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Abstract

Snap-through instability of viscoelastic materials is known to generate novel behavior, featured as pseudo-
bistability, i.e. the capability of a system in maintaining a deformed configuration for a certain period of
time after removal of an external load, followed by snapping back to its initial configuration automatically,
due to the combination of time-dependent mechanical property and geometric nonlinearity of the system.
This work numerically, experimentally, and analytically examines spherical viscoelastic domes with
predesigned geometric imperfections that can control the structural stability and tune the snap time, which
is defined as the time that a dome remains almost stationary in the deformed configuration after the release
of external forces. The results show that even an imperfection with a small magnitude can play a significant
role in pseudo-bistability. An imperfection with a positive amplitude shifts a viscoelastic dome towards
bistable behavior, corresponding to a longer snap time, while an imperfection with a negative amplitude
shifts the dome towards monostable behavior, resulting in a shorter snap time. This work can open up new
opportunities for controlling spatiotemporal behavior of structures for multi-functionalities.
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1. Introduction

A snap-through instability refers to a mode of instability that can transform a structure from one
metastable state to another non-adjacent stable state under certain loading [1-6]. Correspondingly, a large

amount of stored elastic energy in the metastable state is released and converted to kinetic energy, resulting
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in a very rapid transition. Snap-through instabilities widely exist in nature and daily life, such as in Venus
flytraps [7], snap hair clips, and jumping popper toys [8, 9]. They also have various practical applications
in engineering, such as energy absorption [10-14], actuation [15, 16] and morphing devices [17-19], by
virtue of fast motion, energy storage and reversible deformation. A large amount of research has
concentrated on snap-through instabilities in arches and domes [8, 20-23] due to the ubiquity of the
instabilities in nature and engineering.

Viscoelasticity, which describes time-dependent and rate-dependent behavior of materials [24] [25],
has profound influence on snap-through instabilities [2, 8, 11, 15, 23, 26-28]. In particular, some viscoelastic
systems show the capability of maintaining a deformed configuration for a certain period of time after
removal of the external load, followed by rapidly recovering its initial configuration automatically. This
phenomenon is called pseudo-bistability or temporary bistability. The mechanism of pseudo-bistability is
that the time evolution of the material property of a viscoelastic system can trigger a transition of the system
from a monostable state to a bistable state [8, 15, 26, 27, 29]. In particular, pseudo-bistability is widely
studied in viscoelastic arches and domes, and specifically, the decrease of the ratio of bending energy to
stretching energy during relaxation is attributed to be the cause of pseudo-bistability in them.

It is well recognized that snap-through instabilities are highly sensitive to geometric imperfections
[30-36]. In shell buckling, there was a long history in understanding the discrepancy between the
theoretically predicted and experimentally observed critical buckling loads, and large knockdown factors
have been introduced to account for the significant reduction of the buckling loads due to imperfections
[32]. Lee et al. studied the effect of a dimple-like geometric imperfection on the critical buckling load of
spherical elastic domes under pressure loading and accurately predicted the knockdown factors of imperfect
spherical domes by shell theory [32]. Ref [35] identified local and global buckling loads for cylindrical
shells subjected to axial compression with emphasis on the role of local geometric dimple imperfections.
More recently, elastic thin domes with a large axisymmetric imperfection were examined by employing a
shell theory with exact expressions of the middle surface strains and curvature changes, and were found to
have significantly different buckling conditions and buckling modes from the perfect ones [31]. By
comparing the buckling loads of shells with different types of geometric imperfections, Babcock concluded
that the presence of a geometric imperfection serves as the most important factor, while the type of the
imperfection plays a relatively minor role [33].

In view of the significant effect of geometric imperfections on snap-through buckling of spherical
domes, we ask how the pseudo-bistability of viscoelastic domes is affected by geometric imperfections,
which is, to our best knowledge, still absent. To answer this question, this paper uses a combined method
of analytical modeling, finite element analysis (FEA) and experiments. Snap-through buckling of perfect

and imperfect domes with systematically varied geometric imperfections are investigated using FEA.



Experimentally, imperfect domes are fabricated by casting a viscoelastic elastomer using molds with an
engineered imperfection. To further understand the effect of imperfections on pseudo-bistability, we
develop an analytical discrete model for viscoelastic domes, and examine the instantaneous and dynamic
responses of both perfect and imperfect domes. Understanding the geometric role of imperfections will

allow us to better harness and program pseudo-bistability of viscoelastic domes for applications.

2. Methods

2.1 Finite element analysis
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Fig.1. (a) Schematics of the loading process of a viscoelastic spherical dome under indentation in the FEA
and experiments. (I) In the initial configuration the dome has an angle ay and width wy. (II) In the
deformation step, a sudden displacement is applied. (III) Then the displacement is held in the relaxation
step, (IV) and finally released in the recovery step. (b) The relaxation test results for Sylgard 184 with a
base-to-crosslinker ratio 15:1 fitted by the generalized Maxwell-Wiechert model. (c) The experimental
silicone rubber dome and indentation testing apparatus: (I) the initial state and (II) indented state using an

Instron machine with custom-mounted attachments.

