IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 10, MAY 15, 2022

Proof of Continuous Work for Reliable Data

Storage Over Permissionless Blockchain

Hao Yin“, Zijian Zhang', Jialing He', Liran Ma"', Member, IEEE, Lichuang Zhu', Member, IEEE,
Meng Li"“', Member, IEEE, and Bakh Khoussainov

Abstract—RBitcoin first proposed the Nakamoto consensus that
applies proof of work into the blockchain structure to build
a trustless append-only ledger. The Nakamoto consensus solves
the distributed consistency problem in the public network but
wastes too much computing power. Instead of consuming com-
puting resources, many improved consensus schemes address this
problem by leveraging miners’ storage resources. However, these
schemes fail to let miners store data constantly and osually rely
on a dealer to assign data, which is hard to build a reliable
decentralized storage system. In this article, we first design a
variant consensus algorithm named Proof of Continuous Work
{PoCW) with a storage-related incentive mechanism. Miners can
accumulate mining advantage by continuously submitting proofs
of storage. Then, we present a hash ring-based data alloca-
tion algorithm using the blockchain’s state. Combined with both
of them, we build a reliable blockchain-based storage system
without relying on any third parties. The theoretical analysis
and simulation results demonstrate that the proposed system
has higher reliability than those existing systems, and we also
give practical suggestions about system parameters. Finally, we
discuss additional benefits that our system brings.

Index Terms—Blockchain, data allocation, decentralized stor-
age, Proof of Continuous Work (PoCW), reliability.

I. INTRODUCTION

LOCKCHAIN [1] is known as decentralized database
technology, and it can build a unique ledger among the

Manuscript received June 2, 2021; revised July 19, 2021 and Aogust 29,
2021; accepted September 15, 2021, Date of publication September 27, 2021;
date of cumrent version May 9, 2022, This work was supported in part by
the National MNatural Science Foundation of China under Grant 62172040,
Grant U1836212, and Grant 61872041; in part by the Ministry of Education—
China Mobile Rescarch Fund Project under Grant MCM20 180401 ; and in part
by the Mational Science Foundation of the US. onder Grant CNS-1912755.
(Carresponding authors: Zijian Zhang; Lichuang Zha.)

Hao Yin is with the School of Cyberspace Science and Technology, Beijing
Institute of Technology, Beijing 100081, China, and also with the School
of Computer Science and Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, China {e-mail: yinhao@bit.edu.cn).

Zipian Fhang, Jisling He, and Lichwang Zhu are with the School
of Cyberspace Science and Technology, Beijing Institute of Technology,
Bening 100081, China {e-mail: zhangzijian@bit.edu.cn; hejialing @biteducn;
lichuangz@bit.edu.cn).

Liran Ma is with the Department of Computer Science, Texas Chrstian
University, Fort Worth, TX 76129 USA (e-mail: Lma@tcu edu).

Meng Li is with the Key Laboratory of Knowledge Engineering with
Big Data, Ministry of Education, and the School of Computer Science and
Information Engineering, Hefei Unmiversity of Technology, Hefen 230601,
China (e-mail: mengli@ hfut.edocn).

Bakh Khoussainov is with the School of Computer Science and
Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China (e-mail: bmk @uestcedu.cn).

Dhgital Object Identifier 10,1 109/JI0T.2021.31 15568

untrusted distributed network. Such technology can effectively
cut down on trust costs in distributed systems and thus,
be studied by many scholars. Bitcoin [2] first proposes this
blockchain structure to design a cryptocurrency, which applies
Proof-of-Work (PoW) to construct the Nakamoto consensus. In
the consensus protocol, participants compete for appending a
new block to the current blockchain by solving a difficult puz-
zle. Generally, only the fastest participant wins the competition
and gets the reward. Others have to drop the current puzzle
for computing the next one, which wastes massive computing
pOWEL.

Researchers proposed some PoW-variant schemes to fig-
ure out the mentioned problems. For example, Proof of Stake
(PoS) [3] extends the framework of PoW and uses stakes to
influence block mining difficulty, where the stake can be the
cryptocurrency on the blockchain. The more the stake a partic-
ipant holds, the easier the participant mines a valid block and
gets the reward. Although no longer wasting lots of computing
power, it faces the risk of instability. An adversary may create
multiple identities (i.e., Sybil attack [4]) to increase its oppor-
tunity of successful mining. Another attack named nothing at
stake [5] can easily cause blockchain forks, which ruins the
consistency. Nevertheless, PoS shows a possible idea that we
can substitute the consumption of computing resources with
others.

Inspired by PoS, many state-of-art schemes utilize storage
contribution to substitute computing power. On the one hand,
storage is not a virtual resource so that it can tolerate the Sybil
attack. On the other hand, storage provides a useful service
that can be used to earn income. Fortunately, there are cryp-
tographic primitives, such as proof of retrievability (POR) [6]
and proof of data possession (PDP) [7]. Based on these tech-
niques, Permacoin [8] proposes a local POR to construct a
useful consensus. It assumes a dealer to assign data to min-
ers who are encouraged to submit proof of storage for higher
success in block mining. Filecoin [9] commercializes the data
storage activities via introducing a distributed storage market.
It also proposes a variant Nakamoto consensus that biases the
mining advantage to the miners who provide more storage
space.

However, the existing schemes are hard to build a reliable
storage system. The first reason is that those consensus alpo-
rithms only concern storage capacity. They lack an incentive
mechanism to encourage miners to constantly store the data.
Second, these systems usually depend on a centralized party
to allocate data for miners. Such mode might bring extra trust

23274662 (€ 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https2fwww.ices org/publications/rightsfindex html for more information.

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

https://orcid.org/0000-0002-1755-8225
https://orcid.org/0000-0002-6313-4407
https://orcid.org/0000-0002-8643-0647
https://orcid.org/0000-0002-1003-1770
https://orcid.org/0000-0003-3277-3887
https://orcid.org/0000-0003-3553-0813

YINM er al.: PROOF OF CONTINUOUS WORK FOR RELIABLE DATA STORAGE OVER PERMISSIONLESS BLOCKCHAIN

cost and somewhat harm storage reliability. It may cause that
the blockchain-based storage system weakens to a centralized
cloud storage system. To address the challenges, we propose
a variant Nakamoto consensus with a storape-related incen-
tive mechanism to build a blockchain-based storage system,
which allocates data to multiple miners without any trusted
third parties. The contribution of our work is as follows.

1) We design a Proof-of-Continuous-Work (PoCW) algo-
rithm to encourage miner participation in storage con-
tribution. In this variant Nakamoto consensus, miners
accumulate the mining advantages by continuously stor-
ing data and submitting proofs.

2) We propose a hash ring-based data allocation algorithm
to assign data in a decentralized fashion. This method
leverages consistent hashing to allocate data to stor-
age nodes. The allocation result is used to obtain the
assigned data in the PoCW computation.

