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Fish schools are ubiquitous in marine life. Although flow interactions are thought to be
beneficial for schooling, their exact effects on the speed, energetics and stability of the group
remain elusive. Recent numerical simulations and experimental models suggest that flow
interactions stabilize in-tandem formations of flapping foils. Here, we employ a minimal
vortex sheet model that captures salient features of the flow interactions among flapping
swimmers, and we study the free swimming of a pair of in-line swimmers driven with
identical heaving or pitching motions. We find that, independent of the flapping mode,
heaving or pitching, the follower passively stabilizes at discrete locations in the wake of the
leader, consistent with the heaving foil experiments, but pitching swimmers exhibit tighter
and more cohesive formations. Further, in comparison to swimming alone, pitching motions
increase the energetic efficiency of the group while heaving motions result in a slight
increase in the swimming speed. A deeper analysis of the wake of a single swimmer sheds
light on the hydrodynamic mechanisms underlying pairwise formations. These results
recapitulate that flow interactions provide a passive mechanism that promotes school
cohesion, and afford novel insights into the role of the flapping mode in controlling the
emergent properties of the school.

Key words: swimming/flying, low-dimensional models, wakes

1. Introduction

Fish schools are ubiquitous in aquatic life, with half of the known fish species thought to
exhibit schooling behaviour during some phase of their life cycle (Shaw 1978). However,
the role of the fluid medium as a mediator of the physical interactions between swimming
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fish remains unclear (Partridge & Pitcher 1979; Partridge 1982). Experimental evidence
suggests that fish modify their motions and reduce muscular effort when swimming in
vortex-laden flows (Liao et al. 2003). These findings support a long-standing but
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controversial hypothesis that schooling provides hydrodynamic benefits as fish move within
the flows generated by others (Weihs 1973, 1975; Abrahams & Colgan 1985; Liao 2007).
A direct assessment of this hypothesis in biological and physical models remains a challenge
because of the complexity in resolving the hydrodynamics of unsteady swimming at high
Reynolds numbers with single (Wolfgang et al. 1999; Triantafyllou, Triantafyllou & Yue
2000; Borazjani 2008) and multiple interacting swimmers (Liao 2007; Gazzola et al. 2016;
Verma, Novati & Koumoutsakos 2018). Simplifications based on crystalline school
arrangements and ideal flow models indicate that fish within a planar formation, with
diamond-shaped unit cell, benefit energetically from near-field interactions with the wakes
of upstream neighbours (Weihs 1973), whereas far-field interactions serve to passively
stabilize the formation (Tsang & Kanso 2013). These crystal lattice models do not capture
that fish exhibit variable arrangements in field and laboratory experiments (Partridge &
Pitcher 1979; Marras et al. 2015), and the broader question of how flow interactions benefit
schooling remains unresolved.

Physical models and numerical simulations of mechanically actuated foils found that, at
the single swimmer level, flapping foils share with their biological counterparts many
common aspects of the flows, forces and energetics (Blondeaux et al. 2005; Dong, Mittal &
Najjar 2006; Buchholz & Smits 2008; Dabiri 2009; Lauder et al. 2011; Wen & Lauder 2013).
A key similarity is the reverse von Karman wake left by both flapping foils and fish (Taneda
1965; Triantafyllou, Triantafyllou & Grosenbaugh 1993). Subsequently, several numerical
and experimental studies used pairs of flapping foils to understand multi-swimmer
interactions. Zhu, He & Zhang (2014) were first to examine, in the context of the immersed
boundary method, the effects of pairwise hydrodynamic interactions on the self-propulsion
of flapping flexible swimmers in tandem configuration. Flow-mediated interactions were
found to stabilize the swimmers in particular spacings and to reduce the energetics cost of
swimming in the follower. Experimental studies on heaving rigid foils confined to in-line
positions and freely swimming in tandem were also found to assume one of several particular
spacings, stabilized by the flow interactions (Becker et al. 2015; Ramananarivo et al. 2016;
Newbolt, Zhang & Ristroph 2019). These observations have since been confirmed in several
numerical studies (Dai et al. 2018; Park & Sung 2018; Peng, Huang & Xi-Yun 2018; Lin et
al. 2020). Here, we investigate the speed, energetics and stability of these planar formations
using a mathematical model of self-propelling and interacting swimmers that flap by either
heaving or pitching.

Existing mathematical models of flow interactions in fish schools vary in the degree of
fidelity to the fluid dynamics and sensory-feedback control at the swimmer level. Ideal flow
models — based on a dipolar far-field approximation (Tchieu, Kanso & Newton 2012) — with
no feedback control have been used to assess the effect of passive flow interactions on the
stability of pairwise (Kanso & Tsang 2014, 2015) and diamond lattice formations (Tsang &
Kanso 2013) and the advantages of flapping out of phase (Kanso & Newton 2009). This far-
field flow model coupled to visual feedback control, either in the form of behavioural rules
(Filella et al. 2018) or learning algorithms (Gazzola et al. 2016), was used to analyse the
fish collective dynamics. Fish were shown to exhibit a novel collective turning mode and to
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swim faster thanks to the fluid (Filella ez al. 2018). Near-field fish—-wake interactions were
also accounted for in ideal flow models with no feedback control, such as the vortex street
model used by Weihs (1973) or the phenomenological model derived in Oza, Ristroph &
Shelley (2019) to assess the efficiency of lattice formations. High-fidelity computational
fluid dynamics coupled to reinforcement learning algorithms were recently implemented in
pairwise interactions to optimize the flapping motion of the follower fish for harnessing the
wake of the leader (Verma etal. 2018).
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Figure 1. A pair of swimmers undergoing (@) heaving motions at amplitude 4, = 0.3 and () pitching motions at

amplitude 4= 15-, Snapshots of the velocity field (grey arrows) and free vortex sheet of the leader (blue)
and follower (red) are taken after steady-state swimming is reached at a time instant where both swimmers are
flapping downwards. Insets depict the pressure forces acting on each swimmer in the pairwise formation in
comparison to a single swimmer undergoing the same prescribed motion.

