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Phase formation plays key role in the properties of high-entropy alloys (HEAs). If the phases of HEAs can
be accurately predicted, the number of experiments can be greatly reduced, and the process of material
design can be greatly accelerated. Machine-learning methods have been successfully and widely applied
to predict the phases of HEAs. However, the accuracy of a single machine-learning (ML) algorithm is not
ideal and different ML algorithms may predict different results. These issues hinder the application of ML
in material design. In this paper, a hybrid frame for HEAs phase prediction, which combines machine-
learning and empirical knowledge, is proposed. First, for the purpose of solving the problem that a sam-
ple may be predicted as inconsistent prediction phases by different algorithms, the Dempster-Shafer (DS)
evidence theory is adopted to fuse the inconsistent of the predicted phases among different algorithms,
and provide a fusion prediction phase with the highest credibility. Second, a conflict-resolution model
with high accuracy based on the improved DS evidence theory is proposed. Last, the empirical knowl-
edge criterion is combined with the conflict-resolution model to improve the efficiency and accuracy of
the hybrid prediction frame. The 426 different HEAs samples consisting of 180 quinaries, 189 senaries,
and 57 septenaries were collected to validate against the effectiveness of the proposed methods. The
experimental results demonstrate the hybrid prediction frame achieves higher accuracy and better per-
formance than single ML algorithm. Keywords: Hybrid model; High-entropy alloys; Phase prediction; DS
evidence theory

Keywords:

Hybrid model
High-entropy alloys
Phase prediction
DS evidence theory

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

calculations, calculation of phase diagram (CALPHAD), density
functional theory (DFT) simulations, and so on, have been devel-

1. Introduction

The HEAs have attracted much attention due to their excel-
lent properties [1, 2], such as high thermal stability, high hard-
ness, superior fracture and oxidation resistance features, etc. [3-
7]. Differ from traditional alloys, HEAs contain at least five prin-
cipal elements which offers a large composition variabilities [8],
and have potential applications in aerospace, electronics, and other
fields [8, 9]. The phase formation of HEAs is a key factor affect-
ing their comprehensive performances, and different phases show
different physical and mechanical properties. The phases of HEAs
are mainly single-phase solid solution (SS), amorphous (AM), in-
termetallic compound (IM), and a mixture of SS and IM (SS+IM)
[7, 10, 11].

Many methods have been applied to predict the phase forma-
tion in HEAs [12]. Computational methods, such as first-principles
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oped for this purpose. However, these methods are impractical for
the material design process due to large amount of computational
effort [10, 13]. The parametric method, which was applied to find
the criterions for the phase formation [8], can effectively reduce
the amount of computational effort and is less time-consuming
[14]. Zhang et al. concluded that the solid-solution phase is eas-
ily formed in zone S, which is described by the parameters of &
and AHmix [15]. Yang et al. proposed a new parameter 2 and
found a phenomenon that SS phase can be formed when Q>1.1
and §<6.6% [16, 17]. Zhang et al. carried out large number of ex-
periments, and further confirmed the effectiveness of this criteria
[18]. However, the parametric method is carried out based on a
large quantity of trial-error experiments and it only provides lim-
ited representations. The composition variabilities of HEAs are still
huge, leading to a long time and significant cost for performing
experiments [8], which limits its application scope [8, 19].

Owing to the high efficiency and superior learning ability, the
ML method has been accepted as an effective method in predict-
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ing the phase of HEAs. The ML method is based on principles of
mathematical statistics to establish a potential mapping relation-
ship between the input parameters and phases of HEAs, and pro-
vide a guidance to the material designers [8]. A machine-learning
framework proposed by Islam et al. has been applied to predict
the phase of HEAs [20]. Three machine-learning algorithms, includ-
ing k-nearest neighbors (KNN), support vector machine (SVM), and
artificial neural network (ANN), were adopted by Huang et al. to
predict the HEAs phases including SS, IM, and SS+IM, respectively
[10]. To distinguish stable body-centered cubic (BCC) and face-
centered cubic (FCC) HEA phases, Li et al. utilized an SVM model
to predict the phase of an alloy system composed of 16 metallic
elements [21]. By combining the ML model with data processing
method, Dai et al. generated new descriptors by linear transforma-
tion method and predicted the phases of HEAs on a small dataset
[8]. The previous research works have laid important foundation
and provided a solid evidence that a lot of manpower and time
can be saved if a phase prediction model using machine learning
method is established to reflect the mapping relationship between
the input parameters and microstructure of HEAs [22-24]. While
the general performance of a single ML algorithm is not ideal both
in many theoretically and empirically cases [25, 26]. The accuracy
of a single ML is limited since it does not take full advantage of
diversity learning ability among different machine learning meth-
ods. Additionally, different algorithms may predict a sample with
different results due to the different learning abilities among ML
algorithms [27]. With improper algorithms selected, low prediction
accuracy may lead to wrong decisions [28].

