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Fish schools are ubiquitous in marine life. Although flow interactions are thought to be 

beneficial for schooling, their exact effects on the speed, energetics and stability of the group 

remain elusive. Recent numerical simulations and experimental models suggest that flow 

interactions stabilize in-tandem formations of flapping foils. Here, we employ a minimal 

vortex sheet model that captures salient features of the flow interactions among flapping 

swimmers, and we study the free swimming of a pair of in-line swimmers driven with 

identical heaving or pitching motions. We find that, independent of the flapping mode, 

heaving or pitching, the follower passively stabilizes at discrete locations in the wake of the 

leader, consistent with the heaving foil experiments, but pitching swimmers exhibit tighter 

and more cohesive formations. Further, in comparison to swimming alone, pitching motions 

increase the energetic efficiency of the group while heaving motions result in a slight 

increase in the swimming speed. A deeper analysis of the wake of a single swimmer sheds 

light on the hydrodynamic mechanisms underlying pairwise formations. These results 

recapitulate that flow interactions provide a passive mechanism that promotes school 

cohesion, and afford novel insights into the role of the flapping mode in controlling the 

emergent properties of the school. 
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1. Introduction 

Fish schools are ubiquitous in aquatic life, with half of the known fish species thought to 

exhibit schooling behaviour during some phase of their life cycle (Shaw 1978). However, 

the role of the fluid medium as a mediator of the physical interactions between swimming 
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fish remains unclear (Partridge & Pitcher 1979; Partridge 1982). Experimental evidence 

suggests that fish modify their motions and reduce muscular effort when swimming in 

vortex-laden flows (Liao et al. 2003). These findings support a long-standing but 
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controversial hypothesis that schooling provides hydrodynamic benefits as fish move within 

the flows generated by others (Weihs 1973, 1975; Abrahams & Colgan 1985; Liao 2007). 

A direct assessment of this hypothesis in biological and physical models remains a challenge 

because of the complexity in resolving the hydrodynamics of unsteady swimming at high 

Reynolds numbers with single (Wolfgang et al. 1999; Triantafyllou, Triantafyllou & Yue 

2000; Borazjani 2008) and multiple interacting swimmers (Liao 2007; Gazzola et al. 2016; 

Verma, Novati & Koumoutsakos 2018). Simplifications based on crystalline school 

arrangements and ideal flow models indicate that fish within a planar formation, with 

diamond-shaped unit cell, benefit energetically from near-field interactions with the wakes 

of upstream neighbours (Weihs 1973), whereas far-field interactions serve to passively 

stabilize the formation (Tsang & Kanso 2013). These crystal lattice models do not capture 

that fish exhibit variable arrangements in field and laboratory experiments (Partridge & 

Pitcher 1979; Marras et al. 2015), and the broader question of how flow interactions benefit 

schooling remains unresolved. 

Physical models and numerical simulations of mechanically actuated foils found that, at 

the single swimmer level, flapping foils share with their biological counterparts many 

common aspects of the flows, forces and energetics (Blondeaux et al. 2005; Dong, Mittal & 

Najjar 2006; Buchholz & Smits 2008; Dabiri 2009; Lauder et al. 2011; Wen & Lauder 2013). 

A key similarity is the reverse von Kármán wake left by both flapping foils and fish (Taneda 

1965; Triantafyllou, Triantafyllou & Grosenbaugh 1993). Subsequently, several numerical 

and experimental studies used pairs of flapping foils to understand multi-swimmer 

interactions. Zhu, He & Zhang (2014) were first to examine, in the context of the immersed 

boundary method, the effects of pairwise hydrodynamic interactions on the self-propulsion 

of flapping flexible swimmers in tandem configuration. Flow-mediated interactions were 

found to stabilize the swimmers in particular spacings and to reduce the energetics cost of 

swimming in the follower. Experimental studies on heaving rigid foils confined to in-line 

positions and freely swimming in tandem were also found to assume one of several particular 

spacings, stabilized by the flow interactions (Becker et al. 2015; Ramananarivo et al. 2016; 

Newbolt, Zhang & Ristroph 2019). These observations have since been confirmed in several 

numerical studies (Dai et al. 2018; Park & Sung 2018; Peng, Huang & Xi-Yun 2018; Lin et 

al. 2020). Here, we investigate the speed, energetics and stability of these planar formations 

using a mathematical model of self-propelling and interacting swimmers that flap by either 

heaving or pitching. 

Existing mathematical models of flow interactions in fish schools vary in the degree of 

fidelity to the fluid dynamics and sensory-feedback control at the swimmer level. Ideal flow 

models – based on a dipolar far-field approximation (Tchieu, Kanso & Newton 2012) – with 

no feedback control have been used to assess the effect of passive flow interactions on the 

stability of pairwise (Kanso & Tsang 2014, 2015) and diamond lattice formations (Tsang & 

Kanso 2013) and the advantages of flapping out of phase (Kanso & Newton 2009). This far-

field flow model coupled to visual feedback control, either in the form of behavioural rules 

(Filella et al. 2018) or learning algorithms (Gazzola et al. 2016), was used to analyse the 

fish collective dynamics. Fish were shown to exhibit a novel collective turning mode and to 
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swim faster thanks to the fluid (Filella et al. 2018). Near-field fish–wake interactions were 

also accounted for in ideal flow models with no feedback control, such as the vortex street 

model used by Weihs (1973) or the phenomenological model derived in Oza, Ristroph & 

Shelley (2019) to assess the efficiency of lattice formations. High-fidelity computational 

fluid dynamics coupled to reinforcement learning algorithms were recently implemented in 

pairwise interactions to optimize the flapping motion of the follower fish for harnessing the 

wake of the leader (Verma et al. 2018). 

 

Figure 1. A pair of swimmers undergoing (a) heaving motions at amplitude Ah = 0.3 and (b) pitching motions at 

amplitude Ap = 15◦. Snapshots of the velocity field (grey arrows) and free vortex sheet of the leader (blue) 

and follower (red) are taken after steady-state swimming is reached at a time instant where both swimmers are 

flapping downwards. Insets depict the pressure forces acting on each swimmer in the pairwise formation in 

comparison to a single swimmer undergoing the same prescribed motion. 

