
1 
 

Effect of imperfections on pseudo-bistability of viscoelastic domes 

Tianzhen Liua,b, Yuzhen Chenb, Liwu Liuc, Yanju Liuc, Jinsong Lenga,*, Lihua Jinb,*  

a. National Key Laboratory of Science and Technology on Advanced Composite in Special Environments, 

Harbin Institute of Technology, Harbin 150080, PR China 

b. Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, 

CA 90095, USA 

c. Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi 

Street, PO Box 301, Harbin 150001, PR China  

*Correspondence: Lihua Jin. Email: lihuajin@seas.ucla.edu & Jinsong Leng. E-mail: lengjs@hit.edu.cn 

Abstract 

Snap-through instability of viscoelastic materials is known to generate novel behavior, featured as pseudo-

bistability, i.e. the capability of a system in maintaining a deformed configuration for a certain period of 

time after removal of an external load, followed by snapping back to its initial configuration automatically, 

due to the combination of time-dependent mechanical property and geometric nonlinearity of the system. 

This work numerically, experimentally, and analytically examines spherical viscoelastic domes with 

predesigned geometric imperfections that can control the structural stability and tune the snap time, which 

is defined as the time that a dome remains almost stationary in the deformed configuration after the release 

of external forces. The results show that even an imperfection with a small magnitude can play a significant 

role in pseudo-bistability. An imperfection with a positive amplitude shifts a viscoelastic dome towards 

bistable behavior, corresponding to a longer snap time, while an imperfection with a negative amplitude 

shifts the dome towards monostable behavior, resulting in a shorter snap time. This work can open up new 

opportunities for controlling spatiotemporal behavior of structures for multi-functionalities. 
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1. Introduction 

A snap-through instability refers to a mode of instability that can transform a structure from one 

metastable state to another non-adjacent stable state under certain loading [1-6]. Correspondingly, a large 

amount of stored elastic energy in the metastable state is released and converted to kinetic energy, resulting 
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in a very rapid transition. Snap-through instabilities widely exist in nature and daily life, such as in Venus 

flytraps [7], snap hair clips, and jumping popper toys [8, 9]. They also have various practical applications 

in engineering, such as energy absorption [10-14], actuation [15, 16] and morphing devices [17-19], by 

virtue of fast motion, energy storage and reversible deformation. A large amount of research has 

concentrated on snap-through instabilities in arches and domes [8, 20-23] due to the ubiquity of the 

instabilities in nature and engineering.  

Viscoelasticity, which describes time-dependent and rate-dependent behavior of materials [24] [25], 

has profound influence on snap-through instabilities [2, 8, 11, 15, 23, 26-28]. In particular, some viscoelastic 

systems show the capability of maintaining a deformed configuration for a certain period of time after 

removal of the external load, followed by rapidly recovering its initial configuration automatically. This 

phenomenon is called pseudo-bistability or temporary bistability. The mechanism of pseudo-bistability is 

that the time evolution of the material property of a viscoelastic system can trigger a transition of the system 

from a monostable state to a bistable state [8, 15, 26, 27, 29]. In particular, pseudo-bistability is widely 

studied in viscoelastic arches and domes, and specifically, the decrease of the ratio of bending energy to 

stretching energy during relaxation is attributed to be the cause of pseudo-bistability in them. 

It is well recognized that snap-through instabilities are highly sensitive to geometric imperfections 

[30-36]. In shell buckling, there was a long history in understanding the discrepancy between the 

theoretically predicted and experimentally observed critical buckling loads, and large knockdown factors 

have been introduced to account for the significant reduction of the buckling loads due to imperfections 

[32]. Lee et al. studied the effect of a dimple-like geometric imperfection on the critical buckling load of 

spherical elastic domes under pressure loading and accurately predicted the knockdown factors of imperfect 

spherical domes by shell theory [32]. Ref [35] identified local and global buckling loads for cylindrical 

shells subjected to axial compression with emphasis on the role of local geometric dimple imperfections. 

More recently, elastic thin domes with a large axisymmetric imperfection were examined by employing a 

shell theory with exact expressions of the middle surface strains and curvature changes, and were found to 

have significantly different buckling conditions and buckling modes from the perfect ones [31]. By 

comparing the buckling loads of shells with different types of geometric imperfections, Babcock concluded 

that the presence of a geometric imperfection serves as the most important factor, while the type of the 

imperfection plays a relatively minor role [33]. 

In view of the significant effect of geometric imperfections on snap-through buckling of spherical 

domes, we ask how the pseudo-bistability of viscoelastic domes is affected by geometric imperfections, 

which is, to our best knowledge, still absent. To answer this question, this paper uses a combined method 

of analytical modeling, finite element analysis (FEA) and experiments. Snap-through buckling of perfect 

and imperfect domes with systematically varied geometric imperfections are investigated using FEA. 
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Experimentally, imperfect domes are fabricated by casting a viscoelastic elastomer using molds with an 

engineered imperfection. To further understand the effect of imperfections on pseudo-bistability, we 

develop an analytical discrete model for viscoelastic domes, and examine the instantaneous and dynamic 

responses of both perfect and imperfect domes. Understanding the geometric role of imperfections will 

allow us to better harness and program pseudo-bistability of viscoelastic domes for applications. 

2. Methods 

2.1 Finite element analysis 

 

Fig.1. (a) Schematics of the loading process of a viscoelastic spherical dome under indentation in the FEA 

and experiments. (I) In the initial configuration the dome has an angle 𝛼0  and width 𝑤0 . (II) In the 

deformation step, a sudden displacement is applied. (III) Then the displacement is held in the relaxation 

step, (IV) and finally released in the recovery step. (b) The relaxation test results for Sylgard 184 with a 

base-to-crosslinker ratio 15:1 fitted by the generalized Maxwell-Wiechert model. (c) The experimental 

silicone rubber dome and indentation testing apparatus: (I) the initial state and (II) indented state using an 

Instron machine with custom-mounted attachments. 