In order to improve the prediction accuracy and inconsistent
among results, DS evidence theory was proposed by Harvard Uni-
versity mathematician A. P. Dempster and further developed by G.
Shafe [29]. Referring to the conflict-resolution ability of DS evi-
dence theory, Zhang et al. proposed a model based on DS evidence
theory to predict an essential site in the plant genome. The model
built four sub-classifiers based on different features, and the fi-
nal results were obtained by fusing different outputs of four sub-
classifiers [30]. Zeng et al. proposed a multi-model based on a neu-
ral network (NN), support vector machine (SVM), and DS evidence
theory to recognize the RGB-D (Red Green Blue-Depth) object. The
multi-model first extracted RGB (Red Green Blue) and depth fea-
tures from the NN, and then applied two SVMs with extracted RGB
and depth features to obtain two probable recognition results, and
finally integrated two probable results by DS evidence theory [31].
Qin et al. proposed a multi-classifier fusion model to detect video
flame based on DS evidence theory. The model first chose three
different flame features and applied four sub-classifiers to clas-
sify a same-flame feature separately. The model then fused four
classification results by DS evidence theory to make each feature’s
preliminary decision. Finally, the preliminary decision results of
three features were fused by DS evidence theory [28]. The conflict-
resolution ability of DS evidence theory has been successful vali-
dated in many fields [32]. However, to the best of author’s knowl-
edge, how to deal with the prediction confliction among different
algorithms has not been studied in the phase prediction of HEAs.

The above studies have adopted in many fields owing to the
good accuracy [33]. However, these ML methods have poor gener-
alization and require large amounts of training samples [34, 35].
In view of the empirical knowledge is characterized by high gen-
eralization and strong interpretability, many scholars carried out
research on hybrid models, which combine both empirical knowl-
edge model and ML model. For instance, Kong et al. used a hy-
brid model to predict the adhesion energies between Cu and other
materials. The main information was predicted by the empirical
knowledge model, and the error of empirical knowledge was com-
pensated by the ML model [36]. Liu et al. proposed a hybrid model
to predict the remaining life of membrane fuel cells. A ML model
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was applied to predict the trend of long-term degradation at the
first stage, and the remaining useful life was predicted by the em-
pirical model and ML model based on the samples obtained in the
first stage [35]. These efforts have proved that the hybrid model
can take advantage of the high generalization and strong inter-
pretability of empirical knowledge and the superior learning ability
of machine learning. However, to the best of the author’s knowl-
edge, the hybrid prediction model has not been applied for phase
prediction of HEAs.

For the aforementioned reasons, a hybrid prediction frame for
the HEAs phase that combines the advantages of empirical knowl-
edge and the ML model is proposed in this draft. First, the DS evi-
dence theory is adopted to deal with the inconsistent of predicted
results from different algorithms and provide a prediction result
with the highest reliability. Second, a conflict-resolution model
with higher accuracy constituted by an improved DS evidence the-
ory is proposed. Last, the empirical knowledge criterions are inte-
grated with the conflict-resolution model to improve the efficiency
and accuracy of a hybrid prediction frame.

The rest of this paper is organized as follows: In chapter 2,
background knowledge on HEAs and DS evidence theory is intro-
duced. In chapter 3, the hybrid prediction frame for HEAs proposed
in this paper is described in details. In chapter 4, numerous experi-
ments are carried out and the effectiveness of the proposed hybrid
prediction frame is verified. In chapter 5, a conclusion is given.

2. Methods

Formulas of HEAs parameters and the DS evidence theory are
introduced in this section.

2.1. Background theory of HEAs

Due to their excellent properties, HEAs have been widely ap-
plied in automobile, aerospace, transport, and other fields [9, 18,
37, 38]. The phases of HEAs greatly affects their properties and the
parametric method has played an important role in the phase for-
mation [39]. Meanwhile, formulas of HEAs’ parameters are shown
as follows:

The § is the mean square deviation of the atomic sizes of all
elements. The formula of § is shown in Eq (1):

5= /ic,-a_%z (1)
i=1

where c; is the atomic percentage of the i-th component, r; is the
n
atomic radius and 7 = )" ¢;r; is the average atomic radius.
i=1
The AS,;;, is the entropy of mixing an n-element regular solu-
tion. The formula of AS,,;, is calculated as Eq (2):

n
AS,mx = _RZQ In Ci (2)
i=1

where R is the gas constant.

The AHp;, is the enthalpy of mixing for a multi-component al-
loy system with n elements. The formula of AHp; is shown as
Eq (3):

n
AHpix = ) 4Hjjcic 3)
i=1,i<j
where H;; is the regular solution interaction parameter between

the i-th and j-th element. ¢ and ¢/ are the atomic percentage of
the and j-th component.
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Fig. 1. Schematic diagram of DS evidence theory.