In this paper, we analyse pairwise interactions of heaving and pitching swimmers in the 

context of the vortex sheet model (see figure 1). The vortex sheet model has been used 

extensively to analyse problems of fluid–structure interactions, including ring formation at 

the edge of a circular tube (Nitsche & Krasny 1994) and wakes of oscillating plates (Jones 

2003; Sheng et al. 2012), falling cards (Jones & Shelley 2005), flapping flexible flags (Alben 

& Shelley 2008; Alben 2009), swimming plates (Wu 1971) and hovering flyers (Huang, 

Nitsche & Kanso 2016; Huang et al. 2018). Here, we use the implementation of Nitsche & 

Krasny (1994), which we vetted in comparison to Navier–Stokes simulations and other 

implementations of the vortex sheet method in Sheng et al. (2012), Huang et al. (2016). This 

study focuses on the effect of streamwise flow interactions on the swimming motion of 

heaving and pitching plates, and finds that ordered formations emerge spontaneously via 

these interactions, independent of the flapping mode, consistent with heaving foil 

experiments (Ramananarivo et al. 2016; Newbolt et al. 2019) and numerical simulations 

(Zhu et al. 2014; Park & Sung 2018; Peng et al. 2018; Lin et al. 2020). However, the flapping 

mode, heaving or pitching, affects the speed and energetics of these formations as well as 

their robustness to streamwise perturbations. We describe a specific hydrodynamic 
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mechanism that explains the energetic and stability differences associated with each flapping 

mode. 

2. Problem formulation 

A swimmer is modelled as a rigid plate of length 2l, small thickness e  l and homogenous 

density ρ, submerged in an unbounded, planar, fluid domain of density ρf . The swimmer’s 

mass per unit depth is given by m = 2ρel. An inertial frame (ex,ey,ez) is introduced, such that 

(ex,ey) span the plane of motion. The vector x ≡ (x,y) denotes the position of the leading edge 

of the swimmer in the (ex,ey) plane, and the angle θ its orientation relative to the ex-direction 

(see Appendix A and figure 7) 

The swimmer is free to move in the ex-direction under periodic heaving or pitching 

motions. Heaving consists of periodic lateral motions in the y-direction, of amplitude Ah, at 

fixed angle θ = 0. Pitching refers to angular oscillations θ of amplitude Ap, with zero lateral 

motion y = 0 at the leading edge. The frequency of these heaving and pitching motions is 

denoted by f. Hereafter, we scale all parameter values using l as the characteristic length 

scale, 1/f as the characteristic time scale and ρf l2 as the characteristic mass per unit depth. 

Accordingly, velocities are scaled by lf, forces by ρf f2l3, moments by ρf f2l4 and power by ρf 

f3l4. 

In dimensionless form, the heaving and pitching motions are given by 

Heaving: y 

(2.1) 

 Pitching: θ(t) = Ap sin(2πt), y(t) = 0. 

The equation of motion governing the free swimming x(t) is given by Newton’s second law 

 mx¨ = −F sinθ + Scosθ − Dcosθ. (2.2) 

Here, the hydrodynamic forces acting on the swimmer consist of a leading edge suction 

force S, a pressure force F acting in the direction normal to the swimmer and a skin drag 

force D acting tangentially to the swimmer in the opposite direction to its motion. The drag 

force D is introduced to emulate the effect of fluid viscosity, while the hydrodynamic 

pressure force F is calculated in the context of the inviscid vortex sheet model. A detailed 

description of the method and its numerical implementation can be found in Nitsche & 

Krasny (1994), Huang et al. (2018) and a brief overview is given in Appendix A. Detailed 

expressions of the fluid forces and moments acting on the swimmer are given in Appendix 

B. 

To assess the swimming performance, we use four metrics: the period-

swimming speed Udt at steady state, the thrust force T = averaged 

Scosθ − F sinθ, the input power P required to maintain the prescribed heaving or pitching 
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motions (see details in Appendix D) and the cost of transport defined as the input power P 

divided by the swimming speed U. 

3. Single swimmers: numerical results and scaling analysis 

We solve (2.2) in the case of a single swimmer and compute the period-average swimming 

speed at steady state. In figure 2(a,b), we show the steady-state speed for heaving and 

pitching swimmers, respectively, as a function of the flapping amplitude. In both cases, the 

speed increases monotonically, albeit that, when pitching, the increase scales differently at 

small amplitudes. To get insight into how the swimming speed U scales with the heaving 

and pitching amplitudes and frequency, it is instructive to use a simple scaling analysis. 

At steady state, the sum of forces acting on the swimmer is zero on average. For heaving 

swimmers, the dominant forces are those due to leading edge suction and viscous skin drag 

(Garrick 1937). In dimensional form, the suction force scales as ρf (2l)Cs
2U2, where the 

coefficient Cs scales linearly with the effective angle of attack. In a heaving flat plate the 

effective angle of attack is given by y˙/U ∼ Ahf/U (Garrick 1937; Floryan et al. 2017; Franck 

& Breuer 2017; Smits 2019), and the suction force scales as ρf (2l)(Ahf)2. Skin drag 

scales as ρf (2l)Cf U2, where Cf μ/ρf (2l)U is the drag coefficient based 

on adapting 
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Figure 2. Swimming speed vs. flapping amplitude for single swimmers. (a) Average swimming speed at steady 
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skin drag is dominant and the speed scales super-linearly with Ap. For Ap > 10◦, pressure drag is dominant and 

speed scales linearly with Ap. (c) Experimental data (black symbols) of average swimming speed of a heaving foil 

(Ramananarivo et al. 2016, figure 2); the data collapse when scaled by the heaving frequency f4/3 (yellow 

symbols). (d) Comparing the swimming speed of our heaving swimmer model (blue circles) to the frequency-

scaled experimental data shown in (a), on a log–log scale. Both model and experimental results scale super-

linearly with heaving amplitude. 

