ′
inj(G) = χ (G(∗)). (4)

Also,

∆(G(∗)) ≤ 2(∆ − 1)2. (5)

We will apply to G(∗) the following theorem of Lovász [21].

Theorem 10 (Lovász [21]). Let G be a multigraph with maximum degree ∆. Let t, k1, k2, . . . , kt be

nonnegative integers such that

k1 + k2 + · · · + kt = ∆ − t + 1.

Then the vertices of G can be partitioned into sets V1, V2, . . . , Vt so that the subgraph induced by each

Vi has maximum degree at most ki.

Our goal is to prove Theorem 4: For every subcubic graph G, χ ′
inj(G) ≤ 7. We will study minimum

counterexamples to the theorem and will show that they do not exist. We will exploit partial

injective 7-colorings of edges of graphs when not every edge is colored. Given a partial injective
edge coloring f of H with colors from [7] and an uncolored edge e ∈ E(H), Cf (e) denotes the set of
colors in [7] not used on the edges at distance 1 from e or in a common triangle with e. Furthermore,
C f (e) stands for [7] \ Cf (e).

We will use only Claims (d) and (f) of the lemma below, but it will be convenient to prove all
of them in alphabetical order.

Lemma 11. Let H be a counterexample to Theorem 4 with minimum |E(H)| + |V (H)|. Then
(a) H is connected and has at least 8 edges;

(b) H is 3-regular;
(c) H does not contain a K4 − e;

(d) H does not contain a triangle;

(e) H does not contain a K2,3;

(f) H does not contain a 4-cycle.
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Proof. Claim (a) immediately follows from the minimality of H and the fact that we have 7 available
colors.

Suppose H has a vertex v of degree at most 2. The case when d(v) ≤ 1 is trivial, so suppose
N(v) = {u, w}. By the minimality of H , graph H ′ = H − v has an injective edge coloring f with
colors in [7]. Since the degrees of vu and vw in H (∗) are at most 6, we can greedily extend f to vu
and vw. This contradicts the choice of H and hence proves (b).

Suppose H contains a copy F of K4 − e with V (F ) = {a, b, c, d}. If H[V (F )] = K4, then either H
is disconnected or H = K4 and has 6 edges. Both possibilities contradict (a). Thus we may assume
bd /∈ E(H). By the minimality of H , H ′ = H − {a, c} has an injective edge coloring f using colors in
[7]. Each e ∈ {ab, bc, cd, da} has at most three colored edges in H ′ at distance one, so |Cf (e)| ≥ 4.
Furthermore, |Cf (ac)| ≥ 5. Thus we can color greedily these edges in the order ab, bc, cd, da, ac.
This proves (c).

Suppose H contains a copy F of K3 with V (F ) = {u, v, w}. Let u′, v′, and w′ denote the neighbor
of u, v and w outside F , respectively. By (c), u′, v′ and w′ are pairwise distinct. By the minimality
of H , H ′ = H \ V (F ) has an injective edge coloring f using colors in [7]. For each e in E0 =
{uv, vw,wu, uu′, vv′, ww′}, we have |Cf (e)| ≥ 3. The maximum degree of H (∗)[E0] is 3, and H (∗)[E0]
does not contain K4. So by the list version of Brooks’ Theorem (see e.g. [25] or [14]) H (∗)[E0] is
3-choosable. Thus we can extend f to whole H . This contradiction proves (d).

Suppose H contains a copy F of K2,3 with parts {x, y, z} and {u, v}. By (d), H[V (F )] = F . Let x′, y′

and z ′ be the neighbor of x, y and z, respectively, not in F . Some of them may coincide. By the
minimality of H , H ′ = H \ {u, v} has an injective edge coloring f using colors in [7]. For each e
in E0 = {xu, xv, yu, yv, zu, zv}, we have |Cf (e)| ≥ 3: for example, the colored neighbors of xu are
yy′, zz ′ and two edges incident to x′. The maximum degree of H (∗)[E0] is 2. So by the list version of
Brooks’ Theorem, graph H (∗)[E0] is 3-choosable. Thus we can extend f to whole H . This contradiction
proves (e).

Finally, suppose H has a 4-cycle C = wxyzw. Let w′, x′, y′ and z ′ be the neighbor of w, x, y and
z outside of C . By (d), C has no chords. By (e), all w′, x′, y′, z ′ are distinct. By the minimality of H ,
H ′ = H \ {w, x, y, z} has an injective edge coloring f using colors in [7]. Let E0 = {ww′, xx′, yy′, zz ′}
and E1 = {wx, xy, yz, zw}. Since each e ∈ E0 has at most four colored edges at distance one,
|Cf (e)| ≥ 3.

