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Fish swim by undulating their bodies. These propulsive motions require coordinated shape changes of 
a body that interacts with its fluid environment, but the specific shape coordination that leads to robust 
turning and swimming motions remains unclear. To address the problem of underwater motion planning, 
we propose a simple model of a three-link fish swimming in a potential flow environment and we use 
model-free reinforcement learning for shape control. We arrive at optimal shape changes for two 
swimming tasks: swimming in a desired direction and swimming towards a known target. This fish model 
belongs to a class of problems in geometric mechanics, known as driftless dynamical systems, which allow 
us to analyze the swimming behavior in terms of geometric phases over the shape space of the fish. These 
geometric methods are less intuitive in the presence of drift. Here, we use the shape space analysis as a 
tool for assessing, visualizing, and interpreting the control policies obtained via reinforcement learning 
in the absence of drift. We then examine the robustness of these policies to drift-related perturbations. 
Although the fish has no direct control over the drift itself, it learns to take advantage of the presence of 
moderate drift to reach its target. 

Keywords: Fish swimming, Reinforcement learning, Sensorimotor control. 

 I. INTRODUCTION 

Fish swim through interactions of body deformations with the fluid environment. A fish assimilates sensory 
information about its own body and the external environment and produces patterns of muscle activation that result in 
desired body deformations; see Fig. 1A. How these sensorimotor decisions are enacted at the physiological level, at the 
level of neuronal circuits, remains unclear [1–4]. Animal models, such as the Danio rerio zebrafish [5–7], as well as robotic 
and mathematical models [8, 9], provide valuable insights into the sensorimotor control underlying fish behavior. Such 
understanding offers enticing paradigms for the design of artificial soft robotic systems in which the control is embodied 
in the physics [10, 11]. Embodied systems sense and respond to their environment through a physical body [12, 13]; 
physical interactions with the environment are thus vital for sensing and control. In fish, the dynamics of the fluid 
environment is essential both at an evolutionary time scale – in shaping body morphologies [14] and sensorimotor 
modalities – and at a behavioral time scale. Fish bodies are tuned to exploit flows [15, 16]. Body designs and undulatory 
motions have been examined in computational and semi-analytical models of fluid-structure interactions [17–21], 
including models of body stiffness and neuromechanical control [22, 23]. The fish’s ability to integrate multiple sensory 
modalities such as vision [24–26] and flow sensing [27, 28] are essential to behaviors ranging from rheotaxis [29–31] to 
schooling [32–35]. Recent developments prove that machine learning techniques are highly effective in addressing 
problems of flow sensing and fish behavior [36–43]. 

A central problem in fish behavior, which is also relevant for underwater robotic systems, is gait design or motion 
planning: what body deformations produce a desired swimming objective? The answer requires an understanding of 
how the numerous biomechanical degrees of freedom of the fish body are coordinated to achieve the common objective. 
Mathematically, this problem is often expressed in terms of an optimality principle: find control laws that optimize a 
desired objective, such as maximizing swimming speed or minimizing energetic cost [17, 18, 44]. But how these control 
laws are implemented in the nervous system, and how they are acquired via learning algorithms, are typically beyond 
the scope of such methods. As these optimization methods rely on an internal model of the dynamics, different 
computational results have been obtained by varying the specification of the physical model of the fish, the performance 
metric, and the control constraints [17, 18, 44, 45]. 

Model-free reinforcement learning (RL) of embodied systems offers an alternative framework for gait design that is 
mathematically and computationally tractable [47–49]. In this framework, the fish’s world is divided into a body 
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Figure 1. Model-free reinforcement learning and the three-link fish. A. Illustration of sensorimotor feedback loops in fish. Motor 

commands generated in the nervous system activate the musculoskeletal system, resulting in deformations of the body. Body 
deformations, through interaction with the fluid environment, lead to swimming meanwhile sensory modalities provide sensory 
feedback to the nervous system. The dashed arrow between musculoskeletal and sensory systems indicates somatic sensing used to 
assess whether previous motor commands were successfully executed. Other reflexive or preflex signals could also be at play [2, 27, 
46]. B. Three-link fish swimming in quiescent fluid. Locomotion variables (x,y,β) are set in a lab fixed frame, while the shape variables 

(α1,α2) and target variables (ρ,ψ) are set in body frame symbolizing egocentric control and learning. C. To apply model-free 

reinforcement learning to our problem, we only need to set the appropriate state, observation, action, and reward variables based on 
our fish model. 

controlled by a learning agent and an environment that encompasses everything outside of what the agent can control. 
The agent can be viewed as an abstract representation of the parts of the fish responsible for sensorimotor decisions. In 
RL, the agent must learn from experience in a trial-and-error fashion. Specifically, repeated interactions of the body with 
the environment enable the agent to collect sensory observations, control actions, and associated rewards. The goal of the 
agent is thus to learn to produce behavior that maximizes rewards, and the process is model-free when learning does 
not make use of either a priori or developed knowledge of the physics of the system. The learned feedback control law, 
called a policy, is essentially a mapping from sensory observations to control actions. This mapping is nonlinear and 
stochastic, and, by construction, rather than providing a single optimal trajectory, it can be applied to any initial condition 
and transferred to conditions other than those seen during training such as when the body or fluid environment are 
perturbed [50]. 