3) Theoretical analysis proves that our allocation scheme
gets higher reliability than the centralized allocation
scheme. According to the results, we also investigate
the practical situation of node failure and give useful
suggestions about system parameters.

The remainder of this article is organized as follows. We
present related work in Section II. We then introduce the pre-
liminary notations and definitions in Section III. Section IV
gives an overview of the proposed blockchain-based storage
system. Section V presents proof-of-continuous-work and hash
ring-based data allocation. After that, we give the reliability
analysis and simulation verification in Section VL. Finally, we
conclude this article in Section VIIL

II. RELATED WORK

In this section, we briefly show some research work
about blockchain-based storage systems in various domains
ranging from the Internet of Things (IoT) to Healthcare.
Wang et al. [10] presented ForkBase that built an efficient
storage engine with collaborative analytics and fork seman-
tics. Li ef al. [11] designed a secure and accountable IoT
storage system based on blockchain. Xu et al [12] lever-
aged blockchain to execute data analytics with IoT devices.
Zhou et al. [13] proposed MIStore to build a blockchain-
based medical insurance storage system. Wang et al [14]
proposed BlockZone, a blockchain-based DNS system with
an improved PBFT consensus algorithm. Chen et al. [15]
designed a blockchain-based medical service framework for
personal data management.

To address the issues of storage limitation, a few mainstream
blockchain-based storage systems relieve capacity restrictions
by storing raw data off-chain. An earlier work Factom [16]
created a data layer on top of Bitcoin, where data are
retrieved using distributed hash table (DHT) and metadata are
stored on-chain. Later, Zyskind et al. [17] used blockchain
to manage user permissions and message delivery. Inspired
by Namecoin [18], Blockstack [19] constructed a global stor-
age system by embedding zone files into Bitcoin. Recently,
Li et al. [20] designed a blockchain-based distributed cloud
storage architecture, where transactions contain the URLs of

T8ET

file replicas that can be retrieved from a distributed storage
network (DSN).

Some systems adopt proof protocols to synchronize off-
chain data with blockchain for high reliability. Based on
various proofs of storage, Miller ef al. [8] proposed Permacoin
to make consensus work for data preservation, where min-
ers need to generate local POR to pet more mining rewards.
Storj [21] enabled users to sell and buy storage space from
providers, which can be audited by any peers via a challenge-
based POR protocol. This also introduced sharding, an exten-
sion of Kademlia [22], to further improve system reliability.
Kopp et al [23], [24] used a POR protocol to build a
distributed file storage but paid more attention to financial
incentives to ensure fairness. Filecoin [9] built a distributed
storage market, where clients and miners send bid and ask
orders, respectively. This work also proposed a noninteractive
proof of space time to reach reliability. Ateniese ef al. [25]
proposed a similar notion named proof of storage time. It
designs a challenge—response protocol to efficiently verify that
data are continuously available and retrievable for a range of
time.

One important assumption in these works is the honesty
of the third party to allocate data. Without it, the systems’
reliability can significantly be degraded. One novelty of our
work thus lies in building decentralized data allocation in
blockchain-based storage systems.

IIl. PRELIMINARIES
A. Blockchain in Bitcoin

Bitcoin was proposed by Nakamoto [2] in 2009, which is the
first practical application of blockchain. The system organizes
transactions via a hash chain and relies on PoW to build the
Nakamoto consensus.

Blockchain structure is a chain of blocks that pack trans-
actions within an interval of time. Each block includes hash
value pointing to the previous block, except for the first one
(i.e., genesis block). In Bitcoin, a block consists of a list of
transactions, a hash value, a version number, a timestamp, and
a random nonce. Let H(-) be a cryptographic hash function.
For simplicity, we formalize the ith block as

B; := (T;||[H(Bi_1)|IN;)

where B; is the ith block, T; is the list of transactions in
this block, and Nj; is the random nonce selected by miners.
Thus, the blockchain with height & = 0 can be viewed as the
sequence of blocks Ly === By, By, ..., By =, where By is the
genesis block.

Nakamoto consensus is an essential component that makes
all participants (also called miners) hold the same ledger. After
verifying all the transactions by certain specified rules, miners
compete with each other to solve a computational puzzle. The
solution of this puzzle is to find an appropriate random nonce
that makes the hash of the block less than a target value of Z,
named PoW. We express it as follows:

H(B;) = Z.

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

Multiple solutions for the current puzzle may cause the
blockchain fork. To address it, all miners follow the longest
chain to solve puzzles, and thus, the blockchain can eventually
reach global consistency with high probability.

B. Consistent Hashing

Consistent hashing [26] forms a ring structure to “smoothly
absorb™ network changes, which allows servers to join or leave
in an arbitrary order with limited costs. It connects the output
of a hash function from the beginning to the end via a modulo
operation to construct the hash ring, where requests and servers
are mapped into the same space. Requests find the closest
server on the space or the first server encountered in a certain
direction on the ring.

Due to high efficiency in resource allocation and localiza-
tion, the consistent hashing concept (used in designing DHT)
has been applied to many peer-to-peer storage systems, such
as chord [27], Pastry [28], etc. Typically, the previous works
use this technology to locate nodes for data retrieval with-
out assigning data storage. Abe's thesis [29] aims to alleviate
miner's overhead for storing the ledger, where each miner only
stores part of blocks according to the DHT. But the paper,
in some respects, failed to build a blockchain-based storage
system because that paper did not consider to synchronize
DHT with data off-chain. In our work, we directly adopt con-
sistent hashing to construct a global hash ring structure rather
than DHT. Such a hash ring not only can locate nodes for data
retrieval but it can also manage distribution for data storage.

C. Local Proof of Retrievability

In 2007, Juels and Kaliski, Jr [6] proposed a POR mecha-
nism that is a challenge—response protocol, where the prover
convinces the verifier that the file in its possession can be cor-
rectly retrieved. Miller et al. [8] presented a local POR version
and applied it to the blockchain for repurposing POW com-
putation to data preservation. The local POR scheme embeds
a secret key of miners in the proofs. Miners have to store the
data locally for generating proofs on time to get a reward, and
thus, restricting miners’ behavior of data outsourcing.

Here, we formally define the local POR as follows.

1) Gen(1*) — (pk, sk): The Gen algorithm executed by a

miner takes a security parameter i as input and outputs
a public and secret key pair (pk, sk).

2) Encode(F) — (rt, F): The Encode algorithm encodes
a large file F to a file F with erasure code. It computes
the root ri of a Merkle tree whose leaves are sepments
of the encoded file.

3) Prove(sk,R,F) — =: The Prove algorithm inputs a
secret key sk, a random challenge R, and an encoded
file F. It outputs a proof 7, containing the file segments,
signatures, and the Merkle tree paths.