 

 The stability of perfect and imperfect viscoelastic spherical domes under a vertical indentation was 

investigated using FEA in Abaqus (version 6.14). The domes have an initial angle 𝛼0, width 𝑤0 and height 
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H (Fig.1a). The middle surface radius and thickness are denoted by R and h, respectively. Their viscoelastic 

behavior is modeled by the generalized Maxwell-Wiechert material, with the material parameters 

experimentally fitted to those of Sylgard 184 with a base-to-crosslinker ratio 15:1; see Sec 2.2 for more 

details. An axisymmetric rigid indenter with a ball head of a radius approximately 30% of the dome radius 

was used to apply a displacement to the dome, the distributed load caused by which shows advantages of 

eliminating the local stress concentration over a concentrated load [27]. A sudden downward displacement 

is applied to the apex region of the dome by the indenter from the initial configuration at t=0- (Fig.1a I) to 

the deformed configuration at t=0+ (Fig.1a II). The indenter is then held at the same position, and the dome 

relaxes under this constraint during the time period of 0-𝑡𝑟𝑒𝑙 (Fig.1a III). The base of dome is allowed to 

move in the horizontal plane but prohibited to have any vertical displacement (U1 is free, U2=0). Finally, 

the indenter was removed by deactivating the surface to surface contact between the indenter and the dome 

at 𝑡 = 𝑡𝑟𝑒𝑙 (Fig.1a IV). The response of the viscoelastic dome under this loading process was simulated 

using the dynamic implicit step so that the time-dependent and quick recovery processes can be captured; 

numerical damping is applied with the default setting in the dynamic implicit step. Continuum axisymmetric 

elements (CAX4) were chosen, and the nonlinear geometry parameter NLGEOM was activated.  

An axisymmetric dimple-like geometric imperfection with a positive amplitude (marked in red in 

Fig.2a) or a negative amplitude (marked in blue in Fig.2a) is introduced to the apex region of the perfect 

dome. The Abaqus INPUT files were updated using a MATLAB code for each specific profile of 

imperfection. The profile of the imperfection is specified by a Gaussian dimple [30], 

 
2( / )I

Iw e
  

 ,  (1) 

where 𝛿 is the amplitude of the imperfection at the apex, 𝛽 is the polar angle (Fig. 2a), and 𝛽𝐼 is the 

exponential decay width of the imperfection.  

2.2 Material characterizations 

Experimentally we fabricated viscoelastic domes using Sylgard 184 with a base-to-crosslinker ratio 

15:1 – a silicone rubber proved to possess viscoelastic properties with Poisson’s ratio of 0.469 and density 

of 1030 𝑘𝑔/𝑚3 [22, 37]. To determine the viscoelastic properties of the material, relaxation tests were 

performed on five identical thin film specimens, each with a length of 125 mm, width of 25 mm and 

thickness of 3 mm, using an Instron testing machine (5900 SERIES), according to the ASTM D412 standard 

method. In the relaxation tests, 10% strain was applied in 1 s to avoid stress relaxation during the 

deformation process, and maintained constant for 1200 s to allow the material to relax fully; the reaction 

force as a function of time was measured. 



5 
 

Here the generalized Maxwell-Wiechert model (Fig.1b), consisting of a free spring with a modulus 

𝐸∞ , and n numbers of Maxwell elements in parallel with the modulus 𝐸𝑖  and viscosity 𝜂𝑖  for the ith 

element, is adopted to describe the viscoelastic behavior. When a step strain 𝜀 = 𝜀0𝐻(𝑡), with 𝐻(𝑡) the 

Heaviside step function, is applied to the model, the stress can be solved as 𝜎(𝑡) = 𝜀0𝐸(𝑡), where the 

modulus is a function of time, 
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with the relaxation timescales 𝜏𝑖 for the ith element. We can see that the modulus decreases with time from 

the initial value 𝐸0 = 𝐸∞ + ∑ 𝐸𝑖
𝑛
𝑖=1   to the long-term modulus 𝐸∞ , which is usually non-zero for 

crosslinked polymers, after full relaxation. Further normalizing 𝐸(𝑡) by the initial value 𝐸0, we express 

𝑔(𝑡) = 𝐸(𝑡)/𝐸0 by a Prony series  
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It can be seen that the initial value of g(t) is 1 and the long-term value decreases to 1 − ∑ g𝑖
𝑛
𝑖=1 , meaning 

the modulus relaxes by a maximum factor of ∑ g𝑖
𝑛
𝑖=1  . The parameters g𝑖  and 𝜏𝑖  were determined by 

fitting to our experimental results of the relaxation tests. The generalized Maxwell-Wiechert model reduces 

to the standard linear solid (SLS) model under the condition that the number of Maxwell element n=1, 

which will be used in the discrete model in Section 5.  

The least squares approach was applied to fit the generalized Maxwell-Wiechert model with n = 5 

Maxwell elements to the average relaxation data of five specimens (R-Square≥99.6%), resulting in 5 

relaxation timescales ranging from 0.3s to 500s, and the corresponding Prony series (Table 1), which were 

implemented into the FEA. Fig.1(b) shows that the experimental data and fitting curve agree well with each 

other. A sharp decrease of the modulus is observed at the beginning and the steady state is reached in 1200s. 