Here, we employ RL to design swimming gaits. We use an idealization in which the fish is modeled as an articulated 
body consisting of three links, with front and rear links free to rotate relative to the middle link via hinge joints [44, 45, 
51–54]. In describing the physics of the fish, we cede the complexity of accounting for the full details of the fluid medium 
in favor of considering momentum exchange between the articulated body and the surrounding fluid in the context of a 
potential flow model [44, 45, 52, 53]. This model is a canonical example of a class of under-actuated control problems 
whose dynamics can be described over the actuation (shape) space using tools from geometric mechanics [44, 55–58]. 
Specifically, swimming motions can be represented by the sum of a dynamic phase or drift, and a geometric phase over 
the shape space of all body deformations [45]. In the geometric phase case, a geometric connection, defined as vector 
fields over the actuation shape space, maps infinitesimal shape changes into infinitesimal rigid motions of the whole 
body. From a motion control perspective, this geometric framework is advantageous in that it provides tools for gait 
analysis and manual design of control policies over the full shape space [54]. These geometric tools also provide an 



 

intuitive way for direct and interpretable visualizations of the RL-based policies. Here, we visualize the RL policies as 
vector fields over the shape space. This framework leads to a straightforward interpretation of the RL policy: given 
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an observation of its own shape, the fish’s action needs to follow the corresponding vector in the shape space. A trajectory 
or realization of the RL policy arises from locally following these vectors to achieve a desired global task. These tools also 
allow us to probe the optimality and behavior of the RL policy in light of the physics of the system and in comparison to 
manually-designed policies over the fish shape space. 

 II. MATHEMATICAL MODEL OF THE THREE-LINK FISH 

Consider a three-link fish as shown in Fig. 1(B). Rotations of the front and rear links relative to the middle link are 
denoted by the angles α1 and α2 such that (α1,α2) fully describe all possible body deformations. We constrain the 
swimming motions to a two-dimensional plane, and let (x,y) and β denote the net planar displacement and rotation of 
the fish body, such that (˙x,y˙) and β˙ represent the linear and rotational velocities of the fish in inertial frame (the dot 

notation () = d()˙ /dt represents differentiation with respect to time t). We also introduce the linear velocity (v1,v2) 

expressed in a co-rotating body frame attached to the center of the middle link, 

 v1 = x˙ cosβ + y˙ sinβ, v2 = −x˙ sinβ + y˙ cosβ. (1) 

The total linear momentum (px,py) and total angular momentum π of the body-fluid system are expressed in the inertial 
frame, and they are related to their counterparts (P1,P2) and Π in body-fixed frame as follows, 

 px = P1 cosβ − P2 sinβ, py = P1 sinβ + P2 cosβ, π = Π. (2) 

In potential flow, it is a known result that the total linear and angular momenta of the body-fluid system can be expressed 
in terms of the body geometry and velocity, via the so-called added mass matrices [44, 45, 59]. Expressions for the added 
mass matrices of the three-link fish when the links are hydrodynamically decoupled (coupled only geometrically through 
the holonomic constraints at the joints) are derived in detail in Appendix A. The total momenta (P1,P2) and Π are given 
by 

 P v 

 couple,

 (3) 

where Ilock is the locked mass matrix at a given shape of the fish (see Eqs. A6-A9) and Icouple is the mass matrix associated 

with shape deformations (see Eq. A10). 
In the absence of external forces and moments on the fish-fluid system, the total momenta (px,py) and π are conserved 

for all time. Conservation of total momentum yields, upon inverting (2) and substituting into (3), 

v 

 couple. (4) 

If we further substitute (1) into (4), we arrive at three coupled first-order equations of motion for x, y, β given α1 and α2. 
The control problem consists of finding the time evolution of shape changes (α1(t),α2(t)) that achieve a desired 
locomotion task (x(t),y(t)) and β(t). Specifically, a swimming gait is defined as a cyclic shape change (α1(t),α2(t)), with 
period T, that results in a net swimming (x(t),y(t)) or turning β(t) of the fish body. 

This model is a canonical example of a class of under-actuated control problems whose dynamics can be described 
over the shape space using tools from geometric mechanics [44, 55–57]. On the right-hand side of (4), the first term 
represents a dynamic phase or drift and the second term represents a geometric phase over the fish shape space (α1,α2) 
[45]. The geometric phase is best described in terms of the local connection matrix A [45, 54], which is a function only of 

the shape variables α1 and α2, 
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A11 A12 

couple. (5) 

Each row of A describes a nonlinear vector field over the shape space, giving rise to three vector fields A1 ≡ (A11,A12), 

A2 ≡ (A21,A22), and Aβ ≡ (Aβ1,Aβ2) over the (α1,α2) plane as shown in Fig. 2(A). In driftless systems, net locomotion is fully 
controlled by the fish shape changes as dictated by the connection matrix A. However, in the presence of drift, shape 
control is not sufficient to determine the fish motion in the physical space, which is then affected by the drift term in (4). 

 A C 

 

−π 0 π −π 0 π −π 0 π −0.2 0 0.2 0.4 α1 α1 α1 x 

Figure 2. Using connection matrix for simple gait design. A and B. Rows of connection matrix A give us three vector fields, A1 ≡ 
∂v1/∂αi, A2 ≡ ∂v2/∂αi, and Aβ ≡ ∂β/∂α˙ i, the curl of which yield three corresponding scalar fields. Magnitude of the scalar fields are 
normalized to be within [−1,1]. Value of the scalar fields can facilitate the design of simple swimming and turning gaits, as shown 

above by black and green circles respectively. Six body configurations, each corresponding to points marked by black and green ◦, △, 

, are sketched for additional clarity. C and D. Fish that start with body centered at the origin of the x-y plane and follow the same gait 

circle swim/turn in different directions in the physical space depending on initial body shapes; the initial shape is depicted in blue at 
the end of each trajectory. 

 III. GEOMETRIC PHASES 

Geometric phases are defined as the net locomotion (x,y,β) that results from prescribed cyclic shape changes in the 
(α1,α2) plane at zero total momentum (no drift). Inverting (1) and substituting (5) into (4) at zero total momentum, we 
arrive at 

  . (6) 

Motions (x,y,β) in the physical space are obtained by integrating (6) with respect to time. Rotations are directly 
proportional to the line integral of the vector field Aβ as evident by integrating the last equation in (6), 

 β(T) − β(0) = I dβ = I (Aβ1dα1 + Aβ2dα2). (7) 
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 C C 

Here, T is the time-period for going around the closed trajectory in the shape space once. Using Green’s Theorem, we get 

 . (8) 

Here, curl2 denotes the two-dimensional curl as a scalar field over the (α1,α2) plane. The scalar field curl2(Aβ) provides an 
intuitive tool for understanding the effect of a cyclic shape deformation on the net rotation of the fish: net rotations are 
proportional to the integral of curl2(Aβ) over the area enclosed by a closed shape trajectory; see Fig. 2. However, 
translational motions (x,y) are not directly proportional to the area integrals of curl2(A1) and curl2(A2), but to a 
combination of all three integrals coupled through the fish rotational dynamics as evident from (6). This coupling is clear 
when the equations of motion for x and y in (6) are written in scalar form, 

x˙ = [A11α˙1 + A12α˙2]cosβ − [A21α˙1 + A22α˙2]sinβ, 

(9) 
y˙ = [A11α˙1 + A12α˙2]sinβ + [A21α˙1 + A22α˙2]cosβ. 