The stability of perfect and imperfect viscoelastic spherical domes under a vertical indentation was

investigated using FEA in Abaqus (version 6.14). The domes have an initial angle «,, width w, and height
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H (Fig.1a). The middle surface radius and thickness are denoted by R and 4, respectively. Their viscoelastic
behavior is modeled by the generalized Maxwell-Wiechert material, with the material parameters
experimentally fitted to those of Sylgard 184 with a base-to-crosslinker ratio 15:1; see Sec 2.2 for more
details. An axisymmetric rigid indenter with a ball head of a radius approximately 30% of the dome radius
was used to apply a displacement to the dome, the distributed load caused by which shows advantages of
eliminating the local stress concentration over a concentrated load [27]. A sudden downward displacement
is applied to the apex region of the dome by the indenter from the initial configuration at t=0. (Fig.1a I) to
the deformed configuration at t=0- (Fig.1a II). The indenter is then held at the same position, and the dome
relaxes under this constraint during the time period of 0-t,,; (Fig.1a III). The base of dome is allowed to
move in the horizontal plane but prohibited to have any vertical displacement (U1 is free, U2=0). Finally,
the indenter was removed by deactivating the surface to surface contact between the indenter and the dome
at t = t,, (Fig.1a IV). The response of the viscoelastic dome under this loading process was simulated
using the dynamic implicit step so that the time-dependent and quick recovery processes can be captured;
numerical damping is applied with the default setting in the dynamic implicit step. Continuum axisymmetric
elements (CAX4) were chosen, and the nonlinear geometry parameter NLGEOM was activated.

An axisymmetric dimple-like geometric imperfection with a positive amplitude (marked in red in
Fig.2a) or a negative amplitude (marked in blue in Fig.2a) is introduced to the apex region of the perfect
dome. The Abaqus INPUT files were updated using a MATLAB code for each specific profile of

imperfection. The profile of the imperfection is specified by a Gaussian dimple [30],
W, = Se PP (1)

where § is the amplitude of the imperfection at the apex, f is the polar angle (Fig. 2a), and f3; is the

exponential decay width of the imperfection.

2.2 Material characterizations

Experimentally we fabricated viscoelastic domes using Sylgard 184 with a base-to-crosslinker ratio
15:1 — a silicone rubber proved to possess viscoelastic properties with Poisson’s ratio of 0.469 and density
of 1030 kg/m3 [22, 37]. To determine the viscoelastic properties of the material, relaxation tests were
performed on five identical thin film specimens, each with a length of 125 mm, width of 25 mm and
thickness of 3 mm, using an Instron testing machine (5900 SERIES), according to the ASTM D412 standard
method. In the relaxation tests, 10% strain was applied in 1 s to avoid stress relaxation during the
deformation process, and maintained constant for 1200 s to allow the material to relax fully; the reaction

force as a function of time was measured.



Here the generalized Maxwell-Wiechert model (Fig.1b), consisting of a free spring with a modulus
Es, and n numbers of Maxwell elements in parallel with the modulus E; and viscosity 7; for the ith
element, is adopted to describe the viscoelastic behavior. When a step strain &€ = goH(t), with H(t) the
Heaviside step function, is applied to the model, the stress can be solved as a(t) = €yE(t), where the

modulus is a function of time,

‘
E(t)=E, + i:Eie_“ 7= % )
with the relaxation timescales t; for the ith element. We can see that the modulus decreases with time from
the initial value Eq = E, + Yj=1 E; to the long-term modulus E,,, which is usually non-zero for
crosslinked polymers, after full relaxation. Further normalizing E(t) by the initial value E;,, we express
g(t) = E(t)/E, by a Prony series
- - E,
g(t)zl—;g,-(l—e “), &=5 (3)
It can be seen that the initial value of g(t) is 1 and the long-term value decreases to 1 — Y7 g;, meaning
the modulus relaxes by a maximum factor of Y[-; g;. The parameters g; and 7; were determined by
fitting to our experimental results of the relaxation tests. The generalized Maxwell-Wiechert model reduces
to the standard linear solid (SLS) model under the condition that the number of Maxwell element n=1,
which will be used in the discrete model in Section 5.

The least squares approach was applied to fit the generalized Maxwell-Wiechert model with n = 5
Maxwell elements to the average relaxation data of five specimens (R-Square>99.6%), resulting in 5
relaxation timescales ranging from 0.3s to 500s, and the corresponding Prony series (Table 1), which were
implemented into the FEA. Fig.1(b) shows that the experimental data and fitting curve agree well with each
other. A sharp decrease of the modulus is observed at the beginning and the steady state is reached in 1200s.
As a result, the initial modulus, which is the sum of all moduli of the springs, is 0.96068 MPa, while the
long-term modulus is 0.81988 MPa. The relaxation has accomplished by 99.40% at t = 1200 s. On the other
hand, to determine the true primary relaxation time, free fitting without any limitation of timescales was
also implemented using two terms of Prony Series, resulting in 77 = 3.7079,7; = 67.9024, g; =
0.0583, g5 = 0.0322,E; = 0.91079, but with an error of 94.8%. The primary relaxation time 7; will be

used for normalization later.