In this paper, we analyse pairwise interactions of heaving and pitching swimmers in the
context of the vortex sheet model (see figure 1). The vortex sheet model has been used
extensively to analyse problems of fluid—structure interactions, including ring formation at
the edge of a circular tube (Nitsche & Krasny 1994) and wakes of oscillating plates (Jones
2003; Sheng et al. 2012), falling cards (Jones & Shelley 2005), flapping flexible flags (Alben
& Shelley 2008; Alben 2009), swimming plates (Wu 1971) and hovering flyers (Huang,
Nitsche & Kanso 2016; Huang et al. 2018). Here, we use the implementation of Nitsche &
Krasny (1994), which we vetted in comparison to Navier—Stokes simulations and other
implementations of the vortex sheet method in Sheng ez al. (2012), Huang et al. (2016). This
study focuses on the effect of streamwise flow interactions on the swimming motion of
heaving and pitching plates, and finds that ordered formations emerge spontaneously via
these interactions, independent of the flapping mode, consistent with heaving foil
experiments (Ramananarivo et al. 2016; Newbolt et al. 2019) and numerical simulations
(Zhu et al. 2014; Park & Sung 2018; Peng et al. 2018; Lin et al. 2020). However, the flapping
mode, heaving or pitching, affects the speed and energetics of these formations as well as
their robustness to streamwise perturbations. We describe a specific hydrodynamic
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mechanism that explains the energetic and stability differences associated with each flapping
mode.

2. Problem formulation

A swimmer is modelled as a rigid plate of length 2/, small thickness e / and homogenous
density p, submerged in an unbounded, planar, fluid domain of density p;. The swimmer’s
mass per unit depth is given by m = 2pel. An inertial frame (ey,ey,e) is introduced, such that
(ex,e,) span the plane of motion. The vector x = (x,)) denotes the position of the leading edge
of the swimmer in the (ex,e,) plane, and the angle 6 its orientation relative to the e,-direction
(see Appendix A and figure 7)

The swimmer is free to move in the ey-direction under periodic heaving or pitching
motions. Heaving consists of periodic lateral motions in the y-direction, of amplitude 4, at
fixed angle 8 = 0. Pitching refers to angular oscillations 8 of amplitude 4,, with zero lateral
motion y = 0 at the leading edge. The frequency of these heaving and pitching motions is
denoted by f. Hereafter, we scale all parameter values using / as the characteristic length
scale, 1/f as the characteristic time scale and ps/? as the characteristic mass per unit depth.
Accordingly, velocities are scaled by If, forces by p;f2/°, moments by p//*/* and power by py
Nala

In dimensionless form, the heaving and pitching motions are given by
(t) = Ay sin(2mr), 6(1) =0,

Heaving: y

(2.1
Pitching: 6(¢) = 4, sin(2m#), y(7) = 0.

The equation of motion governing the free swimming x(¢) is given by Newton’s second law
mx” = -F sin@ + Scos® - Dcosb. 2.2)

Here, the hydrodynamic forces acting on the swimmer consist of a leading edge suction
force S, a pressure force F acting in the direction normal to the swimmer and a skin drag
force D acting tangentially to the swimmer in the opposite direction to its motion. The drag
force D is introduced to emulate the effect of fluid viscosity, while the hydrodynamic
pressure force F is calculated in the context of the inviscid vortex sheet model. A detailed
description of the method and its numerical implementation can be found in Nitsche &
Krasny (1994), Huang et al. (2018) and a brief overview is given in Appendix A. Detailed
expressions of the fluid forces and moments acting on the swimmer are given in Appendix
B.

To assess the r41 . swimming performance, we use four metrics: the period-
averaged = ff X swimming speed Udr at steady state, the thrust force 7' =
ScosB - F sinB, the input power P required to maintain the prescribed heaving or pitching
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motions (see details in Appendix D) and the cost of transport defined as the input power P
divided by the swimming speed U.

3. Single swimmers: numerical results and scaling analysis

We solve (2.2) in the case of a single swimmer and compute the period-average swimming
speed at steady state. In figure 2(a,b), we show the steady-state speed for heaving and
pitching swimmers, respectively, as a function of the flapping amplitude. In both cases, the
speed increases monotonically, albeit that, when pitching, the increase scales differently at
small amplitudes. To get insight into how the swimming speed U scales with the heaving
and pitching amplitudes and frequency, it is instructive to use a simple scaling analysis.

At steady state, the sum of forces acting on the swimmer is zero on average. For heaving
swimmers, the dominant forces are those due to leading edge suction and viscous skin drag
(Garrick 1937). In dimensional form, the suction force scales as py(2/)C;2U?, where the
coefficient C; scales linearly with the effective angle of attack. In a heaving flat plate the
effective angle of attack is given by y'/U ~ A,f/ U (Garrick 1937; Floryan et al. 2017; Franck
& Breuer 2017; Smits 2019), and the suction force scales as ps(2/)(44/)>. Skin drag

scales as py(2/)CrU?, where C; ™~ Vv
on adapting

@ _
U 30-"\/1{?32 1 U of

>

W/ pr(20)U is the drag coefficient based

Pitching

Swimming Spe%gl I Swin;ming spee4d i Pressure drag
dominant
I 1 A 133
14
10] 1 2t Skin drag
dominant
|
|
. . , ) . |
0 02 04 4 06 0 10° 20° 30° 40°
Heaving amplitude, Pitching amplitude, Ap
(
— 102 " T
T m Experimental data Uifg—l_
iversityPress ; 100 @ Heaving airfoil ?
S A (Ramananarivo g
> s et al. (2016)) g
L £ .
o an -
o - —> E ‘;’D 10! |
& o =)
@ 50t 2 o b
g L= &
é Scaled
§ » speed
% Ui
: 100
0 1 2 3 101 100 1ol
7/ifm.2021.551 €) (d)
. . A A
Heaving amplitude, ' (cm) log (“1)

Figure 2. Swimming speed vs. flapping amplitude for single swimmers. (a) Average swimming speed at steady
state for a heaving swimmer. (b) Average swimming speed at steady state for a pitching swimmer. At small 4,
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skin drag is dominant and the speed scales super-linearly with A,. For 4, > 10, pressure drag is dominant and
speed scales linearly with 4,. (¢) Experimental data (black symbols) of average swimming speed of a heaving foil
(Ramananarivo et al. 2016, figure 2); the data collapse when scaled by the heaving frequency f** (yellow
symbols). (d) Comparing the swimming speed of our heaving swimmer model (blue circles) to the frequency-
scaled experimental data shown in (@), on a log—log scale. Both model and experimental results scale super-
linearly with heaving amplitude.