The VEC is the average valence electron concentration, and the
formula of VEC is calculated as Eq (4):

n
VEC =) GVEG (4)
i=1
where VEC; is the average valence electron concentration of i-th
element.
The Ay is the electronegativity, and the formula of Ay is cal-
culated as Eq (5):

Ax = > clxi— 1) (5)
i=1

where x; is the Pauling electronegativity of i-th element, and x =
n
> ¢;x; is the average Pauling electronegativity.
i=1

The © is a parameter which combines the effect between
ASpix and AH,;, and the formula of Q is calculated as Eq (6):

Tm ASmix

Q = momix
|AHmix|

(6)

where T}, is the melting point of the i-th component of the alloy,

noo
and Ty, is calculated by the rule of mixtures Ty, = Y ;.-
i=1

2.2. DS evidence theory

DS evidence theory was proposed by mathematician, A. P.
Dempster, and it was further improved by his student, G. Shafer.
It shows good conflict-resolution ability to provide reliable results
[29, 40]. The DS evidence theory is schematically shown in Fig. 1:

According to the DS evidence theory, the frame of discernment
® is a finite nonempty set of hypotheses [41]. Herein, A; refers to
the hypothesis, and m(A4;) is the mass function of A;, also called the
basic probability assignment function. It represents the probability
distribution of hypothesis [28]. The m(A;) is a belief measurement
of the final result, and it satisfies two conditions as Eq (7) and
Eq (8):

m(@)=0 (7)
Y mA) =1 (8)
AcO

where ¢ is an empty set.
The credibility (Bel) function is defined as Eq (9):

Bel(A) = Y m(B) 9

BCA,B#p

The Bel(A;) is interpreted as the total amount of belief in the
hypothesis A;, which can be considered as the credibility of hy-
pothesis A; [42].

According to Dempster’s combination rule, the max value of the
combination rules is taken as the final result with highest credibil-
ity [43]. The combination of n masses of hypotheses is defined as
Eq (10):

1
(Mmeme..em)A) = % 3
A1NAyN--NAR=A

my (A]) . mZ(AZ) e mn(An)

(10)

where K is the normalization factor. It refers to high conflict when
K = 1 or infinitely approaching 1 [29]. The formula of K is calcu-
lated by Eq (11):

K= Y m(A)-my(Ay)---my(Ay) =1
ANOAAD
- > mi(Ay) - my(Ay) - my(An) (11)
AiN--NA=0

Due to its excellent conflict resolution ability, the DS evidence
theory has been adopted to deal with conflict challenges in many
fields and provide several reliable results [30]. However, the as-
sumption of traditional DS evidence theory is that each algorithm
has the same reliability. Many factors, such as different feature re-
liability of algorithms and differences of performance among al-
gorithms, would affect the reliability of the conflict-resolution re-
sult. Additionally, if the confliction of results among different al-
gorithms is significant, the DS evidence theory combination rule
will be invalid and results obtained will be counterintuitive. The
high-conflict cases would guide algorithms toward wrong decision.
Assigning different weights, depending on the algorithms’ perfor-
mance, can greatly improve the reliability of results and minimize
the negative effect of high conflict [44, 45].

3. Hybrid-phase prediction frame for HEAs Alloys

In this section, a hybrid prediction frame (HPF) is proposed
based on the empirical knowledge model and conflict-resolution
model.

3.1. Empirical knowledge model

Based on many experiments, Zhang et al. proposed a SS phase-
formation criterion. The SS phase-formation criterion is that the
SS phase will be formed if the sample falls within the scope of Q
>1.1 and §<6.6% [46]. Similar research was also carried out, and
the experimental results further confirmed the effectiveness of the
SS phase-formation criterion to identify the SS phase [18].
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Fig. 2. Schematic diagram of conflict-resolution model.

To improve efficiency, the SS phase-formation criterion is inte-
grated into the hybrid prediction frame. In the prediction process,
the dataset X = {X;, X5, ... Xy, ... Xo} is divided into two sub-sets
based on the criterion. Samples that fall within the scope form
a dataset E = {Eq, E,, ...E;, ...E;}, and samples in the rest of the
dataset form another dataset S = {Sy, S, ...Sp, ...Sp}. Samples in
dataset E = {Eq, E,, ...E;, ...E;} will be marked as SS phase directly.

