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Abstract 

Stimuli-responsive materials have been designed for self-sustained soft robots. Using a 

photo-thermally responsive hydrogel cantilever as a model system, this paper investigates 

its mechanism of and energy flow in self-excited oscillation under a constant light source. 

Based on an analytical model, we show that a periodic photo moment, produced by non-

uniform water concentration across the cantilever’s thickness driven by diffusion, is 

imposed on the cantilever by the ever-switching light incidence between the top and bottom 

surfaces. The synergy between the photo moment and oscillation ensures positive work 

input to the cantilever when the diffusion time scale is comparable to the period of free 

oscillation. When the input energy is higher than the damping energy, the oscillation 

amplitude increases, while when the input energy is lower, the amplitude decreases. Based 

on dimensional energy analysis, we determine the stable oscillation amplitude, and 

construct phase diagrams for the increase and decrease of the oscillation amplitude, which 

are further confirmed experimentally. A mass-spring-damper system subjected to a 

displacement-dependent excitation force is developed to investigate the features in 

generalized self-excited oscillating systems. This work lays a solid foundation for 

understanding self-excited oscillation, and provides design guidelines for self-sustainable 

soft robots. 

 

Ⅰ. Introduction 

Stimuli-responsive materials can alter their shapes, volumes or functions in response 

to external stimuli, such as heat, light, chemical, or electrical fields [1]. Building soft robots 

with stimuli-responsive materials is the most promising strategy to achieve their 

miniaturization and untethered locomotion. However, to accomplish sustainable motions 

of such soft robots, complex control of external stimuli is usually essential [2–6]. An 

emergent trend is designing self-sustainable soft robots that can maintain motions under 

simple or constant external stimuli through the sophisticated interaction between stimuli-

responsive materials and external stimuli [7–15]. 

One of the most useful self-sustainable motions is self-excited oscillation, i.e. 

autonomous oscillation of stimuli-responsive materials without artificially switching on/off 

external stimuli [8,16–21]. It is especially inspired by biological rhythms, i.e. oscillatory 

changes of chemical or mechanical functions, in living organisms; examples include 

circadian clocks and heartbeats. A hydrogel with its polymer network undergoing a non-

equilibrium oscillatory reaction, such as Belousov–Zhabotinsky reaction, is capable of 

autonomous swelling and deswelling cycles [22,23]. A humidity-responsive material in a 
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humidity gradient can bend and oscillate [24]. An alternative strategy is to utilize the fact 

that deformation of photo-responsive materials can alter or even block light incidence 

[13,25], which drives the recovery of the deformation, inducing a cyclic response. 

Autonomous oscillation [16,26–29] and continuous wave propagation [30] have been 

achieved and modeled [7,31–33] in photo-responsive liquid crystal elastomers and 

hydrogels under constant light radiation. Although the process of the self-excited 

oscillation is relatively intuitive, it is not clear how the autonomous oscillation is 

maintained through the sophisticated interaction and energy flow between the stimuli-

responsive materials and external stimuli, and how material and geometric parameters 

govern the stable oscillation behavior. 

Here we investigate a photo-driven self-excited hydrogel oscillator that can 

autonomously vibrate under constant light, and determine its stable oscillation behavior by 

examining its energy flow (Fig. 1). A hydrogel is a polymer network dispersed in water. In 

a photo-thermally responsive hydrogel, heating due to photo-absorption can trigger a 

chemical potential increase of the water molecules, and induce deswelling of the hydrogel. 