Despite this complication, the scalar fields defined by curl2(A1), curl2(A2), and curl2(Aβ), shown in Fig. 2(B), are 
informative of the net translational (x,y) and rotational β motions of the fish. To illustrate the utility of these curl fields, 
we show two examples of cyclic shape changes depicted in black and green lines. A fish changing its shape following the 
black line undergoes zero net rotation because the area integral of curl2(Aβ) is identically zero, but it swims forward in 
the (x,y) plane. The net displacement per period is a conserved quantity, whereas the direction of motion depends on a 
combination of the fish initial shape (α1(0),α2(0)) and initial orientation β(0) as shown in Fig. 2(C). Here, we consider 
three different initial shapes, depicted by the markers ◦, △, , all at β(0) = 0. Similarly, shape deformations following the 
green line lead to net reorientations in the physical space, as shown in Fig. 2(D). Evidently, no net motion occurs if the 
shape trajectory is degenerate, that is, does not enclose an area in the shape space. Further a re-scaling of time does not 
affect the net motion of the fish, only the speed at which the fish completes these cyclic shape changes. 

In Fig. 2 and hereafter, the equations of motion are non-dimensionalized using the total length of the fish and the total 
mass in the head-to-tail direction of the straight fish as the characteristic length and mass scale. Specifically, we set the 
total mass of the fish body to be equal to the added mass (actual mass of the fish is negligible). We leave the time scale 
unchanged because the characteristic time depends on the speed of shape changes, which is a control parameter to be 
determined by the controller. 

The scalar fields curl2(A1), curl2(A2), curl2(Aβ) over the shape space encode information about the net locomotion of 
the fish in a driftless environment, and can be used to design simple swimming and turning gaits as shown in Fig. 2. 
However, these geometric tools do not allow for a straightforward design of control policies for arbitrary motion planning 
[52, 54], and they are even less instructive in the presence of drift. Next we consider an RL driven approach for motion 
control. 

 IV. MOTION CONTROL VIA REINFORCEMENT LEARNING 

We use RL to train the three-link fish on two different tasks: (i) to swim parallel to a desired direction in a driftless 
environment; (ii) to swim towards a target point located at a distance ρ and angular position ψ from the fish nose, with 
ρ and ψ expressed in the fish frame of reference (Fig. 1B). Given the rotational symmetry of the fish-fluid space, in the 
first task, we fix the desired direction to be parallel to the x-axis without loss of generality. For the second task, we first 
train the fish in a driftless environment, then introduce drift and train again in the presence of drift. The first task allows 
for direct comparison of the performance of the trained policy to manually-designed policies in the context of geometric 
mechanics as described in § III. The second task allows for evaluation and comparison of the performance of the driftless 
and drift-aware policies under environmental perturbations. 

Central to any RL implementation are the notions of the state of the system, the observations given to the learning 
agent, the actions taken by the agent, and the rewards given to the agent in light of its behavior. The state st of the fish-
fluid-target system at a time t is given by the fish position and orientation in inertial frame (x,y,β), its shape (α1,α2), and 
the target position relative to the fish (ρ,ψ); see Fig. 1(B,C). As sensory input, we provide the fish a set of observations 
based on its proprioception of its own shape α1 and α2, as well as an egocentric observation of the task, namely for 
controlling the direction of swimming, the fish knows the desired swimming direction relative to itself ψ = −β, and for 
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swimming towards a target, it knows the relative angular position ψ of the target point. This yields a set of observations 
ot = (α1,α2,ψ)t. Additionally, when training in the presence of drift, the magnitude and direction of the drift vector (px,py) 
are also provided as observations. As control action, the fish has direct control of its shape using the rate of shape changes 
as actions at = (α˙1,α˙2)t. With this choice of action, the control can be projected onto the shape space and directly 
compared to the geometric mechanics approach. We constrain the value of the actions to be between −1 and 1 rad per 
unit time, and we impose limits on the joint-angle so that α1 and α2 are only allowed to change between −2π/3 and 2π/3 
rad to avoid self-intersection. 

In RL, the decision making process is modeled as a stochastic control policy πθ(at|ot) that produces actions at given 
observations ot of the state of the fish-fluid system. The policy is parameterized by a set of parameters θ to be optimized. 
An optimal policy is learned to produce behavior that maximizes rewards. We use a dense shaping reward, that is, the 
fish is given a reward at every decision time step. Specifically, we set the reward to be the distance the fish travels in the 
desired direction towards the target state. For learning to swim parallel to the x-axis, we use the reward rt = xnose,t+1 − 
xnose,t, which is the change in the fish nose position along the x-axis. Note that this choice of reward function breaks the 
head-tail symmetry of the fish favoring higher reward when turning towards the positive x-axis. For learning to swim 
towards a target, the reward rt = ρt −ρt+1 is based on the change in the relative 

′ distance ρ from the fish nose to the target. The 
returnis defined as the infinite horizon objective based on the sum of discounted future rewards, where γ ∈ [0,1] is known 
as the discount factor; it determines the preference for immediate over future rewards. We set γ = 0.99 to make the fish 
foresighted. The goal is to arrive at an optimal set of parameters θ that maximizes the expected return

 for a distribution of initial states. Here, the expectation is taken with respect to the distribution 
over trajectories π(τ) induced jointly by the fish dynamics, viewed as a partially-observable Markov decision process, 
and the policy πθ(at|ot). One approach to solving this optimization problem is to use a policy gradient method that 
computes an estimate of the gradient ∇θJ for learning. Policy gradient methods are widely used to learn complex control 
tasks and are often regarded as the most effective reinforcement learning techniques, especially for robotics applications 
[60–64]. Here, we use a specific class of policy gradient methods, known as actor-critic methods [65, 66] where the fish 
learns simultaneously a policy (actor) and a value function (critic). We implement this method using the clipped 
advantage Proximal Policy Optimization (PPO) algorithm proposed in [67]. This algorithm ensures fast learning and 
robust performance by limiting the amount of change allowed for the policy within one update. A pseudo-code 
implementation of the PPO algorithm and additional implementation details are provided in Appendix B. 