3.2. Conflict-resolution model

To resolve inconsistent prediction results by different algo-
rithms, a conflict-resolution model (CRM) based on improved DS
evidence theory is proposed. The conflict-resolution model con-
tains five different ML algorithms, including support vector ma-
chine (SVM), K-nearest neighbor (KNN), decision tree (DT), logis-
tics regression (LR), and random forest (RF). The improved DS ev-
idence theory based on a standard deviation is adopted to resolve
the confliction results among algorithms. The m;(A;) is the output
from ML algorithm L;. The weight w; for each algorithm L; is adap-
tively calculated based on standard deviation. The combination re-
sults are calculated based on the updated m;(4;)’, where m;(A;)’
is updated by m;(A;) and w;.

The model is schematically shown in the Fig. 2:

Steps of the conflict-resolution model are shown as follows:

Input: HEAs test dataset S = {Sy, Sy, ...Sp, ...Sp}, ML algorithms
L={Ly Ly ...Lj, ... Lj}.

Step 1: Train the ML algorithms L = {L; Ly, ...L;, ... Lj}.

Step 2: Output the m;(A;) by algorithm in L for sample Sp.
Calculate the standard deviation D; of each ML algorithm L; as
Eq (12):

N 2

D = i21:(mj(/\,-)—11]>,1<i<N,1<j<] (12)

where m;(A;) represents the probability that sample S, belongs to

the i-th phase by j-th algorithm; N represents the total number of

alloy phases; M represents the total number of ML algorithms.
Step 3: Calculate the weight w; of each algorithm L;, the weight

w;j is defined as Eq (13):

D;

Wj:7’1<j<.l (13)
ZJj:l D;
Step 4: Update m;(A;)’ by the weight w; as Eq (14):
m;(A)'=w; - m;(A;) (14)

Step 5: Calculate the combination result of m(A;) as Eq (15):
ZXN:IA,»:A n§=1 m; A

m(A;) = (15)
1= Y aca Tty miA)
Step 6: Calculate the credibility (Bel) of A; as Eq (16):
Bel(Ay = — ") oo (16)
2 im1 M(A)

Step 7: Assign the phase with the highest credibility to the sam-
ple as Eq (17):

Bel(A) = max(Bel (A1), Bel(A;), - - - , Bel (Ay)) (17)

Beyond this common phenomenon that different algorithms
predict a sample as different phases, different algorithms also may
predict a sample as the same phase in a few ideal cases. In these
ideal cases, the sample is directly recognized as this phase.

3.3. Hybrid prediction frame for HEAs phase

A hybrid-phase prediction frame constituted by an empirical
knowledge model and a conflict-resolution model is proposed in
this section. The empirical knowledge model is based on the SS
phase-formation criterion, while the conflict-resolution model is
based on improved DS evidence theory. The schematic diagram of
the hybrid prediction frame is shown in Fig. 3:

As shown in Fig. 3, steps of the proposed hybrid prediction
frame can be listed as follows:

Input: HEAs dataset X = {X;, X5, ..
L={Ly Ly, ...Lj, ...L;}.

Step 1: Train the ML algorithms L = {L; Ly, ...L;, ... Lj}.

Step 2: Divide the dataset X into two sub-sets, samples that fall

Xg, ... Xo}, ML algorithms

within the scope of SS formation criterion as E = {Ey, E, ...E;, ...Ef},
and the rest of the samples as S = {53, Sy, ...Sp, ...Sp}.
Step 3: Mark samples in dataset E = {E;, Ej, ...E;, ...E;} as SS

phase.

Step 4: Predict Sp in dataset S by algorithms L = {L; Ly, ...
Ly} and output the m;,(A;) of every sample Sp.

Step 5: For every sample Sj, calculate the weight w;, of sample
Sp by algorithms L; by Eq (13). Calculate the combination result
mjp(A;) by Eq (15). Calculate the Bely(A;) by Eq (16). Assign the
phase with highest credibility of sample S, by Eq (17).

Step 6: Output the prediction results of dataset X.

L ...
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Fig. 3. Schematic diagram of the hybrid prediction frame.

4. Results and discussion

In this paper, the proposed hybrid prediction frame and sup-
port vector machine (SVM), K-nearest neighbor (KNN), decision
tree (DT), logistics regression (LR), and random forest (RF) are com-
pared in this section. In order to guarantee the performance of ML
algorithms, the grid search method is applied to optimize the hy-
perparameters of algorithms [47]. The optimal hyperparameters of
algorithms are shown as follows after the systematic study: the hy-
perparameter ‘criterion’ of DT is set as 'gini’, and hyperparameter
‘max depth’ is ‘4’. The hyperparameter ‘solver’ of LR is ‘newton-cg’.
The hyperparameter ‘k’ of KNN is ‘4’. The hyperparameter ‘crite-
rion’ of RF is ‘gini’. And the hyperparameter 'gamma’ of SVM is
‘0.1". Compared with the hyperparameters listed above, other hy-
perparameters with little effect on the accuracy are set to default
values.

The software used is Python 3.7.4.

