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a b s t r a c t 

Phase formation plays key role in the properties of high-entropy alloys (HEAs). If the phases of HEAs can 

be accurately predicted, the number of experiments can be greatly reduced, and the process of material 

design can be greatly accelerated. Machine-learning methods have been successfully and widely applied 

to predict the phases of HEAs. However, the accuracy of a single machine-learning (ML) algorithm is not 

ideal and different ML algorithms may predict different results. These issues hinder the application of ML 

in material design. In this paper, a hybrid frame for HEAs phase prediction, which combines machine- 

learning and empirical knowledge, is proposed. First, for the purpose of solving the problem that a sam- 

ple may be predicted as inconsistent prediction phases by different algorithms, the Dempster-Shafer (DS) 

evidence theory is adopted to fuse the inconsistent of the predicted phases among different algorithms, 

and provide a fusion prediction phase with the highest credibility. Second, a conflict-resolution model 

with high accuracy based on the improved DS evidence theory is proposed. Last, the empirical knowl- 

edge criterion is combined with the conflict-resolution model to improve the efficiency and accuracy of 

the hybrid prediction frame. The 426 different HEAs samples consisting of 180 quinaries, 189 senaries, 

and 57 septenaries were collected to validate against the effectiveness of the proposed methods. The 

experimental results demonstrate the hybrid prediction frame achieves higher accuracy and better per- 

formance than single ML algorithm. Keywords: Hybrid model; High-entropy alloys; Phase prediction; DS 

evidence theory 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

The HEAs have attracted much attention due to their excel- 

ent properties [ 1 , 2 ], such as high thermal stability, high hard-

ess, superior fracture and oxidation resistance features, etc. [3–

] . Differ from traditional alloys, HEAs contain at least five prin- 

ipal elements which offers a large composition variabilities [8] , 

nd have potential applications in aerospace, electronics, and other 

elds [ 8 , 9 ] . The phase formation of HEAs is a key factor affect-

ng their comprehensive performances, and different phases show 

ifferent physical and mechanical properties. The phases of HEAs 

re mainly single-phase solid solution (SS), amorphous (AM), in- 

ermetallic compound (IM), and a mixture of SS and IM (SS + IM) 

 7 , 10 , 11 ]. 

Many methods have been applied to predict the phase forma- 

ion in HEAs [12] . Computational methods, such as first-principles 
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alculations, calculation of phase diagram (CALPHAD), density 

unctional theory (DFT) simulations, and so on, have been devel- 

ped for this purpose. However, these methods are impractical for 

he material design process due to large amount of computational 

ffort [ 10 , 13 ]. The parametric method, which was applied to find

he criterions for the phase formation [8] , can effectively reduce 

he amount of computational effort and is less time-consuming 

14] . Zhang et al. concluded that the solid-solution phase is eas- 

ly formed in zone S, which is described by the parameters of δ
nd �Hmix [15] . Yang et al. proposed a new parameter � and 

ound a phenomenon that SS phase can be formed when �≥1.1 

nd δ≤6.6% [ 16 , 17 ]. Zhang et al. carried out large number of ex-

eriments, and further confirmed the effectiveness of this criteria 

18] . However, the parametric method is carried out based on a 

arge quantity of trial-error experiments and it only provides lim- 

ted representations. The composition variabilities of HEAs are still 

uge, leading to a long time and significant cost for performing 

xperiments [8] , which limits its application scope [ 8 , 19 ]. 

Owing to the high efficiency and superior learning ability, the 

L method has been accepted as an effective method in predict- 

https://doi.org/10.1016/j.actamat.2022.117742
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ng the phase of HEAs. The ML method is based on principles of 

athematical statistics to establish a potential mapping relation- 

hip between the input parameters and phases of HEAs, and pro- 

ide a guidance to the material designers [8] . A machine-learning 

ramework proposed by Islam et al. has been applied to predict 

he phase of HEAs [20] . Three machine-learning algorithms, includ- 

ng k-nearest neighbors (KNN), support vector machine (SVM), and 

rtificial neural network (ANN), were adopted by Huang et al. to 

redict the HEAs phases including SS, IM, and SS + IM, respectively 

10] . To distinguish stable body-centered cubic (BCC) and face- 

entered cubic (FCC) HEA phases, Li et al. utilized an SVM model 

o predict the phase of an alloy system composed of 16 metallic 

lements [21] . By combining the ML model with data processing 

ethod, Dai et al. generated new descriptors by linear transforma- 

ion method and predicted the phases of HEAs on a small dataset 

8] . The previous research works have laid important foundation 

nd provided a solid evidence that a lot of manpower and time 

an be saved if a phase prediction model using machine learning 

ethod is established to reflect the mapping relationship between 

he input parameters and microstructure of HEAs [22–24] . While 

he general performance of a single ML algorithm is not ideal both 

n many theoretically and empirically cases [ 25 , 26 ]. The accuracy 

f a single ML is limited since it does not take full advantage of 

iversity learning ability among different machine learning meth- 

ds. Additionally, different algorithms may predict a sample with 

ifferent results due to the different learning abilities among ML 

lgorithms [27] . With improper algorithms selected, low prediction 

ccuracy may lead to wrong decisions [28] . 