Blasius theory to this inviscid fluid model (see Appendix C and White 1979). Balancing 

suction and drag forces, we arrive at (Ahf)2 ∼ U3/2, which leads to 

 Heaving: U ∼ (Ahf)4/3. (3.1) 

The swimming speed scales super-linearly with the heaving amplitude and frequency. We 

test this scaling law in light of the experimental results of (Ramananarivo et al. 2016, figure 

2). The black data points in figure 2(c) represent the experimentally measured swimming 

speed as a function of heaving amplitude. The different marker shapes represent three 

different heaving frequencies used in the experiments (f = 1,2,3). We scaled the data by the 

heaving frequency according to our derived scaling law in (3.1). The scaled data (coloured 

symbols) collapse on a single curve, indicating that our scaling analysis is sound. In figure 

2(d), we plot, using a log–log scale, the swimming speed obtained from our model in figure 

2(a) (blue dots) and experimental data (coloured symbols) vs. the heaving amplitude. The 

slope of each line represents the power law that governs the relationship between the two 

quantities. In both the model and the experiment, the swimming speed depends super-

linearly on the amplitude of heaving, however, the dependence is slightly stronger in the 

model. 

The steady-state speed of the pitching swimmer scales differently depending on the 

flapping amplitude because the dominant drag forces acting on the swimmer differ. At small 

pitching amplitude Ap, the swimmer is almost parallel to the swimming direction, hence skin 

drag is dominant leading to the same scaling law as in the heaving case. At large amplitude 

Ap, pressure drag is dominant; it is well known that pressure drag scales as U2; see, e.g. 

Moored & Quinn (2019). Balancing inertia and pressure drag, we arrive at U ∼ Apf. Put 

together, we have 

small Ap : U ∼ (Ahf)4/3, 

Pitching:(3.2) large Ap : U ∼ Apf. 

These scaling laws fit remarkably well the numerical results in figure 2(b). 

4. Pairwise formations: stability, speed and energetics 

We examine the steady-state behaviour of a pair of swimmers undergoing heaving and 

pitching motions while freely interacting via the fluid medium. In figure 1, we show 

snapshots of the flow field (grey arrows) and free vortex sheets in the case when the leader 

(blue) and follower (red) are heaving at Ah = 0.3 (figure 1a) and pitching at Ap = 15◦ (figure 

1b). The snapshots are taken after the pair has reached steady-state swimming in the positive 

x-direction, and passively locked into a constant separation distance. At these flapping 

amplitudes, the heaving swimmers experience longer transience and swim faster, whereas 
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the pitching swimmers rapidly lock into a tighter formation (see supplementary movie 

available at https://doi.org/10.1017/jfm.2021.551). 

An analysis of the hydrodynamic pressure forces −F sinθex + F cosθey, where F is given 

in Appendix B, acting on each swimmer shows that compared to a single swimmer, the 

distribution on the leader remains relatively unchanged. However, the force distribution on 

the follower is affected by the wake of the leader, and the effect is more pronounced for 

pitching swimmers; see insets in figure 1(a,b). Specifically in the pitching case, the follower 

experiences less resistance from the fluid, and a favourable force distribution (in the same 

direction of flapping) at the swimmer’s tail. At the instant shown in figure 1(b), the 

downward flow due to the vortex sheet created by the leader helps the follower in its 

downward pitching motion. 

In figure 3, we vary the initial separation distance between the two swimmers for the 

examples shown in figure 1. We find that for both heaving and pitching, the follower tends 

to settle in one of several discrete locations behind the leader at nearly digital values of dh/λ 

and dp/λ, respectively, where dh is the tail-to-head distance, dp the tail-to-tail distance and λ 

= U/f the wavelength of the leader’s swimming trajectory; see figure 3(a,b). Depending on 

initial conditions, the leader and follower reach one of these separation distances and swim 

together in ordered formation. These findings are consistent with the observations of Zhu et 

al. (2014), Ramananarivo et al. (2016), Park & Sung (2018), Peng et al. (2018) and Lin et 

al. (2020). 

To examine the nonlinear basins of attraction of these equilibria, we vary the initial 

separation distance dh and dp between the two swimmers and keep track of the corresponding 

steady-state formation; The basin of attraction of each equilibrium is highlighted in a 

different shade of grey in figure 3(a,b). The pitching swimmers converge 

https://doi.org/10.1017/jfm.2021.551
https://doi.org/10.1017/jfm.2021.551


S. Heydari and E. Kanso 

 922 A27-8 

https://doi.org/10.1017/jfm.2021.551 

 

Figure 3. Emergence of passive stable formations in a pair of heaving swimmers (Ah = 0.3) and of pitching 

swimmers (Ap = 15◦). (a) For heaving swimmers, the follower stabilizes at one of many discrete positions behind 

the leader where the gap (tail-to-head) distance dh is close to integer multiple of the wavelength λ= U/f of the 

leader motion. (b) For pitching swimmers, the follower stabilizes at locations such that the tail-to-tail distance dp 

is close to integer multiples of λ. Basins of attraction of each the first three equilibria are depicted in gradually 

more faint shades of grey. (c,d) Linear stability analysis: we perturb the position of the follower about each of 

these equilibria and compute the total hydrodynamic force Fx. We simultaneously sample data from the change 

in Fx and perturbation strength δx, and plot δFx vs. δx. Clearly, δFx acts as a restoring force. Taking the slope of 

δFx, we construct the hydrodynamic potential V on the follower. The potential well is deepest at the first 

equilibrium where the hydrodynamic interactions are strongest. 

more rapidly to the corresponding equilibria, indicating that these equilibria are stronger 

attractors in pitching than in heaving. Further, the wavelength λ = U/f is smaller in pitching, 

and so is the actual separation distance at equilibria (dp < dh), indicating that pitching 

swimmers move in tighter formations. 