4.1. Experimental dataset

Dataset X in this paper is collected from Refs [48-51], which
contains four collections of HEAs. The data preprocessing is carried
out in HEAs dataset X, which includes parameter value calculation,
data supplementary, data deduplication, and noise sample elimina-
tion. After the data preprocessing, the HEAs dataset including 426
samples is comprised of 180 quinaries samples, 189 senaries sam-
ples, and 57 septenaries samples.

The phases are divided into four categories — solid solution
phase (SS), intermetallic phase (IM), solid solution, intermetallic
phase (SS+IM), and amorphous phase (AM) [10, 11]. The dataset
contains 21 elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb,
Mo, Pd, Ag, Hf, Ta, Os, Au, Al). As shown in Fig. 4, Fe, Cr, Co, Ni,
Cu, and Al appear in more than 200 samples, while Pd, Au, and Sc
appear twice, Ag and Os just are observed one time.

Fig. 5 shows a snapshot of the first five rows of the data in the
Pandas DataFrame format. The first column identifies an HEA and
the remaining six columns describe the corresponding parameters.

More details of parameters including their maximum values,
minimum values, and parameter descriptions are listed in Table 1.

Al 282

Au|2

Os |1

Ta_;:o

Hf |8
N

Cu 1246

N |350
Co |294

Fe 1351

Cr |319

®
¥Y

0 100 200 300 400
Fig. 4. The summarization of frequency of occurrence of elements.

In order to help understand the data distribution and the re-
lationship between these parameters, a 6 x 6 scatterplot matrix
is plotted in Fig 6. Moreover, in order to quantitatively describe
the relationship between parameters, the Pearson correlation coef-
ficient P between parameters x and y is defined as Eq (18):

S0 (- 00— ) ”
I -0 T - 97

where X and y are the mean values of parameters x and y, respec-
tively. The Py, = 1 and Py, = —1 represent a perfect positive cor-

Py =




S. Hou, M. Sun, M. Bai et al. Acta Materialia 228 (2022) 117742

Alloy ASmix AHmix 3&(%) Ax VEC Q Phase
0 AlCoCrCuFe 13.380867 -2.560000 5.108760 0.118423 7.40 8.389176 SS+IM

1 AICo2CuFeNi 12975746 -5.222222 5.165383 0.103722 8.33 3.873260 SS+IM

2 AICo3CuFeNi 12.263784 -4.979592 4.896273 0.097311 8.43 3.911645 SS
3 CoFeMnTiVZr 14.896688 -18.666667 9.464926 0.185712 6.17 1.506960 SS+IM
4 CoFeNiSi0.5 11.238732 -19.428571 2.067322 0.031944 7.75 1.014874 SS+IM

Fig. 5. Pandas snapshot of the first five samples of the data in this paper. Units of AS,;, and AH,,, are kjjmol~! and kj~"mol-!, respectively.

Table 1
Snapshot of parameters.

Number  Parameter  Maximum value  Minimum value  Parameter description

1 ASpix 16.1782 6.4654 thermodynamic parameter
2 AHpix 30.2400 —34.1000 chemical parameter
3 $ 20.3800 0.2100 electronic parameter
4 Ax 0.3324 0.03167 electronic parameter
5 VEC 10.6700 0.3400 electronic parameter
6 Q 283.5023 0.5655 chemical thermodynamic parameter
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Fig. 6. Scatterplot is plotted according to different parameters. The point in a scatterplot corresponds to a sample, and different colors represent different phases. The blue
represents SS phase, red represents IM phase, green represents AM phase, and yellow represents SS+IM phase.
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Fig. 7. The accuracy comparison of DS evidence theory and other algorithms.
Table 2. The details of experiment results are shown in Table 3 where
Correlations between the parameters. the first column is the order number of the material system and
ASpix AHpiy 8 Ax VEC Q the remaining columns are different experiment methods.
AS 1 o011 026 012 001 —0.09 As shom{n in Fig. 7 and Table 3, the accuracy of DS evidence
AHpix _0.11 1 _0.42 _0.24 0.30 0.19 theory is higher than DT, RF, LR, SVM, and KNN. The reason may
0.26 -0.42 1 -0.22 -0.38 -0.22 be that DS evidence theory can combine the advantages of these
Ax 0.12 —024 022 1 -037  -0.08 algorithms and merge their outputs to provide a more reliable re-
VEC -001 0.30 —038 —037 1 0.13 sult [53]. Meanwhile it can also resolve the inconsistent predic-
Q -0.09 0.19 -0.22 —0.08 0.13 1 :

relation and a negative correlation between parameters x and y.
Table 2 lists the computed correlation matrix between parameters,
which is also marked in the right upper corner of the plot in Fig.
6.