In order to improve the prediction accuracy and inconsistent 

mong results, DS evidence theory was proposed by Harvard Uni- 

ersity mathematician A. P. Dempster and further developed by G. 

hafe [29] . Referring to the conflict-resolution ability of DS evi- 

ence theory, Zhang et al. proposed a model based on DS evidence 

heory to predict an essential site in the plant genome. The model 

uilt four sub-classifiers based on different f eatures, and the fi- 

al results were obtained by fusing different outputs of four sub- 

lassifiers [30] . Zeng et al. proposed a multi-model based on a neu- 

al network (NN), support vector machine (SVM), and DS evidence 

heory to recognize the RGB-D (Red Green Blue-Depth) object. The 

ulti-model first extracted RGB (Red Green Blue) and depth fea- 

ures from the NN, and then applied two SVMs with extracted RGB 

nd depth features to obtain two probable recognition results, and 

nally integrated two probable results by DS evidence theory [31] . 

in et al. proposed a multi-classifier fusion model to detect video 

ame based on DS evidence theory. The model first chose three 

ifferent flame features and applied four sub-classifiers to clas- 

ify a same-flame feature separately. The model then fused four 

lassification results by DS evidence theory to make each feature’s 

reliminary decision. Finally, the preliminary decision results of 

hree features were fused by DS evidence theory [28] . The conflict- 

esolution ability of DS evidence theory has been successful vali- 

ated in many fields [32] . However, to the best of author’s knowl- 

dge, how to deal with the prediction confliction among different 

lgorithms has not been studied in the phase prediction of HEAs. 

The above studies have adopted in many fields owing to the 

ood accuracy [33] . However, these ML methods have poor gener- 

lization and require large amounts of training samples [ 34 , 35 ]. 

n view of the empirical knowledge is characterized by high gen- 

ralization and strong interpretability, many scholars carried out 

esearch on hybrid models, which combine both empirical knowl- 

dge model and ML model. For instance, Kong et al. used a hy- 

rid model to predict the adhesion energies between Cu and other 

aterials. The main information was predicted by the empirical 

nowledge model, and the error of empirical knowledge was com- 

ensated by the ML model [36] . Liu et al. proposed a hybrid model

o predict the remaining life of membrane fuel cells. A ML model 
2 
as applied to predict the trend of long-term degradation at the 

rst stage, and the remaining useful life was predicted by the em- 

irical model and ML model based on the samples obtained in the 

rst stage [35] . These efforts have proved that the hybrid model 

an take advantage of the high generalization and strong inter- 

retability of empirical knowledge and the superior learning ability 

f machine learning. However, to the best of the author’s knowl- 

dge, the hybrid prediction model has not been applied for phase 

rediction of HEAs. 

For the aforementioned reasons, a hybrid prediction frame for 

he HEAs phase that combines the advantages of empirical knowl- 

dge and the ML model is proposed in this draft. First, the DS evi- 

ence theory is adopted to deal with the inconsistent of predicted 

esults from different algorithms and provide a prediction result 

ith the highest reliability. Second, a conflict-resolution model 

ith higher accuracy constituted by an improved DS evidence the- 

ry is proposed. Last, the empirical knowledge criterions are inte- 

rated with the conflict-resolution model to improve the efficiency 

nd accuracy of a hybrid prediction frame. 

The rest of this paper is organized as follows: In chapter 2, 

ackground knowledge on HEAs and DS evidence theory is intro- 

uced. In chapter 3, the hybrid prediction frame for HEAs proposed 

n this paper is described in details. In chapter 4, numerous experi- 

ents are carried out and the effectiveness of the proposed hybrid 

rediction frame is verified. In chapter 5, a conclusion is given. 

. Methods 

Formulas of HEAs parameters and the DS evidence theory are 

ntroduced in this section. 

.1. Background theory of HEAs 

Due to their excellent properties, HEAs have been widely ap- 

lied in automobile, aerospace, transport, and other fields [ 9 , 18 , 

7 , 38 ]. The phases of HEAs greatly affects their properties and the 

arametric method has played an important role in the phase for- 

ation [39] . Meanwhile, formulas of HEAs’ parameters are shown 

s follows: 

The δ is the mean square deviation of the atomic sizes of all 

lements. The formula of δ is shown in Eq (1) : 

= 

√ 

n ∑ 

i =1 

c i (1 − r i 
r̄ 
) 

2 

(1) 

here c i is the atomic percentage of the i-th component, r i is the 

tomic radius and r̄ = 

n ∑ 

i =1 

c i r i is the average atomic radius. 

The �S mix is the entropy of mixing an n-element regular solu- 

ion. The formula of �S mix is calculated as Eq (2) : 

S mix = −R 

n ∑ 

i =1 

c i ln c i (2) 

here R is the gas constant. 