To quantitatively assess the linear stability of these equilibria, we perturb the position of 

the follower about each equilibrium in the positive and negative x-direction with an initial 

perturbation of size δx/l = 0.5 and we calculate the corresponding change in δx and change 

in the total hydrodynamic force δFx = δ(−F sinθ + S cosθ − Dcosθ) acting on the follower in 

the x-direction. We scale the change in total force by U2/l and the perturbation from 
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equilibrium by d·/λ, where d· is either dh or dp. We sample simultaneously the scaled change 

in total force δFx and scaled perturbation strength δx and we plot the results in the first row 

of figure 3(c,d). The results are depicted in 

 (a) (b) 

 

Figure 4. Instantaneous swimming performance (time-dependent speed, thrust, input power and cost of 

attransport vs. time) for a single and pair of swimmers undergoing (the swimming speed, thrust force, input power 

and cost of transport are shown. Solid lines represent theAp = 15◦, respectively. Results are shown after the 

swimmers have reached steady state. From top to bottom,a) heaving at Ah = 0.3 and (b) pitching 

instantaneous values and dashed lines represent time-period averages. 

red triangles for the first stable position, and in orange circles and yellow squares for the 

second and third positions, respectively. Straight line fit for each of these data sets results in 

straight lines with negative slopes, implying that, for each of these equilibrium positions, 

the hydrodynamic force acts as a restoring force δFx = −Kδx that keeps the formation stable. 

Here, K is obtained numerically from the straight line fit. The value of K depends 

monotonically on the equilibrium position of the follower, with highest value at the first 

equilibrium (dh/λ ≈ 1 and dp/λ ≈ 1). The first equilibrium is most stable because 

hydrodynamic interactions are strongest at closer distance. We write δFx = −∂V/∂(δx), where 

V = K(δx)2/2 is the hydrodynamic potential function around the equilibrium δx = 0. For both 

pitching and heaving, the formation is stable with weaker stability for larger inter-swimmer 

distance. In the pitching formation the potential well is deeper (by approximately 50%) for 

all equilibria, indicating faster convergence to the respective equilibrium; see Appendix E 

for detailed analysis of the hydrodynamic forces during transient and equilibrium states. 

We next evaluate the advantages of these formations in terms of the speed and energetics 

of the pair of swimmers in comparison with swimming alone. Figure 4 shows details of the 

time evolution at steady state of a single and pair of swimmers for the first relative 

equilibrium dh/λ ≈ 1 and dp/λ ≈ 1 shown in figure 3, where hydrodynamic interactions are 

strongest. From top to bottom, we report the swimming speed, thrust force, input power and 

cost of transport vs. time. Instantaneous values are shown in solid lines and period-average 
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values in dashed lines. For the heaving motion, the average speed of the pair is 

approximately 10% higher than the speed of the single swimmer, consistent with 

experimental observations on heaving foils (Ramananarivo et al. 2016). However, the input 

power required to maintain these heaving motions in the presence of hydrodynamic 

interactions is also higher (approximately 30%). Consequently, the cost of transport of the 

heaving pair is approximately 20% higher than a single heaving swimmer. These results 

 

Figure 5. Swimming performance (average speed, thrust, input power and cost of transport) vs. flapping amplitude 

for a single and pair of swimmers undergoing (a) heaving and (b) pitching motions, respectively. From top to 

bottom, average values of the swimming speed, thrust force, input power and cost of transport. Left columns 

(black symbols) in (a,b) show the results for single swimmers. For the pair of swimmers, all of the results are 

scaled by the corresponding quantity values for a single swimmer. The blue and red symbols represent the results 

for the follower and leader, respectively. The grey symbols are the school average. 

suggest that heaving swimmers can enhance their speed by swimming in a pair. However, 

this enhancement in swimming speed is achieved at an energetic cost. 

For pitching swimmers, the speed of the formation is comparable to that of the single 

swimmer (approximately 2% slower). However, the follower’s input power is significantly 

reduced (approximately 70% less than the single pitching swimmer). This reduction in input 

power is due to the hydrodynamic benefits highlighted in figure 1(b). Correspondingly, the 

cost of transport of the pair of pithing swimmers drops by 30% compared with swimming 

alone. 

Figure 5 explores the effect of the flapping amplitude on the period-average values of the 

swimming speed, thrust force, input power and cost of transport, after the swimmers have 

reached steady state. Specifically, we examine the range Ah ∈ [0,0.7] and Ap ∈ [0◦,45◦] for 
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single swimmers and Ah ∈ [0.3,0.7] and Ap ∈ [10◦,45◦] for pairs of swimmers, where small 

amplitudes are ignored to ensure that hydrodynamic interactions are sufficient for the 

spontaneous emergence of order formations. In pairwise interactions, we report all period-

average values normalized by the corresponding values for a single swimmer. 

When swimming alone, whether by heaving or pitching, an increase in the flapping 

amplitude monotonically increases the swimming speed, thrust, input power and cost of 

transport; see left columns of figure 5(a,b). Here, the swimming speed vs. flapping 

amplitude for single swimmers is a reproduction of the results in figure 2(a,b). 

Across all heaving amplitudes, the pairwise formation is approximately 5%–10% faster 

than that of a single heaving swimmer. Both the leader and follower experience an increase 

in thrust compared with the single swimmer, but require more power to swim in formation 

compared with swimming alone, with extra power demand on the follower. The cost of 

transport of the heaving formation is thus slightly higher (approximately 15%) compared 

with swimming alone. Thus, heaving swimmers slightly enhance their swimming speed 

when in formation, albeit at a higher cost of transport. 

The formation of pitching swimmers is approximately 5% slower than swimming alone 

for almost all flapping amplitudes. The leader experiences consistently lower thrust and the 

follower consistently higher thrust compared with swimming alone. However, while the 

power demand on the leader is comparable to the single swimmer, the power demand on the 

follower is significantly reduced for all amplitudes. Taken together, these results lead to 

slightly higher cost of transport for the leader and significantly lower cost of transport for 

the follower compared with swimming alone. Indeed, the cost of transport of the follower is 

a fraction of the single swimmer (approximately 25% at best), which in turn, causes the 

formation to save a significant amount of power (approximately 35% at best) compared with 

swimming alone. These results imply that although the pairwise formation of pitching 

swimmers experiences no enhancement in swimming speed compared with swimming 

alone, it reduces the cost of transport by a significant amount. 