 V. TRAINING THE FISH TO SWIM 

We trained the three-link fish to (i) swim parallel to the x-direction in a driftless environment; (ii) swim towards a 
target point in the absence and presence of drift. We refer to the first task as direction-control for short, and the second 
task as naive and drift-aware target-seeking, respectively, based on their awareness of drift. 

For the purpose of efficient training we imposed a finite time interval, following which the system state was reset to 
the initial state for a new round of training. Each round is referred to as an episode. In all training episodes, we initialized 
the fish center to be at the origin of the inertial frame, and we initialized the shape angles α1,α2 and body orientation β by 
sampling from a uniform distribution over all permissible angles to maximize the chances for robust learning. We fixed 
the maximum episode length to 150 time steps, with no early termination allowed. In training the target-seeking policies, 
the target was initially placed at a fixed distance (three-unit length) from the fish center but at a random orientation. For 
the drift-aware policy, a drift was introduced in the form of a non-zero total linear momenta px,py in (4). The drift 
magnitude was sampled from a uniform distribution between 0 and 0.15 and its direction from a uniform distribution 
between 0 and 2π, such that the drift was kept constant within a training episode. Based on the non-dimensional scales 
introduced in section III, one unit of drift aligned parallel to a straight fish causes it to translate one-unit length per unit-
time. 

For the direction-control policy, we performed 24 runs of RL training with 10,000 episodes in each run. The training 
process is illustrated in terms of reward evolution, calculated by taking the sum of all rewards in an episode, in Appendix 
B, Fig. B.1(A). There was some variability among the seeds, but most trained policies performed very well; only a single 
policy did not converge by the end of training episodes. Note that fluctuations in reward after policy convergence are 
partly due to the stochasticity built into the policy itself and partly due to variation in task difficulty given the random 
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initial conditions: different initial conditions require different amount of time and effort for the fish body to align with 
the x-axis. 

It is worth pointing out here the training results of the direction-control policy were affected significantly by the 
episode length. In order to swim in a desired direction starting from an arbitrary initial orientation, the fish has to first 
turn in that direction, then swim forward. Policies trained with longer episodes performed better in the swimming 
portion of the trajectory but failed to make large-angle turns, as training data collected on swimming significantly 
outweighed those collected on turning. On the other hand, policies trained with shorter episodes made turns of any angle, 
but were less likely to swim straight after turning. We chose the episode length, following several trial and error trainings, 
to be 150 as a reasonable compromise to learn to both turn and swim effectively. 

The evolution of rewards during training of the two target-seeking policies are plotted in Fig. B.1(B), each with 20 runs 
of the RL algorithm and 15,000 episodes in each run. The naive policy converged faster than the drift-aware policy, and 
both policies converged slower than the direction-control policy. These results indicate that the task itself, as well as 
variations in the environment and number of observations affect the convergence rate, that is, the learning difficulty. 
Note that the numerical value of the reward is not directly comparable between policies for different tasks. 

We evaluated the performance of the trained policies by testing them under two type of conditions: conditions similar 
to those seen during training and perturbed conditions not seen during training, as discussed next. 

 

Figure 3. Visualizing the direction-control RL policy. A. Given the direction-control task, we visualize the mean RL policy actions ( 

˙α1,α˙2) as vector fields in the observation space of (α1,α2,β). Two example observation trajectories starting at β(0) = 0,α1(0) = 0,α2(0) 
= 0 (blue) and β(0) = 2π/3,α1(0) = −π/3,α2(0) = π/3 (orange) are plotted with slices of the mean policy at β = 0,π/3,2π/3. The inset 
shows a flattened view of the slice at β = 0. B. Physical space trajectories of the corresponding examples shown in A are plotted together 
with the fish body configurations at the starting point and chosen points near the ends. 

A B 
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 x 

Figure 4. RL provides smooth transition between turning and swimming gaits. A. The shape space trajectory of the fish reorienting 

itself to swim parallel to the x-axis produced by mean RL policy is superimposed to the scalar curl fields from Fig. 2(B). Note that this 
trajectory starts off-centered and smoothly moves to cycles that are symmetric about the origin. B. The physical space trajectory due 
to the mean RL policy (red) in comparison to a manually patched turning-to-swimming trajectory (green and black) using circular 
gaits in Fig. 2. Without further fine-tuning on the shape of the gaits, the manually patched result shows a more abrupt and unnecessary 
turn angle. In both simulations, the fish start in a straight configuration with an orientation of β(0) = π/3 at the origin. 
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 VI. BEHAVIOR OF TRAINED FISH 

To visualize the RL direction-control policy, we plot in Fig. 3(A) the action vector fields ( ˙α1,α˙2) over the observations 
space (α1,α2,β). These vector fields depend on the orientation β of the fish in the physical space such that the control 
policy ( ˙α1,α˙2) forms a foliation over β. Three slices of this foliation are highlighted. The right hand side of Fig. 3(A) 
provides a closer look at the policy slice at β = 0; the arrows indicate the mean actions advised by the policy for a given 
set of observations α1,α2 at β = 0. In Fig. 3(B), we show the details of two trajectories in the physical space starting from 
two distinct configurations. In the first test, the fish starts at zero orientation, β(0) = 0, in a straight shape, (α1(0),α2(0)) 
= (0,0). The goal of the fish is simply to swim forward. In the second test, the initial orientation and shape are β(0) = 2π/3 
and (α1(0),α2(0)) = (−π/3,π/3), from which the fish needed to turn and swim along the x-axis. In both cases, the fish is 
able to turn to the desired direction and swim steadily. In Fig. 3(A), we highlight the corresponding trajectories in the 
(α1,α2,β) space. As the fish moves through the physical space, β changes causing the fish to take actions from distinct slices 
of the foliation of action vector fields. Both trajectories tend to the same periodic swimming cycle around β = 0, indicating 
that the control actions are similar once both fish are aligned with the desired swimming direction. 