As a result, the initial modulus, which is the sum of all moduli of the springs, is 0.96068 MPa, while the 

long-term modulus is 0.81988 MPa. The relaxation has accomplished by 99.40% at t = 1200 s. On the other 

hand, to determine the true primary relaxation time, free fitting without any limitation of timescales was 

also implemented using two terms of Prony Series, resulting in 𝜏1
′ = 3.7079, 𝜏2

′ = 67.9024 , 𝑔1
′ =

0.0583, 𝑔2
′ = 0.0322, 𝐸0

′ = 0.91079, but with an error of 94.8%. The primary relaxation time 𝜏1
′

 will be 

used for normalization later. 
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Table 1 Fitting results of the viscoelastic parameters for Sylgard 184 with a base-to-crosslinker ratio 15:1 

Parameters E0 /MPa n 
g1 

 (𝜏1 = 0.3/𝑠) 

g2 

 (𝜏2 = 3/𝑠) 

g3 

 (𝜏3 = 30/𝑠) 

g4 

 (𝜏4 = 300/𝑠) 

g5  

(𝜏5 = 500/𝑠) 

Values 0.96068 5 0.05069 0.04782 0.02967 0.01227 0.00671 

 

2.3 Fabrication of imperfect viscoelastic domes 

 

 

Fig.2. (a) A spherical dome with a Gaussian dimple imperfection including a positive amplitude marked in 

red or a negative amplitude marked in blue. (b) Fabrication process of a viscoelastic spherical dome with a 

predesigned imperfection. First, 3D printing was employed to manufacture the PLA molds including two 

universal frames and two replaceable imperfection parts, which made it effective to vary the imperfection 

by only fabricating the replaceable parts. Then Sylgard 184 was infused into the mold, followed by being 

cured for 24 h. Finally, the viscoelastic dome with a geometric imperfection was demolded. 
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To experimentally validate the geometric role of imperfections on the pseudo-bistability of viscoelastic 

domes and compare with the FEA results, we fabricated viscoelastic domes by mold casting using Sylgard 

184. The molds made of polylactic acid (PLA) were manufactured by fused deposition modeling (FDM) 

3D printing (Ultimaker S5 Printer). Each mold was assembled by four parts: two universal frames and two 

replaceable imperfection parts (Fig.2b); therefore, to vary the imperfection for a dome with given geometry, 

only the imperfection parts need to be fabricated and replaced. A Sylgard 184 prepolymer solution with a 

base-to-crosslinker ratio 15:1, was vacuumed until no trapped bubbles, followed by being poured into the 

printed PLA mold. Degassing was run for a second time to eliminate air bubbles that may be introduced 

during the infusion process. Then the mixture was cured for 24 h at room temperature. Finally, the 

viscoelastic dome sample with a predesigned geometric imperfection was obtained after demolding. 

2.4 Indentation tests 

Indentation tests were performed on a viscoelastic dome using an Instron testing machine with a 

custom-mounted indenter (Fig.1c). The indenter was manufactured by FDM 3D printing using PLA with a 

90% infill density, which is expected to minimize deformation of the indenter during loading due to its high 

stiffness compared to that of the dome. An acrylic platform with a hole in the center served as the base to 

support the dome and was lubricated by oil applied on the contact surface to minimize friction. Note that 

even with the lubrication, the friction could not be eliminated completely. Moreover, the platform could 

only provide restriction to downward vertical displacement. Therefore, the boundary conditions in the 

experiments and FEA are slightly different. The loading procedure is the same as that in FEA: a 

displacement was applied to the dome by the indenter with a loading rate of 20 mm/min; the indenter was 

kept at the deformed position to allow the material to relax after loading; then the indenter was removed, 

followed by recovery of the dome to its original shape after a certain amount of time. The load-displacement 

relations and recovery time were recorded during the testing.  

3. Stability of perfect viscoelastic domes 

The stability of perfect viscoelastic domes was characterized by both FEA and experiments. Depending 

on its geometric and material properties, a viscoelastic dome could show monotonicity, monostability, 

bistability or pseudo-bistability when it is indented to an inverted position and held for certain amount of 

time. Particularly, the geometry is crucial in determining whether the instantaneous response of the dome 

is monostable or bistable, while the evolution of the material properties during the relaxation (0-𝑡𝑟𝑒𝑙) and 
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recovery (t >𝑡𝑟𝑒𝑙) is the dominant factor in determining whether pseudo-bistable behavior occurs.  

Here by varying the initial angle of a viscoelastic dome from 75°, 80.2° to 85°, but fixing the inner 

radius 𝑟1 = 24.9  mm and outer radius 𝑟2 = 30.1  mm, we show that the dome can be tuned from 

monostable, pseudo-bistable to bistable, as demonstrated by its instantaneous indentation force-

displacement relation (Fig.3a, b), and the displacement-time relation in the relaxation and recovery 

processes (Fig.3c). The monotonic case, which is too far away from the region we are interested in, is shown 

in Supplementary information S1. The reaction force 𝑓 is normalized by the initial modulus 𝐸1 + 𝐸∞ 

and the square of the width 𝑤0
2, 𝑓/(𝐸0 + 𝐸∞)𝑤0

2, while the displacement 𝑣  is normalized by 𝑤0 , 

𝑣/𝑤0. In all the three cases, both FEA and experimental results show that the normalized reaction force 

𝑓/(𝐸0 + 𝐸∞)𝑤0
2 first increases until reaching a limit point, then decreases until reaching a second limit 

point, and increases again with the normalized displacement 𝑣/𝑤0 (Fig.3a, b). When 𝛼0 = 75° or 80.2°, 

the second limit point, i.e. the minimum reaction force, is positive (the blue or red curves in Fig. 3a, b), 

corresponding to instantaneously monostable behavior. However, the dome with 𝛼0 = 80.2°  has a 

minimum reaction force very close to zero, indicating its geometric parameters are close to the boundary 

between the monostable and bistable behavior. When 𝛼0 = 85°, the minimum reaction force is negative 

(the black curve in Fig. 3a, b), corresponding to instantaneously bistable behavior. The FEA (Fig. 3a) and 

experimental results (Fig. 3b) show good agreement. The slight discrepancy of both the limit points between 

the FEA and experiments is attributed to the difference between the boundary conditions, and the friction 

between the base of the domes and the acrylic platform leads to higher reaction forces in the experiments.  