4) Veritwpk, rt, R, w) — {0,1}: The Verify algorithm takes
a public key pk, a Merkle tree’s root rf, a random chal-
lenge R, and a proof =. If the signatures and the proof
are valid, it outputs 1, otherwise, (.

The concrete construction of this scheme is omitted. We

recommend the readers to refer the original paper for details.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 10, MAY 15, 2022

5. pptimized data allocation

| Mempaal l
AL LT,
po: am] @
Datn Hashs: T — . I

Blockdbalm H :.
V| e 111 sbmit pat
z.prmrafi - E i_ transaction Dais Oweer
continucus | - BEE :E
A i Eifl o s
- . i
V| Proofs: 'E: .
EH
| g
: 1 G
N —
k 2E 5 submit prosd E
[- transaction Miners
Fig. 1. System model.

In our system, we treat the local POR as a cryptographic
primitive. Miners use it to compute the proof of storage.

IV. BLOCKCHAIN-BASED STORAGE SYSTEM
In this section, we give an overview of system participants
and make some assumptions for them. Our system can rely
on PoW computation to providing reliable decentralized data
storage. In the rest of this article, we focus on building such
a system on the permissionless blockchain.

A. System Overview

We have following three entities in the system.

1) Data Owner: A user who uploads and retrieves data in

the system.

2) Miner: A peer in the blockchain network who partici-

pates in mining and provides storage.

3) Blockchain: A public distributed ledger that accepts

transactions and updates the global state.

The key idea is to let the miners introduce storage con-
tribution in mining a new block. We modify the Nakamoto
consensus and lean the advantage in mining to those miners
who submit the proof of storage to the blockchain. Then, we
use consistent hashing to organize data distribution, building
a decentralized and autonomous data storage system.

We illustrate the system model in Fig. 1. A data owner
constructs a Put transaction and submits it to the blockchain.
Miners compute the corresponding proofs of storage, continu-
ously sending Proof transactions for showing their work. Note
that the two types of transactions (Put and Proof) determine
the blockchain's state, which consists of a data set and a miner
set, respectively. We build a mapping relation between the two
sets to allocate data for miners. Once new data are registered
on the blockchain, it triggers the state changes and conducts
data allocation, and then the data owner will send raw data
to the designated miners. Iteratively, the miners update local
storage and continue to generate proofs.

Assumptions: We consider a permissionless setting in which
participants can join to be miners or leave at any time. Miners
have a certain storage capacity and use their public keys as
pseudonyms identity. We assume that miners are rational to get
financial rewards in mining and transaction fees. Adversaries
can only control partial miners, where the sum of storage
is less than 504 of total storage. We also assume that data

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

YINM er al.: PROOF OF CONTINUOUS WORK FOR RELIABLE DATA STORAGE OVER PERMISSIONLESS BLOCKCHAIN

are split into segments with the same size and distributes to
multiple replicas for retrieval reliability.

B. Transaction Definition

The blockchain accepts two special transactions: 1) the
Put transaction and 2) the Proof transaction. We use these
transactions to repister data and present proofs of storage,
respectively. At a high level, we treat the blockchain as an
arbitrary state machine where the sequence of transactions is
taken as inputs to trigger state changes.

For the Put transaction, it requests leasing storage and
decides the length of the lease. The blockchain keeps data
in the state until the data expire at some block height. We let
did denote the identity of data. The proofs contain a Merkle
tree’s root, which is denoted by drt. Also, we let fis be a block-
based counter that determines the valid duration of data. The
transaction has the following form:

Doy = (did, drt, tts).

For the Proof transaction, we let pk denote the public key of
the miners to represent their identity. Theoretically, the miner
can arbitrarily generate key pairs, choosing different public key
as its identity. We use the Prove algorithm in the local POR
scheme to construct a proof of storage 7, where it involves a
random challenge R. Once the miner broadcasts this transac-
tion, others execute the Verify algorithm to check if it is valid.
We formulate the transaction as follows:

txp.mf = (pk, R,).

To provide storage, a miner first submits a transaction with-
out any proofs and random challenges. The default transaction
declares that the miner is ready to contribute storage. Then,
the miner gets the results of data allocation, which is presented
in Section V-C, selects a random challenge, and uses its secret
key to compute a proof. We explain how to select the random
challenge in Section V-A. To ensure an available storage ser-
vice, we require each miner to submit proofs constantly. This
process just like a heartbeat, which means that a miner turns
to fail if the blockchain cannot receive any valid proof within
certain blocks. Thus, miners continuously work for construct-
ing valid Proof transactions and refresh the blockchain's state
to be active.

V. ProoOF OF CONTINUOUS WORK FOR STORAGE

In this section, we design a variant Nakamoto consensus
with the comesponding incentive mechanism in storage con-
tribution. After that, we present a decentralized data allocation
algorithm based on consistent hashing.

A. Chain the Proof Transactions

Here, we consider a chain structure to organize those proofs.
Each Proof transaction includes a reference to the last trans-
action owned by the same miner, making the first one be a
register action. By doing so, we can address the following two
problems. First, the transaction refers to a certain block, point-
ing to a determined state. We can use the state to conduct data

TEED

allocation for miners. Second, the block hash and the trans-
action index in that block are unpredictable when submitting
a transaction. Miners must wait for the previous transaction
packed into the blockchain before construing the next one.
It effectively prevents miners from penerating a sequence of
proofs in advance so that it can drop or outsource the data.

We modify the original format of the Proof transaction by
adding two reference fields as follows:

txpn:-nf = {bids idxs p-ks R!)

where the previous transaction is located by the block hash bid
and the index idx in the transaction lists. We use the PoW-like
technique to constraint the transaction that its hash value must
be less than a target value of V. Thus, miners need to attempt
several random challenges.

Based on the observation that miners with longer transaction
chains and more stored data are more reliable, we consider the
following two parameters to adjust the mining difficulty. First,
we let cir denote the length of the Proof transactions chain
to evaluate the miner's workload. Second, we let num denote
the number of assigned data. To protect the miners who do
not participate in storage confribution, we reserve the base
difficulty in PoW for them. We have the following formula as
the mining difficulty:

H(B;) = (ctr & num + 1) % Z.

The pseudocode of PoCW is shown in Algorithm 1. Miners
who do not provide storage run mining function in lines
6—14 with the same effect as PoW. However, they have an
optional task that defines in the proving function in lines
15-31. Miners can create a thread to continuously submit
proof, which changes the variable of the counter cir and the
number num to affect the mining difficulty in line 11. To avoid
the accumulative cir increase without limitation, making the
blockchain always controlled by the oldest miner. We add a
rule in line 14, i.e., the counter will be clear and recalculate
when a miner appends a new block to the blockchain.