Table 1 Fitting results of the viscoelastic parameters for Sylgard 184 with a base-to-crosslinker ratio 15:1

Parameters Eo/MPa n &l £ & &4 £
(t1 = 0.3/s) (t, =3/s) (t3 =30/s) (4 =300/s) (z5 =500/s)
Values 0.96068 5 0.05069 0.04782 0.02967 0.01227 0.00671

2.3 Fabrication of imperfect viscoelastic domes

]
erfection

Fig.2. (a) A spherical dome with a Gaussian dimple imperfection including a positive amplitude marked in
red or a negative amplitude marked in blue. (b) Fabrication process of a viscoelastic spherical dome with a
predesigned imperfection. First, 3D printing was employed to manufacture the PLA molds including two
universal frames and two replaceable imperfection parts, which made it effective to vary the imperfection
by only fabricating the replaceable parts. Then Sylgard 184 was infused into the mold, followed by being
cured for 24 h. Finally, the viscoelastic dome with a geometric imperfection was demolded.



To experimentally validate the geometric role of imperfections on the pseudo-bistability of viscoelastic
domes and compare with the FEA results, we fabricated viscoelastic domes by mold casting using Sylgard
184. The molds made of polylactic acid (PLA) were manufactured by fused deposition modeling (FDM)
3D printing (Ultimaker S5 Printer). Each mold was assembled by four parts: two universal frames and two
replaceable imperfection parts (Fig.2b); therefore, to vary the imperfection for a dome with given geometry,
only the imperfection parts need to be fabricated and replaced. A Sylgard 184 prepolymer solution with a
base-to-crosslinker ratio 15:1, was vacuumed until no trapped bubbles, followed by being poured into the
printed PLA mold. Degassing was run for a second time to eliminate air bubbles that may be introduced
during the infusion process. Then the mixture was cured for 24 h at room temperature. Finally, the

viscoelastic dome sample with a predesigned geometric imperfection was obtained after demolding.

2.4 Indentation tests

Indentation tests were performed on a viscoelastic dome using an Instron testing machine with a
custom-mounted indenter (Fig.1c). The indenter was manufactured by FDM 3D printing using PLA with a
90% infill density, which is expected to minimize deformation of the indenter during loading due to its high
stiffness compared to that of the dome. An acrylic platform with a hole in the center served as the base to
support the dome and was lubricated by oil applied on the contact surface to minimize friction. Note that
even with the lubrication, the friction could not be eliminated completely. Moreover, the platform could
only provide restriction to downward vertical displacement. Therefore, the boundary conditions in the
experiments and FEA are slightly different. The loading procedure is the same as that in FEA: a
displacement was applied to the dome by the indenter with a loading rate of 20 mm/min; the indenter was
kept at the deformed position to allow the material to relax after loading; then the indenter was removed,
followed by recovery of the dome to its original shape after a certain amount of time. The load-displacement

relations and recovery time were recorded during the testing.

3. Stability of perfect viscoelastic domes

The stability of perfect viscoelastic domes was characterized by both FEA and experiments. Depending
on its geometric and material properties, a viscoelastic dome could show monotonicity, monostability,
bistability or pseudo-bistability when it is indented to an inverted position and held for certain amount of
time. Particularly, the geometry is crucial in determining whether the instantaneous response of the dome

is monostable or bistable, while the evolution of the material properties during the relaxation (0-t,..;) and



recovery (¢ >t,.;) is the dominant factor in determining whether pseudo-bistable behavior occurs.

Here by varying the initial angle of a viscoelastic dome from 75°, 80.2° to 85°, but fixing the inner
radius 7, = 24.9 mm and outer radius 7, = 30.1 mm, we show that the dome can be tuned from
monostable, pseudo-bistable to bistable, as demonstrated by its instantaneous indentation force-
displacement relation (Fig.3a, b), and the displacement-time relation in the relaxation and recovery
processes (Fig.3¢). The monotonic case, which is too far away from the region we are interested in, is shown

in Supplementary information S1. The reaction force f is normalized by the initial modulus E; + E
and the square of the width wy?, f/(E, + E ,)w,?, while the displacement v is normalized by wy,

v/wy. In all the three cases, both FEA and experimental results show that the normalized reaction force

f/(Ey + E ,)wy? first increases until reaching a limit point, then decreases until reaching a second limit

point, and increases again with the normalized displacement v/w, (Fig.3a,b). When ay = 75° or 80.2°,
the second limit point, i.e. the minimum reaction force, is positive (the blue or red curves in Fig. 3a, b),
corresponding to instantaneously monostable behavior. However, the dome with ay = 80.2° has a
minimum reaction force very close to zero, indicating its geometric parameters are close to the boundary
between the monostable and bistable behavior. When a, = 85°, the minimum reaction force is negative
(the black curve in Fig. 3a, b), corresponding to instantaneously bistable behavior. The FEA (Fig. 3a) and
experimental results (Fig. 3b) show good agreement. The slight discrepancy of both the limit points between
the FEA and experiments is attributed to the difference between the boundary conditions, and the friction

between the base of the domes and the acrylic platform leads to higher reaction forces in the experiments.