Blasius theory to this inviscid fluid model (see Appendix C and White 1979). Balancing
suction and drag forces, we arrive at (4,f)> ~ U2, which leads to

Heaving: U ~ (Axf)*. (3.1

The swimming speed scales super-linearly with the heaving amplitude and frequency. We
test this scaling law in light of the experimental results of (Ramananarivo et al. 2016, figure
2). The black data points in figure 2(c) represent the experimentally measured swimming
speed as a function of heaving amplitude. The different marker shapes represent three
different heaving frequencies used in the experiments (f'= 1,2,3). We scaled the data by the
heaving frequency according to our derived scaling law in (3.1). The scaled data (coloured
symbols) collapse on a single curve, indicating that our scaling analysis is sound. In figure
2(d), we plot, using a log—log scale, the swimming speed obtained from our model in figure
2(a) (blue dots) and experimental data (coloured symbols) vs. the heaving amplitude. The
slope of each line represents the power law that governs the relationship between the two
quantities. In both the model and the experiment, the swimming speed depends super-
linearly on the amplitude of heaving, however, the dependence is slightly stronger in the
model.

The steady-state speed of the pitching swimmer scales differently depending on the
flapping amplitude because the dominant drag forces acting on the swimmer differ. At small
pitching amplitude 4,, the swimmer is almost parallel to the swimming direction, hence skin
drag is dominant leading to the same scaling law as in the heaving case. At large amplitude
Ap, pressure drag is dominant; it is well known that pressure drag scales as U?; see, e.g.
Moored & Quinn (2019). Balancing inertia and pressure drag, we arrive at U ~ A,f. Put
together, we have

small 4, : U ~ (4xf)*3,
Pitching:(3.2) large 4, : U ~ A,f.

These scaling laws fit remarkably well the numerical results in figure 2(5).

4. Pairwise formations: stability, speed and energetics

We examine the steady-state behaviour of a pair of swimmers undergoing heaving and
pitching motions while freely interacting via the fluid medium. In figure 1, we show
snapshots of the flow field (grey arrows) and free vortex sheets in the case when the leader
(blue) and follower (red) are heaving at 45 = 0.3 (figure la) and pitching at 4, = 15- (figure
10). The snapshots are taken after the pair has reached steady-state swimming in the positive
x-direction, and passively locked into a constant separation distance. At these flapping
amplitudes, the heaving swimmers experience longer transience and swim faster, whereas
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the pitching swimmers rapidly lock into a tighter formation (see supplementary movie
available at https://doi.org/10.1017/jfm.2021.551).

An analysis of the hydrodynamic pressure forces —F sinBe, + F' cosBe,, where F'is given
in Appendix B, acting on each swimmer shows that compared to a single swimmer, the
distribution on the leader remains relatively unchanged. However, the force distribution on
the follower is affected by the wake of the leader, and the effect is more pronounced for
pitching swimmers; see insets in figure 1(a,b). Specifically in the pitching case, the follower
experiences less resistance from the fluid, and a favourable force distribution (in the same
direction of flapping) at the swimmer’s tail. At the instant shown in figure 1(b), the
downward flow due to the vortex sheet created by the leader helps the follower in its
downward pitching motion.

In figure 3, we vary the initial separation distance between the two swimmers for the
examples shown in figure 1. We find that for both heaving and pitching, the follower tends
to settle in one of several discrete locations behind the leader at nearly digital values of d/A
and d,/A, respectively, where dj, is the tail-to-head distance, d, the tail-to-tail distance and A
= U/f the wavelength of the leader’s swimming trajectory; see figure 3(a,b). Depending on
initial conditions, the leader and follower reach one of these separation distances and swim
together in ordered formation. These findings are consistent with the observations of Zhu et
al. (2014), Ramananarivo et al. (2016), Park & Sung (2018), Peng et al. (2018) and Lin et
al. (2020).

To examine the nonlinear basins of attraction of these equilibria, we vary the initial
separation distance dj, and d, between the two swimmers and keep track of the corresponding
steady-state formation; The basin of attraction of each equilibrium is highlighted in a
different shade of grey in figure 3(a,b). The pitching swimmers converge
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Figure 3. Emergence of passive stable formations in a pair of heaving swimmers (4 = 0.3) and of pitching
swimmers (4, = 15¢). (@) For heaving swimmers, the follower stabilizes at one of many discrete positions behind
the leader where the gap (tail-to-head) distance d; is close to integer multiple of the wavelength A= U/f of the
leader motion. (b) For pitching swimmers, the follower stabilizes at locations such that the tail-to-tail distance d,
is close to integer multiples of A. Basins of attraction of each the first three equilibria are depicted in gradually
more faint shades of grey. (c,d) Linear stability analysis: we perturb the position of the follower about each of
these equilibria and compute the total hydrodynamic force Fr. We simultaneously sample data from the change
in Frand perturbation strength 6x, and plot 6Fx vs. 6x. Clearly, 6Fxacts as a restoring force. Taking the slope of
&F:, we construct the hydrodynamic potential /" on the follower. The potential well is deepest at the first

equilibrium where the hydrodynamic interactions are strongest.

more rapidly to the corresponding equilibria, indicating that these equilibria are stronger
attractors in pitching than in heaving. Further, the wavelength A = U/f'is smaller in pitching,
and so is the actual separation distance at equilibria (d, < d3), indicating that pitching
swimmers move in tighter formations.