The �H mix is the enthalpy of mixing for a multi-component al- 

oy system with n elements. The formula of �H mix is shown as 

q (3) : 

H mix = 

n ∑ 

i =1 ,i< j 

4 H i j c i c j (3) 

here H i j is the regular solution interaction parameter between 

he i-th and j-th element. c i and c j are the atomic percentage of 

he and j-th component. 
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Fig. 1. Schematic diagram of DS evidence theory. 
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The VEC is the average valence electron concentration, and the 

ormula of VEC is calculated as Eq (4) : 

 EC = 

n ∑ 

i =1 

c i V E C i (4) 

here VEC i is the average valence electron concentration of i-th 

lement. 

The �χ is the electronegativity, and the formula of �χ is cal- 

ulated as Eq (5) : 

χ = 

√ 

n ∑ 

i =1 

c i ( χi − χ̄ ) 
2 

(5) 

here χi is the Pauling electronegativity of i-th element, and χ̄ = 

n ∑ 

 =1 

c i χi is the average Pauling electronegativity. 

The � is a parameter which combines the effect between 

S mix and �H mix , and the formula of � is calculated as Eq (6) : 

= 

T m 

�S mix 

| �H mix | (6) 

here T i m 

is the melting point of the i-th component of the alloy, 

nd T m 

is calculated by the rule of mixtures T m 

= 

n ∑ 

i =1 

c i T 
i 

m 

. 

.2. DS evidence theory 

DS evidence theory was proposed by mathematician, A. P. 

empster, and it was further improved by his student, G. Shafer. 

t shows good conflict-resolution ability to provide reliable results 

 29 , 40 ]. The DS evidence theory is schematically shown in Fig. 1: 

According to the DS evidence theory, the frame of discernment 

is a finite nonempty set of hypotheses [41] . Herein, A i refers to 

he hypothesis, and m ( A i ) is the mass function of A i , also called the

asic probability assignment function. It represents the probability 

istribution of hypothesis [28] . The m ( A i ) is a belief measurement 

f the final result, and it satisfies two conditions as Eq (7) and 

q (8) : 

 ( ∅ ) = 0 (7) 

∑ 

 ⊂�

m ( A i ) = 1 (8) 

here ∅ is an empty set. 

The credibility ( Bel) function is defined as Eq (9) : 

 el ( A i ) = 

∑ 

B ⊆A,B � = ∅ 
m ( B i ) (9) 
3 
The Bel( A i ) is interpreted as the total amount of belief in the 

ypothesis A i , which can be considered as the credibility of hy- 

othesis A i [42] . 

According to Dempster’s combination rule, the max value of the 

ombination rules is taken as the final result with highest credibil- 

ty [43] . The combination of n masses of hypotheses is defined as 

q (10) : 

 m 1 � m 2 � ... � m n )(A ) = 

1 

K 

∑ 

A 1 ∩ A 2 ∩ ···∩ A n = A 
m 1 ( A 1 ) · m 2 ( A 2 ) · · · m n ( A n ) 

(10) 

here K is the normalization factor. It refers to high conflict when 

 = 1 or infinitely approaching 1 [29] . The formula of K is calcu-

ated by Eq (11) : 

 = 

∑ 

A, ∩·∩ A n � = ∅ 
m 1 ( A 1 ) · m 2 ( A 2 ) · · · m n ( A n ) = 1 

−
∑ 

A 1 ∩ ···∩ A n = ∅ 
m 1 ( A 1 ) · m 2 ( A 2 ) · · · m n ( A n ) (11) 

Due to its excellent conflict resolution ability, the DS evidence 

heory has been adopted to deal with conflict challenges in many 

elds and provide several reliable results [30] . However, the as- 

umption of traditional DS evidence theory is that each algorithm 

as the same reliability. Many factors, such as different f eature re- 

iability of algorithms and differences of performance among al- 

orithms, would affect the reliability of the conflict-resolution re- 

ult. Additionally, if the confliction of results among different al- 

orithms is significant, the DS evidence theory combination rule 

ill be invalid and results obtained will be counterintuitive. The 

igh-conflict cases would guide algorithms toward wrong decision. 

ssigning different weights, depending on the algorithms’ perfor- 

ance, can greatly improve the reliability of results and minimize 

he negative effect of high conflict [ 44 , 45 ]. 

. Hybrid-phase prediction frame for HEAs Alloys 

In this section, a hybrid prediction frame (HPF) is proposed 

ased on the empirical knowledge model and conflict-resolution 

odel. 

.1. Empirical knowledge model 

Based on many experiments, Zhang et al. proposed a SS phase- 

ormation criterion. The SS phase-formation criterion is that the 

S phase will be formed if the sample falls within the scope of �

1.1 and δ≤6.6% [46] . Similar research was also carried out, and 

he experimental results further confirmed the effectiveness of the 

S phase-formation criterion to identify the SS phase [18] . 



S. Hou, M. Sun, M. Bai et al. Acta Materialia 228 (2022) 117742 

Fig. 2. Schematic diagram of conflict-resolution model. 
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To improve efficiency, the SS phase-formation criterion is inte- 

rated into the hybrid prediction frame. In the prediction process, 

he dataset X = {X 1 , X 2 , …X q , … X Q } is divided into two sub-sets

ased on the criterion. Samples that fall within the scope form 

 dataset E = {E 1 , E 2 , …E i , …E I } , and samples in the rest of the

ataset form another dataset S = {S 1 , S 2 , …S p , …S P }. Samples in

ataset E = {E 1 , E 2 , …E i , …E I } will be marked as SS phase directly.