We further explore the shape changes undertaken by the second (red) fish by superimposing these shape changes onto 
the scalar fields scalar fields curl2A1, curl2A2 and curl2Aβ introduced in Section III; see Fig. 4(A). The corresponding 

A 

x 

Figure 5. Racing against the RL fish. To test the optimality of our direction-control RL policy, we compare forward swimming 
performance between the geometrically-designed gaits and RL results. In A-C we use rectangular gaits with length equal to 1.2 (small), 
2.4 (medium), and 3.6 (large), respectively, and width all equivalent to shape space trajectory following the mean actions from RL 
policy in D. All shape space trajectories are shown superimposed on top of the curl2A1 field on the right. Physical space trajectories on 

the left show that the mean RL policy achieves its excellent performance by choosing an optimal amount of lateral oscillation during 
forward swimming, while the small and large rectangular gaits move slower due to either insufficient or overwhelming side-way 
motion. Note that fish in A-C are initialized with the same shape but slightly different initial orientations to ensure they all swim in 
exactly the x-direction. In addition, all fish utilize the maximum actions allowed at each time step. 

motion in the physical space is depicted in red in Fig. 4(B). The shape deformations produced by the RL policy can be 
interpreted as consisting of two regimes: an initial turning regime followed by a forward swimming regime. The turning 
regime is indicated by the initial portion of the shape trajectory enclosing most of the blue area in the curl2Aβ image; the 
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integral in (7) along this portion of the trajectory is negative, leading to a clockwise rotation. The swimming regime is 
indicated by the periodic shape changes enclosing the rectangular orange portion in the curl2A1 image. The area integral 
of curl2A1 along this portion of the trajectory is positive, whereas the corresponding area integrals of curl2A2 and curl2Aβ 

are identically zero, leading to net motion in the positive x-direction. These shape deformations and resulting turning 
and swimming motions can be compared to a manually-designed shape trajectory based on the turning (green) and 
swimming (black) gaits in Fig. 2(A,B). Specifically, starting from a straight fish configuration, we follow the solid portion 
of the green trajectory (turning) in Fig. 2(A,B), and transition into the black trajectory (swimming) at the second 
intersection of the green and black shape trajectories. The resulting motion in the physical space is superimposed onto 
Fig. 4(B). Both the RL and manually patched gaits lead the fish to turn and swim parallel to the x-axis, however, in the RL 
produced motion, the transition between turning and swimming smoother. Note that, in the swimming regime, the RL 
policy produces cyclic shape deformations that do not maximize the area integral of curl2A1 (shape trajectory does not 
enclose the whole orange portion in the curl2A1 image). Indeed, maximizing this integral is not optimal for forward 
swimming as discussed next. The key lies in the fact that the physics of the problem, specifically, the rotational motion of 
the fish, couples displacements in the x- and y- direction. Our model-free RL policy captures this effect with no explicit 
knowledge of the physics of the system. 

To better explain this optimality of the RL policy, we manually prescribed cyclic shape changes that follow rectangular 
trajectories reminiscent of the trajectory generated by the RL policy for forward swimming. The manually- 

 A B 
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Figure 6. 

of RL policies in a driftless environment. A. Performance 

Swimming trajectories (center of mass) arrived at by the mean 
action of the direction-control policy are shown for fish starting at orientations β = 0 (blue), π/3 (red), 2π/3 (yellow). B. The actuation 

effort of reorientation is roughly proportional to the absolute value of the initial fish orientation due to the amount of turning 
maneuvers required. Results shown are based on 25 stochastic policy roll-outs per tested orientation angle. C. Center of mass (blue) 

and nose (grey) swimming trajectories using the mean action of the naive target-seeking policy are shown with two targets located at 
an angular position of π/6 and 5π/6. The fish is considered to have reached the target when its nose is within ǫ = 0.2 distance from 
the target (dotted circles). D. Actuation effort needed to perform shape increases as the target angular position changes away from 0. 

Results shown use 25 stochastic policy roll-outs per tested target angle. Note that solid lines and shaded regions of B and D show the 

median results and variations between 25 to 75 percentile, respectively. In B, performance is calculated based on the actuation effort 

it takes for the fish to turn in the x-direction, while in D it is based on the effort it takes to reach the target. 

designed shape trajectories all share the same width as the RL policy albeit at different lengths, namely, 1.2 (small), 2.4 
(medium), and 3.6 (large) to enclose increasingly larger regions of the orange portion of the curl2A1; see right column of 
Fig. 5. These cyclic deformations result in net displacements in the x-direction with zero-mean excursions in the y-
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direction. The y-excursions are due to the fact that, even though the area integrals of curl2A2 and curl2Aβ over the regions 
enclosed by these shape trajectories are identically zero, leading to zero net rotation over a full cycle of shape 
deformations, the instantaneous rotations β of the fish body couple displacements in the x- and y-directions, as evident 
from (9). For the cyclic shape changes in Fig. 5(A), the amplitude of y-excursions is small but so is the net displacement 
in the x-direction; meanwhile in Fig. 5(C), both the net displacement in the x-direction and the amplitude of the y-
excursions are large. The fastest fish is the one that maximizes forward motion while minimizing lateral movements, as 
shown in Fig. 5(B) and recapitulated in the RL result shown in Fig. 5(D). It is worth emphasizing that the RL policy arrives 
at this optimal solution merely by sampling observations, actions, and rewards, with no prior or developed knowledge 
of the physics of the problem. 