As observed from the scatterplot matrix plot, one parameter or
two parameters and a simple linear function cannot draw a clear
boundary to distinguish these phases. Moreover, the range of Pear-
son coefficients correlation P is between —0.42 to 0.30, and ten of
the 15 independent Pearson coefficients correlations are negative
while the other five Pearson coefficients correlations are positive.
As a result, there is no strong correlation between any two param-
eters.

In order to avoid the overfitting of ML [10, 52], the k-fold cross-
validation method is applied in this experiment. The k value is set
as 5 refers to the method proposed by Jung et al. [52]. First the
dataset X in this paper is divided into five equal subsets. In each
cross-validation process, one subset is selected as the test set and
the remaining four subsets are the training sets. Each subset is se-
lected as a test set once. In five cross-validation processes, the five
cross-validation methods are repeated six times and the final ac-
curacy is the average value of 30 times accuracies of the cross-
validation process.

4.2. Comparison between DS evidence theory and other algorithms

To verify the conflict-resolution capability of DS evidence the-
ory under different material systems, a set of comparison experi-
ments among DS evidence theories DT, RF, LR, SVM, and KNN, are
carried out. The selected algorithms refer to the following litera-
ture [8, 10, 28]. The comparison is shown in Fig. 7.

tion among different algorithms by its conflict-resolution ability,
and provide more reliable prediction results. RF has higher accu-
racy than DT, LR, SVM, and KNN because it belongs to the ensem-
ble algorithm. It can fuse multiple results of different weak algo-
rithms showing a better learning ability. Zhang et al. adopted dif-
ferent machine-learning algorithms to predict the phase of HEAs,
and also found that RF has higher accuracy than DT, LR, and SVM.
Their experimental results is in line with the results in this pa-
per [54]. However, RF cannot effectively resolve the inconsistent
of prediction results of multiple weak algorithms. While DS evi-
dence theory has excellent conflict-resolution ability. Moreover, ac-
curacies of DT and SVM are higher than LR and KNN. The reason
may be because SVM and DT have high adaptability, they require
a small amount of training sample, and have good prediction abil-
ity in a small dataset [10, 55]. Meanwhile, LR is a simple and lin-
ear model and is hard to fit with complex data distribution, thus
leading to low accuracy. KNN depends highly on training data, and
cannot well deal with high-dimensional data due to huge amount
of calculation, thus resulting a poor accuracy [10].

To illustrate the conflict resolution ability of DS evidence the-
ory, partial samples are listed in Table 4. Due to large amounts of
samples, only some representative samples are listed.

As observed from the Table 4, the first column lists differ-
ent HEAs. Columns 2 to 7 are the predicted results of DT, RF,
LR, SVM, KNN, and DS evidence theory. Column 8 is the true
phase/phases of the samples and the final column refers to the
reference of HEAs sample. The samples listed in Table 4 are pre-
dicted by different algorithms, the predicted phases of these sam-
ples by different algorithms are inconsistent. For example, the
true phase of AlygCrCuFeNi is the SS phase. It is predicted as
SS phase by LR and SVM, and as SS+IM phase by other algo-
rithms. Meanwhile, DS evidence theory can successfully resolve
these conflict prediction results by its conflict resolution ability,
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Table 3
Experiment results of DS evidence and other algorithms.
Material Systems DT RF LR SVM KNN DS
Quinaries 65.6 + 2.9 709 + 1.7 63.7 + 2.3 703 + 1.3 622 + 1.9 75.6 + 2.1
Senaries 63.4 + 2.1 71.1 £ 14 663 + 2.9 671+ 15 653 + 1.6 723 +£23
Septenaries 66.5 + 2.4 735+ 1.6 61.7 + 2.5 684+ 19 61.7 + 1.4 738+ 1.9
Table 4
A snapshot of partial prediction results for HEAs test sample.
Alloy DT RF LR SVM KNN DS True Phase Ref.
AlggCrCuFeNi SS+IM SS+IM SS ss SS+IM Ss Ss [49]
Alg sCoFeNiTig 4 SS+IM M ss M SS+IM Ss SS+IM [49]
AlCug,LipsMgZngs SS+IM SS+IM ss M SS+IM SS+IM SS+IM [49]
ZrHfTiCuCo AM Ss SS+IM Ss SS AM AM (48]
FeCoCuNiSng g7 ss SS+IM M SS+IM ss SS+IM ss [50]
Alg,CoCrFeMnNi SS+IM Ss SS+IM ss SS+IM Ss ss [49]
TiCoCrNiCuAlYgg AM AM SS+IM IM IM M M [50]
CuFeNiTiVZr AM AM SS+IM AM M AM AM [51]
Ti; gCoCrFeNiCuAlg s SS+IM SS+IM SS+IM Ss ss SS+IM SS+IM [50]
CoCuFeNiTiVZr M AM SS+IM AM M M AM [51]
Table 5 90
Experiment results between DS evidence and Improved DS. | - DS - Improved DS
Material Systems DS Improved DS 80
Quinaries 75.6 + 2.1 782 + 1.7 I
Senaries 723 + 23 75.8 + 2.1 70 -
Septenaries 73.8 £ 1.9 763 £ 1.6 I
60
. . . 50
and it can output the correct phase. It is noteworthy that DS evi- 8
dence theory also resolves inconsistent prediction phases and pre- < 40 L
dicts the correct phase for HEAs samples of AlCug,LigsMgZngs, |
ZrHfTiCuCo, Al o, CoCrFeMnNi, TiCoCrNiCuAlY(g, CuFeNiTiVZr, and 30 L
Ti;gCoCrFeNiCuAlys. However, DS evidence theory is not always |
correct. For example, DS evidence theory did not successfully pre- 20 |
dict the true phase of AlygCoFeNiTig4: SS+IM. Similarly, DS evi- |
dence theory predicts the wrong results for FeCoCuNiSngg; and 10 L
CoCuFeNiTiVZr. The reason refers to the high conflict among dif- |
ferent algorithms. The DS evidence theory tends to generate coun- 0