After an indentation displacement of 2H is held for t =10 s (t/ Tlr = 2.70, Tll = 3.7079 the primary
relaxation time scale), it is released, and the displacement-time relations of the domes are recorded in Fig.
3c. The dome with an initial angle ay = 75° recovers the original shape without much delay once the
indentation is released (blue curves in Fig. 3c), indicating monostability. The dome with ay = 80.2°
remains almost stationary for the normalized snap time tgq,/T; = 16.18 in the FEA and for
tsnap,T1 =10.79 in the experiment before sudden recovery (red curves in Fig. 3c). This behavior indicates
pseudo-bistablity of the dome, with the feature that the minimum reaction force is greater than 0 in the
instantaneous deformed state, but the dome becomes bistable after viscoelastic relaxation under the
indentation, while eventually becomes monostable again due to the viscoelastic relaxation after the indenter
is released. The bistable case is demonstrated by the dome with an initial angle 85° (black curves), which
possesses a negative minimum force (Fig. 3a, b), and keeps stable in the inverted configuration (Fig. 3c¢).

The FEA and experimental results agree reasonably well with each other (Fig. 3c).
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Fig.3. (a)-(b) Normalized force and displacement relations of perfect viscoelastic domes with the initial
angle ay = 75° 80.2° 85° in the deformation step from (a) FEA and (b) experiments show
monostability, pseudo-bistability bistability, respectively. (c) Displacements and time relations in the
relaxation and recovery processes from FEA (solid lines) and experiments (dashed lines).

4. The effect of geometric imperfections on pseudo-bistability

In this section, we conduct FEA and experiments to demonstrate the effect of imperfections on pseudo-
bistability of viscoelastic domes. Using the dome with an initial angle oy = 80.2° discussed in Sec 3 as a
typical example of pseudo-bistable behavior, we introduce Gaussian dimple imperfections with various
amplitudes and widths into the dome. Specifically, the amplitude & is varied from -0.6/ to 0.2/ such that
both negative and positive imperfections are considered, while the decay width of the polar angle, f3;,
changes from 2.68° to 8.04° (Fig. 4). The normalized force-displacement relations of the imperfect
viscoelastic domes in the instantaneous deformation step are compared with those of the perfect domes
(FEA in Fig.4a, and experiments in Fig.4b). Both the FEA and experiments show that for the given geometry
of the dome and indenter, both the limit points increase with the amplitude of the imperfection. We find that

although the effect of imperfections on the maximum reactive force can be sensitive to both the geometry



of the dome and indenter, the results of the effect of imperfections on the minimum reactive force are
representative. Since the main focus of this work is the influence of imperfections on pseudo-bistability, we
will mainly focus on the changes of the minimum reactive force due to imperfections. A negative
imperfection increases the minimum reactive force, indicating that the imperfect dome moves towards
monostable behavior, while a positive imperfection brings the minimum reactive force closer to zero, and
therefore, closer to the boundary between the monostable and bistable behavior. On the other hand, under
a constant imperfection amplitude (§=-0.5/), the minimum reactive force increases with the decay width of
polar angle, f;. Consequently, the normalized snap time tgq, /77 of the imperfect domes also deviates
from that of the perfect one (Fig.4c). Consistent results obtained from FEA and experiments show that a
positive imperfect increases the snap time, while a negative imperfection decreases the snap time. The
change of the normalized snap time, Atgyq, /71, increases with both the amplitude and decay width of the
imperfection. However, the positive imperfections are more efficient in increasing tgpqp/71 than the

negative imperfections in decreasing tgqy /7.

=05, p,=2.68 % =05, ,=5.36 ——> =-0.5, 5, =8.04 ——* =-0.3, f§, =8.04 ——Perfect 2=0.1, §,=8.04

(a) 0.020

Experiments

0.015 >

0.010 | /

f/ (Ey + Ex)wp?

| Experiments ~ FEA (&

Al % _w ;=268
% o [,=5.36 | i
A — [ . /
2| o4 B =8.04 [ /& /

6 Negative Perfect Positive
1 1 1 Il 1 1 ] 1 1

0.6 -0.5 -04 -03 -02 -0.1 00 0.1 0.2
§/h

Fig.4. (a)-(b) Normalized force and displacement relations of viscoelastic domes with imperfections of
various amplitudes and decay widths from (a) FEA and (b) experiments. The four solid lines show the effect
of different amplitudes for a fixed width, while the two dashed lines and the red line show the effect of
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different widths for a fixed amplitude. (c) The corresponding changes of the normalized snap time with
respect to that of the perfect dome, Atgyqy /71, from FEA (solid lines) and experiments (stars).

5. A discrete model for pseudo-bistability

In the literature, the phenomena of snap-through instability and pseudo-bistability of domes have been
investigated by using discrete models to reveal the underlying mechanisms [8, 26, 27]. Here, a discrete
model with an introduced geometric imperfection is developed to understand the effects of imperfections
on pseudo-bistability observed in the FEA and experiments, and to predict the imperfection sensitivity of
viscoelastic domes. In this section, perfect viscoelastic systems are first studied to show their instantaneous
responses and dynamic behaviors. Then the roles that geometric imperfections play in stability, snapping
time and critical relaxation time are illuminated.