5. Single swimmer wake informs pairwise formation 

To gain additional insights into the information contained in the wake of the leader and the 

hydrodynamic mechanisms that mediate the power reduction and stability of the pairwise 

formation, we examine the flow field induced by a single swimmer. Namely, we compute 

the flow field generated behind a single heaving or pitching swimmer, and we consider a 

virtual ‘point’ follower placed at any location (xo,yo) in the swimmer’s wake and undergoing 

lateral oscillations y(t) = yo + Asin(2πt), where A is the oscillation amplitude. We set A to Ah 

in the wake of the heaving swimmer and Ap in the wake of the pitching swimmer. The wake 

is blind to the existence of the virtual follower. We ask whether there are particular locations 

in the swimmer’s wake that are favourable to the follower’s flapping motion. To address 

this question, we define a flow agreement parameter 
Z

(xo,yo) that quantifies the agreement 

between the flow velocity in the wake of the single swimmer and the prescribed oscillations 

of the virtual follower, 

T 

 flow agreement parameter: 
Z 

=y˙(xo,yo,t)v(xo,yo,t)dt, (5.1) 

ts 

where ts is an arbitrary time after the single swimmer has reached steady state, T is the 

flapping period, y˙(xo,yo,t) is the lateral velocity of the follower and v(xo,yo,t) is the y-
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component of the flow velocity evaluated at the follower’s location. Positive values of the 

flow agreement parameter imply a beneficial interaction between the flow and the follower’s 

flapping motion, whereas negative values indicate a detrimental one. 

The flow agreement parameter is shown in the top row of figure 6. The hypothetical 

follower is undergoing the same oscillatory motion irrespective of its location in the wake 

of the single swimmer at amplitude Ah = 0.3 (for heaving) and Ap = 15◦ (for pitching). Red 

regions indicate where the flow velocity in the swimmer’s wake and the hypothetical 

follower’s motion agree. Interestingly, regions of maximum flow agreement are located at 
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Figure 6. Flow agreement parameter and thrust parameter experienced by a hypothetical point follower 

undergoing prescribed oscillations in the wake of a single swimmer that does not see the follower. Top row shows 

flow agreement parameter field in the wake of (a) heaving and (b) pitching swimmers. The grey plates represent 

the steady-state position of the followers in the first, second and third stable spacings found from solving the 

system with pairwise interactions (figure 3). In both cases, the distance of the regions with maximum flow 

agreement from the leading plate is very close to integer multiples of the wavelength (dh,p/λ= 1,2,3). Bottom row 

shows thrust parameter as a function of distance. The dashed lines represent the head and tail positions of the 

heaving and pitching follower, respectively. The negative slopes of plot at the steady-state distances imply linear 

stability of the follower to in-line perturbations. The prescribed amplitudes are Ah = 0.3 and Ap = 15◦. 

almost integer multiples of the wavelength λ = U/f of the single swimmer, similarly to the 

locations of the stable equilibria in fully coupled pairwise formations. Superimposed onto 

figure 6(a,c), we show a snapshot of the free vortex sheet of the swimmer, as well as the 

location of the actual follower at steady state obtained from our pairwise interacting 

swimmers. As noted previously, in the heaving case, the leading edge of the follower is 

located close to the integer multiples of λ, while in pitching, the follower’s trailing edge is 

located at integer multiples of λ. In the heaving case, the leading edge of the follower is 

located at the intersection of the red and blue regions of the flow agreement parameter, that 

is at the location where the flow agreement parameter transitions from favourable to 

unfavourable. For the pitching swimmer, the follower is mostly located within the red region 

where the flow agreement parameter is favourable. This effectively means that a higher 

surface area of the pitching follower experiences a flow field favourable to its motion, 

whereas part of the heaving follower undergoes negative flow agreement. This mechanism 

could be responsible for the increased efficiency of the pitching formation in comparison 

with the heaving formation. 

We next examine the stability of pairwise formation in the context of the simpler model 

based on the wake of a single swimmer and a hypothetical follower. We specifically consider 

the case where the virtual follower is positioned in line behind the single swimmer. It is well 

established that the thrust of a self-propelled flapping swimmer scales with the square of the 

swimmer’s lateral velocity relative to the surrounding fluid’s velocity (Triantafyllou et al. 

1993; Floryan et al. 2017; Newbolt et al. 2019). We thus define the thrust parameter 

 1 ts+T 2 

parameter:(v − y˙) dt, (5.2)  Thrust 

ts 
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which acts as a measure of the period-average thrust but not an exact value of thrust. We 

plot the thrust parameter as a function of the follower’s downstream location of heaving and 

pitching swimmers in the bottom row of figure 6. The thrust parameter is minimum at three 

locations where the flow agreement parameter is maximum. This is due to the fact that 

higher agreement between the follower’s oscillation and the flow implies smaller difference 

in the follower’s lateral speed relative to the flow and therefore smaller thrust. Superimposed 

onto these plots are the three equilibria at steady state obtained from our pairwise 

simulations in figure 3 (vertical dashed lines). We next argue that the slope of the thrust 

parameter at these locations is an indicator of the stability of the pairwise formation. To this 

end, recall that at steady state, the thrust Fx(xo,t) and skin drag D(xo,t) balance each other on 

average, and the follower experiences zero net acceleration. Namely, 

0, where the time-average notation dt is introduced for brevity. If we 

perturb the horizontal position of 

the follower by δx, since skin drag depends only on the relative fluid’s velocity tangential 

to the plate, it is reasonable to assume that its change due to in-line positional perturbations 

is negligible . We arrive at the period-

average equation  

. This equation provides a condition for the linear stability of the 

pairwise formation in the context of the (single swimmer/virtual follower) model: if the 

slope of the period-average thrust relative to the horizontal position is negative, the system 

is linearly stable to perturbations in the horizontal position. Otherwise, the perturbation 

grows and the pair leaves their relative spacing at steady state. Since the thrust parameter X 

is an approximation of period-average thrust, it suffices to obtain the slope of X with respect 

to δx to gauge the stability of the formation. The slope is negative at the steady-state 

positions in both heaving and pitching swimmers (bottom row of figure 6). Further, the slope 

of these locations decreases as the distance between the two swimmers increases. This is 

consistent with figure 3 where the third stable position is less stable than the second and the 

second slightly less stable than the first. Finally, the significantly higher slope of the thrust 

parameter in pitching compared with heaving is consistent with the observations in figure 3, 

where pitching formations are more stable. 