.2. Conflict-resolution model 

To resolve inconsistent prediction results by different algo- 

ithms, a conflict-resolution model (CRM) based on improved DS 

vidence theory is proposed. The conflict-resolution model con- 

ains five different ML algorithms, including support vector ma- 

hine (SVM), K-nearest neighbor (KNN), decision tree (DT), logis- 

ics regression (LR), and random forest (RF). The improved DS ev- 

dence theory based on a standard deviation is adopted to resolve 

he confliction results among algorithms. The m j ( A i ) is the output 

rom ML algorithm L j . The weight w j for each algorithm L j is adap- 

ively calculated based on standard deviation. The combination re- 

ults are calculated based on the updated m j ( A i ) 
′ , where m j ( A i ) 

′ 
s updated by m j ( A i ) and w j . 

The model is schematically shown in the Fig. 2 : 

Steps of the conflict-resolution model are shown as follows: 

Input: HEAs test dataset S = {S 1 , S 2 , …S p , …S P } , ML algorithms

 = {L 1, L 2 , …L j , … L J } . 

Step 1: Train the ML algorithms L = {L 1, L 2 , …L j , … L J } . 

Step 2: Output the m j ( A i ) by algorithm in L for sample S p . 

alculate the standard deviation D j of each ML algorithm L j as 

q (12) : 

 j = 

√ 

N ∑ 

i= 1 

(
m j ( A i ) −

1 

N 

)2 

, 1 < i < N, 1 < j < J (12) 

here m j ( A i ) represents the probability that sample S p belongs to 

he i-th phase by j-th algorithm; N represents the total number of 

lloy phases; M represents the total number of ML algorithms. 

Step 3: Calculate the weight w j of each algorithm L j , the weight 

 j is defined as Eq (13) : 

 j = 

D j ∑ J 
j=1 

D j 

, 1 < j < J (13) 

Step 4: Update m j ( A i ) 
′ by the weight w j as Eq (14) : 

 j ( A i ) 
′ = w j · m j ( A i ) (14) 
4 
Step 5: Calculate the combination result of m ( A i ) as Eq (15) : 

 ( A i ) = 

∑ 

N 
i =1 

A i = A 
∏ J 

j=1 
m j ( A i ) 

′ 

1 − ∑ 

N 
i =1 

A i = A 
∏ J 

j=1 
m j ( A i ) 

′ (15) 

Step 6: Calculate the credibility ( Bel) of A i as Eq (16) : 

el ( A i ) = 

m ( A i ) ∑ N 
i =1 m ( A i ) 

, 1 ≤ i ≤ N (16) 

Step 7: Assign the phase with the highest credibility to the sam- 

le as Eq (17) : 

el ( A ) = max (Bel ( A 1 ) , Bel ( A 2 ) , · · · , Bel ( A N ) ) (17) 

Beyond this common phenomenon that different algorithms 

redict a sample as different phases, different algorithms also may 

redict a sample as the same phase in a few ideal cases. In these 

deal cases, the sample is directly recognized as this phase. 

.3. Hybrid prediction frame for HEAs phase 

A hybrid-phase prediction frame constituted by an empirical 

nowledge model and a conflict-resolution model is proposed in 

his section. The empirical knowledge model is based on the SS 

hase-formation criterion, while the conflict-resolution model is 

ased on improved DS evidence theory. The schematic diagram of 

he hybrid prediction frame is shown in Fig. 3: 

As shown in Fig. 3 , steps of the proposed hybrid prediction 

rame can be listed as follows: 

Input: HEAs dataset X = {X 1 , X 2 , …X q , … X Q } , ML algorithms

 = {L 1, L 2 , …L j , …L J } . 

Step 1: Train the ML algorithms L = {L 1, L 2 , …L j , … L J }. 

Step 2: Divide the dataset X into two sub-sets, samples that fall 

ithin the scope of SS formation criterion as E = {E 1 , E 2 , …E i , …E I },

nd the rest of the samples as S = {S 1 , S 2 , …S p , …S P } . 

Step 3: Mark samples in dataset E = {E 1 , E 2 , …E i , …E I } as SS

hase. 

Step 4: Predict S p in dataset S by algorithms L = {L 1, L 2 , …L j , …

 J } and output the m jp ( A i ) of every sample S p . 

Step 5: For every sample S p , calculate the weight w jp of sample 

 p by algorithms L j by Eq (13) . Calculate the combination result 

 jp ( A i ) by Eq (15) . Calculate the Be l p ( A i ) by Eq (16) . Assign the

hase with highest credibility of sample S p by Eq (17) . 