Following the literature [8], we simplify a viscoelastic dome by a discrete model consisting of a point
mass, a vertical SLS material unit, and two tilted springs (Fig.5a). It is worth mentioning that the model in
the literature [8] was used for an arch structure, whose difference from a dome is lack of a geometric
constraint in the hoop direction. Since here we only consider axisymmetric deformation of domes, the
deformation in both the radial and hoop directions, and therefore the corresponding energy terms, can be
completely determined by the one-dimensional distributions of deflection and rotation of a dome, similar
to that of an arch. Consequently, the effect of adding the energy caused by hoop deformation is equivalent
to changing the effective stiffness of the vertical and tilted springs in the discrete model. Therefore, here
we can still use it to study domes. Recall that the SLS model is degenerated from the generalized Maxwell-
Wiechert model when n=1, and it can describe both relaxation and creep with the minimum number of
Maxwell elements. It is assumed that the mass is jointed to one end of the viscoelastic unit and one end of
the tilted spring, while the other end of the tilted spring is connected with the base by a pin joint. When a
vertical downward displacement v is applied to the mass, the base would rotate around the pin joint. As
the displacement increases, the energy of the vertical springs in the viscoelastic unit increases monotonically,
representing the bending effect of a dome. In contrast, the energy of the tilted springs increases to the
maximum value when they are horizontal, and then starts to decrease, which corresponds to the stretching
effect of the dome. It is commonly recognized that it is the relative change between the bending and
stretching energy caused by viscoelasticity that can trigger the transition between different stability states
and drive the pseudo-bistable phenomenon. Therefore, introducing viscoelasticity only to the bending part
here is enough to capture this behavior.

The geometric imperfections are described as deviations of the mass from its perfect location by

amplitude § and width w; (Fig.5a). Consequently, each tilted spring is divided into two parts including
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the imperfect part with the defect and the perfect part. The stiffness of the tilted springs, the free linear
spring in the viscoelastic unit, and the spring in the Maxwell element are denoted by ki, k,s, ko and
k,, respectively, and the viscosity of the dashpot is denoted by 7. Therefore, the initial stiffness of the
viscoelastic unit without relaxation is k; + k,, while the long-term stiffness after full relaxation decays to
k.. For the perfect system, the stiffness of the tilted spring is denoted by kg, and the width and inclination
angle of the tilted spring are w, and «g, respectively. The inclination angle of the imperfect spring is

denoted as «.
5.1 Pseudo-bistability of a perfect system

5.1.1 Instantaneous force-displacement responses

In this section, the instantaneous force-displacement responses of perfect viscoelastic systems are first
explored. The dome is suddenly loaded by a downward displacement v at the mass point m, and the
corresponding reaction force fis calculated. Consequently, the change in the length of each tilted elastic

spring Al can be approximately written as [8]

Al zl(v—2aowo), (4)
2w,

under the assumption that @, is small. The exact expression of Al and the corresponding results are
presented in Supplementary information S2. As we will see later that the approximate formula gives us a
similar trend in predicting the force-displacement responses of the discrete viscoelastic system (Fig.5b and
Fig.S2). Therefore, to provide more straightforward understanding, the approximate formula under the
assumption of small a, is shown in the main text. It should be noted that the exact expression of Al

should be used for very deep domes. Since the instantaneous modulus of the SLS unit is k., + k4, the total
energy of the SLS unit completely stored in its springs is %(kOO + k,)v?, and the potential energy of the

system can be expressed as:
1
I1(v) = E(k1 +hk WV + kAP - fo. (5)

The equilibrium states can be obtained by minimizing the potential energy with respect to v

oIl k
E:(kl"'koo)‘”' Sv(v=2a,w))(v—ayw,)— f =0, (6)

>
Wo
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which leads to

k
f =k +k )v+—=v(v=2a,w,)(v—a,w,). (7)

Wo

We can normalize the equation as

F=KV+aV(V-2)V-1), (8)
with
R O L ©)
ksWOaO WOaO ks

where K, isthe relative stiffness of the vertical SLS unit compared to the tilted elastic springs, representing
the stiffness ratio of bending to stretching. The normalized instantaneous force-displacement behavior only
depends on ay and K.

Under different material and geometric parameters, the system shows different stability, which has also
been observed in the literature [8]. Given a fixed inclination angle a, = 0.8, the force-displacement curves
for various K, are shown in Fig. 5b. When K, = 0.7, the force-displacement relation is monotonically
increasing. When K, = 0.3, the force-displacement relation becomes non-monotonic, although the second
limit point is still higher than zero, indicating monostable behavior. When K,. isreduced to 0.16, the second
limit point reaches zero, representing the transition from the monostable to bistable state. Bistable behavior
is observed when K, = 0.1 with the second limit point lower than zero, yielding two additional

intersection points with the x axis besides the origin.