6. Conclusion 

We analysed the locomotion dynamics of actively flapping swimmers interacting passively 

via the fluid medium in the context of the vortex sheet model. Within the two-swimmer 

model, we showed that hydrodynamic interactions lead to stable ordered formations, in 

which the follower falls into specific positions in the wake of the leader, and the pair travel 

together at the same speed. This well-ordered ‘schooling’ behaviour occurs for both heaving 

and pitching swimmers. Group cohesion is tighter and more stable for pitching swimmers. 

In heaving alone, the school swims slightly faster compared with swimming alone, 

approximately 5%–10% faster, albeit at a similar increase in cost of transport, especially for 

the follower (approximately 20% higher cost for the follower and 15% for the formation). 

When pitching, the school swims at a slightly (approximately 5%) lower speed but has 

significant energetic benefits, with up to 35% reduction in cost of transport for the formation 

and up to 75% for the follower. Simultaneous heaving and pitching also leads to flow-
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mediated stable formations (see supplemental movie), indicating that this phenomenon is 

robust to the flapping mode. 

Detailed comparison of our findings to previously known results are in order. Physical 

experiments and numerical simulations report stable pairwise formations in 

hydrodynamically interacting swimmers. The experiments of Ramananarivo et al. (2016) 

using pairs of purely heaving rigid foils in tandem found that the foils stabilize at particular 

discrete gap distances, and that these formations were usually accompanied by an increase 

in the swimming speed of the pair (10%–20% compared with swimming alone). 

The increase in speed was observed up to three wavelengths away from the leader, however, 

its effect quickly diminished with distance. Numerical simulations of pairs of interacting 

flapping swimmers provided more details on swimming energetics. Zhu et al. (2014) used 

an immersed boundary method to study the dynamics of two flexible filaments undergoing 

heaving oscillations at their leading edges at Reynolds number = 200. They reported an 

increase in both the swimming speed and input power of the pair compared with swimming 

alone. These changes were only reported for pairs in compact configurations. In this 

configuration, the leading edge of the follower is almost touching the trailing edge of the 

leader and the narrow space between them causes the pair to behave like one long filament. 

The increased speed and power requirements seemed to completely disappear for pairs in 

regular configurations characterized by an increased distance between the swimmers and 

velocity and power equal to a single swimmer. Dai et al. (2018) studied the swimming 

dynamics of multiple flexible filaments under combined pitching and heaving motions at 

the leading edge. However, the heaving motion’s amplitude was much smaller than the tail’s 

displacement due to pitching. For two filaments swimming in tandem, they reported a 

decrease of about 18% in the cost of transport when the swimmers were in compact 

configurations. The regular configurations was found to be energetically beneficial, but only 

by approximately 2%–3% compared with swimming alone. Park & Sung (2018) also found 

a decrease of approximately 15% in power for a pair of flexible filaments, when swimming 

close to one another. The increase in speed relative to swimming alone was found to be 

negligible. 

We examined pairwise interactions of purely heaving and pitching rigid swimmers, thus 

isolating heaving from pitching as opposed to the studies of flexible heaving filament that 

combine both effects. We found that for each flapping mode, the swimmers reach stable 

steady-state formations with constant distances. The flapping mode had a significant impact 

on the stability and swimming energetics of the pair. We observed a slight increase in the 

swimming speed of the heaving pair (up to 10%) at the expense of higher cost of transport. 

For pitching swimmers, the swimming speed was not affected much by the pairwise 

interaction, but we found a significant decrease in the input power of the follower (up to 

70% for small amplitudes). In contrast to the findings of Zhu et al. (2014) and Park & Sung 

(2018), where the effects of the pairwise interactions quickly vanished with increasing 

distance, our vortex sheet model observed these effects at longer distances, up to three 

swimming wavelengths, consistent the experiments of Ramananarivo et al. (2016). The 

discrepancy is most likely due to the relatively small Reynolds number in Zhu et al. (2014) 

(Re = 200), causing the wake-induced flow to diffuse faster due to higher viscous forces. 

Ramananarivo et al. (2016) reported a much larger Reynolds number (Re = 103–104) in their 

experimental set-up. The higher Reynolds numbers in the experiments are consistent with 

our inviscid model. At this inviscid regime, the flow inertia is dominant, causing the wake 
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of the leader to live longer in the fluid. In this regime, the effects of hydrodynamic 

interaction on stability and energetics decreased with distance, but much more gradually. 

In sum, our results are consistent with numerical and experimental findings of heaving 

foils (Zhu et al. 2014; Becker et al. 2015; Ramananarivo et al. 2016; Park & Sung 2018; 

Peng et al. 2018; Newbolt et al. 2019; Lin et al. 2020), but go beyond these results in two 

major ways. Firstly, we completely separated the flapping modes, heaving and pitching, 

probed the effect of each one on the stability, speed and energetic performance of the school, 

and we showed that the flapping mode affects the tightness and stability of the formation, as 

well as the cost of transport in school compared with swimming alone. Secondly, we 

analysed these formations in the context of a simpler model consisting of the wake of a 

single swimmer and a hypothetical point follower. We defined an empirical flow agreement 

parameter and showed that regions where the wake-induced flow and the follower’s periodic 

motion agree are consistent with the stable formations observed in pairwise interactions of 

heaving and pitching swimmers. The reduced-order model also highlights that the heaving 

mode is less favourable energetically because, in steady-state formations of heaving 

swimmers, the follower is positioned such that it experiences negative agreement with the 

ambient flow. We also employed the simpler model to make predictions about the stability 

of the pairwise formation, consistent with our findings that the pitching mode leads to tighter 

and more stable formation. Indeed, an alternative interpretation of our results is that they 

reveal how active changes in the flapping mode can be used to control, via hydrodynamic 

interactions, the school emergent properties, including the school speed, energetics and 

cohesion. For example, to save energy or quickly overcome large perturbations, swimmers 

can adopt a pitching mode. 