Algorithm 2 describes the process of blockchain when
receiving a new block. Miners use this same procedure to val-
idate the block and append it to the blockchain. At a high
level, the blockchain keeps the state of data set and miner set
at every block height. Lines 7-10 refresh the data set and the
miner set, removing those overdue data and inactive miners.
We use the symbol # to denote iterating all elements in the set.
Lines 11-15 process Put transactions while lines 16-29 pro-
cess Proof process transactions, which update the state in the
previous block. Similarly, once the new block from a miner
is successful appended, the blockchain will clear the miner's
counter in line 3.

As shown in Fig. 2, the middle row is a blockchain in a sim-
plified version. At each block, the upper square presents the
current blockchain’s state, and the square below lists the trans-
actions packed in the block. For example, we set the maximum
interval blocks between two consecutive Proof transactions to
2, which simulates the heartbeat of miners. Data 1 (denoted
as dl) is loaded by a Put transaction in block N within three
blocks. Thus, the corresponding state keeps dl until block
N + 2. Similarly, the blockchain has data 2 (denoted as d2)

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

TETD IEEE INTERMET OF THIMNGS JOURMAL, WOL. 9, NO. 10, MAY 15, 2022
State State State State State
bata: {.,.,d1} bata: {.,.,d1,42} Data: {...,d1,d2) Data; (. d.43) Data: {...,d2,43]
Miness: {..ml,m2} Miners: ..., m1,m2, ma} Miners: {._,m1,m2,m3} Miners: ... m1,m3} Miners: ., mi,m2,m3}
Block N Block N+1 | Block N+2 Block N+3 | Block N+4
Header I Header T Header I Header T Header
m Merkle Root Merkle Root Merkle Root Merkle Root
I I I i I
Transactions Transactions Transactions Transactions Transactions
Put tx load d1 Put b losd d2 Put t load d3
within 3 blocks within 4 blocks within 3 blocks
——————————————————————————————— Proofbchyml - -—-—— | === ——-m - m oo Proof te by m1
prootoxiym2 |{ - Prot by m2
Proof tx by m3 |- -------- F| Prooftxbym3 [5-——--—- -| Proof tx by m3 |- -------- F| Proof tx by m3
Fig. 2. Chains of proof transactions.

Algorithm 1 PoCW for Miners

Algorithm 2 Protocol for Blockchain

: function init()

Generate a key pair (sk, pk) as a pseudonyms

Set a counter ctr = 0 for the consecutive proofs

Set a number num = 0 for the amount of data

Set a pointer [tx = null for the last proof transaction

: function mining()

for true do

Sync the longest chain and get the last block By
Collect transactions txs from memory pool
Randomly select a number monce and pack a new block

By, = (ixs||[H(By)||monce)

YU R =

=

11: if H(By 1) < (ctr num + 1) = Z then

12: Broadcast this new block to network

13: if the blockchain accepted this block then
14: clear the counter cir = 0

15: function proving()

16: Broadcast (Xpmor = (pk) to network

17: wait for this transaction write to blockchain

18: Set the last proof transaction ltx = H{tXm,5)

19: for true do

20: Locate the hash bid of the block and the index idr of
transaction {fx from blockchain

21: Query the state of data set T and miner set A

22 Call £ = allocation{pk, D, M) for assigned data

23 for true do

24: Randomly select a number R as a challenge
25 Call m = Prove(sk, R, £) to compute a proof
26 Construct prr = (bid, idx, pk. R,)

T if H{txpmgor) < V then broadcast it and break
28: wait for this transaction write to blockchain

20 Set the last proof transaction lix = H(Hpmqf}
30 Set the amount of data num = len(L)

al: Increase the counter cfr = cir+ 1

32: function main()

33: Call imit) to initialize the node

34: Create the main thread to run mining()

35: Create a thread to run proving() in the background

in the data set until block N + 4. Miner 1 (denoted as m1) in
the miner set from Block N and generates a Proof transaction
every other block. It does not exceed the maximum interval
blocks so that m1 is in the state all the time. Miner 2 (denoted

1: Om receive a new block B from miner m do
Check the format of blocks and transactions
The current state § = M [m.pk] with block height &
if H(B) = (S.ctr « Snum + 1) = Z then
clear the counter Mg[m.pkl.ctr =10
else Drop this block and exit
Let Dyy1 = Dy, Dy [#].tick = Dy[#].tick — 1
Delete Ty [#] where Dy [#].tick =—=10
My = My, My [#laick = M [#].tick — 1
10: Delete My [#] where My [#]tick ==10
11: Process Put transactions tupyy = (did, dri, iis)
12: if Dyldid] is empty then
13: Dy [did].root = drt, Dy [did].tick = tis
14: else if Dy[did].roof == drt then
13: Dy ldid] tick = Dy [did].tick + tis
16: Process Proof transactions Bpmaf
17: if tpmgr = (pk) then
18: M [pkletr =0, My [pkl.num =0
19: M [pkl.tick = interval
20: else if tipmgr = (bid, idx, pk, R, w) then
21: if Myy1[pk] is empty or H{tx,p,) = V then
22: Drop this block and exit
23: Get the block height i of block bid
24: Get assigned data £; = allocation(pk, T, M;)
25: Verify the proof res = Verify(pk, C;, R, m)

26: if res == 1 then
27: My [pkleir = Mylpkl.cir + 1
28: M1 [pkl.num = len(Ci)

29: else Dirop this block and exit
30: Append a new block and hold the state Dy, My

as m2) submits the last Proof transaction in Block N + 4, but
the previous one is in Block N + 1, exceeding the maximum
interval blocks. Thus, the chain owned by miner 2 is broken
off so that m2 is not in the state of block N + 3.

B. Incentives for Data Storage

In our system, we explain how it makes a positive effect on
PoCW. There are some notations listed in Table 1.

We consider the miners’ profit from their income and expen-
diture, respectively. For a single miner, the income consists of
a rental payment from the data owner and block rewards from

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

YINM er al.: PROOF OF CONTINUOUS WORK FOR RELIABLE DATA STORAGE OVER PERMISSIONLESS BLOCKCHAIN

TABLE I
MNoTtation Usep

Notation Description
Miner’s income from every single proof transaction
Reward of mining a new valid block
Fee from every single proof transaction
Power cost in one block time
A constant value of storage cost
A time unit counted by blocks

TR 4 E S o

successful mining. Each proof transaction earns a piece of
fees denoted as 8. Once mining a valid block, the miner gets
a considerable reward y that contains a created token from
Coinbase and packed transaction fees. Let the unit time be
a block period, we denote and r as one Proof transaction
fee and computing cost in one block time, respectively. The
storage cost is a fixed value of «.