After an indentation displacement of 2H is held for 𝑡 = 10 s (𝑡 𝜏1

′
⁄ = 2.70, 𝜏1

′
= 3.7079 the primary 

relaxation time scale), it is released, and the displacement-time relations of the domes are recorded in Fig. 

3c. The dome with an initial angle 𝛼0 = 75° recovers the original shape without much delay once the 

indentation is released (blue curves in Fig. 3c), indicating monostability. The dome with 𝛼0 = 80.2° 

remains almost stationary for the normalized snap time 𝑡𝑠𝑛𝑎𝑝/𝜏1
′ = 16.18  in the FEA and for 

𝑡𝑠𝑛𝑎𝑝/𝜏1
′ =10.79 in the experiment before sudden recovery (red curves in Fig. 3c). This behavior indicates 

pseudo-bistablity of the dome, with the feature that the minimum reaction force is greater than 0 in the 

instantaneous deformed state, but the dome becomes bistable after viscoelastic relaxation under the 

indentation, while eventually becomes monostable again due to the viscoelastic relaxation after the indenter 

is released. The bistable case is demonstrated by the dome with an initial angle 85° (black curves), which 

possesses a negative minimum force (Fig. 3a, b), and keeps stable in the inverted configuration (Fig. 3c). 

The FEA and experimental results agree reasonably well with each other (Fig. 3c). 
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Fig.3. (a)-(b) Normalized force and displacement relations of perfect viscoelastic domes with the initial 

angle 𝛼0 = 75°, 80.2°, 85°  in the deformation step from (a) FEA and (b) experiments show 

monostability, pseudo-bistability bistability, respectively. (c) Displacements and time relations in the 

relaxation and recovery processes from FEA (solid lines) and experiments (dashed lines).  

4. The effect of geometric imperfections on pseudo-bistability 

In this section, we conduct FEA and experiments to demonstrate the effect of imperfections on pseudo-

bistability of viscoelastic domes. Using the dome with an initial angle 𝛼0 = 80.2° discussed in Sec 3 as a 

typical example of pseudo-bistable behavior, we introduce Gaussian dimple imperfections with various 

amplitudes and widths into the dome. Specifically, the amplitude δ is varied from -0.6h to 0.2h such that 

both negative and positive imperfections are considered, while the decay width of the polar angle, 𝛽𝐼, 

changes from 2.68° to 8.04° (Fig. 4). The normalized force-displacement relations of the imperfect 

viscoelastic domes in the instantaneous deformation step are compared with those of the perfect domes 

(FEA in Fig.4a, and experiments in Fig.4b). Both the FEA and experiments show that for the given geometry 

of the dome and indenter, both the limit points increase with the amplitude of the imperfection. We find that 

although the effect of imperfections on the maximum reactive force can be sensitive to both the geometry 
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of the dome and indenter, the results of the effect of imperfections on the minimum reactive force are 

representative. Since the main focus of this work is the influence of imperfections on pseudo-bistability, we 

will mainly focus on the changes of the minimum reactive force due to imperfections. A negative 

imperfection increases the minimum reactive force, indicating that the imperfect dome moves towards 

monostable behavior, while a positive imperfection brings the minimum reactive force closer to zero, and 

therefore, closer to the boundary between the monostable and bistable behavior. On the other hand, under 

a constant imperfection amplitude (δ=-0.5h), the minimum reactive force increases with the decay width of 

polar angle, 𝛽𝐼. Consequently, the normalized snap time 𝑡𝑠𝑛𝑎𝑝/𝜏1
′

 of the imperfect domes also deviates 

from that of the perfect one (Fig.4c). Consistent results obtained from FEA and experiments show that a 

positive imperfect increases the snap time, while a negative imperfection decreases the snap time. The 

change of the normalized snap time, Δ𝑡𝑠𝑛𝑎𝑝/𝜏1
′ , increases with both the amplitude and decay width of the 

imperfection. However, the positive imperfections are more efficient in increasing 𝑡𝑠𝑛𝑎𝑝/𝜏1
′   than the 

negative imperfections in decreasing 𝑡𝑠𝑛𝑎𝑝/𝜏1
′ .  

 

Fig.4. (a)-(b) Normalized force and displacement relations of viscoelastic domes with imperfections of 

various amplitudes and decay widths from (a) FEA and (b) experiments. The four solid lines show the effect 

of different amplitudes for a fixed width, while the two dashed lines and the red line show the effect of 
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different widths for a fixed amplitude. (c) The corresponding changes of the normalized snap time with 

respect to that of the perfect dome, Δ𝑡𝑠𝑛𝑎𝑝/𝜏1
′ , from FEA (solid lines) and experiments (stars).  

5. A discrete model for pseudo-bistability  

In the literature, the phenomena of snap-through instability and pseudo-bistability of domes have been 

investigated by using discrete models to reveal the underlying mechanisms [8, 26, 27]. Here, a discrete 

model with an introduced geometric imperfection is developed to understand the effects of imperfections 

on pseudo-bistability observed in the FEA and experiments, and to predict the imperfection sensitivity of 

viscoelastic domes. In this section, perfect viscoelastic systems are first studied to show their instantaneous 

responses and dynamic behaviors. Then the roles that geometric imperfections play in stability, snapping 

time and critical relaxation time are illuminated.  