Next, we investigated the effect of the initial orientation β(0) ∈ [−π,π] on the amount of control effort required to turn 
and swim parallel to the x-axis. Fig. 6(A) shows three examples of fish following the trained policy starting from three 
distinct initial orientations β(0) = 0,π/3, and 2π/3 and a straight configuration centered at the origin of the physical space. 

To measure the actuation effort needed in these motions, we used the integral shapedt of the actuation energy Tshape 

, which is the energy imparted to the fluid by the fish shape changes; see Appendix A. Fig. 6(B) 
shows the actuation effort versus the initial orientation of a straight fish. Here the fish was instructed by the stochastic 
policy with the same action noise as in the training process. The actuation effort, as well as its variation due to noise, is 
larger for larger turning angles. 

Lastly, we examined the behavior and effort of a fish swimming instructed to reach a known target in an environment 
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efforts of target-seeking policies for different drift magnitudes and direction. A and C. Naive policy (grey) and drift-aware policy 
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respectively. Both panels showcase trajectories reaching targets located three unit-lengths away with angular position ψ of π/6 and 
5π/6. B. For a fixed drift direction (positive x-direction), actuation effort as a function of drift magnitude evolves differently depending 
on target angular position ψ. When drift is against the direction of the target (left), both policies fail to reach the target on average for 
large enough drift (cross marks). No failures are observed when drift facilitates swimming towards the target (right). In both cases, 
the drift-aware policy significantly outperforms the naive policy at large drift magnitudes by saving actuation effort. Intriguingly, 
inclusion of extra observations in drift-aware policies seems to result in slightly suboptimal performance when the drift magnitude is 
very small. D. With the drift magnitude fixed to 0.15, the naive policy fails to reach the target if the drift direction is near the opposite 
end of the target angular position ψ. However, at this drift magnitude, the drift-aware policy can still reach both targets regardless of 
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the drift direction. Note that solid lines and shaded regions of B and D show the median results and variations between 25 to 75 
percentile, respectively. 

with zero drift. Fig. 6(C) shows examples of the fish swimming motion in the physical space for targets located at ψ = π/6 
and ψ = 5π/6. All tests ran until the fish reaches the target or a maximum interval of 1000 time steps is exceeded. We 
varied the target angular position while maintaining the fish initial shape and orientation (the fish always started straight 
in the x-direction), and we calculated the actuation effort as a function of the target orientation; see Fig. 6(D). The 
actuation effort increases as the target moves from the front to the back of the fish, because it requires larger turns in 
order for the fish to align its heading direction with the direction of the target; this is consistent with our findings based 
on the direction-control policy. It is worth emphasizing that the direction-control task is equivalent to the target-seeking 
task with the target placed at x = +∞. it is also worth noting that the reward function is measured from the nose of the 
fish, thus breaking the fore-aft symmetry of the fish, and leading to control action that favor turning and swimming head 
first towards the target. 

We tested the behavior and effort of the target-seeking fish in the presence of non-zero drift. Fig. 7(A) and (C) show a 
comparison between the naive and drift-aware policies for targets located at ψ = π/6 and ψ = 5π/6, with drift of 
magnitude of 0.1 pointing to the x-direction and the −y-direction, respectively. The naive policy (grey lines) is able to 
reach the target, even though it does not directly observe the drift, albeit following different actions and swimming 
trajectories than the drift-aware policy (orange lines). Specifically, when following the drift-aware policy, the fish curls 
less when the drift is helpful and curls more when the drift is unfavorable. We assessed the performance of the two 
policies for various drift magnitudes and directions. In Fig. 7(B), we calculated the actuation effort as a function of the 
drift magnitude with a fixed drift direction for two target locations. The naive policy outperforms the drift-aware policy 
for small drift (drift magnitudes less than 0.025) even when the drift is for adversarial, but the naive policy loses or even 
fails to finish the task when the drift is large, especially when the drift is in the adverse direction to the target location. 
This implies that it might be wise to discard some sensory input (observations) when the perturbation due to drift is 
weak, especially if these extra observations act more like a distraction than a clue. But as the perturbation gets stronger, 
it is necessary to take more observations into account. Both the naive and drift-aware policies are not able to complete 
the task in the given amount of time when the drift magnitude is very large and its direction is adversarial to the target 
location. This is because the shape actuation has no direct control over the drift itself. In Fig. 7(D), we fixed the magnitude 
of drift to 0.15 and changed its direction. Using the actuation effort as our performance metric as before, the drift-aware 
policy has better or similar performance under all tested conditions. The naive policy fails when the drift acts in the 
adverse direction relative to the target while the drift-aware policy is always able to reach the target before the episode 
terminates. 