Assuming a miner spends p block time in the system, sub-
mits the valid proof transaction in every block, and peis a
reward because of successful mining, the miner will get the
profit p = (ud+) — (pl{w+)+«). Two requirements must
be satisfied to reach an incentive mechanism. First, § = w4+t
can let the miner have an initial motivation to participate in
providing storage. Second, ¥ == x pives a large interest to
keep the miner stays on making proofs. The existing con-
sensus alporithm biases mining advantages to the miner who
provides more storage so that y here is a probabilistic function
positively related to «. In our new consensus algorithm, we
introduce an extra accumulated variable that counts the con-
secutive proof transactions. Thus, y is also positively related
o .

We let ¢ ~ x and y" ~ (i, p) denote the profit function
of block reward in the existing consensus and the proposed
consensus, respectively. The transactions under both consen-
sus algorithms have the same income and expenditure, which
means that in our consensus, the longer the miner partic-
ipates, the more the miner gains than before. If a miner
quits from storage contribution halfway, it will lose a mas-
sive accumulated mining advantage. Thus, our scheme gets
more stable participants under the rational assumption of min-
ers. Moreover, the Proof transaction chain leaves a trick to
adjust the interval time of submitting a valid proof. We can
increase the difficulty of the transaction chain to relax the
interval time of two consecutive proof transactions. For exam-
ple, if an average time of generating a valid proof transaction
is 3, the interval time can be set to 4. That is, to say, we cut
down the transaction fee on item e by the interval times but
keep other costs no changes.

C. Hash Ring-Based Data Allocation

Given a block height, we have the determined blockchain’s
state, including a data set and miner set. We apply consis-
tent hashing to the state to design a data allocation algorithm
as follows. Initially, the algorithm maps data and miners into
points in the hash ring structure, and then defines a mapping
function that assigns data to miners. Inspired by Chord [27],
we require that a certain number of successor nodes (counting

T8T1

Storage Metwork

Blockchain Network ‘@'
Rl:rwm.r Emlmr @ paa () Miner

Fig. 3. Hash ring-based data allocation using consistent hashing.

1 oata

Algorithm 3 Getting Assigned Data
Input:

A miner's public key, pk;

A set of data’ identities, T;

A set of miners” identities, Ad;
Output:

The list of assigned data’ identities, L;

1: Initialize an empty list £ := @ for assigned data;

2: Assume the set T and A are sorted, the size of hash ring is
r8ize, let T = (d}, ..., dy). M = |my, ...,my}, where u and v
are the size of T and A respectively;

Get system parameter k, the amount of data backup;
: Compute the identity of miner, ie. mj = Hipk):
Find the index of two miners, j and j — k;
if j —k = 0 then

L=1{fi:fis(m_gmph
else

ﬁ; Ufi : fi & (Mj_kgn, rSize)) U = fi € (0, mj));

: returm £

bl B A L

by clockwise) on the hash ring store data, where this number
is a crucial system parameter that represents the amount of
data backup.

Fig. 3 illustrates the procedure of data allocation, where
we abstractly divide the system into the blockchain network
and the storage network (consisting of all miners who provide
storage). Note that anyone can join the blockchain network to
become a miner, and even upgrade to a storage contributor.
The blockchain network accepts the two types of transactions
to determine the data set and the miner set, while the storage
network holds all raw data in the miners. We map the identities
of data by H(data) and the identities of miners by Hi{pk),
where H(-) is a hash function. As shown in Fig. 3, the blue
dash lines represent the mapping relationship, while the solid
square and circle represent the identities of data and miner,
respectively. Data are assigned to multiple successor nodes on
the hash ring, which is represented by the lines with a directed
arrow in red.

Algorithm 3 is a pseudocode of the data allocation
procedure. Note that each block has its state of the data and
miner sets. Thus, for this algorithm, we first need to specify

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

the block height and then invoke the algorithm. The algorithm
takes the two sets as inputs and also enters a miner's public
key pk. The output is a list of assigned data for the miner. At
line 4, the alporithm computes the hash value of the miner's
public key as the identity. Due to the ring structure, assigning
data to k successor nodes is equivalent to that storing all data
in the interval starting from the kth miner up to the miner itself.
Lines 5-10 provide data distribution operations to miners.

V1. EVALUATION

In this section, we analyze the data reliability of the
proposed system built from PoCW. To verify our theoretical
analysis, we make some simulations to compare with the exist-
ing schemes. Based on the experimental results, we give some
practical sugpestions about system parameters.

A. Security Analysis

The system relies on the proposed variant Nakamoto con-
sensus to build the blockchain. We follow the difficulty setting
in Bitcoin and lean some advantages to miners who continu-
ously contribute local storage. On one hand, miners who do
not involve in storage contributions still generate new blocks
just like in Bitcoin. Our system keeps the same security when
no miners participate in providing local storage. On the other
hand, miners get mining advantages by accumulating storage
contribution value, which will be reset once the miner has used
it in mining a new block.

The mining advantage cannot be accumulated all the time,
and it does not widen the gap from the normal miners in
mining new blocks. If all miners have participated in storage
contribution, the effect of the competition is similar to that
of nobody participated. Besides, the security of our system
is nearly equivalent to proof of stake, where the storage con-
tribution represents the stake. Miners compute the stake via
a deterministic algorithm wvsing the historical state of the
blockchain. The result is efficiently verifiable, and thus, it does
not affect the stability of the consensus.

Owerall, the proposed variant Nakamoto consensus is secure
in the current blockchain network.

B. Reliability Analysis

We analyze the factors that affect system reliability and
try to find the correlations between them. Besides, we also
compare the hash ring-based data allocation with the dealer
manipulated data allocation. By doing so, we conduct eval-
uations and give suggestions to build such a system. For
convenience, we list our parameters in Table I1.

In the hash ring-based data allocation, there is no third
trusted party for distributing data. However, the existing
systems generally designate a miner as a dealer to conduct data
allocation. Here, we assume this dealer may incur similar node
failures just like a miner. We consider that nodes failed ran-
domly and simultaneously in a short interval time. First, if the
interval between two failures is too long, the system can adjust
itself to a new reliable state. Second, data loss means that all
backup nodes are failed. Otherwise, the system can always
recover the lost backup from the storage network. Recall that

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 10, MAY 15, 2022

TABLE I
MNoTAaTIONS AND DESCRIPTIONS

Motation Description
n Number of miners who provide storage in the system
k Amount of data backup assigned to different miners
d Real amount of data stored in the system
v Number of miners that occur failures simultaneously in

a short interval Hime

r Amount of data loss that lose all backups when
incurring r miners failure (less than d)

the node randomly selects a public key to compute the hash
value as its identity. These backup nodes are essentially in
random positions.