Step 6: Output the prediction results of dataset X . 
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Fig. 3. Schematic diagram of the hybrid prediction frame. 
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. Results and discussion 

In this paper, the proposed hybrid prediction frame and sup- 

ort vector machine (SVM), K-nearest neighbor (KNN), decision 

ree (DT), logistics regression (LR), and random forest (RF) are com- 

ared in this section. In order to guarantee the performance of ML 

lgorithms, the grid search method is applied to optimize the hy- 

erparameters of algorithms [47] . The optimal hyperparameters of 

lgorithms are shown as follows after the systematic study: the hy- 

erparameter ‘criterion’ of DT is set as ’gini’, and hyperparameter 

max depth’ is ‘4 ′ . The hyperparameter ‘solver’ of LR is ‘newton-cg’. 

he hyperparameter ‘k’ of KNN is ‘4 ′ . The hyperparameter ‘crite- 

ion’ of RF is ‘gini’. And the hyperparameter ’gamma’ of SVM is 

0.1 ′ . Compared with the hyperparameters listed above, other hy- 

erparameters with little effect on the accuracy are set to default 

alues. 

The software used is Python 3.7.4. 

.1. Experimental dataset 

Dataset X in this paper is collected from Refs [48–51] , which 

ontains four collections of HEAs. The data preprocessing is carried 

ut in HEAs dataset X , which includes parameter value calculation, 

ata supplementary, data deduplication, and noise sample elimina- 

ion. After the data preprocessing, the HEAs dataset including 426 

amples is comprised of 180 quinaries samples, 189 senaries sam- 

les, and 57 septenaries samples. 

The phases are divided into four categories — solid solution 

hase (SS), intermetallic phase (IM), solid solution, intermetallic 

hase (SS + IM), and amorphous phase (AM) [ 10 , 11 ]. The dataset

ontains 21 elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb,

o, Pd, Ag, Hf, Ta, Os, Au, Al). As shown in Fig. 4 , Fe, Cr, Co, Ni,

u, and Al appear in more than 200 samples, while Pd, Au, and Sc 

ppear twice, Ag and Os just are observed one time. 

Fig. 5 shows a snapshot of the first five rows of the data in the

andas DataFrame format. The first column identifies an HEA and 

he remaining six columns describe the corresponding parameters. 

More details of parameters including their maximum values, 

inimum values, and parameter descriptions are listed in Table 1 . 
5 
In order to help understand the data distribution and the re- 

ationship between these parameters, a 6 × 6 scatterplot matrix 

s plotted in Fig 6 . Moreover, in order to quantitatively describe 

he relationship between parameters, the Pearson correlation coef- 

cient P between parameters x and y is defined as Eq (18) : 

 xy = 

∑ n 
i=1 ( x i − x̄ ) ( y i − ȳ ) √ ∑ n 

i =1 ( x i − x̄ ) 
2 

√ ∑ n 
i =1 ( y i − ȳ ) 

2 

(18) 

here x̄ and ȳ are the mean values of parameters x and y , respec- 

ively. The P xy = 1 and P xy = −1 represent a perfect positive cor- 
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Fig. 5. Pandas snapshot of the first five samples of the data in this paper. Units of �S mix and �H mix are kj . mol −1 and kj −1. mol −1 , respectively. 

Table 1 

Snapshot of parameters. 

Number Parameter Maximum value Minimum value Parameter description 

1 �S mix 16.1782 6.4654 thermodynamic parameter 

2 �H mix 30.2400 −34.1000 chemical parameter 

3 δ 20.3800 0.2100 electronic parameter 

4 �χ 0.3324 0.03167 electronic parameter 

5 VEC 10.6700 0.3400 electronic parameter 

6 � 283.5023 0.5655 chemical thermodynamic parameter 

Fig. 6. Scatterplot is plotted according to different parameters. The point in a scatterplot corresponds to a sample, and different colors represent different phases. The blue 

represents SS phase, red represents IM phase, green represents AM phase, and yellow represents SS + IM phase. 

6 
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Fig. 7. The accuracy comparison of DS evidence theory and other algorithms. 

Table 2 

Correlations between the parameters. 

�S mix �H mix δ �χ VEC �

�S mix 1 −0.11 0.26 0.12 −0.01 −0.09 

�H mix −0.11 1 −0.42 −0.24 0.30 0.19 

δ 0.26 −0.42 1 −0.22 −0.38 −0.22 

�χ 0.12 −0.24 −0.22 1 −0.37 −0.08 

VEC −0.01 0.30 −0.38 −0.37 1 0.13 

� −0.09 0.19 −0.22 −0.08 0.13 1 
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elation and a negative correlation between parameters x and y . 

able 2 lists the computed correlation matrix between parameters, 

hich is also marked in the right upper corner of the plot in Fig.

 . 

As observed from the scatterplot matrix plot, one parameter or 

wo parameters and a simple linear function cannot draw a clear 

oundary to distinguish these phases. Moreover, the range of Pear- 

on coefficients correlation P is between −0.42 to 0.30, and ten of 

he 15 independent Pearson coefficients correlations are negative 

hile the other five Pearson coefficients correlations are positive. 

s a result, there is no strong correlation between any two param- 

ters. 