 VII. CONCLUDING REMARKS 

We considered a three-link fish swimming in potential flow. We reviewed that swimming in potential flow can be 
expressed as a combination of a dynamic phase (drift) and geometric phase (driftless) over the shape of fish body 
deformation [44]. In the driftless case, net locomotion is purely determined by the fish shape deformations, and 
geometric techniques can be used for gait design and motion planning over the fish shape space [52, 54], but shape 
actuation cannot control the drift itself. Yet, even in the driftless regime, motion planning starting from arbitrary fish 
orientation and shape is not trivial. In this paper, we applied model-free reinforcement learning techniques for 
controlling the fish motion, and we arrived at optimal policies for swimming (i) in a desired direction, and (ii) towards a 
target in the absence and presence of drift. The RL based policies produce behavior that is robust to variations in the fish 
initial shape and orientation and target location. We used the actuation effort as a measure of the policy performance 
under various initial conditions and in various environments, and we quantified the robustness of the RL policies to the 
presence of drift. We found that although the fish has no control over the drift itself, the fish learns to take advantage of 
the presence of moderate drift to reach its target. Therefore, it might be wise to discard some sensory input 
(observations) for weak signals because these extra observations could act more like a distraction than a clue. We also 
found that for small drift, the drift-naive policy outperforms the drift-aware policy even when drift is adversarial to the 
target location. However, large adversarial drift hinders the fish ability to locate the target. Importantly, these insights 
into the RL policies were achievable by combining tools from geometric mechanics with RL-based control. Geometric 
tools such as the concept of shape space, combined with the RL notion of the action space, provide a useful and novel 
framework for visualizing and interpreting the RL policies as action vector fields over the shape space. 
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A few comments on the advantages and limitations of our implementation are in order. Despite algorithmic advantages, 
obtaining an RL policy is computationally costly, especially when the environment simulator involves high-fidelity fluid-
structure interaction models. To circumvent this problem, recent work on training fish to swim uses a limited set of 
observations and actions [39]. For example, the zebrafish model of [39] allows only 5 discrete actions, each 
corresponding to a fixed amplitude of body curvature change. Reduced order fluid models, such as the potential flow 
model used here, offer an enticing framework for designing control laws that can later be tested and refined using more 
realistic flow environments, as done in [20] for a manually-designed swimming gait in [44]. Specifically, in the simplified 
potential flow environment employed here, we are able to train continuous action policies using a rich set of 
observations, with an eye on probing the performance of these policies in more realistic flow environments in future 
work. 
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Appendix A: Physics of the fish model 

We review the derivation of the equations of motion governing the swimming of an articulated three-link fish in 
potential flow (Fig. 1). 

 1. Fish kinematics 

Consider planar motions of the three-link fish. Let x = (x,y) denote the position of the center of mass G of the middle 
link, and let β denote the orientation of the fish relative to a fixed inertial frame, here taken to be the angle between the 
x-axis and the major axis of symmetry of the middle link. Let α1 and α2 be the rotation angles of the front link relative to 
the middle link and the middle link relative to the rear link, that is to say, (α1,α2) represents the shape of the three-link 
fish. It is convenient for the following development to introduce a body-fixed frame (b1,b2,b3), attached at G and co-
rotating with the middle link. This body-fixed frame is related to the inertial frame (e1,e2,e3) via a rigid-body rotation 
such that e1 = cosβb1 − sinβb2, e2 = sinβb1 + cosβb2, and e3 = b3. 

The velocity (˙x,y˙) of the center of mass of the middle link, when expressed in the body-fixed frame, is given by 

v = v1b1 + v2b2 = (x˙ cosβ + y˙ sinβ)b1 + (−x˙ sinβ + y˙ cosβ)b2 (A1) 

Assuming all three links are made of identical ellipsoids of half-length a, half-width b, and half-height c, the velocities of 
the centers of mass G1 and G2 of the front and rear link, expressed in the body-fixed frame of the middle link, are given by 
(i = 1,2, denote the front and rear link, respectively) 

vi = (v1 ∓ aα˙i sinαi − aβ˙ sinαi)b1 + (v2 ± aβ˙ + aα˙i cosαi ± aβ˙ cosαi)b2. (A2) 

The angular velocities of the middle, front, and rear links are given by β˙, β˙ + α˙1, and β˙ − α˙2 respectively. For our 
simulations, we used a : b : c = 5 : 1 : 5 as the geometry of the ellipsoids. 

https://books.google.com/books?id=237xDg7T0RkC
https://books.google.com/books?id=237xDg7T0RkC
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 2. Kinetic energy of the articulated body 

In the absence of the fluid, the kinetic energy of the articulated three-link body is given by 

  (A3) 

where  and  are the mass and moment of inertia of each solid link with ρs the density of 
the links. 

 3. Kinetic energy of the fluid 

The three-link fish is submerged in an unbounded domain of incompressible and irrotational fluid, such that the fluid 
velocity u = ∇φ can be expressed as the gradient of a potential function φ. It is a standard result in potential flow theory 
that the kinetic energy of the fluid can be expressed in terms of the variables of the submerged solid [44, 45, 59]. 

In the case of a single ellipsoid, the kinetic energy of the fluid is given by  2, where m1a, 
m2a and Ja are the added mass and added moment of inertia due to the presence of the fluid, expressed in a body-fixed 
frame that coincides with the major and minor axes of the ellipsoid. These quantities depend on the geometric properties 
a,b,c of the submerged ellipsoid, as are given in the Appendix B of [68]. For a non-spherical body, the added masses m1a, 
m2a depend on the direction of motion: the added mass is larger when moving in the direction of the minor axis of 
symmetry of the ellipsoid, that is to say, in the transverse direction, hence m1a ≤ m2a. In the case of the three-link fish, the 
kinetic energy of the fluid is of the form 

(A4) 

. 

Here we transform the velocity 
components of head and tail by α1 and α2, respectively, to match the added mass components. 

 4. Kinetic energy of the body-fluid system 

The kinetic energy of the fish-fluid system is obtained by taking the sum of Eq. A3 and Eq. A4, which can be expressed 
in matrix form as follows: 

T 
v1v1 

2  β˙12  T = T + T = 

  β˙  , (A5) 1 

v2   body fluid  v2   

α˙α˙1 α˙α˙2 

Here, Ilock is a 3 × 3 locked mass matrix, function of α1 and α2, 

 I
lock  , (A6) 

I
lock 

I
couple 

IT couple 
I
shape 
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where M is a 2 × 2 mass matrix given by 

  , (A7) 

J is a moment-of-inertia scalar given by 

  , (A8) 

and H is given by 

  . (A9) 

Here we used m1 = ms +m1a, m2 = ms +m2a, and J = Js +Ja. Note that H couples the translational and rotational motion of the 

articulated body. In the case of single ellipsoid, H is identically zero. 