In the proposed scheme, we let |, denote the ratio of data
loss with r random node failures, ie., I, = s./d. where d is
the current number of stored data and 5. is the number of
data that lost all backup when r nodes incur failure. In our
data allocation algorithm, n nodes split the hash ring into n
adjacent segments, where consecutive k& successors have the
data backups located at the segment. The data loss means that
a segment fails. Let p be the probability of losing one sin-
gle segment. Then, we use permutations and combinations,
which are denoted as A and Cj. respectively, to compute
the probability. Recall that we have A} = (n!/[(n — r)!]) and
Oy = (n!/[r'{n — r']). Then, probability p that a segment
fails can be computed as follows:

Gy AT (=)
Cr n—nr)!-A nl-(r—k)!
_ rr—1Wr—2)---{ir—k+1)
T aln—Dn—=2)---(n—k+1)

~ ()

Let X be the number of failed segments in the hash ring
containing n segments, which is a random variable. The hash
ring contains n segments where each of them has the same fail
probability p. Ignoring the tiny correlation between adjacent
segments, X satisfies binomial distribution, ie., X ~ Bin, p).
We can compute the expectation E(X) = np. This implies
that the system might lose np sepments on average. Now, we
assume that the system has n nodes and 4 data mapping to
the hash ring, which rises a similar distribution between the
two identities after adjustment in nodes. To compute the ratio
of data loss [, we roughly consider that data are distributed
uniformly over the segments split by nodes because of the
similar distribution, and each segment contains data of pro-
portion d/n. According to the expectation of segments failure,
the expected amount of data loss is 5, = ap-d/n = pd. Thus,
we can get the ratio of data loss with random fault as follows:

5 Tk
=5~ ()"

The existing schemes have at least one single dealer or
miner to allocate data (e.g., Permacoin or Filecoin). This party
assigns data to specific locations for balanced distribution.
Similarly, we consider the situation of simultaneously nodes

P:

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

YINM er al.: PROOF OF CONTINUOUS WORK FOR RELIABLE DATA STORAGE OVER PERMISSIONLESS BLOCKCHAIN

T8T3

12 12 12
- — k=3 Ealsting scheme F
Faond =5 g0 Proposed schis L
ﬂ — £ i
-1 Enl
" £ {
E g
55 .ius-
i 3 :
g B 'EM- g
i fo i
A
@ W W 30 & 0 B TO B0 W 10 0 W W M 40 50 & W M 30 10 0 W W 3 & 5 B 0 B MW
The ratio of random sode failure (%) The metie of random nede failure (%) The ratio of rasdom node failore #2)
(a) (b) (c)

Fig. 4. Experiment results for evaluating system reliability. {a) Data loss in the proposed allocation. (b) Comparison of data loss. (c) Data loss in the existing

allocation.

failure. The data loss happens only if all the & specific nodes
encounter failure. We treat & = r/n as the probability of one
node failure. In the dealer manipulated data allocation, we
assume that the dealer has the same probability of node fail-
ure . Let [, denote the probability of data loss with random
node failures, and the dealer assigns data to arbitrary & nodes.
The probability of data loss includes two parts below. First,
the dealer failure leads to data loss. Second, if the dealer does
not encounter failure, only all the specific nodes failed causes
data loss. Thus, we have the probability as follows:

(3)

Due to the existence of dealer role, the probability of data
loss increases a lot, that is, I, — I, = ¢ —o**!. Compared to
it, our data allocation algorithm gets higher reliability.

!';=J+{]—a'}ta'k=a't+a—a'k+l.

C. Simulation Verification

We implement the simulation in Java 1.8 on a Desktop PC
that runs Windows 10 with Intel Core i5-8250U CPU and
8-GB RAM. In the simulation, we fix the number of miners
n = 1000 and the real amount of stored data 4 = 5000. The
failed miners are randomly selected to simulate the random
failure, setting the number r from 0 to n. We make a statistic
from the union of the data stored in these miners.

First, we evaluate the ratio of data loss in the hash
ring-based data allocation. Let the amount of data backup
k=3,5.7, getting the average results from 100 experiments.
As shown in Fig. 4(a), the larger the value of k, the more con-
cave the curve that represents the ratio of data loss [, is. The
experimental results imply that we can reduce the risk of data
loss by increasing the amount of data backup. It matches the
theoretical analysis (2) that the ratio of data loss is positively
correlated with the ratio of random node failure.

Second, we adopt the same system parameter to evaluate
the ratio of data loss in the dealer manipulated data allocation.
Similarly, we let the amount of data backup k = 3, 5,7, and
get the average results from 100 experiments. As shown in
Fig. 4(c), the ratio of data loss [, represents approximately
linear prowth with respect to the ratio of random node failure.
From the experimental results, the amount of data backup has

a very limited impact on the risk of data loss. It matches the
theoretical analysis (3) that o takes primary effect.

Fig. 4(b) makes a comparison between the dealer manip-
ulated and hash ring-based data allocation, where we choose
the results from which the amount of data backup & = 5. The
proposed system performs better in any random failure. We
also can increase the amount of data backup to get higher
reliability. However, a large value of k not only increases the
storage cost for data owners but also shrinks the total stor-
age capacity of the system. To tradeoff the risk and cost, the
system needs to choose an appropriate parameter according to
a practical scenario.

D. Practical Suggestions

We introduce the Poisson distribution to simulate random
process of node failure. Let Y denote the random event that is
subject to P(Y = i) = ([e~*A]/i!). In this equation, A denotes
the averape number of node failures during a unit time and
¢ denotes the natural logarithm. We multiply the probability
of i nodes failure with the ratio of data loss [; on average
under the same case. Then, we can compute the probability
of data loss by summing all possible situations. Let I. denote
this probability, we have the equation as follows:

"

" E—J.}LI- E—J.li' k
L=) k=) = ()
i=0 i=0

We use 1 — L to evaluate system reliability, the closer the
value to 1, the more reliable the system is. The eguation is
related to three parameters of n, k, and A, where the first two
values have a positive effect on reliability while the last one
makes the opposite effect. Changes in the storage network and
the ranges of the average failures are less important to system
reliability. Table III shows partial values about the probability
of data loss as a reference. The results imply that the system
should increase data backup when failures raising or miners
leave the storape network.

We take the Bitcoin network as an example to compute the
value of the system in reality. As of April st in 2019, the
number of Bitcoin nodes has reached 10000. According to
the historical statistic provided by coin.dance website [30],
the maximum ratio of miner changes per day does not exceed

i

n

(4)

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

T84
TABLE 1l
REFERENCE OF L WITH PARTIAL SYSTEM PARAMETERS
A k=3 k=4 k=5 k=6 k=
10 0.0013 167e4 227eb 324e6 48BeT7
n=100 50 0.1325 0.0702 00373 0.0207 0.0116
100 04208 (.3935 0.3691 03473 03277
100 0,001 1.06e-4 1.10e-5 1lée-6 1.22e-7
n=1000 200 (L0081 00016 336e4 6.8%-5 142e5
500 0.1258 0.0633 0.0319 0.0161 0.0081
500 1.26e-4 6.33e-6 3.1%-7 16le-8 82e-10
n=10000 1000 0.001 1.0Med 100e-5 1026 10227
2000 0008 00016 3225 6455 1295

approximately 10%. We broaden the interval time for fault
adjustment in the system to one day (usually no more than a
few hours in a real situation). The parameters in the Bitcoin
network are set to n == 10000 and & = 1000. If the system
wants to reach the reliability of five nines, i.e., 99.999%, we
can suggest that the amount of data backup is set to five.