To quantitatively assess the linear stability of these equilibria, we perturb the position of
the follower about each equilibrium in the positive and negative x-direction with an initial
perturbation of size 6x/I = 0.5 and we calculate the corresponding change in 6x and change
in the total hydrodynamic force 6F, = §(~F sinB + S cosB — DcosB) acting on the follower in
the x-direction. We scale the change in total force by U?// and the perturbation from
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equilibrium by d-/A, where d-is either dj or d,. We sample simultaneously the scaled change

in total force 6F and scaled perturbation strength &x and we plot the results in the first row
of figure 3(c,d). The results are depicted in
(a) (b)
10
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Figure 4. Instantaneous swimming performance (time-dependent speed, thrust, input power and cost of

attransport vs. time) for a single and pair of swimmers undergoing (the swimming speed, thrust force, input power
and cost of transport are shown. Solid lines represent thed, = 15, respectively. Results are shown after the
swimmers have reached steady state. From top to bottom,a) heaving at A, = 0.3 and () pitching

instantaneous values and dashed lines represent time-period averages.

red triangles for the first stable position, and in orange circles and yellow squares for the
second and third positions, respectively. Straight line fit for each of these data sets results in
straight lines with negative slopes, implying that, for each of these equilibrium positions,
the hydrodynamic force acts as a restoring force 6F, = —K6x that keeps the formation stable.
Here, K is obtained numerically from the straight line fit. The value of K depends
monotonically on the equilibrium position of the follower, with highest value at the first
equilibrium (dp/A = 1 and dp/A = 1). The first equilibrium is most stable because
hydrodynamic interactions are strongest at closer distance. We write 6Fy=-3V/0(8x), where
V' = K(6x)?/2 is the hydrodynamic potential function around the equilibrium &x = 0. For both
pitching and heaving, the formation is stable with weaker stability for larger inter-swimmer
distance. In the pitching formation the potential well is deeper (by approximately 50%) for
all equilibria, indicating faster convergence to the respective equilibrium; see Appendix E
for detailed analysis of the hydrodynamic forces during transient and equilibrium states.
We next evaluate the advantages of these formations in terms of the speed and energetics
of the pair of swimmers in comparison with swimming alone. Figure 4 shows details of the
time evolution at steady state of a single and pair of swimmers for the first relative
equilibrium ds/A = 1 and d,/A = 1 shown in figure 3, where hydrodynamic interactions are
strongest. From top to bottom, we report the swimming speed, thrust force, input power and
cost of transport vs. time. Instantaneous values are shown in solid lines and period-average
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values in dashed lines. For the heaving motion, the average speed of the pair is
approximately 10% higher than the speed of the single swimmer, consistent with
experimental observations on heaving foils (Ramananarivo et al. 2016). However, the input
power required to maintain these heaving motions in the presence of hydrodynamic
interactions is also higher (approximately 30%). Consequently, the cost of transport of the
heaving pair is approximately 20% higher than a single heaving swimmer. These results
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Figure 5. Swimming performance (average speed, thrust, input power and cost of transport) vs. flapping amplitude
for a single and pair of swimmers undergoing (@) heaving and () pitching motions, respectively. From top to
bottom, average values of the swimming speed, thrust force, input power and cost of transport. Left columns
(black symbols) in (a,b) show the results for single swimmers. For the pair of swimmers, all of the results are
scaled by the corresponding quantity values for a single swimmer. The blue and red symbols represent the results
for the follower and leader, respectively. The grey symbols are the school average.

suggest that heaving swimmers can enhance their speed by swimming in a pair. However,
this enhancement in swimming speed is achieved at an energetic cost.

For pitching swimmers, the speed of the formation is comparable to that of the single
swimmer (approximately 2% slower). However, the follower’s input power is significantly
reduced (approximately 70% less than the single pitching swimmer). This reduction in input
power is due to the hydrodynamic benefits highlighted in figure 1(b). Correspondingly, the
cost of transport of the pair of pithing swimmers drops by 30% compared with swimming
alone.

Figure 5 explores the effect of the flapping amplitude on the period-average values of the
swimming speed, thrust force, input power and cost of transport, after the swimmers have
reached steady state. Specifically, we examine the range 4x € [0,0.7] and 4, € [0-,45-] for
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single swimmers and 4; € [0.3,0.7] and 4, € [10-,45-] for pairs of swimmers, where small
amplitudes are ignored to ensure that hydrodynamic interactions are sufficient for the
spontaneous emergence of order formations. In pairwise interactions, we report all period-
average values normalized by the corresponding values for a single swimmer.

When swimming alone, whether by heaving or pitching, an increase in the flapping
amplitude monotonically increases the swimming speed, thrust, input power and cost of
transport; see left columns of figure 5(a,b). Here, the swimming speed vs. flapping
amplitude for single swimmers is a reproduction of the results in figure 2(a,b).

Across all heaving amplitudes, the pairwise formation is approximately 5%—10% faster
than that of a single heaving swimmer. Both the leader and follower experience an increase
in thrust compared with the single swimmer, but require more power to swim in formation
compared with swimming alone, with extra power demand on the follower. The cost of
transport of the heaving formation is thus slightly higher (approximately 15%) compared
with swimming alone. Thus, heaving swimmers slightly enhance their swimming speed
when in formation, albeit at a higher cost of transport.

The formation of pitching swimmers is approximately 5% slower than swimming alone
for almost all flapping amplitudes. The leader experiences consistently lower thrust and the
follower consistently higher thrust compared with swimming alone. However, while the
power demand on the leader is comparable to the single swimmer, the power demand on the
follower is significantly reduced for all amplitudes. Taken together, these results lead to
slightly higher cost of transport for the leader and significantly lower cost of transport for
the follower compared with swimming alone. Indeed, the cost of transport of the follower is
a fraction of the single swimmer (approximately 25% at best), which in turn, causes the
formation to save a significant amount of power (approximately 35% at best) compared with
swimming alone. These results imply that although the pairwise formation of pitching
swimmers experiences no enhancement in swimming speed compared with swimming
alone, it reduces the cost of transport by a significant amount.