Following the literature [8], we simplify a viscoelastic dome by a discrete model consisting of a point 

mass, a vertical SLS material unit, and two tilted springs (Fig.5a). It is worth mentioning that the model in 

the literature [8] was used for an arch structure, whose difference from a dome is lack of a geometric 

constraint in the hoop direction. Since here we only consider axisymmetric deformation of domes, the 

deformation in both the radial and hoop directions, and therefore the corresponding energy terms, can be 

completely determined by the one-dimensional distributions of deflection and rotation of a dome, similar 

to that of an arch. Consequently, the effect of adding the energy caused by hoop deformation is equivalent 

to changing the effective stiffness of the vertical and tilted springs in the discrete model. Therefore, here 

we can still use it to study domes. Recall that the SLS model is degenerated from the generalized Maxwell-

Wiechert model when n=1, and it can describe both relaxation and creep with the minimum number of 

Maxwell elements. It is assumed that the mass is jointed to one end of the viscoelastic unit and one end of 

the tilted spring, while the other end of the tilted spring is connected with the base by a pin joint. When a 

vertical downward displacement 𝑣 is applied to the mass, the base would rotate around the pin joint. As 

the displacement increases, the energy of the vertical springs in the viscoelastic unit increases monotonically, 

representing the bending effect of a dome. In contrast, the energy of the tilted springs increases to the 

maximum value when they are horizontal, and then starts to decrease, which corresponds to the stretching 

effect of the dome. It is commonly recognized that it is the relative change between the bending and 

stretching energy caused by viscoelasticity that can trigger the transition between different stability states 

and drive the pseudo-bistable phenomenon. Therefore, introducing viscoelasticity only to the bending part 

here is enough to capture this behavior.  

The geometric imperfections are described as deviations of the mass from its perfect location by 

amplitude 𝛿 and width 𝑤1 (Fig.5a). Consequently, each tilted spring is divided into two parts including 
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the imperfect part with the defect and the perfect part. The stiffness of the tilted springs, the free linear 

spring in the viscoelastic unit, and the spring in the Maxwell element are denoted by 𝑘1𝑠, 𝑘2𝑠, 𝑘∞ and 

𝑘1, respectively, and the viscosity of the dashpot is denoted by 𝜂. Therefore, the initial stiffness of the 

viscoelastic unit without relaxation is 𝑘1 + 𝑘∞, while the long-term stiffness after full relaxation decays to 

𝑘∞. For the perfect system, the stiffness of the tilted spring is denoted by 𝑘𝑠, and the width and inclination 

angle of the tilted spring are 𝑤0 and 𝛼0, respectively. The inclination angle of the imperfect spring is 

denoted as 𝛼.  

5.1 Pseudo-bistability of a perfect system 

5.1.1 Instantaneous force-displacement responses  

In this section, the instantaneous force-displacement responses of perfect viscoelastic systems are first 

explored. The dome is suddenly loaded by a downward displacement v at the mass point m, and the 

corresponding reaction force f is calculated. Consequently, the change in the length of each tilted elastic 

spring ∆𝑙 can be approximately written as [8] 

 0 0

0

( 2 )
2

v
l v w

w
   ,  (4) 

under the assumption that 𝛼0  is small. The exact expression of ∆𝑙  and the corresponding results are 

presented in Supplementary information S2. As we will see later that the approximate formula gives us a 

similar trend in predicting the force-displacement responses of the discrete viscoelastic system (Fig.5b and 

Fig.S2). Therefore, to provide more straightforward understanding, the approximate formula under the 

assumption of small 𝛼0  is shown in the main text. It should be noted that the exact expression of ∆𝑙 

should be used for very deep domes. Since the instantaneous modulus of the SLS unit is 𝑘∞ + 𝑘1, the total 

energy of the SLS unit completely stored in its springs is 
1

2
(𝑘∞ + 𝑘1)𝑣2, and the potential energy of the 

system can be expressed as: 
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The equilibrium states can be obtained by minimizing the potential energy with respect to v 
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which leads to  

 1 0 0 0 02

0

( ) ( 2 )( )sk
f k k v v v w v w

w
      .  (7) 

We can normalize the equation as 

 
2

0 ( 2)( 1)rF K V V V V    ,  (8) 

with 

 
1

0 0 0 0

,  = ,  r

s s

k kf v
F V K

k w w k 


  , (9) 

where 𝐾𝑟 is the relative stiffness of the vertical SLS unit compared to the tilted elastic springs, representing 

the stiffness ratio of bending to stretching. The normalized instantaneous force-displacement behavior only 

depends on 𝛼0 and 𝐾𝑟. 

 Under different material and geometric parameters, the system shows different stability, which has also 

been observed in the literature [8]. Given a fixed inclination angle 𝛼0 = 0.8, the force-displacement curves 

for various 𝐾𝑟 are shown in Fig. 5b. When 𝐾𝑟 = 0.7, the force-displacement relation is monotonically 

increasing. When 𝐾𝑟 = 0.3, the force-displacement relation becomes non-monotonic, although the second 

limit point is still higher than zero, indicating monostable behavior. When 𝐾𝑟 is reduced to 0.16, the second 

limit point reaches zero, representing the transition from the monostable to bistable state. Bistable behavior 

is observed when 𝐾𝑟 = 0.1  with the second limit point lower than zero, yielding two additional 

intersection points with the x axis besides the origin.  