When the photo-thermally responsive hydrogel cantilever (Fig. 1a) deviates from its 

horizontal rest position, the light is shined on one of its surfaces, driving water molecules 

to diffuse out of the hydrogel and forming a concentration gradient, which produces a 

moment to bend the cantilever towards the opposite direction. Since the moment is photo-

induced, we simply call it photo moment. Once the cantilever deflects beyond the rest 

position, the light relocates onto the opposite surface, creating an additional negative photo 

moment to bend the cantilever back to the original side. This process can go on periodically 

under an ever-switching photo moment. Our system falls into the categories of non-smooth 

piecewise systems and non-harmonic dynamically shifted oscillators [34–37]. We will 

analyze the work input into the hydrogel through its sophisticated interaction with the 

constant light, and the damping energy output to the external water. Balance of the work 

input and damping energy will allow us to determine the stable oscillation amplitude, 

which is governed by several dimensionless material and geometric parameters. We will 

theoretically and experimentally show that oscillation with a different amplitude will 

autonomously increase or decrease its amplitude until reaching the stable value. A 

simplified mass-spring-damper model is further developed to manifest the mechanism of 

and energy flow in generalized self-excited oscillating systems. 

 

Ⅱ. Theory for self-excited hydrogel oscillators 
We model vibration of a hydrogel cantilever of length L and thickness h in water 

triggered by constant light radiation in the axial direction (Fig. 1a). The cantilever is 

assumed to undergo a small deflection  ,w x t  with respect to its equilibrium free swelling 

state, as a function of the coordinate x and time t, governed by  
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with density  , cross section area A, Young’s modulus E, and area moment of inertia I

. The second term assumes that the damping force on a unit length of the hydrogel is 

proportional to the deflection velocity, with the damping coefficient c, due to the drag from 

the water. With the left end clamped and the right end free, the boundary conditions are 
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The term on the right hand side of Eq. (1) is the distributed load produced by the photo 

moment / phEI R , where phR  is the spontaneous radius of curvature in the illuminated 

region ph[0, ]x d  arising from a gradient of photo-driven deformation through the 

thickness. This causes local bending of the beam in the region ph[0, ]x d . The spontaneous 

curvature can be obtained as (Appendix A) 

ph ph1/ ( ) d
A

R z z A I   ,  (3) 

where  ph ph ph ph( ) diag ( ), ( ), ( )z z z z  ε  is the the spontaneous photo-strain at the 

position z induced by the photo-driven diffusion. Assuming the hydrogel undergoes pure 

bending with respect to the non-irradiated state, the photo-strain is related to the water 

concentration C through    ph 0( ) [ ( ) 1 / 1 1] / 3z C z C      , where 0C  is the water 

concentration in hydrogel when the hydrogel is in equilibrium with pure water without 

radiation. 

We model the photo-thermally driven water migration as a one-dimensional 

diffusion problem along the thickness [38,39]  
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where z  is the stretch ratio of the hydrogel in the current state with respect to its non-

radiated equalibrium state,   is the chemical potential of the water molecules in the 

hydrogel (defined in Appendix A), and D  is the diffusivity of water molecules in the 

hydrogel. Although it should be noted that hydrogels may have different diffusion kinetics 

for swelling and deswelling [40], here in our theory, we just use Eq. (4)(4) to describe both 

swelling and deswelling. To capture that water molecules diffuse out of the hydrogel 

through the illuminated surface, we simply assume the light changes the chemical potential 

of the water molecules on the illuminated boundary, i.e. apply ph 0     on the 

illuminated surface and 0   on the non-illuminated surface.  

The photo-induced bending curvature Eq. (3)(3) produces a photo moment in the region 

ph[0, ]x d  in Eq. (1). In the meantime, ph ( )z  is governed by the diffusion equation (4). 

Solving Eqs. (1) and (4)(4) together, we can fully determine the spatiotemporal response of 

the photo-driven hydrogel oscillator. Both equations (1) and (4)(4) are solved by the forward-

time central-space finite difference method. The solution of Eq. (4)(4) will enable one to 

calculate the spontaneous radius of curvature by Eq. (3)(3) as an input to the right hand side 

of Eq. (1) at every time step. In such a coupling process between the beam vibration and 

water diffusion, there are three time scales, the viscous relaxation time scale ct A c , 

the inertia time scale 
4
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Eq. (1) and Eq. (4)(4), which leads to two time-scale ratios i ct t  and i dt t . Clearly, the time-

scale ratio i ct t  represents the normalized damping factor, indicating how large the 

damping force is compared to the inertia force, and i dt t  represents the normalized 

diffusivity, indicating how fast the water diffuses compared to the vibration velocity. We 

shall show these two normalized parameters can greatly influence the vibration behavior. 