Case 1: Cf (ww′) ∩ Cf (yy′) ̸= ∅, say 1 ∈ Cf (ww′) ∩ Cf (yy′). Extend f to ww′, yy′ by f (ww′) =
f (yy′) = 1. Choose distinct f (xx′) ∈ Cf (xx′) and f (zz ′) ∈ Cf (zz ′) from the colors available for them.
By symmetry, assume f (xx′) = 2, f (zz ′) = 3.

For each e ∈ E1, Cf (e) ̸= ∅ and e has only one neighbor in H (∗)[E1]. So, if we cannot extend to E1,
then by symmetry we may assume

Cf (wx) = Cf (zy) = {7}. (6)

Denote the set of edges incident to w′ except ww′ by U(w′), and define U(x′),U(y′),U(z ′) similarly.
Then in order for (6) to hold, we need f (U(w′)∪U(x′)) = {2, 4, 5, 6} and f (U(z ′)∪U(y′)) = {3, 4, 5, 6}.
Now since f (ww′) = f (yy′), there are at least two available colors for xx′. Let α be such color for xx′

distinct from 2. Recolor xx′ by α. Now both 2 and 7 are available for zy. Let f (zy) = 2, f (wx) = 7.
If 2 ∈ f (U(w′)), then 2 /∈ f (U(x′)). We can then extend f by letting f (xy) = 2, f (wz) = 7, if α ̸= 7.

If α = 7, let f (xy) = 7. Now for wz we have at most 6 forbidden colors, so we can extend f to wz,
as well.

If 2 ∈ f (U(x′)) then 2 /∈ f (U(w′)). In this case, we extend f letting f (xy) = 7 and f (wz) = 2. In
either case f is an injective edge coloring of H , a contradiction.

Case 2: Cf (ww′)∩Cf (yy′) = ∅ = Cf (xx′)∩Cf (zz ′). Since |Cf (e)| ≥ 3 for each e ∈ E0, we can extend
f to the edges in E0 so that f (xx′) ̸= f (yy′) ̸= f (zz ′) ̸= f (ww′) ̸= f (xx′). By the case, the colors of all
edges in E0 are distinct. By symmetry, we may assume f (ww′) = 1, f (xx′) = 2, f (yy′) = 3, f (zz ′) = 4,
and Cf (wx) = Cf (zy) = {7}. Then f (U(w′)∪ U(x′)) = {1, 2, 5, 6} and f (U(z ′)∪ U(y′)) = {3, 4, 5, 6}. If
we could recolor xx′ with some α ∈ Cf (xx′)− {1, 2, 3}, then we let f (xx′) = α, f (zy) = 2, f (wx) = 7.
As in Case 1, depending on whether 2 ∈ f (U(w′)) or 2 ∈ f (U(x′)), we can either color wz by 7 and
xy by 2 or vice versa.

Hence there is no such α. Again by symmetry we may assume that initially Cf (ww′) =
{1, 2, 4}, Cf (xx′) = {1, 2, 3}, Cf (yy′) = {2, 3, 4}, and Cf (zz ′) = {1, 3, 4}. But this is a contradiction
to Cf (ww′) ∩ Cf (yy′) = ∅. □
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Proof of Theorem 4. Let H be a minimal counterexample as in Lemma 11. By Theorem 10, the
set of vertices of H (∗) can be partitioned into two sets V1 and V2 so that ∆(H (∗)[V1]) ≤ 3 and
∆(H (∗)[V2]) ≤ 4. If χ (H (∗)[V1]) ≤ 3 and χ (H (∗)[V2]) ≤ 4, then we are done. By Brooks’ Theorem, if
χ (H (∗)[V1]) ≥ 4, then H (∗)[V1] contains a K4, and if χ (H (∗)[V2]) ≥ 5, then H (∗)[V2] contains a K5. So,
we have two cases.

Case 1: H (∗)[V1] contains a K4. Let e1, e2, e3, e4 be the vertices of this K4 and let ei = v2i−1v2i for
i ∈ [4]. Since H has no 3-cycles, all v1, . . . , v8 are distinct and all edges e1, e2, e3, e4 are at distance
exactly 1 from each other in H . By symmetry, we may assume that v1 is adjacent to v3 and v5, and
v2 is adjacent to v7. Then since H has no 3- and 4-cycles, in order to have e2 and e3 at distance 1,
we need v4v6 ∈ E(H). Now for the same reason, v7 is not adjacent to v3 or v5 and neither of v7

and v8 can be adjacent to two vertices in the 5-cycle v1v3v4v6v5v1. So again by symmetry, we may
assume that v7 is adjacent to v4, and v8 is adjacent to v5 (see the picture below).

Since ∆(H (∗)[V1]) ≤ 3, all the edges incident to {v1, . . . , v8} apart from e1, e2, e3 and e4 are vertices
in V2 in H (∗). In particular, vertex v1v5 ∈ V2 is adjacent in H (∗) to vertices v2x2, v2v7, v3x3, v8x8,
v6x6, v6v4 in V2, contradicting ∆(H (∗)[V2]) ≤ 4.

Case 2: H (∗)[V2] contains a K5. Let e1, . . . , e5 be the vertices of this K5 and let ei = v2i−1v2i for
i ∈ [5]. Let V0 = {v1, . . . , v10}. As in Case 1, all v1, . . . , v10 are distinct and all edges e1, . . . , e5 are
at distance exactly 1 from each other in H . In order to achieve this, each vertex in V0 has neighbors
only in V0. So by the minimality of H , |V (H)| = 10. The only cubic 10-vertex graph with no 3- and
4-cycles is the Petersen graph P (see [3] or [18]). As it was mentioned in the introduction, Cardoso
et al. [12] proved that χ ′

inj(P) = 5. Hence H (∗)[V2] is not K5, a contradiction again. □

2.2. A bound for planar subcubic graphs

We will use the following partial case of a generalization of Brooks’ Theorem proved indepen-
dently by Borodin [8] and Bollobás and Manvel [6].

Theorem 12 ([6,8]). If G is a connected graph with ∆(G) ≤ 3 not containing K4, then one can partition

V (G) into sets X and Y so that X is independent and G[Y ] is an acyclic graph with maximum degree at

most 2.

6
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Proof of Theorem 5. Let G be a vertex-minimal subcubic plane graph with χ ′
inj(G) ≥ 7. Then,

δ(G) ≥ 2, G is connected, and has at least 7 edges; in particular, G ̸= K4. So by Theorem 12,
V (G) = X ∪ Y where X is independent and G[Y ] is an acyclic graph with maximum degree at
most 2.

Construct an auxiliary (multi)graph G′ with vertex set Y as follows. For each x ∈ X , if N(x) =

{y1, y2}, then delete x and add edge y1y2, and if N(x) = {y1, y2, y3}, then delete x and add edges
y1y2, y1y3 and y2y3. By construction, G′ is a planar (multi)graph. By the Four Color Theorem, G′ has
a 4-coloring g .

We now color E(G) in two steps. On Step 1 for each edge xy connecting X with Y color xy with
g(y). By construction, for each x ∈ X , the colors of all edges incident with x are distinct. Also, two
edges of the same color cannot have an edge in Y connecting them. So, after Step 1, we have a
partial injective edge coloring of G with colors in [4].

On Step 2 for each path component y1, y2, . . . ., ys in G[Y ], color the first two edges with 5, second
pair of edges with 6, third pair again with 5 and so on. This yields an injective edge-coloring of G. □

If our planar subcubic graph G is also bipartite, then instead of the partition V (G) = X ∪ Y
provided by Theorem 12, we can use the natural bipartition of G, and do not need to run Step 2
and use the extra colors 5 and 6. Thus our proof has the following implication.

Corollary 13. For every planar subcubic bipartite graph G, χ ′
inj(G) ≤ 4.

The bound in the corollary is sharp: χ ′
inj(Q3) = 4 where Q3 is the graph of the unit 3-cube. Also,

if we delete any edge from Q3, the injective chromatic index of the remaining graph is still 4.

3. Graphs with high maximum degree

Our tool in this section is Lovász Local Lemma [13] in a slightly stronger form proved by
Spencer [24]:

Theorem 14 (Lovász Local Lemma [13,24]). Let A1, . . . , An be events such that Pr[Ai] ≤ p, for 1 ≤ i ≤ n.
Suppose each event is independent of all the other events except for at most d of them. If ep(d+1) < 1,
then Pr[

⋀n
i=1 Ai] > 0.

A subset F of edges of a graph G is G-good if no two edges in F are at distance 1 in G or in the
same triangle. In other words, a G-good set is an independent set in the auxiliary graph G(∗) defined
in Section 3, so that an injective edge coloring is simply a partition of E(G) into G-good sets.

For ∆ ≤ 40 the bound of Theorem 6 is weaker than (1). So, it is enough to prove Theorem 6
for ∆ ≥ 41. If χ (G) = χ , then there is a coloring of G with color classes Y1, Y2, . . . , Yχ such
that for every 1 ≤ j ≤ χ − 1, set Yj is a maximal (by inclusion) independent set in the graph
G[Yj ∪ Yj+1 ∪ · · · ∪ Yχ ]. The theorem below allows us for each 1 ≤ j ≤ χ − 1 to color the edges
connecting Yj to G[Yj+1 ∪ Yj+2 ∪ · · · ∪ Yχ ] with ⌈27∆ ln∆⌉ colors. Thus, applying this theorem χ −1
times will imply Theorem 6.

Theorem 15. Let ∆ ≥ 41 and k = ⌈27∆ ln∆⌉. If G is a graph with maximum degree ∆ and Y is a
maximal independent set in G, then we can partition E(Y , V (G) − Y ) into k G-good sets.

Proof of Theorem 15. Let X = N(Y ) = V (G)−Y . We will construct k random G-good sets J1, . . . , Jk,
using the following algorithm for j = 1, . . . , k.

Step 1: Construct a random subset Xj of X by including each vertex of X into Xj with probability
1
∆

independently of each other.
Step 2: Delete from Xj every vertex that after Step 1 has a neighbor in Xj.
Step 3: Let Jj be the set of the edges connecting Xj with Y .
Step 4: For each y ∈ Y , if y had at least two neighbors in Xj after Step 1, then remove all these

edges from Jj incident to y.

7
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We claim that

Jj is G-good. (7)

Indeed, since after Step 2, Xj is independent, no two edges in Jj are in a common triangle. Suppose
that edges x1y1 and x2y2 in Jj are at distance 1, say x1y2 ∈ E(G). But then after Step 1 vertex y2 has
at least two neighbors in Xj and hence on Step 4 edges y2x1 and y2x2 would be deleted from Jj. This
proves (7).

By (7), it remains to prove that with positive probability each edge in E(X, Y ) will belong to at
least one Jj. For this, we introduce several events and estimate their probabilities.

Denote the event that an x ∈ X is in Xj after Step 1 by F1,j(x). By definition, p[F1,j(x)] = 1/∆ for
each x ∈ X .

Denote the event that an x ∈ X is in Xj after Step 2 by F2,j(x). Then for each x ∈ X ,

1

∆
= p[F1,j(x)] ≥ p[F2,j(x)] =

1

∆
·

(

∆ − 1

∆

)|N(x)∩X |

≥
1

∆
·

(

∆ − 1

∆

)∆−1

>
1

e · ∆
. (8)

For xy ∈ E(X, Y ) let Fj(xy) be the event that xy is in Jj after Step 4.
Observe that for each xy ∈ E(X, Y ),

p[Fj(xy)] = p[F2,j(x)]
∏

x′∈N(y)−x

(1 − p[F1,j(x
′)]).

Hence by (8),

p[Fj(xy)] ≥
1

e∆

(

1 −
1

∆

)d(y)−1

≥
1

e∆

(

1 −
1

∆

)∆−1

>
1

e2∆
. (9)

For xy ∈ E(X, Y ), let A(xy) denote the event that none of Fj(xy) happened. We want to show that
with positive probability none of A(xy) occurs, because in this case we can assign to each edge one
of the k colors. We plan to apply Theorem 14, so we need to give upper bounds on the probability
of each A(xy) and on the number of events A(x′y′) on which depends A(xy).

The first part is easy, since for distinct j the events Fj(xy) are independent, and hence by (9)

p[A(xy)] =

k
∏

j=1

(1 − p[Fj(xy)]) ≤

(

1 −
1

e2∆

)27∆ ln∆

< exp{−
27 ln∆

e2
} = ∆−27/e2 . (10)

For the second part, we define Q (xy) as the set of edges x′y′ such that the distance from {x′, y′}

to N(y) ∪ (N(x) ∩ X) is at most 1 and will prove that for each xy ∈ E(X, Y )

A(xy) is independent of all A(x′y′) such that x′y′ ∈ E(X, Y ) − Q (xy). (11)

Recall that A(xy) is fully defined by the events F1(xy), F2(xy), . . . , Fk(xy), and that for all j′ ̸= j

event Fj(xy) is independent of all Fj′ (x′y′). Thus to get (11), it is enough to prove that for each
xy ∈ E(X, Y ) and each j ∈ [k],

Fj(xy) is independent of all Fj(x
′y′) such that x′y′ ∈ E(G) − Q (xy). (12)

By definition, for each xy ∈ E(X, Y ), event Fj(xy) occurs if and only if F1,j(x) occurs but none of
F1,j(x′) over all x′ ∈ (N(x) ∩ X) ∪ (N(y) − x) occurs. Since the events F1,j(x) are independent for all
x ∈ X , Fj(xy) is fully defined by the event

R(xy) =
⋃

x′∈N(y)∪(N(x)∩X)

F1,j(x
′).

It follows that Fj(xy) is independent of all Fj(x1, y1) such that R(xy) ∩ R(x1, y1) = ∅. Since each
F1,j(x′) belongs to R(xy) only for the edges xy such that {x, y} is at distance at most 1 from x′, (12)
follows. This in turn yields (11).

8
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Since for each x′ ∈ X there are at most ∆2 edges at distance at most 1 from x′, (11) implies that
Fj(xy) is independent of all but at most

⏐

⏐

⏐

⏐

⏐

⏐

⋃

x′∈N(y)

F1,j(x
′) ∪

⋃

x′′∈N(x)∩X

F1,j(x
′′)

⏐

⏐

⏐

⏐

⏐

⏐

∆2 ≤ (2∆ − 1)∆2

other events Fj(x′y′).
Therefore, by Theorem 14 with d < 2∆3 and p = ∆−27/e2 , it is enough to prove that

e · 2∆3 · ∆−27/e2 < 1. (13)

To derive (13), it is enough to check that ∆−3+27/e2 > 2e. Since −3 + 27/e2 > 0.654, this holds for
∆ > 40. □

4. Lower bounds

4.1. Proofs of Propositions 7 and 8

We will use the following result obtained by Kostochka and Mazurova [20] and independently
by Bollobás [5]:

Theorem 16 ([5,20]). For every ∆ and g, there is a graph G∆,g with maximum degree ∆ of girth at least

g such that α(G∆,g ) ≤ 2 ln∆

∆
|V (G)| and |E(G∆,g )| > (∆ − 1)|V (G)|/2.

Proof of Proposition 7. Fix any ∆ ≥ 3 and g ≥ 3. Let G∆,g be a graph satisfying Theorem 16.
Let n = |V (G∆,g )|. Assume that G has an injective edge coloring with k colors. Let {I1, . . . , Ik} be a
partition of E(G) into k color classes, and let I1 be a largest color class. Then

|I1| ≥
(∆ − 1)n

2k
. (14)

Let V (I1) denote the union of the vertex sets of all edges in I1. By definition, every component
of G[V (I1)] is a star. Hence, if we delete from V (I1) the center of each star (when the star has only
two vertices, then we assign exactly one of them as the center), then we obtain an independent set
J(I1) of vertices in G∆,g with |J(I1)| = |I1|. Thus by (14) and the choice of G∆,g ,

(∆ − 1)n

2k
≤

2 ln∆

∆
n.

This yields the proposition. □

Proof of Proposition 8. The argument is similar to the proof above (and simpler). For each ∆,
let B be any ∆-regular bipartite graph. By Marriage Theorem, α(B) = 0.5|V (B)|. As in the proof of
Proposition 7, the number of edges in any color class of an injective edge coloring of B is at most

α(B) = 0.5|V (B)| =
|E(B)|

∆
,

so we need at least ∆ colors for injective edge coloring of B. □

4.2. The bipartite configuration model

In order to prove Proposition 9, we will use a bipartite version of the configuration model.
This model in different versions is due to Bender and Canfield [2] and Bollobás [4]. The bipartite
version is considered in several papers. We follow the convention and use the results described in
survey [27](Section 3.2) by Wormald.

Let n and D be positive integers, and

Vn = Vn(D) = {v1, . . . , vnD} and Wn = Wn(D) = {w1, . . . , wnD} be disjoint sets. (15)

9
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A configuration (of order n and degree D) is a perfect matching from Vn to Wn (each edge has
one end in Vn and one in Wn). Let FD(n) denote the collection of all (Dn)! such matchings.

For every F ∈ FD(n) we define the D-regular bipartite multigraph π (F ) with parts Xn =

{x1, . . . , xn} and Yn = {y1, . . . , yn} as follows: For every j ∈ [n] we glue the D vertices vD·(j−1)+1,

vD·(j−1)+2, . . . , vD·j into a new vertex xj and the D vertices wD·(j−1)+1, wD·(j−1)+2, . . . , wD·j into a new
vertex yj.

Definition 1. Let GD,g (n) be the set of all D-regular bipartite graphs with parts Xn = {x1, . . . , xn}
and Yn = {y1, . . . , yn} and girth at least g , and G

′
D,g (n) = {F ∈ FD(n) : π (F ) ∈ GD,g (n)}.

Bollobás [4] and Wormald [26] proved that for each fixed g and D, there is ϵ(g,D) > 0 such that

|G′
D,g (n)|

|FD(n)|
> ϵ(g,D).

As discussed in [26] and [7], the same phenomenon holds for bipartite configurations. So, we will
use the following fact:

Theorem 17. For each fixed D, g ≥ 3, if a property holds for π (F ) for almost all configurations
F ∈ FD(n), then it also holds for π (G) for almost all G ∈ G

′
D,g (n).

4.3. Proof of Proposition 9

Lemma 18. For each fixed D ≥ 21 and almost all configurations F ∈ FD(n), π (F ) does not have
induced matchings of size

k = k(D) =

⌈

3n lnD

D

⌉

. (16)

Proof. Given Vn and Wn as in (15), the number of matchings of size k between Vn and Wn

corresponding to matchings between Xn and Yn defined above is
(

n

k

)2
· D2k · k! : There are

(

n

k

)2

ways to choose the k-element subsets of Xn and Yn joined by a matching, then there are D2k ways
to choose the vertices in Vn and Wn to represent the chosen 2k vertices from Xn and Yn, and finally
there are k! ways to match the k chosen vertices of Vn with the k chosen vertices in Wn.

For each such matching M , the number of configurations F ∈ FD(n) in which M is an induced
matching in the multigraph π (F ) is exactly

⎛

⎝

k(D−1)
∏

j=1

(D(n − k) + 1 − j)

⎞

⎠ (D(n − k))!.

Hence the portion of F ∈ FD(n) such that π (F ) has at least one induced matching of size k is at
most

(

n

k

)2

D2k · k!

⎛

⎝

k(D−1)
∏

j=1

(D(n − k) + 1 − j)

⎞

⎠

(D(n − k))!

(Dn)!

≤

(

nk

k!

)2
(

D2k · k!
)

⎛

⎝

k(D−1)
∏

j=1

D(n − k) + 1 − j

Dn + 1 − j

⎞

⎠

1

(D(n − k))k

≤
(nD)2k

k!
·

1

(D(n − k))k

(

D(n − k)

Dn

)k(D−1)

=
(nD)k

k!
·

(

n − k

n

)k(D−2)

≤

[

nD · e

k

(

1 −
k

n

)D−2
]k

≤

[

nD

k
· e1−(D−2)k/n

]k

.
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By (16), k ≥ 3n lnD
D

, so the last expression in the brackets is at most

nD2

3n lnD
exp

{

1 −
3(D − 2) lnD

D

}

<
D2

lnD
exp

{

−
3(D − 2) lnD

D

}

.

Since D ≥ 21, D − 2 > 0.9D and lnD > 3. So

D2

lnD
exp

{

−
3(D − 2) lnD

D

}

<
D2

3
exp {−2.7 lnD} <

1

3D0.7
.

It follows that the portion of F ∈ FD(n) such that π (F ) has at least one induced matching of size
k is at most (3D0.7)−k →n→∞ 0. □

Now we are ready to prove Proposition 9. By Lemma 18 together with Theorem 17, for every
∆ ≥ 21 and g ≥ 3, there is a ∆-regular bigraph G with girth at least g with the maximum size of
an induced matching less than 3|V (G)| ln∆

2∆ . Then χ ′
s(G) > ∆2

3 ln∆
.

5. Concluding remarks

1. Our proof of Theorem 15 does not work for injective list edge-coloring. We do not know how to
prove the list analog of this theorem.
2. On the other hand, several parts of the proof of Theorem 4 do work for list coloring.
3. Recall that an L(h, k)-coloring of a graph H is a coloring f of the vertices of H with colors 1, 2, . . .
such that for every adjacent vertices x, y ∈ V (G), |f (x) − f (y)| ≥ h and for each u, v ∈ V (G) at
distance exactly 2, |f (u) − f (v)| ≥ k. Such colorings arose from several applications and attracted
some attention, see survey [11]. In these terms, if a graph G is triangle-free (in particular, if G is
bipartite), then each injective edge-coloring of G corresponds to an L(0, 1)-coloring of L(G) and vice
versa.
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