5. Single swimmer wake informs pairwise formation

To gain additional insights into the information contained in the wake of the leader and the
hydrodynamic mechanisms that mediate the power reduction and stability of the pairwise
formation, we examine the flow field induced by a single swimmer. Namely, we compute
the flow field generated behind a single heaving or pitching swimmer, and we consider a
virtual ‘point’ follower placed at any location (x,,),) in the swimmer’s wake and undergoing
lateral oscillations y(¢) = y, + Asin(2mnz), where A is the oscillation amplitude. We set 4 to A,
in the wake of the heaving swimmer and A4, in the wake of the pitching swimmer. The wake
is blind to the existence of the virtual follower. We ask whether there are particular locations
in the swimmer’s wake that are favourable to the follower’s flapping motion. To address

this question, we define a flow agreement parameter Z(x(,,y(,) that quantifies the agreement
between the flow velocity in the wake of the single swimmer and the prescribed oscillations
of the virtual follower,

T
Z 1 I+
flow agreement parameter: = 7. f =y (Xo,Vo, 1)V (X0,V0,1)dt, (5.1)

ts

where #, is an arbitrary time after the single swimmer has reached steady state, T is the
flapping period, y'(x.,10,2) is the lateral velocity of the follower and v(x,,y,,?) is the y-
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component of the flow velocity evaluated at the follower’s location. Positive values of the
flow agreement parameter imply a beneficial interaction between the flow and the follower’s
flapping motion, whereas negative values indicate a detrimental one.

The flow agreement parameter is shown in the top row of figure 6. The hypothetical
follower is undergoing the same oscillatory motion irrespective of its location in the wake
of the single swimmer at amplitude 4, = 0.3 (for heaving) and 4, = 15- (for pitching). Red
regions indicate where the flow velocity in the swimmer’s wake and the hypothetical
follower’s motion agree. Interestingly, regions of maximum flow agreement are located at
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Flow agreement
(a) (b) parameter

Heaving / = i % Pitching 3

s LIL AL L0 U0 LN

-3

Thrust parameter

Distance in wavelength, d, at Distance in wavelength, d, at

Figure 6. Flow agreement parameter and thrust parameter experienced by a hypothetical point follower
undergoing prescribed oscillations in the wake of a single swimmer that does not see the follower. Top row shows
flow agreement parameter field in the wake of (a) heaving and (b) pitching swimmers. The grey plates represent
the steady-state position of the followers in the first, second and third stable spacings found from solving the
system with pairwise interactions (figure 3). In both cases, the distance of the regions with maximum flow
agreement from the leading plate is very close to integer multiples of the wavelength (di»/A= 1,2,3). Bottom row
shows thrust parameter as a function of distance. The dashed lines represent the head and tail positions of the
heaving and pitching follower, respectively. The negative slopes of plot at the steady-state distances imply linear
stability of the follower to in-line perturbations. The prescribed amplitudes are A»= 0.3 and A4, = 15-.

almost integer multiples of the wavelength A = U/f of the single swimmer, similarly to the
locations of the stable equilibria in fully coupled pairwise formations. Superimposed onto
figure 6(a,c), we show a snapshot of the free vortex sheet of the swimmer, as well as the
location of the actual follower at steady state obtained from our pairwise interacting
swimmers. As noted previously, in the heaving case, the leading edge of the follower is
located close to the integer multiples of A, while in pitching, the follower’s trailing edge is
located at integer multiples of A. In the heaving case, the leading edge of the follower is
located at the intersection of the red and blue regions of the flow agreement parameter, that
is at the location where the flow agreement parameter transitions from favourable to
unfavourable. For the pitching swimmer, the follower is mostly located within the red region
where the flow agreement parameter is favourable. This effectively means that a higher
surface area of the pitching follower experiences a flow field favourable to its motion,
whereas part of the heaving follower undergoes negative flow agreement. This mechanism
could be responsible for the increased efficiency of the pitching formation in comparison
with the heaving formation.

We next examine the stability of pairwise formation in the context of the simpler model
based on the wake of a single swimmer and a hypothetical follower. We specifically consider
the case where the virtual follower is positioned in line behind the single swimmer. It is well
established that the thrust of a self-propelled flapping swimmer scales with the square of the
swimmer’s lateral velocity relative to the surrounding fluid’s velocity (Triantafyllou et al.
1993; Floryan et al. 2017; Newbolt ef al. 2019). We thus define the thrust parameter

X = —f 1 r+T 2
Thrust r parameter:(v - y’) d, (5.2)

ts
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which acts as a measure of the period-average thrust but not an exact value of thrust. We
plot the thrust parameter as a function of the follower’s downstream location of heaving and
pitching swimmers in the bottom row of figure 6. The thrust parameter is minimum at three
locations where the flow agreement parameter is maximum. This is due to the fact that
higher agreement between the follower’s oscillation and the flow implies smaller difference
in the follower’s lateral speed relative to the flow and therefore smaller thrust. Superimposed
onto these plots are the three equilibria at steady state obtained from our pairwise
simulations in figure 3 (vertical dashed lines). We next argue that the slope of the thrust
parameter at these locations is an indicator of the stability of the pairwise formation. To this
end, recall that at steady state, the thrust Fx(x,,?) and skin drag D(x,,?) balance each other on
average, and the follower experiences zero net acceleration. Namely, (Fx(x0)) — (D(xo)) =

t+T
0, where the time-average notation {()=1/1) ff.\f ’ ()t is introduced for brevity. If we
perturb the horizontal position of
the follower by &x, since skin drag depends only on the relative fluid’s velocity tangential
to the plate, it is reasonable to assume that its change due to in-line positional perturbations
is negligible(P(xo +8x)) &~ (D(x,)). We arrive at the period-
average equation(Fx(xo +
. This equation provides a condition for the linear stability of the
pairwise formation in the context of the (single swimmer/virtual follower) model: if the
slope of the period-average thrust relative to the horizontal position is negative, the system
is linearly stable to perturbations in the horizontal position. Otherwise, the perturbation
grows and the pair leaves their relative spacing at steady state. Since the thrust parameter X
is an approximation of period-average thrust, it suffices to obtain the slope of X with respect
to &x to gauge the stability of the formation. The slope is negative at the steady-state
positions in both heaving and pitching swimmers (bottom row of figure 6). Further, the slope
of these locations decreases as the distance between the two swimmers increases. This is
consistent with figure 3 where the third stable position is less stable than the second and the
second slightly less stable than the first. Finally, the significantly higher slope of the thrust
parameter in pitching compared with heaving is consistent with the observations in figure 3,
where pitching formations are more stable.