 To construct a phase diagram for the different stability behaviors with respect to 𝛼0  and 𝐾𝑟 , we 

determine the number of limit points and the value of the second limit point by finding the roots of the 

equation 𝜕𝐹/𝜕𝑉 = 0. The condition that there exist two limit points yields 

 
2

0 0rK   .  (10) 

Whether the system is monostable or bistable is further determined by the force value at the second limit 

point 𝑉2, 

 2

min 2 02 2 2

0 0 0

1 2 1
( ) (1 ) ( )

3 3 3 3 3 3

r r r
r

K K K
F F V V K 

  
        .  (11) 

When 𝐹𝑚𝑖𝑛 > 0, the system is monostable, and the dome recovers the initial state whenever it is unloaded. 

When 𝐹𝑚𝑖𝑛 < 0, the system is bistable. In particular, the equilibrium is stable when 0 < 𝑉 < 𝑉1 or 𝑉 >
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𝑉2, and unstable under the condition of 𝑉1 < V < 𝑉2, with 𝑉1 the first limit point. Based on the above 

criteria, a phase diagram composed of the monotonic, monostable and bistable regions with respect to 𝛼0 

and 𝐾𝑟  is plotted in Fig.5c. As a result, when 𝛼0  is large and 𝐾𝑟  is small the system is bistable. 

Decreasing 𝛼0 or increasing 𝐾𝑟 brings the system to the monostable region, until eventually the two limit 

points disappear, when the system becomes monotonic.  

 

Fig.5. Schematics of the discrete model and the results for perfect systems. (a) Discrete model of a 

viscoelastic dome with a predesigned geometric imperfection, including a point mass, a viscoelastic unit, 

and two tilted springs with each divided into an imperfect and a perfect part. (b) Representative force-

displacement responses showing bistable ( 𝛼0 = 0.8, 𝐾𝑟 = 0.1 ), monostable ( 𝛼0 = 0.8, 𝐾𝑟 = 0.3 ), 

monotonic (𝛼0 = 0.8, 𝐾𝑟 = 0.7) and critical behavior on the boundary between bistable and monostable 

states (𝛼0 = 0.8, 𝐾𝑟 = 0.16). (c) Phase diagram of monotonic, monostable, and bistable behaviors with 

respect to 𝛼0 and 𝐾𝑟, where the stars represent the parameters used for the force-displacement curves in 

b. (d) Trajectories of the mass as functions of time for a monostable system (𝐾𝑟 = 0.3840), bistable system 

(𝐾𝑟 =0.2560) and pseudo-bistable system (𝐾𝑟 =0.3206) under an instantaneous normalized displacement 

loading 𝑉1 = 1.5, relaxation for 𝑇𝑟𝑒𝑙=10, and recovery, with the other parameters fixed as 𝐾̃=0.5, 𝛼0 =

0.8 and 𝑇𝑟=0.01. 
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5.1.2 Dynamic pseudo-bistability behaviors 

Next, the dynamics of the perfect system in the different stability regions is investigated to especially 

unravel the pseudo-bistability behavior. Recall that a sudden downward displacement is applied to the mass 

m at t=0, which is kept constant during the time period of 0-𝑡𝑟𝑒𝑙. At 𝑡 = 𝑡𝑟𝑒𝑙, the external force f is removed 

to release the mass. The relation between the total force 𝑓𝑏  applied to the viscoelastic unit and the 

displacement v can be expressed as  

 
1

1 1

1 1b
b

dfk k kdv
v f

k dt k dt 
 

   .  (12) 

Accounting for the downward indentation force f, and the forces from the vertical viscoelastic unit and tilted 

springs, the conservation of momentum of the mass is described as 

 

2

0 0 0 02 2

0

( 2 )( )s
b

k vd v
m v w w v f f

dt w
      ,  (13) 

where the first term on the right hand side of Eq. (13) represents the force from the tilted springs obtained 

in Eq. (7). Eq. (12) and Eq. (13) can be normalized as the following 

 (1 ) b
r r b

dFdV
K K K V F

dT dT
    ,  (14) 

 
2

2

02
( 2)(1 )r b

d V
T V V V F F

dT
     ,  (15) 

where  

 

2

1 1 1

2

0 0 1

,  ,  ,  b
b r

s s

fk t mk k
T F T K

k w k k k   

   


,  (16) 

besides the dimensionless variables and parameters defined in Eq. (8). The dimensionless parameter 𝐾̃ 

represents the degree of relaxation of the viscoelastic unit. Time t is normalized by the viscoelastic time 

scale 𝜂 𝑘1⁄ , and the dimensionless parameter 𝑇𝑟 indicates the square of the time scale ratio of the period 

of resonance √𝑚 𝑘𝑠⁄  to viscoelasticity 𝜂 𝑘1⁄ . 

 In the relaxation step, the external force evolves as a result of the stress relaxation in the viscoelastic part, 

while the displacement 𝑉0 applied suddenly in the deformation step remains a constant. The external force 

𝐹 as a function of time is entirely determined by 𝑉0 and the effective stiffness of the viscoelastic unit, which 

evolves with time 𝐾𝑟
𝑒𝑓𝑓

(𝑇), 0( ) ( , ( ))eff

rF T F V K T . Solving the effective stiffness 𝐾𝑟
𝑒𝑓𝑓

(𝑇) using Eq. 