In order to avoid the overfitting of ML [ 10 , 52 ], the k-fold cross-

alidation method is applied in this experiment. The k value is set 

s 5 refers to the method proposed by Jung et al. [52] . First the

ataset X in this paper is divided into five equal subsets. In each 

ross-validation process, one subset is selected as the test set and 

he remaining four subsets are the training sets. Each subset is se- 

ected as a test set once. In five cross-validation processes, the five 

ross-validation methods are repeated six times and the final ac- 

uracy is the average value of 30 times accuracies of the cross- 

alidation process. 

.2. Comparison between DS evidence theory and other algorithms 

To verify the conflict-resolution capability of DS evidence the- 

ry under different material systems, a set of comparison experi- 

ents among DS evidence theories DT, RF, LR, SVM, and KNN, are 

arried out. The selected algorithms refer to the following litera- 

ure [ 8 , 10 , 28 ] . The comparison is shown in Fig. 7 . 
7 
The details of experiment results are shown in Table 3 where 

he first column is the order number of the material system and 

he remaining columns are different experiment methods. 

As shown in Fig. 7 and Table 3 , the accuracy of DS evidence

heory is higher than DT, RF, LR, SVM, and KNN. The reason may 

e that DS evidence theory can combine the advantages of these 

lgorithms and merge their outputs to provide a more reliable re- 

ult [53] . Meanwhile it can also resolve the inconsistent predic- 

ion among different algorithms by its conflict-resolution ability, 

nd provide more reliable prediction results. RF has higher accu- 

acy than DT, LR, SVM, and KNN because it belongs to the ensem- 

le algorithm. It can fuse multiple results of different weak algo- 

ithms showing a better learning ability. Zhang et al. adopted dif- 

erent machine-learning algorithms to predict the phase of HEAs, 

nd also found that RF has higher accuracy than DT, LR, and SVM. 

heir experimental results is in line with the results in this pa- 

er [54] . However, RF cannot effectively resolve the inconsistent 

f prediction results of multiple weak algorithms. While DS evi- 

ence theory has excellent conflict-resolution ability. Moreover, ac- 

uracies of DT and SVM are higher than LR and KNN. The reason 

ay be because SVM and DT have high adaptability, they require 

 small amount of training sample, and have good prediction abil- 

ty in a small dataset [ 10 , 55 ]. Meanwhile, LR is a simple and lin-

ar model and is hard to fit with complex data distribution, thus 

eading to low accuracy. KNN depends highly on training data, and 

annot well deal with high-dimensional data due to huge amount 

f calculation, thus resulting a poor accuracy [10] . 

To illustrate the conflict resolution ability of DS evidence the- 

ry, partial samples are listed in Table 4 . Due to large amounts of 

amples, only some representative samples are listed. 

As observed from the Table 4 , the first column lists differ- 

nt HEAs. Columns 2 to 7 are the predicted results of DT, RF, 

R, SVM, KNN, and DS evidence theory. Column 8 is the true 

hase/phases of the samples and the final column refers to the 

eference of HEAs sample. The samples listed in Table 4 are pre- 

icted by different algorithms, the predicted phases of these sam- 

les by different algorithms are inconsistent. For example, the 

rue phase of Al 0.8 CrCuFeNi is the SS phase. It is predicted as 

S phase by LR and SVM, and as SS + IM phase by other algo-

ithms. Meanwhile, DS evidence theory can successfully resolve 

hese conflict prediction results by its conflict resolution ability, 
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Table 3 

Experiment results of DS evidence and other algorithms. 

Material Systems DT RF LR SVM KNN DS 

Quinaries 65.6 ± 2.9 70.9 ± 1.7 63.7 ± 2.3 70.3 ± 1.3 62.2 ± 1.9 75.6 ± 2.1 

Senaries 63.4 ± 2.1 71.1 ± 1.4 66.3 ± 2.9 67.1 ± 1.5 65.3 ± 1.6 72.3 ± 2.3 

Septenaries 66.5 ± 2.4 73.5 ± 1.6 61.7 ± 2.5 68.4 ± 1.9 61.7 ± 1.4 73.8 ± 1.9 

Table 4 

A snapshot of partial prediction results for HEAs test sample. 

Alloy DT RF LR SVM KNN DS True Phase Ref. 

Al 0.8 CrCuFeNi SS + IM SS + IM SS SS SS + IM SS SS [49] 

Al 0.6 CoFeNiTi 0.4 SS + IM IM SS IM SS + IM SS SS + IM [49] 

AlCu 0.2 Li 0.5 MgZn 0.5 SS + IM SS + IM SS IM SS + IM SS + IM SS + IM [49] 

ZrHfTiCuCo AM SS SS + IM SS SS AM AM [48] 

FeCoCuNiSn 0.07 SS SS + IM IM SS + IM SS SS + IM SS [50] 

Al 0.02 CoCrFeMnNi SS + IM SS SS + IM SS SS + IM SS SS [49] 

TiCoCrNiCuAlY 0.8 AM AM SS + IM IM IM IM IM [50] 

CuFeNiTiVZr AM AM SS + IM AM IM AM AM [51] 

Ti 1.8 CoCrFeNiCuAl 0.5 SS + IM SS + IM SS + IM SS SS SS + IM SS + IM [50] 

CoCuFeNiTiVZr IM AM SS + IM AM IM IM AM [51] 

Table 5 

Experiment results between DS evidence and Improved DS. 