These findings could be instrumental for understanding the role of the fluid medium as a 

mediator of the physical interactions between swimming fish, and to assess the 

hydrodynamic benefits to fish schooling. Fish have more complex flapping motions than 

simple heaving and pitching (Lin, Wu & Zhang 2019; Van Buren, Floryan & Smits 2019; 

Ayancik, Fish & Moored 2020), and the compliance of the fish body is believed to play an 

important role in the flapping efficiency and ability to extract energy from ambient flows 

(Beal et al. 2006; Lucas et al. 2014; Quinn, Lauder & Smits 2014; Jusufi et al. 2017). These 

considerations, as well as extensions to arrays of swimmers in tandem and side by side, 

potentially flapping at different amplitudes and phases as in Newbolt et al. (2019), will be 

treated in future works. 

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.551. 
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The coupled fluid–structure interaction between the swimming plate and the surrounding 

fluid is simulated using an inviscid vortex sheet model. In viscous fluids, boundary layer 

vorticity is formed along the sides of the swimmer, and it is swept away at the swimmer’s 

tail to form a shear layer that rolls up into vortices. In the vortex sheet model, the swimmer 

is approximated by a bound vortex sheet, denoted by lb, whose strength ensures that no fluid 

flows through the rigid plate, and the separated shear layer is approximated by a free 

regularized vortex sheet lw at the trailing edge of the swimmer. The total shed circulation Γ 

in the vortex sheet is determined so as to satisfy the Kutta condition at the trailing edge, 

which is given in terms of the tangential velocity components above and below the bound 

sheet and ensures that the pressure jump across the sheet vanishes at the trailing edge. 

To express these concepts mathematically, it is convenient to use the complex notation 

 

z = x + iy, where i = √−1 and (x,y) denote the components of an arbitrary point in the plane. 

The bound vortex sheet lb is described by its position zb(s,t) and strength γ(s,t), where s ∈ 

[−l,l] denotes the arc length along the sheet lb. The separated sheet 

 

Figure 7. (a) Schematic of the vortex sheet model for a two-dimensional flapping swimmer. (b) Depiction of the 

different hydrodynamic forces acting on the swimmer. 

lw is described by its position zw(Γ,t), Γ ∈ [0,Γw] where Γ is the Lagrangian circulation around 

the portion of the separated sheet between its free end in the spiral centre and the point 

zw(Γ,t). The parameter Γ defines the vortex sheet strength γ = dΓ/ds. 

By linearity of the problem, the complex velocity w(z,t) = u(z,t) − iv(z,t) is a superposition 

of the contributions due to the bound and free vortex sheets 

 w(z,t) = wb(z,t) + ww(z,t). (A1) 

In practice, the free sheet lw is regularized using the vortex blob method to prevent the growth 

of the Kelvin–Helmholtz instability. The bound sheet lb is not regularized in order to 

preserve the invertibility of the map between the sheet strength and the normal velocity 

along the sheet. The velocity components wb(z,t) and ww(z,t) induced by the bound and free 

vortex sheets, respectively, are given by 

lΓw 

 wb(z,t) =Ko(z − zb(s,t))γ(s,t)ds, wwKδ(z − zw(Γ,t))dΓ, 

−l(A2a,b) 
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where Kδ is the vortex blob kernel, with regularization parameter δ, 

 K  iy. (A3) 

If z is a point on the bound sheet for which δ = 0, wb is to be computed in the principal value 

sense. 

The position of the bound vortex sheet zb is determined from the plate’s flapping (y(t),θ(t)) 

and swimming x(t) motions. The corresponding sheet strength γ(s,t) is determined by 

imposing the no penetration boundary condition on the plate, together with conservation of 

total circulation. Let n(s,t) = −sinθ + icosθ be the upward normal to the plate, the no-

penetration boundary condition is given by 

Re[wn]zb = Re[wswimmern], 

where 

(A4) 

wswimmer = x˙ − iy˙ − iθ˙[z¯b − (x − iy)]. (A5) 

Conservation of the fluid circulation implies that  lb 

The circulation parameter Γ along the free vortex sheet zw(Γ,t) is determined by the 

circulation shedding rates Γ˙w, according to the Kutta condition, which states that the fluid 

velocity at the trailing edge is finite and tangent to the flyer. The Kutta condition can be 

obtained from the Euler equations by enforcing that, at the trailing edge, the difference in 

pressure across the swimmer is zero. To this end, we integrate the balance of momentum 

equation for inviscid planar flow along a closed contour containing the vortex sheet and 

trailing edge, 

 dΓ (s,t) 1 2 2 

 [p]∓(s) = p−(s) − p+(s) = − dt − 2(u− − u+), (A6) 

wherel ≤ s ≤ l, is the circulation within the 

contour and p (s,t denote the limiting pressure 

and tangential slip velocities on both ∓ 

sides of the swimmer. Since the pressure difference across the free sheet is zero, it also 

vanishes at the trailing edge by continuity, which implies that 

 . (A7) 

The values offrom the velocity jump at the trailing edge, given by the sheet strength, 

evaluated atu− and u+ are obtained from the average tangential velocity component ands = −l 

  Im[(w − wswimmer)n], u−−u+=γ. (A8) 

Once shed, the vorticity in the free sheet moves with the flow. Thus the parameter Γ assigned 

to each particle zw(Γ,t) is the value of Γw at the instant it is shed from the trailing edge. The 

evolution of the free vortex sheet zw is obtained by advecting it in time with the fluid velocity, 

 Published online by Cambridge University Press 



School cohesion, speed and efficiency 

 922 A27-19 

https://doi.org/10.1017/jfm.2021.551 

 z˙¯w = ww(zw,t) + wb(zw,t). (A9) 

Appendix B. Forces and moments 

The hydrodynamic force acting on the swimmer due to the pressure difference across the 

swimmer is given by, 

 n[p]∓ ds = −F sinθ + iF cosθ, (B1) 

lb 

where F = ds. The hydrodynamic moment acting on the swimmer about its leading 

edge is given by 

 M = Re , (B2) 

where zle is position of the leading edge s = ±l. 

It is known that the strength of the bound vortex sheet exhibits an inverse square root 

singularity at the edges (Saffman 1992; Eldredge 2019). The singularity at the trailing edge 

is regularized by enforcing the Kutta condition as discussed above. To regularize the 

singularity at the leading edge, we introduce a force parallel to the plate known as leading 

edge suction (Eldredge 2019). Following the derivation provided in Eldredge (2019), we 

write the suction force, in dimensionless form as 

 S = 2πeiθσ2, (B3) 

where σ is the suction parameter defined as 

  ds, (B4) 

where z˜(s,t) = z(s,t) − zeiθ, is the complex position of any vortex sheet present in the fluid 

written in the plate’s frame of reference. y˙ − lθ˙ cosθ is the velocity of the centre of the plate 

in the y-direction. Note that in (B3), the suction force is always positive (always a thrust 

force) and parallel to the plate. 