VII. DiscussioN

The system we built on blockchain realizes reliable data
storage, making full use of miner's extra storage space. Below,
we present some additional benefits our system brings.

Collaborative Storage Service: The mining reward is the
main source of profit for miners. To get more profits, min-
ers can join the storage network to increase the opportunities
for successful mining. In our system, we do not build a
client-to-miner storage market, and thus, there is no competi-
tion relationship among miners to fetch data from users. The
miner's revenue is related to storage contribution, which is
determined by the blockchain’s state. Due to the ring struc-
ture applied to the data distribution, a miner who excludes
others from the storage network might increase the assigned
data, which eventually harms himself because of massive stor-
age overhead. For rational miners, the best choice is sharing
data rather than obstructing others from getting data because
of no pains to do this. Thus, users can parallelly download
raw data from multiple miners.

Resource Exhaustive Atfack Prevention: Akin to PoS, the
proposed consensus uses the global state from blockchain
to adjust the target hash value. Kanjalkar ef al [31] found
resource exhaustion attacks in PoS-based consensus, where
the main reason is that the curmrent state consists of the whole
blockchain from the beginning. To check a state (e.g., coinage
in Peercoin [3]), miners traverse the blockchain backward
for inspecting all possible transactions. Thus, miners have to
temporarily store a received new block in memory before con-
firming it. Adversaries exploit this vulnerability to fill up a
miner's memory with fake blocks to exhaust storage resources,
causing the miner cannot to deal with new blocks. Fortunately,
our system simply tracks recent blocks, which is defined by
the maximum interval blocks, so that prevents such an attack.

Fast Healing Network: In the proposed consensus, miners
can dynamically alter the node position on the hash ring to

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 10, MAY 15, 2022

accommodate the data distribution. Considering an extreme
situation, all data are mapped into the right-hand side of the
hash ring. If a miner chooses to work on the right-hand side,
the miner might be assigned massive data. We call this forward
strategy. Conversely, the miner works on the left-hand side,
called the backward strategy, to be assigned few data. When all
miners adopt the backward strategy, they will be crowded on
the lefi-hand side. Due to the ring structure, the miners around
the margin of the crowd face unbearable storage overhead.
Thus, the miners always have to select a new identity to join
in the storage network, and frequent identity changes take no
benefits for the accumulative workload. The amount of data
backup can encourage miners to adopt the forward strategy,
which leads to a similar distribution between miners and data
on the hash ring. Thus, the system naturally enhances stability
and reaches load balancing.

VIII. CoNCLUSION

In this article, we proposed a variant Nakamoto consensus
that uses PoCW to not only reduce the waste of computing
power but also provide a reliable decentralized storage service.
Besides, we utilize the blockchain’s state to design a hash
ring-based data allocation algorithm to assign data for miners.
The theoretical analysis shows that our scheme reaches higher
reliability than existing storage systems, and the simulation
experiments match the analysis. Moreover, we use Poisson
distribution to simulate random node failure and evaluate the
probability of data loss.

REFERENCES

[1] J. Bonneaw, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and
E. W. Felten, “SOK: Research perspectives and challenges for bitcoin
and cryptocurrencies,” in Proc. [EEE Symp. Security Privacy, 2013,
pp. 104121,

[2] 5. Nakamoto. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Awvailable: https2fbitcoin.org/bitcoin.pdf

[3] 5. King and 5. Nadal, “PPcoin: Peer-to-peer crypto-currency with proof-
of-stake.” Aug. 2012

[4] 1. B. Douceur, “The sybil attack,” in Proc. Int. Workshop Peer-to-Peer
Syst., 2002, pp. 251-260.

[3] W. Li 5. Andreina, I-M. Bohl, and G. Karame, “Securing
proof-of-stake blockchain protocols.” in Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Cham, Switzerland:
Spnnger, 2017, pp. 297-315.

[6] A. Juels and B. §5. Kaliski, Jr, “PORs: Proofs of retnevability for
large files,” in Proc. Mith ACM Conf Comput. Commun. Security, 2007,
pp. 3B4-507,

[Tl G. Ateniese et al., "Provable data possession at untrusted stores.” in

Proc. 14th ACM Conf. Comput. Commun. Security, 2007, pp. 398600,

A, Miller, A, Juels, E. Shi, B. Pamno, and J. Katr, “Permacoin:

Repurposing bitcoin work for data preservation,” in Proc. IEEE Symp.

Security Privacy, 2014, pp. 475490

[@] P. Labs. (2017). Filecoin: A Decentralized Storage Network. [Online].

Available: https:/filecoin.io/filecoin.pdf

5. Wang et al., "ForkBase: An efficient storage engine for blockchain

and forkable applications,” in Proc. VLDE Endow., vol. 11, no. 10,

pp. 1137-1150, 2018.

E. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun, “Blockchain for

large-scale Intermet of Things data storage and protection,” TEEE Trans.

Services Comput., vol. 12, no. 5, pp. T62-771, SepOct. 2019.

Q. Xu, K. M. M. Aung, Y. Zhu, and K. L. Yong, “A blockchain-hased

storage system for data analytics in the Internet of Things.” in New

Advances in the Internet of Things. Cham, Switzerland: Springer, 2018,

pp. 119-138

L. Zhou, L. Wang, and Y. Sun, “MIStore: A blockchain-based medical

insurance storage system,” J. Med. Syst, vol. 42, no. 8, p. 149, 2018,

E

(1o

[

[

[13]

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

YINM er al.: PROOF OF CONTINUOUS WORK FOR RELIABLE DATA STORAGE OVER PERMISSIONLESS BLOCKCHAIN

[14]

[13]

[16]

(17

[18]

(19

(201

2

(221

[23]

[24]

[231

[26]

27

[28]

29

301

31

W. Wang, N. Hu, and X. Lin, “BlockZone: A blockchain-based DNS
storage and retnieval scheme,” in Proc. Int. Conf Artif Intell Security,
2019, pp. 155-166.

Y. Chen, 5. Ding, Z. Xu, H. Zheng, and 5. Yang, “Blockchain-based
medical records secure storage and medical service framework,” J. Med.
Swst., vol. 43, no. 1, p. 5, 2019,

P. Snow, B. Deery, J. Lu, D. Johnston, and P. Kirby. (2014)
Factom: Business Processes Secured by Immutable Audit Trails on the
Blockchain. [Online]. Available: https:www. factom.com/

G. Zyskind, . Nathan, and A. Pentland, “ENIGMA: Decentralized com-
putation platform with guaranteed privacy,” 2015, [Online]. Available:
arXiv: 1 506.03471.