To construct a phase diagram for the different stability behaviors with respect to a, and K,, we
determine the number of limit points and the value of the second limit point by finding the roots of the

equation dF /0V = 0. The condition that there exist two limit points yields
K —a;<0. (10)
Whether the system is monostable or bistable is further determined by the force value at the second limit

point V5,

1 K
=F(V=V)=K,(+ |-—=—=
( 2) r( 3 36{5

1 K,

F, ———r (11)
3 3a;

min

2 K
—ao) (Z+—L
)= 30{3)

When F,,;;, > 0, the system is monostable, and the dome recovers the initial state whenever it is unloaded.

When F,,;;, < 0, the system is bistable. In particular, the equilibrium is stable when 0 <V <V; or V >
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V,, and unstable under the condition of V; <V < V,, with V; the first limit point. Based on the above
criteria, a phase diagram composed of the monotonic, monostable and bistable regions with respect to a,
and K, is plotted in Fig.5c. As a result, when «g is large and K, is small the system is bistable.
Decreasing a orincreasing K, brings the system to the monostable region, until eventually the two limit

points disappear, when the system becomes monotonic.
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Fig.5. Schematics of the discrete model and the results for perfect systems. (a) Discrete model of a
viscoelastic dome with a predesigned geometric imperfection, including a point mass, a viscoelastic unit,
and two tilted springs with each divided into an imperfect and a perfect part. (b) Representative force-
displacement responses showing bistable ( ¢y = 0.8,K,, = 0.1 ), monostable ( @y = 0.8,K, = 0.3),
monotonic (@y = 0.8, K,- = 0.7) and critical behavior on the boundary between bistable and monostable
states (ag = 0.8,K,. = 0.16). (c) Phase diagram of monotonic, monostable, and bistable behaviors with
respect to @y and K,., where the stars represent the parameters used for the force-displacement curves in
b. (d) Trajectories of the mass as functions of time for a monostable system (K,. = 0.3840), bistable system
(K,-=0.2560) and pseudo-bistable system (K,=0.3206) under an instantaneous normalized displacement
loading V; = 1.5, relaxation for T,,;=10, and recovery, with the other parameters fixed as K=0.5, a, =
0.8 and T,=0.01.
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5.1.2 Dynamic pseudo-bistability behaviors

Next, the dynamics of the perfect system in the different stability regions is investigated to especially
unravel the pseudo-bistability behavior. Recall that a sudden downward displacement is applied to the mass
m at t=0, which is kept constant during the time period of 0-t,..;. At t = t,¢, the external force fis removed
to release the mass. The relation between the total force f;, applied to the viscoelastic unit and the
displacement v can be expressed as

kth dv k, _1df

=y ——+lf (12)
ko dt n kd "

Accounting for the downward indentation force £, and the forces from the vertical viscoelastic unit and tilted
springs, the conservation of momentum of the mass is described as
dv kv

m? = Wé (v=2a,w )Wy =)= f, + [, (13)

where the first term on the right hand side of Eq. (13) represents the force from the tilted springs obtained
in Eq. (7). Eq. (12) and Eq. (13) can be normalized as the following

N F
KVZ—ZJr(l—} ;7”+Fb, (14)
2
T,jTZ=a§V(V—2)(l—V)—F,, +F, (15)
where
2

bl po S p_mk - (16)

77 kswoa() ksn Kl +Koc

besides the dimensionless variables and parameters defined in Eq. (8). The dimensionless parameter K
represents the degree of relaxation of the viscoelastic unit. Time ¢ is normalized by the viscoelastic time
scale 1n/kq, and the dimensionless parameter T, indicates the square of the time scale ratio of the period

of resonance /m/kg to viscoelasticity 1/k;.

In the relaxation step, the external force evolves as a result of the stress relaxation in the viscoelastic part,
while the displacement V,, applied suddenly in the deformation step remains a constant. The external force
F as a function of time is entirely determined by V,, and the effective stiffness of the viscoelastic unit, which

evolves with time Kref ! M), F(T)=F (VO, K ff/ ‘ (T)) . Solving the effective stiffness K 1 (T) using Eq.

(14) by prescribing the step displacement VyH(t), and plugging F, back to Eq. (15) yield
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F(T) =V, K (T)+ oV, (V, —2)(V, -1,

. - (17)
K (Ty=K (1-1

Then we can get the expression of the external force for the entire process by describing it with the
Heaviside step function as F = F[1 — H(T — T,,;)]. In the release step, the external force is 0, and we can
determine the evolution of V by solving the coupled Eqgs. (14) and (15) using the command ode45 in
MATLAB with the following initial conditions of V, V and F,, at T=T,,

V=V, 1 =K (T,)V,. (18)

By prescribing the parameters K = 0.5, a5 = 0.8, T, = 0.01,V, = 1.5, and varying K,, we show the
typical dynamic behaviors of the system in Fig.5d, including the monostable, bistable and pseudo-bistable
behaviors. After being applied an instantaneous displacement V,,, the mass is held for a certain amount of
time T, = trerk1/n = 10 before being released. When K, = 0.3840, the system is monostable, rapidly
recovers its initial state, and vibrates around it once the load is released. As the relative stiffness K,
decreases, the system becomes bistable. Once the indenter is released, the bistable system with K, =
0.2560 snaps to the inverted state, instead of the initial state. However, when K, = 0.3206, the response
of the system after the indenter is released is considerably slowed down. The mass remains at an almost
constant position for a few times of the viscoelastic relaxation time, until it rapidly accelerates, snaps back
to the initial sate, which is the pseudo-bistable behavior, and vibrates around the initial state. Note that no
vibration is observed in the FEA, since numerical damping is applied. We will next use the discrete mode

to investigate the effect of geometric imperfections on the pseudo-bistability.