(14) by prescribing the step displacement 𝑉0𝐻(𝑡), and plugging 𝐹𝑏 back to Eq. (15) yield  
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2

0 0 0 0 0( ) ( ) ( 2)( 1),

( ) (1 ).

eff

r

eff T

r r

F T V K T V V V

K T K K Ke





   

  
 (17) 

Then we can get the expression of the external force for the entire process by describing it with the 

Heaviside step function as 𝐹 = 𝐹[1 − 𝐻(𝑇 − 𝑇𝑟𝑒𝑙)]. In the release step, the external force is 0, and we can 

determine the evolution of 𝑉 by solving the coupled Eqs. (14) and (15) using the command ode45 in 

MATLAB with the following initial conditions of 𝑉, 𝑉̇ and 𝐹𝑏 at T=𝑇𝑟𝑒𝑙 

 0 0,  0,  ( )eff

b r relV V V F K T V   . (18) 

By prescribing the parameters 𝐾̃ = 0.5, 𝛼0 = 0.8, 𝑇𝑟 = 0.01, 𝑉0 = 1.5, and varying 𝐾𝑟, we show the 

typical dynamic behaviors of the system in Fig.5d, including the monostable, bistable and pseudo-bistable 

behaviors. After being applied an instantaneous displacement 𝑉0, the mass is held for a certain amount of 

time 𝑇𝑟𝑒𝑙 = 𝑡𝑟𝑒𝑙𝑘1/𝜂 = 10 before being released. When 𝐾𝑟 = 0.3840, the system is monostable, rapidly 

recovers its initial state, and vibrates around it once the load is released. As the relative stiffness 𝐾𝑟 

decreases, the system becomes bistable. Once the indenter is released, the bistable system with 𝐾𝑟 =

0.2560 snaps to the inverted state, instead of the initial state. However, when 𝐾𝑟 = 0.3206, the response 

of the system after the indenter is released is considerably slowed down. The mass remains at an almost 

constant position for a few times of the viscoelastic relaxation time, until it rapidly accelerates, snaps back 

to the initial sate, which is the pseudo-bistable behavior, and vibrates around the initial state. Note that no 

vibration is observed in the FEA, since numerical damping is applied. We will next use the discrete mode 

to investigate the effect of geometric imperfections on the pseudo-bistability. 

5.2 Imperfection-sensitivity of pseudo-bistability 

We present here the role of geometric imperfections in changing the pseudo-bistable behavior and the 

imperfection-sensitivity of dynamic behavior and critical relaxation time, which refers to the minimum 

relaxation time required for a structure to show pseudo-bistability. The results from the discrete model will 

be used to qualitatively compared with and explain the observations from the FEA and experiments. 

A deviation of the mass from its perfect position by a small amplitude 𝛿 and width 𝑤1 is introduced, 

consequently altering the inclination angle of imperfect part from 𝛼0 to 𝛼  

 0 0

1

tan tan
w


       .  (19) 

The tilted spring is divided into two parts by the imperfection, which are imperfect part with stiffness 𝑘1𝑠 

and width 𝑤1, and perfect part with stiffness 𝑘2𝑠 and width 𝑤2. The displacements of the connected point 
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in vertical and horizontal direction are denoted as 𝑣2 and 𝑢2. When the dome is loaded by a downward 

displacement 𝑣1 at the mass point, the changes in the lengths of the two tilted parts can be approximately 

written as 

 

2 2

1 2 1 2 2 1 1 1 2

1

2 2

2 2 2 2 2 0 2 2

2

1
( ( ) 2 2 ( )),

2

1
( 2 2 ).

2

l u v v u w w v v
w

l u v u w w v
w





      

    

 (20) 

So, the potential energy of the system can be expressed as: 

 2 2 2

1 1 1 1 2 2 1

1
( ) ( )

2
s sv k k v k l k l fv        . (21) 

The equilibrium states can be obtained by minimizing the potential energy with respect to the displacements 
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 (22) 

It is assumed that the stiffness of imperfect and perfect parts satisfies 

 
2 1

1 2 1 2

1 1 1
, .s

s s s s

k w

k w k k k
     (23) 

Then the equilibrium Eqs. (22) can be derived as 
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
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  (24) 

We can normalize the equations as 
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with  

              
1 2

1 2 2 1 2 2 1 2

0 0 0 0

1
( , , )= ( , , ),  ,

w w
V V U v v u W W

w w w
  ,                        (26) 

besides the dimensionless variables and parameters defined in Eq. (8). 

We plot the instantaneous force-displacement relations for the system with a small imperfection of 

various amplitudes 𝛿 =  -0.06𝑤0 , -0.02𝑤0 , 0.02𝑤0  and 0.06𝑤0  and width 𝑤1 = 𝑤0  to compare with 

that of the perfect system (Fig.6a). Please note that here the imperfection amplitude is scaled by the width 

of the dome, 𝑤0, instead of the thickness, since 𝑤0 is the only length scale in the discrete model. If we 

convert 𝛿 ℎ⁄  in the experiments and FEA to 𝛿 𝑤0⁄  using the prescribed ℎ 𝑤0⁄ , and compare the results 

with those of the discrete model, we can see that the amplitudes are on the same order of magnitude, which 

means we are using similar defect sizes. The perfect system with the parameters 𝐾̃=0.5, 𝛼0 = 0.8 and 

𝐾𝑟 =0.1626 is monostable, but is near the boundary between the monostable and bistable behavior. A 

negative imperfection decreases the maximum force, while increases the minimum force (Fig. 6b). On the 

other hand, a positive imperfection increases the maximum force, while decreases the minimum force. This 

means a negative imperfection pushes the system further deeper into the monostable region, while a positive 

imperfection pulls the system closer to the boundary, or even to transit to the bistable region when the 

minimum force is less than zero. The deviation from the perfect system increases as the amplitude of the 

imperfection increases. The results agree with the FEA and experiments. Therefore, a geometric 

imperfection with a relatively small amplitude could result in significant variations of the mechanical 

responses of domes, and can even be harnessed to program stability. When the width of the imperfection 

𝑤1 is smaller, the deviation of the force-displacement curve from the perfect one is smaller (Figs. S3 and 

S4); see Supplementary information S3 for more details.  