Material Systems DS Improved DS 

Quinaries 75.6 ± 2.1 78.2 ± 1.7 

Senaries 72.3 ± 2.3 75.8 ± 2.1 

Septenaries 73.8 ± 1.9 76.3 ± 1.6 
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Fig. 8. The accuracy comparison between DS evidence theory and improved DS ev- 

idence theory. 
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nd it can output the correct phase. It is noteworthy that DS evi- 

ence theory also resolves inconsistent prediction phases and pre- 

icts the correct phase for HEAs samples of AlCu 0.2 Li 0.5 MgZn 0.5 , 

rHfTiCuCo, Al 0.02 CoCrFeMnNi, TiCoCrNiCuAlY 0.8 , CuFeNiTiVZr, and 

i 1.8 CoCrFeNiCuAl 0.5 . However, DS evidence theory is not always 

orrect. For example, DS evidence theory did not successfully pre- 

ict the true phase of Al 0.6 CoFeNiTi 0.4 : SS + IM. Similarly, DS evi-

ence theory predicts the wrong results for FeCoCuNiSn 0.07 and 

oCuFeNiTiVZr. The reason refers to the high conflict among dif- 

erent algorithms. The DS evidence theory tends to generate coun- 

erintuitive results if the conflict is high [41] . The accuracy can be 

mproved if the high-conflict issue is solved effectively. 

.3. Comparison between DS evidence theory and improved DS 

vidence theory 

To solve the high-conflict issue, an improved DS evidence the- 

ry based on standard deviation method is proposed. In order to 

ompare the conflict-resolution capability of DS evidence theory 

nd improved DS evidence theory, a set of comparison experiments 

ere performed. The accuracy comparison of DS evidence theory 

nd improved DS evidence theory is shown in Fig. 8 . 

Details of experiment results between DS evidence theory and 

mproved DS evidence theory are shown in Table 5 , where the first 

olumn is the order number of different material systems. Column 

 is the experiment results of DS and Column 3 is the experiment 

esults of improved DS. 

As shown in Fig. 8 and Table 5 , the accuracy of the improved

S evidence theory is higher than the DS evidence theory. This 

s because the improved DS evidence can assign different weights, 

hich is decided by the algorithm’s performance, to minimize con- 

ict. In order to observe the conflict-resolution capability between 

he DS evidence theory and the improved DS evidence theory, a 

napshot of partial prediction results for the HEAs test sample are 
8 
isted in Table 6 . Due to the large amounts of samples, only some 

epresentative samples are listed in Table 6 . 

Column 1 is different HEAs, Columns 2 to 8 are the predic- 

ion results of DT, RF, LR, SVM, KNN, DS evidence theory and im- 

roved DS evidence theory, respectively, and Column 9 is the real 

hases and the final column refers to the reference of HEAs sam- 

le. The predicted results from DT, RF, LR, SVM, and KNN are in- 

onsistent, while the DS evidence theory and the improved DS 

vidence theory have shown their conflict-resolution capability. 

t is noteworthy that the DS evidence theory predicts a wrong 

hase for Al 0.6 CoFeNiTi 0.4 due to high conflict among DT, RF, LR, 

VM, and KNN, while the predicted result of the improved DS ev- 

dence theory is correct. The same phenomenon is also observed 

n FeCoCuNiSn 0.07 , Al 10 Cu 20 Ni 8 Ti 5 Zr 57 , TiZrCuNiBe, TaNbVTiAl 1.0 , 

rTiVCuNiBe, Ti 0.5 Co 1.5 CrFeNi 1.5 Mo 0.1 , and CoCuFeNiTiVZr. Experi- 

ental results show that the improved DS evidence theory has 

etter conflict-resolution capability and can provide more reliable 

esults. 
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Table 6 

A snapshot of partial prediction results for HEAs test samples. 

Alloy DT RF LR SVM KNN DS Improved DS True Phase Ref. 

Al 0.8 CrCuFeNi SS + IM SS + IM SS SS SS + IM SS SS SS [49] 

Al 0.6 CoFeNiTi 0.4 SS + IM IM SS IM SS + IM SS SS + IM SS + IM [49] 

AlCu 0.2 Li 0.5 MgZn 0.5 SS + IM SS + IM SS IM SS + IM SS + IM SS + IM SS + IM [49] 

ZrHfTiCuCo AM SS SS + IM SS SS AM AM AM [48] 

FeCoCuNiSn 0.07 SS SS + IM IM SS + IM SS SS + IM SS SS [50] 

Al 10 Cu 20 Ni 8 Ti 5 Zr 57 AM AM SS AM AM IM AM AM [51] 

TiZrCuNiBe AM SS SS AM SS SS AM AM [48] 

TaNbVTiAl 1.0 SS + IM SS + IM SS SS SS SS + IM SS SS [48] 

Al 0.02 CoCrFeMnNi SS + IM SS SS + IM SS SS + IM SS SS SS [49] 

TiCoCrNiCuAlY 0.8 AM AM SS + IM IM IM IM IM IM [50] 