terintuitive results if the conflict is high [41]. The accuracy can be
improved if the high-conflict issue is solved effectively.

4.3. Comparison between DS evidence theory and improved DS
evidence theory

To solve the high-conflict issue, an improved DS evidence the-
ory based on standard deviation method is proposed. In order to
compare the conflict-resolution capability of DS evidence theory
and improved DS evidence theory, a set of comparison experiments
were performed. The accuracy comparison of DS evidence theory
and improved DS evidence theory is shown in Fig. 8.

Details of experiment results between DS evidence theory and
improved DS evidence theory are shown in Table 5, where the first
column is the order number of different material systems. Column
2 is the experiment results of DS and Column 3 is the experiment
results of improved DS.

As shown in Fig. 8 and Table 5, the accuracy of the improved
DS evidence theory is higher than the DS evidence theory. This
is because the improved DS evidence can assign different weights,
which is decided by the algorithm’s performance, to minimize con-
flict. In order to observe the conflict-resolution capability between
the DS evidence theory and the improved DS evidence theory, a
snapshot of partial prediction results for the HEAs test sample are

Quinaries Senaries Septenaries

Fig. 8. The accuracy comparison between DS evidence theory and improved DS ev-
idence theory.

listed in Table 6. Due to the large amounts of samples, only some
representative samples are listed in Table 6.

Column 1 is different HEAs, Columns 2 to 8 are the predic-
tion results of DT, RF, LR, SVM, KNN, DS evidence theory and im-
proved DS evidence theory, respectively, and Column 9 is the real
phases and the final column refers to the reference of HEAs sam-
ple. The predicted results from DT, RF, LR, SVM, and KNN are in-
consistent, while the DS evidence theory and the improved DS
evidence theory have shown their conflict-resolution capability.
It is noteworthy that the DS evidence theory predicts a wrong
phase for AlygCoFeNiTig4 due to high conflict among DT, RF, LR,
SVM, and KNN, while the predicted result of the improved DS ev-
idence theory is correct. The same phenomenon is also observed
in FeCoCuNiSngm. A110CU20Ni8Ti5Zr57, TinCuNiBe, TaNbVTiAl].(),
ZrTiVCuNiBe, TigsCoq5CrFeNi;sMogy, and CoCuFeNiTiVZr. Experi-
mental results show that the improved DS evidence theory has
better conflict-resolution capability and can provide more reliable
results.
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Table 6
A snapshot of partial prediction results for HEAs test samples.
Alloy DT RF LR SVM KNN DS Improved DS True Phase Ref.
AlgsCrCuFeNi SS+IM SS+IM Ss SS SS+IM SS SS ss [49]
AlgsCoFeNiTig 4 SS+IM M SS M SS+IM SS SS+IM SS+IM [49]
AlCugLig5MgZngs SS+IM SS+IM SS M SS+IM SS+IM SS+IM SS+IM [49]
ZrHfTiCuCo AM SS SS+IM SS SS AM AM AM [48]
FeCoCuNiSng o7 SS SS+IM IM SS+IM SS SS+IM SS SS [50]
Al1CuyNisTisZrs, AM AM Ss AM AM M AM AM [51]
TiZrCuNiBe AM SS SS AM SS SS AM AM [48]
TaNbVTiAl; o SS+IM SS+IM Ss ss SS SS+IM SS SS [48]
Alg o2 CoCrFeMnNi SS+IM SS SS+IM SS SS+IM SS SS SS [49]
TiCoCrNiCuAlYog AM AM SS+IM M M M M M [50]
CuFeNiTiVZr AM AM SS+IM AM IM AM AM AM [51]
ZrTiVCuNiBe AM IM AM IM IM IM AM AM [50]
Tig.5C01 5CrFeNi; s Mog SS+IM SS SS+IM SS SS+IM SS SS+IM SS+IM [50]
Ti; g CoCrFeNiCuAlys SS+IM SS+IM SS+IM ss SS SS+IM SS+IM SS+IM [50]
CoCuFeNiTiVZr IM AM SS+IM AM IM IM AM AM [51]
1
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Fig. 9. A § — Q scatter plot showing the labels of the phases in dataset X.