 

Ⅲ. Results 

A. Amplitude increase and decrease 

A cantilever starting from the horizontal position with an initial velocity,  0 0v x x

, vibrates under inertia and radiation. Following our previous work [7], parameters for all 

simulations are set as 
ph / 1/ 20d L  , 310N   , 0.3  , 
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 
0 1 3iv t LL    and / 10L h  , unless otherwise stated. Two types of vibration behavior 

are observed: the amplitude of the deflection decreases (Fig. 1b and Movie S1 within the 

Supplemental Material [41]) or increases (Fig. 1c and Movie S2 within the Supplemental 

Material [41]) over time, and saturates when time is long enough for both cases. Although 

the light radiation is constant, it passively switches its incident spot piecewise between the 

top and bottom surfaces in the same period as the oscillation, forming a photo-driven self-

excited oscillation. Whether the amplitude decreases or increases depends on different 

parameters, including the normalized damping factor, the normalized diffusivity, the 

geometry, the radiation-induced chemical potential decrease, and the initial velocity. As a 

demonstration, we only vary the length-to-thickness ratio ( / 5L h   for Fig. 1b and 

/ 10L h   for Fig. 1c), and detailed phase diagrams for the increase and decrease of the 

oscillation amplitude will be provided later. The angular frequencies in both cases are close 

to the classical limit of cantilever vibration, i3.5 / t , indicating that the bending shape is 

roughly in the 1st mode of cantilever vibration (Figs. 1b and c). 

B. Experiments 
To experimentally verify the existence of both cases of amplitude increasing and 

decreasing, we demonstrate oscillation of a Poly(N-isopropylacrylamide) (PNIPAAm) 

hydrogel (Fig. 1d), where gold nanoparticles (AuNPs) are added to incorporate the photo-

thermal effect [7]. To fabricate hydrogel pillars, the AuNPs/PNIPAAm precursor solution 

was prepared with 40 wt% NIPAAm monomer, 1.5 wt% N,N′-methylenebis(acrylamide) 

(BIS), 0.5 vol% Darocur 1173, and 0.5 wt% AuNPs in dimethyl sulfoxide, and then cured 

in a PDMS mold under UV light for 80 s. Details of the synthesis and characterization of 

the gold nanoparticles can be found in the literature [7]. Pillars with a circular cross-section 

of two different diameters were fabricated. The as-prepared diameters were 0.71 mm and 

0.50 mm, and the corresponding equilibrium swelling diameters were 0.9 mm and 0.56 

mm, respectively. After the hydrogels reach equilibrium in water, the Young’s modulus is 

measured to be 6.3kPa. Upon exposure to a green laser (532 nm and ≥ 200 mW with the 

beam diameter of 1 mm), the hydrogel is heated on the front surface due to photo absorption 

of the gold nanoparticles. Once the temperature reaches the lower critical solution 

temperature (LCST) of PNIPAAm (~32℃), water molecules diffuse out, which creates a 

concentration gradient in the thickness direction, and bends the initially vertical hydrogel 



pillar to the horizontal direction, followed by autonomous oscillation of the effective 

cantilever about the horizontal plane (Fig. 1d). For a hydrogel cantilever of a length L = 17 

mm, the amplitude decays over time when the diameter is h = 0.9 mm (L/h = 18.9, Fig. 1e 

and Movie S3 within the Supplemental Material [41]), while the amplitude grows over 

time when the diameter is h = 0.56 mm (L/h = 30.4, Fig. 1f and Movie S4 within the 

Supplemental Material [41]). 