5.2 Imperfection-sensitivity of pseudo-bistability

We present here the role of geometric imperfections in changing the pseudo-bistable behavior and the
imperfection-sensitivity of dynamic behavior and critical relaxation time, which refers to the minimum
relaxation time required for a structure to show pseudo-bistability. The results from the discrete model will
be used to qualitatively compared with and explain the observations from the FEA and experiments.

A deviation of the mass from its perfect position by a small amplitude § and width w; is introduced,
consequently altering the inclination angle of imperfect part from a( to «

o
—=tana—-tana, *ra—q,. (19)
W

The tilted spring is divided into two parts by the imperfection, which are imperfect part with stiffness kg
and width w;, and perfect part with stiffness k,; and width w,. The displacements of the connected point
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in vertical and horizontal direction are denoted as v, and u,. When the dome is loaded by a downward
displacement v at the mass point, the changes in the lengths of the two tilted parts can be approximately
written as

1
Al = _(”22 +(v _V2)2 +2u,w, —2aw, (v, —v,)),

Wl
| (20)
Al = p (w2 +v,” = 2u,w, = 2a,w,v,).
2
So, the potential energy of the system can be expressed as:
1
I(v) = 5 (k,+k, v +k AL+ K, AL — fo,. (21)

The equilibrium states can be obtained by minimizing the potential energy with respect to the displacements

(3_1_[ =(k, +k,)v, +2k Al % - f=0,
Vi

Vi
Mo, AL, DBl o ag P80, 22)
ou, ‘ ou, © Ou,
a_ 2k, Al OAL, + 2k, Al AL _ 0.
ov, ‘ ov, S 0Oy,

It is assumed that the stiffness of imperfect and perfect parts satisfies

k, w 1 1 1
—_— = —t—=— (23)
kl‘\‘ WZ kls k2 k

N N

Then the equilibrium Egs. (22) can be derived as

Wl + W2 Vl — V2
2
w w

=k +k)v,+k I (2 + (v, = v,) + 2u,w, — 20w, (v, —v,)),

U, —w
2 2 2 2

—(uy +v," = 2u,w, —2a,w,v,) +

2 1

vV, — Oy W

2 0""2 2 2

———(u; +v,” —2u,w, —2a,w,v,) -

2 Wl

u, +W1
3

W2+, —v,) +2u,w —2aw (v, —v,)) =0, (24)
2 1 2 2 1\71 2

V=V, —aw,

3 (u22 +(v, -V, )2 +2u,w, —2aw,(v, —v,)) =0.

We can normalize the equations as
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2
F=KV+ 2 v, - L w2 + -1,y +20, 22 ).
/4 0 2% a,
UZ—% W U2+K W
— (U2 4V = 2U, 222, 4 —— (U2 + (V, =V, ) +2U, = =2 WV, - 7,)) =0,
W; 0 VVYI aO aO
V. —W. W, VI_VZ_QWI W
2_3 2 (U22+V22—2Uz—2—2Wsz)——3%(U22+(V1—V2)2+2Uz—l—2in(Vl—Vz))=0,
2 a, /4 24 a,
(25)
with
1 w W,
(VI,VZ,U2)=—(V1,V2,MZ), /4 :_1’W2 :_z’ (26)
Wo &, Wo Wo

besides the dimensionless variables and parameters defined in Eq. (8).

We plot the instantaneous force-displacement relations for the system with a small imperfection of
various amplitudes § = -0.06w,, -0.02w,, 0.02w, and 0.06w, and width w; = w, to compare with
that of the perfect system (Fig.6a). Please note that here the imperfection amplitude is scaled by the width
of the dome, w,, instead of the thickness, since w, is the only length scale in the discrete model. If we
convert §/h in the experiments and FEA to §/w, using the prescribed h/w,, and compare the results
with those of the discrete model, we can see that the amplitudes are on the same order of magnitude, which
means we are using similar defect sizes. The perfect system with the parameters K=0.5, ay = 0.8 and
K,=0.1626 is monostable, but is near the boundary between the monostable and bistable behavior. A
negative imperfection decreases the maximum force, while increases the minimum force (Fig. 6b). On the
other hand, a positive imperfection increases the maximum force, while decreases the minimum force. This
means a negative imperfection pushes the system further deeper into the monostable region, while a positive
imperfection pulls the system closer to the boundary, or even to transit to the bistable region when the
minimum force is less than zero. The deviation from the perfect system increases as the amplitude of the
imperfection increases. The results agree with the FEA and experiments. Therefore, a geometric
imperfection with a relatively small amplitude could result in significant variations of the mechanical
responses of domes, and can even be harnessed to program stability. When the width of the imperfection
wy is smaller, the deviation of the force-displacement curve from the perfect one is smaller (Figs. S3 and
S4); see Supplementary information S3 for more details.