4.4. Comparison between the improved DS evidence theory and the
HPF

In order to verify the performance of the hybrid prediction
frame (HPF) proposed in this paper, a set of comparison exper-
iments between the improved DS evidence theory and the HPF
theory are carried out. Before comparing the experiments’ results,
Fig. 9 shows a scatter plot based on the § — € coordinate system
that displays the distribution of HEAs phases. The result is consis-
tent with the subplot in Fig. 6 using the same coordinate system.

As shown in Fig. 9, SS phases mostly fall within the upper
left corner based on the § — © coordinate system, and only small
amounts of samples are located elsewhere. This means the § — Q2
coordinate system can identify the SS phase. In other words, the
& — Q2 coordinate system can be considered as the formation crite-
rion for the SS phase. The specific distribution of samples falling
within the scope of empirical knowledge are shown in Fig. 10 for
further observation.

As shown in Fig. 10, the virtual line draws the scope of em-
pirical knowledge criterion. The 295 samples fall within the scope,
237 of them are SS phase, and the rest are other phases. More than
80% of the samples are labeled as SS phase correctly, which means
the accuracy of the empirical knowledge is up to 80%. The results
verify the effectiveness of empirical knowledge integrated in the
hybrid prediction frame.

Fig. 10. A § — Q scatter plot showing how samples fall in the scope of empirical
knowledge criterion.

Table 7

Accuracy comparison between improved DS and HPF.
Material Systems Improved DS HPF
Quinaries 782 + 1.7 87.8 + 2.1
Senaries 75.8 £ 2.1 86.7 £ 1.7
Septenaries 763 £ 1.6 833+ 14

A set of comparison experiments between the improved DS ev-
idence theory and the HPF theory are performed. The compari-
son of improved DS evidence theory and HPF theory is shown in
Fig. 11.

The details of experimental results between improved DS evi-
dence theory and HPF theory are shown in Table 7 where the first
column, the second column, and the third column are the order
number of different material systems, the experiment results of
improved DS, and the experiment results of HPF theory, respec-
tively.

As shown in Fig. 11 and Table 7, the HPF theory achieved higher
accuracy than the improved DS evidence theory. The reason may
be that HPF theory takes advantages of the strong learning abil-
ity and conflict-resolution ability of the conflict-resolution model
and the high generalization of the empirical knowledge model. The
HPF theory can achieve desirable accuracy with less or no training
samples. Moreover, the interpretability of HPF is also strengthened
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Fig. 11. The accuracy of improved DS evidence theory and HPFE.

by integrating the empirical knowledge model. The performance
of hybrid model is better than single machine learning method,
which also agrees with previous studies in several literatures for
the applications in environmental monitoring, automatic control
[28, 33, 56].

5. Conclusion

In conclusion, a hybrid prediction frame, which combines a
conflict-resolution model and an empirical knowledge model, for
the HEAs phase prediction is proposed in this report. A dataset
containing 426 HEA samples is utilized to verify the effectiveness
of the proposed model. First, the DS evidence theory reached a
higher accuracy (>72.3%) than DT, RF, LR, SVM, and KNN. This is
because the conflict-resolution capability of the DS evidence the-
ory can effectively resolve the conflictions among different results
and provide a result with higher accuracy for each HEAs sam-
ple. Second an improved DS evidence theory based on a standard
deviation method is proposed to further resolve the high-conflict
problem among different results. Experiment results show the im-
proved DS evidence theory has higher accuracy (>75.8%) than the
original DS evidence theory. Finally, the proposed HPF method is
proposed to take the advantage of strong learning ability of the ML
model and high generalization of empirical knowledge. Experiment
results show the HPF method can attain higher accuracy (>83.3%)
than the improved DS evidence theory, which validates the ef-
fectiveness of integrating the empirical knowledge model into the
prediction process.

This paper provides solid theoretical basis for the high-conflict
challenge in the prediction process of HEAs. The method proposed
in this paper cannot only be applied to the HEAs field, but also
has certain applicability in modern engineering application, biol-
ogy, mechanical automation and other fields [30, 33, 34, 56]. This
method can also lay a foundation of machine learning in material
design.
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