Note that the majority of the suction force is due to the vertical motion of the leading edge 

relative to the surrounding fluid. For the pitching swimmer, since the leading edge has no 

vertical motion, the contribution of the leading edge suction force to the total thrust force of 

the swimmer is negligible. This is confirmed by our numerical experiments on a single 

pitching swimmer. 

Last, we introduce a drag force D that emulates the effect of skin friction due to fluid 

viscosity. This force is based on the Blasius laminar boundary layer theory as implemented 

by Fang (2016) in the context of the vortex sheet model. Blasius theory provides an empirical 

formula for skin friction on one side of a horizontal plate of length 2l placed in fluid of 

density ρf and uniform velocity U. In dimensional form, Blasius formula is 
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D , where the skin friction coefficient Cf = 0.664/√Re is given in 

terms of the Reynolds number Re = ρf U(2l)/μ. Substituting back in the empirical formula 

leads to D = CdU3/2, where Cd . Following Fang (2016), we write a 

modified expression of the drag force for a swimming plate 

 D ), (B5) 

of the plate, respectively, relative to the swimming velocitywhere U¯ ± are the spatially 

averaged tangential fluid velocities on the upper and lower sideU, 

 1 l 

 U¯ ±(t) =  u±(s,t)ds − U. (B6) 

 2l −l 

We estimate Cd to be approximately 0.02 in the experiments of Ramananarivo et al. (2016). 

Appendix C. Numerical implementation 

The bound vortex sheet is discretized by 2n + 1 point vortices at zb(t) with strength ΔΓ = γΔs. 

These vortices are located at Chebyshev points that cluster at the two ends of the swimmer. 

Their strength is determined by enforcing no penetration at the midpoints between the 

vortices, together with conservation of circulation. The free vortex sheet is discretized by 

regularized point vortices at zw(t), that is released from the trailing edge at each timestep 

with circulation given by (A7). The free point vortices move with the discretized fluid 

velocity while the bound vortices move with the swimmer’s velocity. The discretization of 

(2.2) and ((A7) and (A9)) yields a coupled system of ordinary differential evolution 

equations for the swimmer’s position, the shed circulation and the free vorticity, that is 

integrated in time using the fourth-order Runge–Kutta scheme. The details of the shedding 

algorithm are given in Nitsche & Krasny (1994). The numerical values of the timestep Δt, 

the number of bound vortices n and the regularization parameter δ are chosen so that the 

solution changes little under further refinement. 

Finally, to emulate the effect of viscosity, we allow the shed vortex sheets to decay 

gradually by dissipating each incremental point vortex after a finite time Tdiss from the time 

it is shed into the fluid. Larger Tdiss implies that the vortices stay in the fluid for longer times, 

mimicking the effect of lower fluid viscosity. For the results depicted in this study, we used 

Tdiss ∈ [1.5,3.5] flapping period. We refer the reader to Huang et al. (2018) for a detailed 

analysis of the effect of dissipation time on the hydrodynamic forces on a stationary and 

moving plate in the vortex sheet model. Details of the numerical validation in comparison 

to Jones (2003) and Jones & Shelley (2005) are provided in Huang et al. 

(2016). 
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Figure 8. Hydrodynamic forces on the follower act as restoring forces. Snapshots of pairs of swimmers undergoing 

(a) heaving and (b) pitching motion during transient and steady-state formation. Green (thrust) and orange (drag) 

arrows represent period-averaged hydrodynamic forces acting on the follower. Right columns in (a,b) show the 

instantaneous thrust and skin drag (solid lines) and their period-averaged values (dashed lines) over one flapping 

period during transient and steady-state formation. The grey dashed lines denote the time instance of the snapshots 

shown to the left. 

Appendix D. Swimming energetics 

Heaving motions are produced by an active heaving force Fh acting by the swimmer on the 

fluid in the y-direction. The value of Fh is obtained from the balance of linear momentum on 

the swimmer in the y-direction, 

 Heaving: my¨ = Fy + Fh. (D1) 

Here, the hydrodynamic force Fy acting on the swimmer in the y-direction is given by (B1). 

Pitching motions are produced by an active moment Mp acting by the swimmer on the 

fluid about the leading edge. The value of Mp is obtained from the balance of angular 

momentum about the swimmer’s leading edge, 

 Pitching: Iθ¨ − Im[m(x˙ + iy˙)wl.e.] = M + Mp, (D2) 

Here, I = m(2l)2/3 is the swimmer’s moment of inertia about the leading edge, wl.e. is the 

swimmer’s velocity at the leading edge, and M is the hydrodynamic moment about the 

leading edge given in (B2). 

The power input by the swimmer into the fluid due to heaving and pitching motions, 

respectively, is given by 

Heaving: Ph = Fhy˙, (D3) 

Pitching: Pp = Mpθ.˙ (D4) 

Note that, in both cases, the leading edge suction and skin drag forces do not contribute to 

the input power. 

Appendix E. Hydrodynamic interaction forces 
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To further examine the hydrodynamic interactions between the two swimmers, we plot 

snapshots of the free vortex sheets and flow field for the pair of heaving and pitching 

swimmers in figure 8(a,b). We report two instances taken during the transient and steady-

state motion, and from each regime, we report the hydrodynamic thrust and skin drag over 

one period of flapping and their time-period average. When the follower gets too close to 

the leader, the drag force dominates over thrust, causing the follower to decelerate and move 

further behind the leader. Conversely, when the distance between swimmers is larger than 

the steady-state spacing, the thrust force overcomes drag causing the follower to accelerate 

and the pair to move closer; see, e.g. top right of figures 8(a) and 8(b), respectively. The 

thrust and drag forces on the follower are balanced on average after steady state has been 

reached, effectively leading to zero acceleration and constant separation distance between 

the two swimmers. 
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