8¥)> — (F(xo)) = m{Sx)

6. Conclusion

We analysed the locomotion dynamics of actively flapping swimmers interacting passively
via the fluid medium in the context of the vortex sheet model. Within the two-swimmer
model, we showed that hydrodynamic interactions lead to stable ordered formations, in
which the follower falls into specific positions in the wake of the leader, and the pair travel
together at the same speed. This well-ordered ‘schooling’ behaviour occurs for both heaving
and pitching swimmers. Group cohesion is tighter and more stable for pitching swimmers.
In heaving alone, the school swims slightly faster compared with swimming alone,
approximately 5%—10% faster, albeit at a similar increase in cost of transport, especially for
the follower (approximately 20% higher cost for the follower and 15% for the formation).
When pitching, the school swims at a slightly (approximately 5%) lower speed but has
significant energetic benefits, with up to 35% reduction in cost of transport for the formation
and up to 75% for the follower. Simultaneous heaving and pitching also leads to flow-
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mediated stable formations (see supplemental movie), indicating that this phenomenon is
robust to the flapping mode.

Detailed comparison of our findings to previously known results are in order. Physical

experiments and numerical simulations report stable pairwise formations in
hydrodynamically interacting swimmers. The experiments of Ramananarivo et al. (2016)
using pairs of purely heaving rigid foils in tandem found that the foils stabilize at particular
discrete gap distances, and that these formations were usually accompanied by an increase
in the swimming speed of the pair (10%—-20% compared with swimming alone).
The increase in speed was observed up to three wavelengths away from the leader, however,
its effect quickly diminished with distance. Numerical simulations of pairs of interacting
flapping swimmers provided more details on swimming energetics. Zhu et al. (2014) used
an immersed boundary method to study the dynamics of two flexible filaments undergoing
heaving oscillations at their leading edges at Reynolds number = 200. They reported an
increase in both the swimming speed and input power of the pair compared with swimming
alone. These changes were only reported for pairs in compact configurations. In this
configuration, the leading edge of the follower is almost touching the trailing edge of the
leader and the narrow space between them causes the pair to behave like one long filament.
The increased speed and power requirements seemed to completely disappear for pairs in
regular configurations characterized by an increased distance between the swimmers and
velocity and power equal to a single swimmer. Dai et al. (2018) studied the swimming
dynamics of multiple flexible filaments under combined pitching and heaving motions at
the leading edge. However, the heaving motion’s amplitude was much smaller than the tail’s
displacement due to pitching. For two filaments swimming in tandem, they reported a
decrease of about 18% in the cost of transport when the swimmers were in compact
configurations. The regular configurations was found to be energetically beneficial, but only
by approximately 2%—-3% compared with swimming alone. Park & Sung (2018) also found
a decrease of approximately 15% in power for a pair of flexible filaments, when swimming
close to one another. The increase in speed relative to swimming alone was found to be
negligible.

We examined pairwise interactions of purely heaving and pitching rigid swimmers, thus
isolating heaving from pitching as opposed to the studies of flexible heaving filament that
combine both effects. We found that for each flapping mode, the swimmers reach stable
steady-state formations with constant distances. The flapping mode had a significant impact
on the stability and swimming energetics of the pair. We observed a slight increase in the
swimming speed of the heaving pair (up to 10%) at the expense of higher cost of transport.
For pitching swimmers, the swimming speed was not affected much by the pairwise
interaction, but we found a significant decrease in the input power of the follower (up to
70% for small amplitudes). In contrast to the findings of Zhu et al. (2014) and Park & Sung
(2018), where the effects of the pairwise interactions quickly vanished with increasing
distance, our vortex sheet model observed these effects at longer distances, up to three
swimming wavelengths, consistent the experiments of Ramananarivo et al. (2016). The
discrepancy is most likely due to the relatively small Reynolds number in Zhu et al. (2014)
(Re = 200), causing the wake-induced flow to diffuse faster due to higher viscous forces.
Ramananarivo et al. (2016) reported a much larger Reynolds number (Re = 10°~10%) in their
experimental set-up. The higher Reynolds numbers in the experiments are consistent with
our inviscid model. At this inviscid regime, the flow inertia is dominant, causing the wake
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of the leader to live longer in the fluid. In this regime, the effects of hydrodynamic
interaction on stability and energetics decreased with distance, but much more gradually.

In sum, our results are consistent with numerical and experimental findings of heaving
foils (Zhu et al. 2014; Becker et al. 2015; Ramananarivo et al. 2016; Park & Sung 2018;
Peng et al. 2018; Newbolt et al. 2019; Lin et al. 2020), but go beyond these results in two
major ways. Firstly, we completely separated the flapping modes, heaving and pitching,
probed the effect of each one on the stability, speed and energetic performance of the school,
and we showed that the flapping mode affects the tightness and stability of the formation, as
well as the cost of transport in school compared with swimming alone. Secondly, we
analysed these formations in the context of a simpler model consisting of the wake of a
single swimmer and a hypothetical point follower. We defined an empirical flow agreement
parameter and showed that regions where the wake-induced flow and the follower’s periodic
motion agree are consistent with the stable formations observed in pairwise interactions of
heaving and pitching swimmers. The reduced-order model also highlights that the heaving
mode is less favourable energetically because, in steady-state formations of heaving
swimmers, the follower is positioned such that it experiences negative agreement with the
ambient flow. We also employed the simpler model to make predictions about the stability
of the pairwise formation, consistent with our findings that the pitching mode leads to tighter
and more stable formation. Indeed, an alternative interpretation of our results is that they
reveal how active changes in the flapping mode can be used to control, via hydrodynamic
interactions, the school emergent properties, including the school speed, energetics and
cohesion. For example, to save energy or quickly overcome large perturbations, swimmers
can adopt a pitching mode.