It should be noted that there are some differences between the theoretical modeling 

and the experiment. Our goal is to build a generic framework to study the self-excitation 

of hydrogel beam structures and understand the mechanism of the self-excitation. The 

experiment is a demonstration of the self-excitation phenomenon. In the experiment, the 

hydrogel pillar is bent from the initially vertical position to the horizontal direction, while 

a horizonal hydrogel cantilever is modelled in the theory. The experimental setup is to give 

a substantial initial speed of the hydrogel beam as it hits the horizontal position. Our theory 

starts from a horizontal position with an input initial speed, so the theory and experiment 

are consistent. We skip the initial process from the vertical to horizontal position in the 

theory since that is not the essential part we are interested in. In the experiment, when the 

hydrogel is at the largest downward deflection, the light is almost blocked by its tip, leading 

to different boundary conditions between the top and bottom surfaces. Ideally, when the 

beam is thin enough, the light could be shined on the corner of the top surface, resulting in 

better agreement between the experiment and theory. On the other hand, our theory is also 

capable of modeling the case when the light is blocked by the tip of the hydrogel by setting 

the chemical potential boundary condition of the top surface to be always zero. 

C. Without damping 
To understand the requirements for a self-excited oscillation, we first investigate the 

effect of the normalized diffusivity for an ideal scenario without damping. When the 

diffusion time scale is comparable to the inertia time scale ( i d/ 1t t   in Fig. 2a), the 

vibration amplitude increases over time. The amplitude grows without saturation due to 

lack of damping. The photo curvature changes in a periodic manner, but with about 𝜋 2⁄  

phase lag with respect to the tip deflection due to the non-equilibrium diffusion process 

(Fig. 2a). The photo curvature is a consequence of inhomogeneous distribution of water 

concentration C and photo strain ph  through the thickness direction (Fig. 2c). The work 

done to the cantilever by the light over time t  can be calculated as   ph
0

/
t

lW EI R dt   

, where   is the change rate of the angle at phx d  (Fig. 2b). The irregular time response 

of   is due to the vibration with multiple modes. When the cantilever strokes downward 

from the horizontal position, the radiation spot leaves the bottom surface and moves onto 

the top surface, and the photo curvature reaches the valley (insets of Fig. 2a). The radiation 

on the top surface decreases the water concentration in its vicinity, and increases the photo 

curvature. Due to diffusion, it takes some time (less than a quarter period) for the curvature 

to reach zero. Considering that   is negative, the photo moment does positive and 

negative work to the cantilever, before and after the curvature reaches zero, respectively 

(insets of Figs. 2a and b). After the tip deflection reaches its valley,   becomes positive 

and the photo moment does positive work to the cantilever again. When the cantilever hits 

the horizontal line, the irradiated spot switches to the bottom surface, and the photo 

curvature reaches its peak. Therefore, within the half vibration period, the total work done 



to the cantilever first increases, then decreases and increases again (insets of Fig. 2b); the 

total work follows the similar trend within the next half period. Due to the synergy of the 

photo moment and the change rate of the bending angle, the net work done to the system 

over a period is positive, which leads to the increase of the deflection amplitude. When the 

cantilever just starts to vibrate, the water concentration only decreases in the outer layer in 

response to the radiation (the black curve in Fig. 2c). In the later cycles, the outer layer on 

the side illuminated shrinks more, and the outer layer without radiation partially re-swells. 

The shrinkage zone goes deeper and deeper into the cantilever (the red curve in Fig. 2c), 

and eventually saturates.  

When the diffusion is much slower than the vibration, the beam vibrates periodically 

with a fixed amplitude ( 0 0001i dt t .  in Fig. 2d), as the photo moment built up in a time 

scale of inertia is so small that the work done to the cantilever is negligible. When the 

diffusion is much faster than the vibration, the photo curvature acts like a step-function 

excitation (Appendix B). Therefore, once the cantilever goes below the horizontal line, the 

photo curvature immediately becomes positive, so the positive and negative work cancel 

each other, and vice versa. Also since the diffusion is fast, it perturbs the regular bending 

mode of the cantilever, leading to the excitation composed of multiple bending modes other 

than the 1st mode. In this case, the beam will block the light, violating the assumption that 

the beam is shined in the region ph[0, ]x d . