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Abstract Thermal stress is expected to compromise the
persistence of tropical corals throughout their biogeo-
graphic ranges, making many reefs inhospitable to corals
by the end of the century. We integrated models of local
predictions of thermal stress throughout the coming cen-
tury, coral larval dispersal, and the persistence of a coral’s
metapopulation(s) in the Caribbean to investigate broad
trends in metapopulation fragmentation and decline. As
coral reef patches become inhospitable throughout the next
century, the metapopulation of Orbicella annularis is
predicted to fragment, with sub-networks centered around
highly connected patches and thermal refuges. Some of
these are predicted to include the reefs of Colombia,
Panama, Honduras, Guatemala, Belize, Southern and
Northern Cuba, Haiti, and the Bahamas. Unknown coral
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population demographic parameters, such as lifetime egg
production and stock-recruitment rates, limit the model’s
predictions; however, a sensitivity analysis demonstrates
that broadscale patterns of fragmentation and metapopu-
lation collapse before the end of the century are consistent
across a range of potential parameterizations. Despite dire
predictions, the model highlights the potential value in
protecting and restoring coral populations at strategic
locations that are highly connected and/or influential to
persistence. Coordinated conservation activities that sup-
port local resilience at low coral cover have the potential to
stave off metapopulation collapse for decades, buying
valuable time. Thermal refuges are linchpins of metapop-
ulation persistence during moderate thermal stress, and
targeted conservation or restoration that supports connec-
tivity between these refuges by enhancing local population
growth or sexual propagation may be critically important to
species conservation on coral reefs.

Keywords Metapopulations - Coral reefs - Extinction -
Persistence - Bleaching - Connectivity

Introduction

Coral reefs have emerged as an unfortunate contemporary
example of how climate change challenges the persistence
of essential biomes. Under thermal stress, photosynthetic
coral holobionts can experience thermal bleaching, a pro-
cess in which the symbiotic relationship between coral host
and algal symbiont breaks down, potentially resulting in
coral mortality (Glynn 1996; Loya et al. 2001). When
corals experience bleaching in consecutive years, it is
associated with higher probabilities of mortality and local
extinctions (Pandolfi et al. 2011; Grottoli et al. 2014),
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which has and will continue to occur with increasing fre-
quency over the next century (van Hooidonk et al.
2013, 2015). Human societies world-wide depend on coral
reefs for the provisioning of ecosystem goods and services,
and those goods and services are also at risk as coral reefs
degrade (Moberg and Folke 1999; Costanza et al. 2017). A
challenge to our ability to forecast the futures of coral reefs
and to generate effective conservation strategies is that
most projections and conservation activities occur at local
or reef (patch) scales, but the mechanisms that promote
species persistence, such as migration, occur over larger
biogeographic scales. Thus, local conservation or restora-
tion activities may not be deployed spatially or temporally
where it is regionally most needed or effective.

A metapopulation is a patchwork of incompletely iso-
lated populations (or patches), which are connected
through the migration of individuals. The persistence of a
metapopulation depends on processes of local persistence
(or self-persistence, potentially through the retention of
individuals between generations), and on processes of
network persistence, like migration (Hastings and Botsford
2006). In theory, a metapopulation may persist if a single
sub-population is self-persistent and provides itself with
enough recruits to replace reproductive adults before those
adults perish (Hastings and Botsford 2006). Network per-
sistence can be achieved even when this condition is not
met through the supplement of recruits from connected
sub-populations. Models of marine migrations and
metapopulations are useful in understanding how patch-
works of habitats interact with each other (Treml et al.
2008; Holstein et al. 2014; Schill et al. 2015), how
migration supports persistence or fisheries (Hastings and
Botsford 2006; Botsford et al. 2009), the design of marine
protected areas (Steneck et al. 2009; White et al.
2010a, 2014; Kininmonth et al. 2011), and how the
removal of habitats can have cascading effects (Bode et al.
2008). Corals are sessile as adults, and migration occurs
during a pelagic larval life phase. Coral planulae larvae are
poor swimmers (Hata et al. 2017) and connectivity between
patches depends highly on ocean currents and on the timing
of adult reproduction (Holstein et al. 2014, 2016; Limer
et al. 2020). Migration between reefs can be highly
asymmetric (Beger et al. 2010; Holstein et al. 2014; Limer
et al. 2020) and species-specific (Treml et al. 2012; Hol-
stein et al. 2014).

Coral reefs are expected to experience intensification of
thermal stress throughout the next century (Pandolfi et al.
2011; Maynard et al. 2015; van Hooidonk et al. 2015) and
that stress is not expected to be homogenous geographi-
cally (van Hooidonk et al. 2013, 2015; Logan et al. 2014).
Distinct coral reefs experience heterogenous environmental
conditions and disturbance regimes, resulting in localized
perturbations or extinctions (Hastings and Botsford 2006;
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Mumby et al. 2011; Smith et al. 2014). Habitat patches that
are removed from an environmental stressor and/or expe-
rience elevated resistance or resilience may behave as
“refuges” from that stressor and support enhanced
metapopulation resilience (Mumby et al. 2011). Refuges
support metapopulation persistence through sustained adult
or larval migrations to less resistant patches during or
following disturbance (Keppel et al. 2012; Smith et al.
2014; Keppel and Wardell-Johnson 2015).

How habitat connectivity and the distribution of thermal
refuges will play a role in the persistence of coral reefs is a
longstanding but unanswered question (Glynn 1996;
Mumby et al. 2011). Here, we have used a spatially real-
istic abundance-based metapopulation model to understand
the seascape interactions of thermal stress and biophysical
migration in a coral. This model synthesizes projections of
thermal stress and the probability of coral larval exchanges
between Caribbean coral reefs to assess metapopulation
persistence throughout the current century. We focused on
a threatened foundational species, the boulder star coral
Orbicella annularis, but expect patterns to be similar for
species with comparable life histories, distributions, and
thermal tolerances. Because there is little empirical evi-
dence for the demographic thresholds of local coral pop-
ulation collapse (e.g., minimum thresholds of recruitment
or coral cover to maintain persistence), we have tested an
array of potential thresholds in a model sensitivity analysis,
which also highlights how conservation or restoration
activities that bolster local demographics can influence
region-wide persistence. We have identified regions of the
Western Atlantic that could be targeted for species con-
servation and/or restoration and predicted the fragmenta-
tion and decline of the metapopulation of this important
coral species throughout the most acute phases of global
warming.

Methods

We have integrated two independent models into a
numerical metapopulation model. The first is a thermal
projection model of the Caribbean which projects the
number of severe bleaching years, defined as years with
greater than 8 degree heating weeks (DHW) (Gleeson and
Strong 1995), expected in a decade at ~ 0.1° resolution
throughout the current century. These projections were
calculated from The Geophysical Fluid Dynamics Labo-
ratory (GFDL) Modular Ocean Model version 4.1
(MOMA4.1: Griffies et al. 2004), sensu van Hooidonk et al.
(2015). The second is a coral larval dispersal and con-
nectivity model for Orbicella annularis covering the same
region (see Holstein et al. 2014) and which includes 3,103
64 km? gridded polygons to represent coral reef habitat
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patches. The density of O. annularis within these patches
was assumed to be homogenous throughout the model
domain and the amount of reef (%area) within each poly-
gon (determined from Andrefouet & Guzman 2004) was
used to approximate the available O. annularis habitat area
within a patch. Virtual larvae were allowed to disperse
from each habitat patch in 5 yr of three-dimensional cur-
rents obtained from three nested hydrodynamic models, all
based in the community code of the Hybrid Coordinate
Ocean Model (HYCOM; Bleck 2002), including Global
(HYCOM-Global, 1/12°), Gulf of Mexico (GoM-HYCOM,
1/25°), and Florida Keys (FKeyS-HYCOM, 1/100°,
Kourafalou & Kang (2012)) models.

The output of the dispersal model used to build the
numerical metapopulation model was 3,103 x 3,103
matrices describing the mean probability of larval arrival
from any patch (i) to any other patch (j). These probabil-
ities were averaged across 5 yr of simulation time. The
dispersal model included adult spawning times, the time to
larval competency (first ability to settle), the maximum
pelagic larval duration, larval mortality and larval buoy-
ancy characteristics. Further information is provided in the
supplementary material (Table S1-S3), and in Holstein
et al. (2014). Thermal projections were interpolated for
each decade onto a 64 km? grid to correspond spatially
with the output from the coral dispersal and connectivity
model.

The initial connectivity probability matrix, D, describes
the mean probability of larval dispersal connection (prob-
ability of arrival) between any two patches. D was pro-
jected in time over each decade of the thermal projection
model, and connection probabilities were influenced by the
habitability of both source and sink patches, to approximate
demographic connectivity matrices (Hastings and Botsford
2006) for O. annularis over the next eight decades. The
demographics of most corals, including O. annularis,
within a given reef are not well-understood beyond simple
size-class distributions or broad estimates of rates of
recruitment. Thus, in order to build our demographic
model, and approximate thresholds that describe in what
circumstances an O. annularis sub-population will col-
lapse, we utilized the Beverton—Holt function to establish a
range of proportional patch coral cover below which local
populations would be expected to collapse (sensu Garavelli
et al. 2018). Lifetime egg production (LEP) is a demo-
graphic parameter important for understanding both local
patch persistence and a patch’s contributions to migration
in a metapopulation network (O’Farrell and Botsford 2005;
White 2010). However, LEP is largely unknown for corals,
and thus, we have chosen to express LEP as the fraction of
a theoretical maximum lifetime egg production assuming
no thermal stress, FLEP (White et al. 2010b; Garavelli
et al. 2018). Similarly, there are no known estimates of the

stock-recruitment relationships for any coral, and so we
used a range of values of (the slope at the origin of the
stock-recruitment curve at low population density, sensu
White (2010)) to test a range of critically low coral cover
values at which a local population would collapse
(FLEP.,;) (Sissenwine and Shepherd 1987). To do so, we
have followed the methods of White (2010) and set A
= 1/(FLEP.;; X Ap). Ap is the leading eigenvalue of the
connectivity probability matrix D. Values of FLEP,;, tes-
ted were 0.01, 0.05, 0.10, 0.15 and 0.20 (1-20% of maxi-
mum LEP). We consider FLEP and proportional “coral
area” to be interchangeable quantities.

Metapopulation persistence was then estimated by cal-
culating a demographic connectivity matrix, C, from each
patch, i, to any other patch, j, at each decadal timestep, #:

Cy, = AiD;jFLEP ey X (1 = V,) x (1 = V)

where A; is the proportional reef area of production patch
and V, is a vector containing the annual thermal vulnera-
bility of each patch at each decadal time step. These
thermal vulnerabilities are extracted from datasets pub-
lished in van Hooidonk et al. (2015) which describe the
expected annual bleaching events at each location per
decade. These decadal vulnerabilities have been divided by
10 and can be interpreted as the probability of annual
bleaching in each decade.

Thermal stress thus affected not only population egg
production (a theoretical maximum was scaled by 1-V,;),
but also settlement and recruitment (incoming connectivity
probabilities were scaled by 1-V,;). It was assumed that
annual bleaching over a decade (V;; = 1) would result in
zero connectivity to or from the affected patch due to
mortality, energy limitations (Grottoli et al. 2014), and/or
collapsed reproductive synchrony (Shlesinger and Loya
2019). Any V, =1 should be interpreted as an extirpated
local population that does not support coral recruitment.
Thus, the effect of V, on a local patch’s habitat quality can
be approximated by an exponentially decreasing decay
function (Fig. 1), influenced by a loss of local adults (egg
producers) and by a collapse of the local recruitment
environment. The metapopulation was considered persis-
tent in a given decade if any patch was expected to be
persistent, or if the leading eigenvalue, Ac, > 1 (Hanski
and Ovaskainen 2000; Ovaskainen and Hanski 2001;
Hastings and Botsford 2006).

As thermal stress reduces connectivity, the metapopu-
lation may fragment into separate isolated metapopulations
or populations. These were found in C; by searching for
strongly connected components (SSCs), within which all
potential directional connections between patches were
realized (even if over multiple “stepping stone” connec-
tions). If found, the persistence of each SSC was assessed
by subsetting C, into sub-matrices (C,scc,), and again
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Fig. 1 Distributions of predicted Caribbean coral thermal stress and
the resulting effect of thermal vulnerability on the model’s estimation
of habitat quality. a) Decadal coral habitat thermal vulnerability (V,)
frequency distribution kernels (sensu Maynard et al. 2015; van
Hooidonk et al. 2015), scaled for interpretation. Each kernel
(indicated by color) indicates the frequency distribution of annual
bleaching vulnerability (V,) across the Caribbean in a given decade.
Note that V; is scaled between 0 and 1, where 1 indicates 10 bleaching
years in a decade. b) An approximation of the effect of thermal stress
(expressed as V;) on habitat quality in the model, scaled by thermal
stress at both larval production and settlement habitat. For simplicity,
the curve assumes larvae are produced and settle within the same
habitat patch

assessing if the leading eigenvalue of each SCC Ac;scca
> 1. In order to identify patches that inordinately support
connectivity and persistence, in each decade an eigenvec-
tor-like measure, patch PageRank centrality (Page et al.
1999) was estimated for each node in each decadal time
step using MATLAB software (~ Acr;). There are many
available centrality measures to describe the relative
influence or “importance” of a patch on or to its
metapopulation network. The most obvious to use when
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discussing persistence (as measured using the leading
eigenvalue of the connectivity matrix) may be eigenvector
centrality, which should identify nodes (patches) that most
contribute to the eigenvalue. However, in directed and
asymmetric networks like the ones analyzed here, eigen-
vector centrality is difficult or impossible to calculate.
Thus, we have opted to utilize PageRank centrality, which
provides an eigenvector-like measure that in undirected
networks is equivalent to eigenvector centrality, and a
reliable measure in directed networks (Page et al. 1999).

Results

Metapopulation persistence (Ac,) predictably declines as
thermal stress increases throughout the century, and the
rate of that decline depends on the minimum coral cover
that will allow local patches to remain persistent (FLEP..;;)
(Fig. 2). This decline begins to manifest mid-century and
falls precipitously as thermal stress becomes extreme late
in the century, corresponding to a basin-wide shift in the
distribution and extremity of thermal stress (Fig. 1A). All
FLEP,,; tested, from 1 to 20% maximum coral cover,
resulted in collapsed metapopulations by 2075. If coral
FLEP,,;, is as high as 0.20, the model predicts that
metapopulation collapse will begin in the current decade.
(High FLEP.,; implies a low barrier to local population

10

81 FLEP_ = 0.01

crit

Metapopulation persistence (A )
/

\ \

N ~

\\\\

3 R A N2

2 % % S S £4 % &
Decade

Fig. 2 Predicted changes in metapopulation persistence due to
increasing thermal stress and loss of connectivity, according the
minimum coral cover required for local population persistence
(FLEP.,;;). The minimum FLEPs used in Fig.3 & 4 (FLEP.,;.
= [0.01, 0.10]) are shown in blue. A red line indicates when and
where Ac, falls below 1



Coral Reefs

collapse.) FLEP,.,;; lower than 0.10 staves off collapse until
the second half of the century. Even a very low FLEP,,;,
which assumes that local coral populations are persistent at
1% of their maximum coral cover, would result in
shrinking non-persistent metapopulations by the last few
decades of the century.

Extreme thermal stress effectively eliminates population
connectivity in the model by the end of the century due to
severe reductions in habitat quality metapopulation-wide
(Fig. 3 and 4). A large regional metapopulation that
encompasses most of the Caribbean Sea begins to fragment
near the middle of the century (Fig. 3 and 4). The pattern of
fragmentation is independent of FLEP,,;; and is determined
by the spatial distribution of extremes in V,. V, approaching
1 eliminates migration and connectivity, and thermal
refuges with lower V, support fragmented SCCs. The lar-
gest SCC includes the Greater Antilles, Florida Keys, and
Bahamas, with smaller enclave metapopulations distributed
throughout the Caribbean, centered around thermal refuges
(patches that have lower-than-mean V;). The most persis-
tent of these enclaves is predicted to occur off the coasts of
Colombia and Panama. The locations of thermal refuges
(lower-than-mean V,) in the fourth decade of the model
(2045-2054) are particularly useful in predicting the
locations of SCCs in the following decade (Fig. 3 and 4).

The persistence of newly fragmented metapopulations
(SCCs) depends on FLEP,.,;;, with lower FLEP.,;; leading to
stronger connectivity within SCCs and greater persistence
at each time step (Fig. 3 & 4). Regardless of FLEP.,;;, SCCs
continue to shrink and fragment as thermal stress increases
throughout the remainder of the century, and the fates of O.
annularis metapopulations with different FLEP,.,;; converge
in the last two decades (Fig. 2, 3 & 4).

Thermal refuges begin to disproportionally support
metapopulation persistence in the fourth decade of the
simulation (Fig. 5), and the spatial distribution of patch
PageRank centrality (~ Ac,) is consistent between
metapopulations with different FLEP,,; (Fig. 3 and 4).
Patches that have lower-than-mean decadal thermal vul-
nerability (V,) have disproportionately large relative
PageRank centrality (~ Ac.;), especially as thermal stress
begins to make some patches inhospitable (Fig. 5). As
thermal stress becomes more extreme near the end of the
decade, thermal refuges become isolated, and connectivity
dissolves.

Discussion
Here, we have demonstrated that the Caribbean metapop-

ulation of the major reef-building coral O. annularis may
be in serious jeopardy without major changes to the

trajectory of climate change by the end of the next century.
The coral’s network of connected sub-populations in the
Caribbean will be prone to extreme fragmentation and
extinction risk, with trends that depend on the spatial dis-
tribution of thermal refuges and network connectivity. The
main findings—that thermal stress fragments the
metapopulation and reduces persistence—are an obvious
one based on the model formulation. The results that are
potentially of greater interest are patterns of this frag-
mentation over space and time, and how these patterns
change (or do not) with different assumptions regarding
local coral demographic thresholds. The fact that our
model predicts coral declines throughout the century cor-
roborates those of countless recent studies (e.g., Pandolfi
et al. 2003; Carpenter et al. 2008; Descombes et al. 2015),
but the metapopulation context provided here adds con-
siderable spatial and temporal granularity to understand
and potentially mitigate the risk of climate changes to a
coral’s persistence. It should be noted clearly that this
model focuses on only one coral reef stressor, sea surface
temperature, among many climate and anthropogenic
stressors that are known to be synergistic in their delete-
rious effects on corals and coral reefs (Nystrom et al.
2000). Thus, this model provides context to understand the
spatial and temporal influence of thermal stress on the
metapopulation fragmentation of a coral, and the potential
to extend the current model with additional environmental
or biological datasets is considerable.

At what point does a local coral population collapse?
Although there is evidence of local near-loss or extirpation
of coral species following perturbations like storms
(Adjeroud et al. 2002), outbreaks of coral predators (Kayal
et al. 2012), or thermal stress (Glynn and de Weerdt 1991;
Razak and Hoeksema 2003; Adjeroud et al. 2009; Glynn
2011), population collapse due to low adult abundance or
cover is not well documented or understood. Further, it is
likely dependent on the severity and periodicity of distur-
bance (Riegl et al. 2018). For example, frequent distur-
bance-driven losses of highly fecund large size-classes of
Acropora downingi, and the simultaneous loss of connec-
tivity due to thermal stress was predicted to cause
recruitment failures both locally and across a metapopu-
lation in the Arabian/Persian Gulf (Riegl et al. 2018). It is
not currently clear to what extent coral cover can become
denuded within a coral reef before populations can no
longer persist, and this threshold may be population-spe-
cific. The threshold of local egg production below which a
coral population can no longer sustain itself (assuming no
immigration) is an important component of our metapop-
ulation model’s assumptions and is expressed as a fraction
of a theoretical maximum. This fraction can be thought of
as the minimum fraction of lifetime egg production that
must be maintained after or during thermal stress, or more
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«Fig. 3 Maps detailing Orbicella annularis metapopulation decline
due to thermal stress over a century of predicted warming, including
patch-specific thermal vulnerability (V,, node color), patch connec-
tivity (edges), patch PageRank centrality (~ ¢, node size), and the
boundaries and persistence (/cscc, shaded color) of each strongly
connected component (SCC) during each decade assuming a mini-
mum FLEP,,;, of 0.10. An identical data representation using FLEP,,;,
of 0.01 is shown in Fig. 4. Connection direction is represented by
clockwise arcs

simply, as the fraction of maximum coral cover (tissue
area) that must remain following that thermal stress for the
population to persist (if we assume that egg production per
polyp in adults is consistent regardless of colony size, and
thus, colony egg production scales linearly with coral tissue
area, e.g., Hall and Hughes 1996; Sakai 1998; Holstein
et al. 2015, Alvarez-Noriega et al. 2016). These coral loss
thresholds determine in what decade the O. annularis
metapopulation collapses in our metapopulation model,
with lower thresholds—or greater tolerance to loss in
abundance or coral cover — delaying collapse by decades.

Estimations from the early 2000s were that Caribbean
scleractinian coral cover was less than ~ 20% of 1970s
levels (Gardner et al. 2003). Judging by estimates of annual
rates of decline (Co6té et al. 2005), contemporary coral
cover is likely far less. Whether these perturbed commu-
nities are locally persistent is not known, which compro-
mises our ability to make local and metapopulation
predictions of persistence. Complicating this is that some
corals, particularly branching forms, can be highly clonal
within a population. While this may result in seemingly
persistent local populations (which appear to have high
population growth due to fragmentation), these populations
may also carry an “extinction debt,” owing to a reduced
capacity for sexual propagation and reduced genetic
diversity (Honnay and Bossuyt 2005; Baums et al. 2006).
Coral reef decline is also often characterized by non-linear
shifts in stable states between coral dominance and algal
dominance (Scheffer et al. 2001). Algal dominance can
limit the recruitment of new corals (Hughes et al. 2007)
and low calcium carbonate accretion associated with low
coral cover can result in the erosion of reef framework,
further limiting the recruitment and recovery of coral-
dominated communities (Perry et al. 2013). These non-
linear dynamics at low coral densities have not been
explicitly parameterized in the current metapopulation
model, and if shifts to macroalgal dominated states are
expected at FLEPs greater than parameterized here, the
result could be even more rapid metapopulation
fragmentation.

The model results suggest that coral metapopulation
fragmentation may be major even if local populations are
extremely resistant to coral loss. No matter the FLEP,,;

chosen, the pattern and form of metapopulation decline in
the current model is the same, due to the distribution of
thermal stress (V,), its influence on habitat quality, and
patterns of connectivity. The regional metapopulation
fragments in the middle of the century, a major component
is centered in the Greater Antilles, Florida Keys and
Bahamas, and smaller persistent enclaves are centered
around thermal refuges, before ultimate collapse. These
include the reefs of Colombia, Panama, Honduras, Guate-
mala, and Belize. If thermal stress is not reduced, the
model predicts dire outcomes. However, the existence of
thermal refuges even late in the century and the tendency
of these refuges to support SCCs through “propagule rain”
(Gotelli 1991) could help resource managers in the design
and implementation of effective mitigations. Should miti-
gations exist that could bolster these populations (restora-
tion, assisted evolution, reduction of synergistic stressors,
shading, assisted reproduction, assisted recruitment, etc.)
these locations may be good candidates due to their thermal
environment and their connectivity. Further, although
species have different dispersal capabilities and environ-
mental requirements, these patterns may be indicative of
the patterns of fragmentation for other species that are
similarly sensitive to thermal stress and/or have similar life
histories.

While the model predicts shrinking, non-persistent
metapopulations near the end of the century in every
FLEP,,; scenario, the time at which the metapopulation
switches from persistent to non-persistent equilibria is
pushed to a later date when local populations can tolerate
greater coral losses. Not only does this stress the impor-
tance of understanding the local demographics of perturbed
coral reefs, but it also suggests that local mitigations that
either enhance local coral cover or enhance sexual propa-
gation at low cover have the potential to slow the rate of
metapopulation-wide decline. These mitigations could
potentially keep local populations from collapsing (coral
cover > FLEP,,;;) and/or locally reduce FLEP,,;, respec-
tively. This is intuitive, but models such as the one
described here can provide conservation practitioners with
meaningful local and regional goals. For example, spatially
targeted mitigations to reduce common coral stressors like
excess terrestrial nutrients or sedimentation, or meaningful
coral restorations that maintain functioning local popula-
tions, may buy decades of critical time toward the middle
and end of the current century and allow re-expansion of
the metapopulation assuming climate change is mitigated.
A similar effect would be achieved if populations could
better tolerate thermal stress.

Not all populations contribute equally to persistence
throughout the century. Although we caution that these
results carry many assumptions regarding the distribution
of thermal stress (sensu van Hooidonk et al. 2015), local
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«Fig. 4 Maps detailing Orbicella annularis metapopulation decline
due to thermal stress over a century of predicted warming, including
patch-specific thermal vulnerability (V,, node color), patch connec-
tivity (edges), patch PageRank centrality (~ ¢, node size), and the
boundaries and persistence (/cscc, shaded color) of each strongly
connected component (SCC) during each decade assuming a mini-
mum FLEP,,;, 0.01. Connection direction is represented by clockwise
arcs. Note that the maximum Acgcc i greater than 2, but the color
scale of Fig. 3 is preserved for the sake of comparison

habitat quality, and the dispersal of coral propagules (sensu
Holstein et al. 2014), this model has identified habitat
patches that behave as linchpins to metapopulation per-
sistence through time. Well-connected refuge habitats
appear to be the most critical. This corroborates findings
that in metapopulations experiencing perturbation, network
centrality becomes spatially condensed (Grilli et al. 2015),
and refuges become essential to effectively resisting
extinction (Heard et al. 2015). However, isolated “oases”
that do not support demographic exchanges with neigh-
boring habitats have limited potential to support
metapopulation persistence (Thomas et al. 2001; Moilanen
and Nieminen 2002) and thus, the connectedness of both
natural and artificial refuges (i.e., preserves and protected
areas) has implications for extinction risk and for conser-
vation planning. Our findings show that refuge habitat
patches become disproportionally important to maintaining
metapopulation persistence when thermal perturbation is
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Fig. 5 Changes in relative Orbicella annularis patch PageRank
centrality with increasing metapopulation-scale perturbation, shown
according to a) the patch-specific thermal vulnerability (distance from
V,) and b) by decade. Resistant patches, or refuges, have negative

moderate in mid-century; however, by the end of the
century, when perturbation is predicted to be so extreme it
disrupts network connectivity, isolated refuges cannot
support continued persistence. That said, our model does
not preclude the potential for re-invasion of habitats from
these refuges—or from unknown refuges—if and when
metapopulation-wide conditions improve (Ovaskainen and
Hanski 2001). Notably, coral populations can and do per-
sist without annual recruitment. Coral individuals may also
persist on a reef without recruitment even when population
tissue area has fallen below FLEP,,;. Thus, it is possible
that isolated reefs remain persistent, but also that seem-
ingly “persistent” coral populations are -effectively
extirpated.

If climate change conditions are chronic, adaptation will
likely be necessary for metapopulation persistence (Hughes
et al. 2003; Baker et al. 2004; Grottoli et al. 2014). Cor-
respondingly, refuge habitats removed from perturbation
may not provide effective evolutionary refuge (Smith et al.
2016), as populations are not sufficiently exposed to
selective pressures. Neither the potential for adaptation nor
any realistic spatial heterogeneity in that potential were
included in the model described here. Adaptation to ther-
mal stress could reduce the vulnerability of populations or
reduce the minimum coral cover necessary to persist
locally, both of which would stave off or reduce the rate of
habitat fragmentation that could ultimately lead to
metapopulation collapse.

Distance from V,

Decade

distances from V;. ~ A¢,; is scaled to 1 in each decade. In b), lines
connect the same patch through decadal timesteps and points are both
colored and scaled by distance from V,
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Changes in coastal and oceanic hydrodynamics are
expected throughout the next century due to altered bal-
ances in atmospheric and sea surface warming (Bindoff
et al. 2007). Predicting these changes is a developing sci-
ence, and thus, this important feature of future larval dis-
persal and connectivity was not integrated into the current
model. Along with changing surface currents, the physi-
ology of dispersing larvae is also likely to change with
increasing temperature (Munday et al. 2009) and favor
shorter dispersal durations and larval retention (Figueirido
et al. 2014), rather than migration. These changes to larval
dispersal and connectivity are expected to further increase
coral population fragmentation (Munday et al. 2009), but
may also lead to enhanced local larval retention (Figueirido
et al. 2014), which could bolster local populations for a
time. However, in a changing environment with increasing
perturbations to hospitable conditions on coral reefs, this
increasing habitat isolation is likely to have negative
effects on species persistence (Opdam and Wascher 2004).

Crucially, although the current model suggests a dra-
matic decline in O. annularis metapopulation persistence in
the middle of the century, the metapopulation persistence
predictions for each decade are temporally independent
from each other, and highly dependent on predicted ther-
mal stress. What this implies is that the persistent
metapopulation(s) predicted around mid-century in most
scenarios would remain persistent, or even expand, if
thermal stress does not further increase or is reduced. This
is a strong argument for immediate global reductions in
carbon emissions to avoid the extreme heating scenarios
predicted for the end of the current century, and this model
provides an example of an ecological target for those
initiatives.

Although this simulation study focused on thermal
stress, coral and other marine metapopulations face more
than a single challenge to their persistence, and these
challenges will interact in complex ways (Nystrom et al.
2000) and be species-specific (Loya et al. 2001; Grottoli
et al. 2014; Shlesinger and Loya 2019). Thus, these O.
annularis metapopulation simulations are speculative,
rather than truly predictive of the future of O. annularis or
of coral reefs in general. While these results warn of
Caribbean O. annularis metapopulation extinction by the
end of the century, our results also suggest that carefully
targeted conservation, the identification and protection of
natural refuges and, of course, a global effort to reduce
carbon emissions and warming, have the potential to mit-
igate extinction risk despite dire environmental predictions.
The protection of coral reefs from climate changes is still
within our grasp—and modeling exercises that integrate
spatial projections of the future environment with biolog-
ical and population models provide a scaffold for
addressing this multifaceted environmental problem.
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