These findings could be instrumental for understanding the role of the fluid medium as a
mediator of the physical interactions between swimming fish, and to assess the
hydrodynamic benefits to fish schooling. Fish have more complex flapping motions than
simple heaving and pitching (Lin, Wu & Zhang 2019; Van Buren, Floryan & Smits 2019;
Ayancik, Fish & Moored 2020), and the compliance of the fish body is believed to play an
important role in the flapping efficiency and ability to extract energy from ambient flows
(Beal et al. 2006; Lucas et al. 2014; Quinn, Lauder & Smits 2014; Jusufi et al. 2017). These
considerations, as well as extensions to arrays of swimmers in tandem and side by side,
potentially flapping at different amplitudes and phases as in Newbolt et al. (2019), will be
treated in future works.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.551.
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The coupled fluid—structure interaction between the swimming plate and the surrounding
fluid is simulated using an inviscid vortex sheet model. In viscous fluids, boundary layer
vorticity is formed along the sides of the swimmer, and it is swept away at the swimmer’s
tail to form a shear layer that rolls up into vortices. In the vortex sheet model, the swimmer
is approximated by a bound vortex sheet, denoted by /5, whose strength ensures that no fluid
flows through the rigid plate, and the separated shear layer is approximated by a free
regularized vortex sheet /,, at the trailing edge of the swimmer. The total shed circulation
in the vortex sheet is determined so as to satisfy the Kutta condition at the trailing edge,
which is given in terms of the tangential velocity components above and below the bound
sheet and ensures that the pressure jump across the sheet vanishes at the trailing edge.

To express these concepts mathematically, it is convenient to use the complex notation

z =x + 1y, where i = V-1 and (x,y) denote the components of an arbitrary point in the plane.
The bound vortex sheet /; is described by its position z(s,z) and strength y(s,#), where s €
[-7,[] denotes the arc length along the sheet /;. The separated sheet

a
© Free vortex sheet Bound vortex sheet

Figure 7. (a) Schematic of the vortex sheet model for a two-dimensional flapping swimmer. (b) Depiction of the
different hydrodynamic forces acting on the swimmer.

l,»1s described by its position z,(I,#), I € [0,T,,] where T is the Lagrangian circulation around
the portion of the separated sheet between its free end in the spiral centre and the point

zw(l,£). The parameter I defines the vortex sheet strength y = dI/ds.
By linearity of the problem, the complex velocity w(z,?) = u(z,f) - iv(z,¢) is a superposition
of the contributions due to the bound and free vortex sheets
w(z,1) = we(z,t) + wulz,1). (A1)
In practice, the free sheet /,, is regularized using the vortex blob method to prevent the growth
of the Kelvin—Helmholtz instability. The bound sheet /, is not regularized in order to
preserve the invertibility of the map between the sheet strength and the normal velocity

along the sheet. The velocity components wy(z,7) and wy(z,7) induced by the bound and free
vortex sheets, respectively, are given by

ITw
1) =
wa(z,1) =Ko(z - zp(s,2))y(s,2)ds, wyKs(z - @1 [{) zw([,2))dr,
“(A2a,b)
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where Ksis the vortex blob kernel, with regularization parameter 8,

1 Z -
—4 — T a5 = X —
2mi |z]* + 82 iy, (A3)
If z is a point on the bound sheet for which & = 0, wy is to be computed in the principal value

5(2)
K

se€nse.

The position of the bound vortex sheet z, is determined from the plate’s flapping (y(z),6(¢))
and swimming x(#) motions. The corresponding sheet strength y(s,z) is determined by
imposing the no penetration boundary condition on the plate, together with conservation of
total circulation. Let n(s,) = —sinB + icos® be the upward normal to the plate, the no-
penetration boundary condition is given by

Re[wn]zb = Re[Wswimmern], (A4)

where
Wiwimmer =X = ly - ie-[Z-b - (X - ly)] (AS)

Conservation of the fluid circulation implies that/ ¥ (ss0)ds+ I,(1) = 0. b

The circulation parameter I along the free vortex sheet z,(l,7) is determined by the
circulation shedding rates 'w, according to the Kutta condition, which states that the fluid
velocity at the trailing edge is finite and tangent to the flyer. The Kutta condition can be
obtained from the Euler equations by enforcing that, at the trailing edge, the difference in
pressure across the swimmer is zero. To this end, we integrate the balance of momentum
equation for inviscid planar flow along a closed contour containing the vortex sheet and
trailing edge,

_dr(ss) _ 1 2 2
[p]1F(s) = p-(s) = p+(s) = - dt = 2(u--u), (A6)

res,n="re+ 2y, nds, —

) and ux (s, ) where/ < s < [, is the circulation within the
F5,

contour and p (s,t denote the limiting pressure
and tangential slip velocities on both F

sides of the swimmer. Since the pressure difference across the free sheet is zero, it also
vanishes at the trailing edge by continuity, which implies that

Fy= -0 —i2)lery (A7)

The values offrom the velocity jump at the trailing edge, given by the sheet strength,

evaluated atu- and u+are obtained from the average tangential velocity component andg = -/

P Ugtu—
o 2 a Im[(W - Wswimmer)n]; U-—U+=y. (AS)

Once shed, the vorticity in the free sheet moves with the flow. Thus the parameter I assigned
to each particle z,(I,¢) is the value of T, at the instant it is shed from the trailing edge. The
evolution of the free vortex sheet z,, is obtained by advecting it in time with the fluid velocity,
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Z7w = Wiz, t) + wi(zw,t). (A9)

Appendix B. Forces and moments

The hydrodynamic force acting on the swimmer due to the pressure difference across the
swimmer is given by,

n[p]¥ds = =F sinB + iF cosb, (B1)
Ib
where F' =f;'h [p]Tds. The hydrodynamic moment acting on the swimmer about its leading

edge is given by

I:] in(ze — ZIJ)[P]:F d{|
M =RelL/lp B (B2)

where z;. is position of the leading edge s = /.