H. A. Kalodner, M. Carsten, P Ellenbogen, J. Bonneau, and
A. Marayanan, “An empircal study of namecoin and lessons for
decentralized namespace design,” in Proc. WEIS, 2015, p. 22,

M. Al 1. Nelson, B. Shea, and M. J. Freedman, “BlockStack: A global
naming and storage system secured by blockchains,” in Proc. USENTX
Annu. Techn. Conf, 2016, pp. 181-194.

J. Li, J. W, and L. Chen, “Block-secure: Blockchain based scheme for
secure P2P cloud storage,” fnfl Sci, vol. 463, pp. 219-231, Oct. 2018.
5. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin. (2014)
Storj a Peer-to-Peer Cloud Storage Network. [Online]. Awvailable:
hitp:/istor. io/stog.pdf

P Maymounkov and D). Mazeres, “Kademlia: A peer-to-peer
information system based on the XoR metnc,” in Proc. Int. Workshop
Peer-to-Peer Syst., 2002, pp. 53-65.

H. Kopp, D. Midinger, FE. Hauck, F. Kargl, and C. Bisch, “Design of a
privacy-preserving decentralized file storage with financial incentives,”
in Proc. IEEE Eur. Symp. Security Privacy Workshops, 2017, pp. 14-22.
H. Kopp, C. Basch, and F. Kargl, “Koppercoin—A distnbuted file stor-
age with financial incentives,” in Proc. Int. Conf Inf. Security Practice
Exp.. 2016, pp. 79-93.

G. Ateniese, L. Chen, M. Etemad, and (). Tang, “Proof of storage-time:
Efficiently checking continuous data availability,” in Proc. NDSS, 2020,
p 2

D. Karger, E. Lehman, T. Leighton, M. Levine,). Lewin, and
E. Panigrahy, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide Web,” in Proc. 20th
Annu. ACM Symp. Theory Comput., vol. 97, 1997, pp. 654-663.

I. Stoica et al, "Chord: A scalable peer-to-peer lookup protocol
for Internet applications,” TEEEACM Trans. Netw:, wol. 11, no. 1,
pp. 17-32, Feb. 2003.

A. Rowstron and P Druschel, “PASTRY: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc.
IFIPAACM Int. Conf Distnib. Syst. Platforms Open Distrib. Process.,
2001, pp. 329-350.

E. Abe, "Blockchain storage load balancing among dht clustered nodes,”
2019. [Online]. Available: arXiv: 190202174,
D. Coin. (2019). Bitcoin Nodes Summary.
https:Vcoin . dance/nodes/all

5. Kanjalkar, J. Kuo, Y. Li, and A. Miller, “Short paper: | can’t believe
it’s not stake! resource exhaostion attacks on PoS.” in Proc. Int. Conf
Financ. Crypiography Data Security, 2019, pp. 62-60.

[Online]. Awvailable:

Hao Yin received the BE. and MLS. degrees in
information security and software engineering from
the University of Science and Technology Beijing,
Beijing, China, in 2015 and 2018, respectively. He is
currently pursuing the Ph.D). degree with the School
of Cyberspace Science and Technology, Beijing
Institute of Technology, Beijing.

He is also joint studied with the School of
Computer Science and Engineening, University
of Electronic Science and Technology of China,
Chengdu, China. His research interests include

<

applied cryptography, secunty and privacy, and blockchain.

7875

Zijian Zhang received the PhD. degree from
Beijing Institute of Technology, Betjing, China, in
2012,

He 15 an Associate Professor with the School
of Cyberspace Science amnd Technology, Beijing
Institute of Technology. He is also a Research Fellow
with the School of Computer Science, University
of Auckland, Auckland, Mew Zealand. He was a
Visiting Scholar with the Computer Science and
Engincering Department, The State University of
Mew York at Buoffalo, Buffalo, NY, USA, in 2015.

His research interests include design of awthentication and key agreement
protocol and analysis of entity behavior and preference.

—__

Jialing He received the BE. and M.S. degrees
from Beijing Institute of Technology, Beijing, China,
in 2016 and 2018, respectively, where she 1= cor-
rently pursuing the Ph.D degree with the School of
Cyberspace Science and Technology.

Her research interests include clowd secunity, data
privacy, and blockchain.

Liran Ma (Member, IEEE) received the Ph.D.
degree in computer science from George Washington
University, Washington, DC, USA, in 2008,

He is a Professor with the Depantment of
Computer Science, Texas Christian University, Fort
Worth, TX, USA. His current research focuses on
wireless, mobile, and embedded systems, includ-
ing security and privacy, smart devices and health,
mobile computing, data analytics, Internet of Things,
artificial intelligence, and cybersecunty education. It
involves building and simulating prototype systems

and conducting real experiments and measurements.

Lichuang Zhu {(Member, [EEE) received the Ph.D.
degree from Bedjing Institute of Technology, Beijing,
China, in 2004.

He is a Professor with the School of Cyberspace
Science and Technology, Beijing Institute of
Technology. He is selected into the Program
for Mew Century Excellent Talents in University
from Ministry of Education, Beijing. His resecarch
interests include cryptographic algonthms and
secure protocols, Internet of Things secunty, cloud
computing security, big data privacy, mobile and

Internet security, and trusted computing.

Meng Li (Member, [EEE) received the B.E. degree
in information security from Hefei University of
Technology, Hefei, China, in 2010, and the M.5. and
Ph.I). degrees in computer science and technology
from Beijing Institute of Technology, Beijing, China,
in 2013 and 2019, respectively.

He is cumently an Associate Researcher with
the School of Computer Science and Information
Engincering, Hefei University of Technology. He
was sponsored by the China Scholarship Council to
study as a visiting Ph.D). student with the Broadband

Communications Research (BBCE) Lab, University of Waterloo, Waterloo,
0N, Canada, and Wilfnd Laurer University, Waterloo, from September Zi]_l'f

to August 2018, His research interests include applied cryptography, security
and privacy, vehicular networks, fog computing, and blockchain.

reals and randomness.
Prof. Khoussainov i1s an Editor of the Journal for Symbolic Logic.

Bakh Khoussainoy received the PhD. degree from
the Algebra and Logic Department, Movosibirsk
University, Novosibirsk, Fussia, in 1987,

He 1= currently a Professor with the School
of Computer Science and Engincering, University
of Electronic Science and Technology of China,
Chengdu, China. His research interests include
computable algebraic systems and model theory,
amtomata and awtomatic structures, games on finite
graphs and complexity, abstract data types and alge-
braic specifications, and computably enumerable

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 24,2022 at 03:25:54 UTC from IEEE Xplore. Resirictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