The dynamic trajectories of the system same as the pseudo-bistable case in Fig. 5d (𝐾𝑟=0.3206) but 

with both positive and negative imperfections (𝛿 = -0.02𝑤0~0.04𝑤0, 𝑤1 = 𝑤0) are plotted in Fig.6c. For 

a negative imperfection, the snap time is observed to decrease as the amplitude of the imperfection increases, 

until reaching around zero, which approaches the monostable behavior. The snap time drops sharply at 

small imperfection amplitudes, and reaches a plateau at large imperfection amplitudes (Fig. 6d). When a 

small positive imperfection is introduced, the snap time increases with the amplitude of the imperfection 

(𝛿/𝑤0 = 5 ∗ 10−4, the cyan curve in Fig. 6c). However, when the amplitude of the imperfection is large 

enough, the system becomes bistable with an infinite snap time (Fig. 6d). The dynamic results match well 
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with the trend observed in the FEA and experiments that a negative defect shifts the system towards the 

monostable behavior while a positive defect shifts the system towards the bistable behavior in the 

instantaneous response. It is worth mentioning that the dependence of the variation of the snap time on the 

amplitude of the imperfection is not linear (Fig. 6d). Specifically, the snap time and stability can change 

significantly with the amplitude of the imperfection near the threshold of a pseudo-bistable state, while they 

only change slightly far away from the threshold. We see a small variation of geometry (𝛼0=0.795) from 

the system (𝛼0=0.8), which is close to the boundary between monostability and bistability, leads to visible 

difference of snap time in Fig.6d.  

We now explore how an imperfection affects the critical relaxation time under various geometric and 

material parameters. Pseudo-bistable behavior would occur if the force at the second limit point 𝐹𝑚𝑖𝑛 is 

instantaneously greater than 0 and less than 0 after a long-term relaxation, yielding  
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
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To determine the critical relaxation time 𝑇𝑟𝑒𝑙
𝑐  , we replace 𝐾𝑟  in Eq. (11) by 𝐾𝑟

𝑒𝑓𝑓
(𝑇𝑟𝑒𝑙

𝑐 )  and use the 

condition  

 min 0( ( ), ) 0eff c

r relF K T   . (28) 

We then expect the system will become pseudo-bistable when the relaxation time is larger than the critical 

value 𝑇𝑟𝑒𝑙 > 𝑇𝑟𝑒𝑙
𝑐 . Fig.6e shows the critical relaxation time changes with the relative stiffness 𝐾𝑟  for 

different imperfection amplitudes and inclination angles. The region of negative relaxation time 𝑇𝑟𝑒𝑙
𝑐 < 0 

means the system is instantaneously bistable. It is reasonable that 𝑇𝑟𝑒𝑙
𝑐  increases with the relative stiffness, 

and decreases with the inclination angle, because larger relative stiffness or a smaller inclination angle shifts 

the system towards the monostable region (Fig.5b), corresponding to a longer relaxation time. Similarly, a 

negative imperfection increases 𝑇𝑟𝑒𝑙
𝑐  , while a positive imperfection decreases 𝑇𝑟𝑒𝑙

𝑐  , because a negative 

imperfection also shifts the system towards the monostable region.  
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Fig.6. Results of the discrete model for imperfect systems. (a) Instantaneous force-displacement curves of 

the system with a predesigned geometric imperfection of a width 𝑤1 = 𝑤0 and an amplitude varied from 
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-0.06𝑤0  to 0.06𝑤0 . (b) Dependence of the minimum force on the amplitude of the imperfection. (c) 

Dynamic responses of imperfect systems show a decrease of the snap time when the imperfection is 

negative, and an increase of the snap time when the imperfection is positive. (d) Snap time as a function of 

imperfection amplitude under different inclination angle 𝛼0. (e) The imperfection sensitivity of the critical 

relaxation time under various geometric and material parameters. 

 

6. Conclusions 

In conclusion, this paper investigates the effect of geometric imperfections on pseudo-bistability of 

spherical viscoelastic domes by combining FEA, experiments, and analytical modeling. The amplitude and 

profile of imperfections are systematically varied and accurately controlled in both the FEA and 

experiments. Experimentally, perfect and imperfect silicone rubber domes are fabricated through 3D printed 

molds, and characterized for pseudo-bistable behavior with a loading procedure of deforming, holding and 

releasing by a custom-mounted indenter. The similar loading process is applied in FEA to examine the 

dynamic responses of both perfect and imperfect domes made of a generalized Maxwell-Wiechert material 

fitted to the relaxation test data. A discrete dynamic model of a viscoelastic dome is further developed to 

understand the geometric role of imperfections in the pseudo-bistable behavior. The results from the 

experiments, FEA, and discrete model agree well with each other, and show that a positive imperfection 

shifts a viscoelastic dome towards bistable behavior, corresponding to a longer snap time, while a negative 

imperfection shifts the dome towards monostable behavior, resulting in a shorter snap time. The discrete 

model unravels that the effect of an imperfection on snap time and stability is particularly strong when the 

system is near the threshold of a pseudo-bistable state. This work can motivate future exploration of the 

effect of imperfection shape and material properties on pseudo-bistability, and provide more opportunities 

for multi-functional designs [38-41]. It can also open up potential novel applications of viscoelastic domes 

by combining structural instability, geometric imperfections, especially with stimuli-responsive materials, 

whose material properties and geometry can change in response to external stimuli.  
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Appendix A. Supplementary data 

Supplementary material related to this article is provided.  
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