It is known that the strength of the bound vortex sheet exhibits an inverse square root
singularity at the edges (Saffman 1992; Eldredge 2019). The singularity at the trailing edge
is regularized by enforcing the Kutta condition as discussed above. To regularize the
singularity at the leading edge, we introduce a force parallel to the plate known as leading
edge suction (Eldredge 2019). Following the derivation provided in Eldredge (2019), we
write the suction force, in dimensionless form as

S =2ne®a?, (B3)

where o is the suction parameter defined as

y(s,1) (z(s, 1+ 1) /2
Re | -
27l z(s, f) —1 ds (B4)

where z7(s,7) = z(s,) - ze'®, is the complex position of any vortex sheet present in the fluid

1 .
o= 5(}'}—16'(:039)—4-[

lp

written in the plate’s frame of reference. y" - /8" cos0 is the velocity of the centre of the plate
in the y-direction. Note that in (B3), the suction force is always positive (always a thrust
force) and parallel to the plate.

Note that the majority of the suction force is due to the vertical motion of the leading edge
relative to the surrounding fluid. For the pitching swimmer, since the leading edge has no
vertical motion, the contribution of the leading edge suction force to the total thrust force of
the swimmer is negligible. This is confirmed by our numerical experiments on a single
pitching swimmer.

Last, we introduce a drag force D that emulates the effect of skin friction due to fluid
viscosity. This force is based on the Blasius laminar boundary layer theory as implemented
by Fang (2016) in the context of the vortex sheet model. Blasius theory provides an empirical
formula for skin friction on one side of a horizontal plate of length 2/ placed in fluid of
density prand uniform velocity U. In dimensional form, Blasius formula is
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_1 N2
D= 3P7 D) U” where the skin friction coefficient Cy=0.664/VRe is given in
terms of the Reynolds number Re = py U(2/)/p. Substituting back in the empirical formula

leads to D = U, where C,;= 0-004y/prit(2D) Following Fang (2016), we write a

modified expression of the drag force for a swimming plate
~3/2 | 73)2
p= Catly + 0% (B3)

of the plate, respectively, relative to the swimming velocitywhere U™ + are the spatially
averaged tangential fluid velocities on the upper and lower sideU,

U (1) = —ux(s,f)ds - U. (B6)

21

We estimate C,to be approximately 0.02 in the experiments of Ramananarivo et al. (2016).

Appendix C. Numerical implementation

The bound vortex sheet is discretized by 21 + 1 point vortices at z°(¢) with strength Al = yAs.
These vortices are located at Chebyshev points that cluster at the two ends of the swimmer.
Their strength is determined by enforcing no penetration at the midpoints between the
vortices, together with conservation of circulation. The free vortex sheet is discretized by
regularized point vortices at z"(¢), that is released from the trailing edge at each timestep
with circulation given by (A7). The free point vortices move with the discretized fluid
velocity while the bound vortices move with the swimmer’s velocity. The discretization of
(2.2) and ((A7) and (A9)) yields a coupled system of ordinary differential evolution
equations for the swimmer’s position, the shed circulation and the free vorticity, that is
integrated in time using the fourth-order Runge—Kutta scheme. The details of the shedding
algorithm are given in Nitsche & Krasny (1994). The numerical values of the timestep Az,
the number of bound vortices n and the regularization parameter 6 are chosen so that the
solution changes little under further refinement.

Finally, to emulate the effect of viscosity, we allow the shed vortex sheets to decay
gradually by dissipating each incremental point vortex after a finite time 7y from the time
it is shed into the fluid. Larger 745 implies that the vortices stay in the fluid for longer times,
mimicking the effect of lower fluid viscosity. For the results depicted in this study, we used
Taiss € [1.5,3.5] flapping period. We refer the reader to Huang et al. (2018) for a detailed
analysis of the effect of dissipation time on the hydrodynamic forces on a stationary and
moving plate in the vortex sheet model. Details of the numerical validation in comparison
to Jones (2003) and Jones & Shelley (2005) are provided in Huang et al.

(2016).
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((J) Heaving swimmers (b) Pitching swimmers
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Figure 8. Hydrodynamic forces on the follower act as restoring forces. Snapshots of pairs of swimmers undergoing
(a) heaving and (b) pitching motion during transient and steady-state formation. Green (thrust) and orange (drag)
arrows represent period-averaged hydrodynamic forces acting on the follower. Right columns in (a,b) show the
instantaneous thrust and skin drag (solid lines) and their period-averaged values (dashed lines) over one flapping
period during transient and steady-state formation. The grey dashed lines denote the time instance of the snapshots
shown to the left.

Appendix D. Swimming energetics

Heaving motions are produced by an active heaving force F}, acting by the swimmer on the
fluid in the y-direction. The value of F, is obtained from the balance of linear momentum on
the swimmer in the y-direction,

Heaving: my” = Fy,+ F}. (D1)

Here, the hydrodynamic force F) acting on the swimmer in the y-direction is given by (B1).

Pitching motions are produced by an active moment M, acting by the swimmer on the
fluid about the leading edge. The value of M, is obtained from the balance of angular
momentum about the swimmer’s leading edge,

Pitching: /0" - Im[m(x" + iy )wie] = M + M, (D2)

Here, I = m(2/)*/3 is the swimmer’s moment of inertia about the leading edge, w.. is the
swimmer’s velocity at the leading edge, and M is the hydrodynamic moment about the
leading edge given in (B2).
The power input by the swimmer into the fluid due to heaving and pitching motions,
respectively, is given by
Heaving: P, = Fyy/, (D3)
Pitching: P, = M,8. (D4)
Note that, in both cases, the leading edge suction and skin drag forces do not contribute to
the input power.

Appendix E. Hydrodynamic interaction forces
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To further examine the hydrodynamic interactions between the two swimmers, we plot
snapshots of the free vortex sheets and flow field for the pair of heaving and pitching
swimmers in figure 8(a,b). We report two instances taken during the transient and steady-
state motion, and from each regime, we report the hydrodynamic thrust and skin drag over
one period of flapping and their time-period average. When the follower gets too close to
the leader, the drag force dominates over thrust, causing the follower to decelerate and move
further behind the leader. Conversely, when the distance between swimmers is larger than
the steady-state spacing, the thrust force overcomes drag causing the follower to accelerate
and the pair to move closer; see, e.g. top right of figures 8(a) and 8(b), respectively. The
thrust and drag forces on the follower are balanced on average after steady state has been
reached, effectively leading to zero acceleration and constant separation distance between
the two swimmers.
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