Further, Icouple is a 3 × 2 matrix that couples rigid body motion with shape deformation, 

 Icouple  . (A10) 

Finally, Ishape is a 2 × 2 matrix associated with shape deformation, 

  . (A11) 

The total linear and angular momenta P1, P2, and Π expressed in body frame are given by P1 = ∂T/∂v1,P2 = ∂T/∂v2,Π = 

∂T/∂β˙ to arrive at (3) of the main text 

  . (A12) 

 
Algorithm B.1 Environment Simulation 

 
1: for time step t = 0,1,... do 

2: if t = 0 or episode terminates then 
3: store time step of episode termination, 
4: reset state st ∼ P(s0) 
5: evaluate observation: ot ∼ o(st) 
6: end if 
7: sample action from policy at ∼ πθ(at|ot) 
8: evolve next state according to fish physics st+1 ∼ P(st+1|st,at) 
9: evaluate next observation ot+1 ∼ o(st+1) and reward rt ∼ r(at,ot+1) 
10: if t = 0 or mod(t,N) 6= 0 then 
11: append current action, observation, reward, and probability of sampling the action to assemble vectors aN×na,oN×no,rN×1, and 

πθold(a|o)N×1 

12: else 
13: update agent networks according to Algorithm B.2 
14: end if 
15: end for 
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Algorithm B.2 Updating the Agent 

1: for update epoch number κ = 0,1,...K do 
2: compute the truncated return using rewards rN×1 and assemble into vector RN×1 

3: estimate infinite-horizon return using RN×1 and VT = Vφ(oT) if bootstrapping is desired (see Eq.B2) 
4: using oN×no and value function Vφ, evaluate expected returns at each time step and store into VN×1 
5: compute the advantage A = RN×1 − VN×1 and normalize by its mean and variance if desired 
6: evaluate the probability of realizing aN×na based on oN×no for the policy πθ, and store to πθ(a|o)N×1 

7: 
compute the action-likelihood ratio:  

8: compute clipped surrogate loss function: Lclip(θ) = mean[min[̺θ · A,clip(̺θ,1 − ǫ,1 + ǫ) · A]] 

9: compute the value-function loss: Lvalue(φ) = 0.5 · mean  
10: compute the total loss: L(θ,φ) = −Lclip(θ) + Lvalue(φ) − α · entropy[πθ] 

11: update parameters (θ,φ) to minimize the total loss using a gradient based optimizer (e.g., Adam [69]) 12: end for 

Appendix B: Proximal Policy Optimization (PPO) Algorithms 

We implement the clipped advantage Proximal Policy Optimization (PPO) method proposed by [67] for our RL training. 
PPO maximizes a surrogate objective that clips off unwanted changes when the policy deviates too much from the policy 
of the previous cycle to ensure faster and more robust convergence. We refer readers to the original reference cited 
above as well as the OpenAI’s documentation of the PPO algorithm and their baseline implementations for a thorough 
explanation of the theory and details behind this method. 

Our implementation can be separated into two parts. The main loop simulates the environment using action sequence 
at generated by the agent, and stores the observed rollouts for future updates; see Algorithm B.1. Note that no and na are 
used to indicate the number of observable states and actions. Equations describing the fish-fluid interactions were 
integrated numerically using adaptive time step, explicit RK45 method between each decision step of 0.1 unit of time. 
This choice of decision time step-size limits the maximum rotation allowed for the fish head and tail to be 0.1 radian per 
step. 

Parameters of the actor-critic networks of the RL agent are updated every N time steps for K epochs. Here the value of 
K is chosen to be 80 and the value of N is set to 4050, an integer multiple of the episode length 150. For simplicity, we 
assume our continuous action variables follows a multivariate normally-distributed policy πθ with mean value 
represented by a neural network parameterized by θ and constant diagonal covariance matrices, and the critic / value 
function Vφ(ot) is also represented by a neural network with parameters φ. Specifically, both the mean policy and value 
function are implemented as feed-forward neural network with two hidden layers and tanh activation functions. The 
sizes of the two hidden layers were fixed to 64 and 32, respectively. Each diagonal entry of the covariance matrix is set 
to 0.52. Finally, using the collected trajectories during the previous N time steps, the parameters θ,φ are 
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https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://github.com/openai/baselines/tree/master/baselines/ppo2
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Figure B.1. Evolution of rewards during the training process. A. Total rewards per episode achieved by policies trained to swim 

parallel to the x-axis in a driftless environment using bootstrapped (blue) and truncated (black) return estimates. Here solid lines 
indicate the median, and the shaded region shows the variation between 25-75 percentile for 24 runs of the learning algorithm. B. and 

C. Total rewards obtained by policies trained to swim towards a given target, both of which adopt bootstrapped return estimates. Red 

in B reresents naive policies trained in driftless environment, while yellow in C represents policies trained in the presence of drift, 
with drift magnitude and direction supplied as additional observations to the policy. Again, lines and shaded regions indicate median 
and 25-75 percentile range respectively. 

updated according a total loss function L(θ,φ) via a back-propagating gradient based optimizer; see Algorithm B.2. Note 
that since we did not perform systematic hyper-parameter tuning, readers might want to explore different values for 
better performance. 

Another important side-note is that since it is in general impossible to obtain unrealized infinite horizon return 

, we need to choose an appropriate estimator of this value based on finite length simulations. We can 

either simply truncate rewards after some step k by using 

 = rt + γrt+1 + γ2rt+2 + ··· + γk−1rt+k, (B1) 
truncation 

or we can use the trained value function (critic) to approximate the residual contribution to the return via k-step 
bootstrapping 

 = rt + γrt+1 + γ2rt+2 + ··· + γkVφ(ot+k+1). (B2) 
bootstrapping 

We compared these two approaches for the direction-based task and observed that bootstrapping results in faster 
convergence and higher rewards in general; see Fig. B.1(A). As a result, bootstrapping is used for all tasks depicted in the 
main text, where k was determined by the number of available future rewards. Namely, k decreases from 149 to 0 as the 
number of time steps increased from 1 to 150 in each episode. In addition, We show the difference in training rewards 
and convergence speed between the naive policy and the drift-aware policy in Fig. B.1(B). In general, the inclusion of 
more observations increased the time to convergence and variance in training rewards. 

Lastly, we invite interested readers to visit our source repository at https://github.com/mjysh/RL3linkFish 

for the complete details of our implementation. 

https://github.com/mjysh/RL3linkFish