CuFeNiTiVZr AM AM SS + IM AM IM AM AM AM [51] 

ZrTiVCuNiBe AM IM AM IM IM IM AM AM [50] 

Ti 0.5 Co 1.5 CrFeNi 1.5 Mo 0.1 SS + IM SS SS + IM SS SS + IM SS SS + IM SS + IM [50] 

Ti 1.8 CoCrFeNiCuAl 0.5 SS + IM SS + IM SS + IM SS SS SS + IM SS + IM SS + IM [50] 

CoCuFeNiTiVZr IM AM SS + IM AM IM IM AM AM [51] 

Fig. 9. A δ − � scatter plot showing the labels of the phases in dataset X . 
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Fig. 10. A δ − � scatter plot showing how samples fall in the scope of empirical 

knowledge criterion. 

Table 7 

Accuracy comparison between improved DS and HPF. 

Material Systems Improved DS HPF 

Quinaries 78.2 ± 1.7 87.8 ± 2.1 

Senaries 75.8 ± 2.1 86.7 ± 1.7 

Septenaries 76.3 ± 1.6 83.3 ± 1.4 
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.4. Comparison between the improved DS evidence theory and the 

PF 

In order to verify the performance of the hybrid prediction 

rame (HPF) proposed in this paper, a set of comparison exper- 

ments between the improved DS evidence theory and the HPF 

heory are carried out. Before comparing the experiments’ results, 

ig. 9 shows a scatter plot based on the δ − � coordinate system 

hat displays the distribution of HEAs phases. The result is consis- 

ent with the subplot in Fig. 6 using the same coordinate system. 

As shown in Fig. 9 , SS phases mostly fall within the upper 

eft corner based on the δ − � coordinate system, and only small 

mounts of samples are located elsewhere. This means the δ − �

oordinate system can identify the SS phase. In other words, the 

− � coordinate system can be considered as the formation crite- 

ion for the SS phase. The specific distribution of samples falling 

ithin the scope of empirical knowledge are shown in Fig. 10 for 

urther observation. 

As shown in Fig. 10 , the virtual line draws the scope of em-

irical knowledge criterion. The 295 samples fall within the scope, 

37 of them are SS phase, and the rest are other phases. More than

0% of the samples are labeled as SS phase correctly, which means 

he accuracy of the empirical knowledge is up to 80%. The results 

erify the effectiveness of empirical knowledge integrated in the 

ybrid prediction frame. 
9 
A set of comparison experiments between the improved DS ev- 

dence theory and the HPF theory are performed. The compari- 

on of improved DS evidence theory and HPF theory is shown in 

ig. 11 . 

The details of experimental results between improved DS evi- 

ence theory and HPF theory are shown in Table 7 where the first 

olumn, the second column, and the third column are the order 

umber of different material systems, the experiment results of 

mproved DS, and the experiment results of HPF theory, respec- 

ively. 

As shown in Fig. 11 and Table 7 , the HPF theory achieved higher

ccuracy than the improved DS evidence theory. The reason may 

e that HPF theory takes advantages of the strong learning abil- 

ty and conflict-resolution ability of the conflict-resolution model 

nd the high generalization of the empirical knowledge model. The 

PF theory can achieve desirable accuracy with less or no training 

amples. Moreover, the interpretability of HPF is also strengthened 
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Fig. 11. The accuracy of improved DS evidence theory and HPF. 
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y integrating the empirical knowledge model. The performance 

f hybrid model is better than single machine learning method, 

hich also agrees with previous studies in several literatures for 

he applications in environmental monitoring, automatic control 

 28 , 33 , 56 ]. 

. Conclusion 

In conclusion, a hybrid prediction frame, which combines a 

onflict-resolution model and an empirical knowledge model, for 

he HEAs phase prediction is proposed in this report. A dataset 

ontaining 426 HEA samples is utilized to verify the effectiveness 

f the proposed model. First, the DS evidence theory reached a 

igher accuracy ( > 72.3%) than DT, RF, LR, SVM, and KNN. This is 

ecause the conflict-resolution capability of the DS evidence the- 

ry can effectively resolve the conflictions among different results 

nd provide a result with higher accuracy for each HEAs sam- 

le. Second an improved DS evidence theory based on a standard 

eviation method is proposed to further resolve the high-conflict 

roblem among different results. Experiment results show the im- 

roved DS evidence theory has higher accuracy ( > 75.8%) than the 

riginal DS evidence theory. Finally, the proposed HPF method is 

roposed to take the advantage of strong learning ability of the ML 

odel and high generalization of empirical knowledge. Experiment 

esults show the HPF method can attain higher accuracy ( > 83.3%) 

han the improved DS evidence theory, which validates the ef- 

ectiveness of integrating the empirical knowledge model into the 

rediction process. 

This paper provides solid theoretical basis for the high-conflict 

hallenge in the prediction process of HEAs. The method proposed 

n this paper cannot only be applied to the HEAs field, but also 

as certain applicability in modern engineering application, biol- 

gy, mechanical automation and other fields [ 30 , 33 , 34 , 56 ]. This

ethod can also lay a foundation of machine learning in material 

esign. 
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