The dynamic trajectories of the system same as the pseudo-bistable case in Fig. 5d (K,=0.3206) but
with both positive and negative imperfections (6§ = -0.02w,~0.04w,, w; = wy) are plotted in Fig.6¢. For
anegative imperfection, the snap time is observed to decrease as the amplitude of the imperfection increases,
until reaching around zero, which approaches the monostable behavior. The snap time drops sharply at
small imperfection amplitudes, and reaches a plateau at large imperfection amplitudes (Fig. 6d). When a
small positive imperfection is introduced, the snap time increases with the amplitude of the imperfection
(6/wy = 5% 107%, the cyan curve in Fig. 6¢c). However, when the amplitude of the imperfection is large
enough, the system becomes bistable with an infinite snap time (Fig. 6d). The dynamic results match well
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with the trend observed in the FEA and experiments that a negative defect shifts the system towards the
monostable behavior while a positive defect shifts the system towards the bistable behavior in the
instantaneous response. It is worth mentioning that the dependence of the variation of the snap time on the
amplitude of the imperfection is not linear (Fig. 6d). Specifically, the snap time and stability can change
significantly with the amplitude of the imperfection near the threshold of a pseudo-bistable state, while they
only change slightly far away from the threshold. We see a small variation of geometry (ay=0.795) from
the system (a(=0.8), which is close to the boundary between monostability and bistability, leads to visible
difference of snap time in Fig.6d.

We now explore how an imperfection affects the critical relaxation time under various geometric and
material parameters. Pseudo-bistable behavior would occur if the force at the second limit point F,,;;, is
instantaneously greater than 0 and less than 0 after a long-term relaxation, yielding

Fy (K (0),0,) > 0,

i 27)

Fmin (Krﬂ (OO)’ ao) <0.
To determine the critical relaxation time T,,;, we replace K, in Eq. (11) by Kff ! (TS,;) and use the
condition

Fmin (Kreﬂ (Tr; )9 ao) = 0 . (28)

We then expect the system will become pseudo-bistable when the relaxation time is larger than the critical
value T, > T),;. Fig.6e shows the critical relaxation time changes with the relative stiffness K, for
different imperfection amplitudes and inclination angles. The region of negative relaxation time T,%; < 0
means the system is instantaneously bistable. It is reasonable that T,%,; increases with the relative stiffness,
and decreases with the inclination angle, because larger relative stiffness or a smaller inclination angle shifts
the system towards the monostable region (Fig.5b), corresponding to a longer relaxation time. Similarly, a
negative imperfection increases T,,;, while a positive imperfection decreases T,,;, because a negative

imperfection also shifts the system towards the monostable region.
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Fig.6. Results of the discrete model for imperfect systems. (a) Instantaneous force-displacement curves of
the system with a predesigned geometric imperfection of a width w; = w, and an amplitude varied from
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-0.06w, to 0.06wg. (b) Dependence of the minimum force on the amplitude of the imperfection. (c)
Dynamic responses of imperfect systems show a decrease of the snap time when the imperfection is
negative, and an increase of the snap time when the imperfection is positive. (d) Snap time as a function of
imperfection amplitude under different inclination angle «,. (¢) The imperfection sensitivity of the critical
relaxation time under various geometric and material parameters.

6. Conclusions

In conclusion, this paper investigates the effect of geometric imperfections on pseudo-bistability of
spherical viscoelastic domes by combining FEA, experiments, and analytical modeling. The amplitude and
profile of imperfections are systematically varied and accurately controlled in both the FEA and
experiments. Experimentally, perfect and imperfect silicone rubber domes are fabricated through 3D printed
molds, and characterized for pseudo-bistable behavior with a loading procedure of deforming, holding and
releasing by a custom-mounted indenter. The similar loading process is applied in FEA to examine the
dynamic responses of both perfect and imperfect domes made of a generalized Maxwell-Wiechert material
fitted to the relaxation test data. A discrete dynamic model of a viscoelastic dome is further developed to
understand the geometric role of imperfections in the pseudo-bistable behavior. The results from the
experiments, FEA, and discrete model agree well with each other, and show that a positive imperfection
shifts a viscoelastic dome towards bistable behavior, corresponding to a longer snap time, while a negative
imperfection shifts the dome towards monostable behavior, resulting in a shorter snap time. The discrete
model unravels that the effect of an imperfection on snap time and stability is particularly strong when the
system is near the threshold of a pseudo-bistable state. This work can motivate future exploration of the
effect of imperfection shape and material properties on pseudo-bistability, and provide more opportunities
for multi-functional designs [38-41]. It can also open up potential novel applications of viscoelastic domes
by combining structural instability, geometric imperfections, especially with stimuli-responsive materials,

whose material properties and geometry can change in response to external stimuli.
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Appendix A. Supplementary data

Supplementary material related to this article is provided.
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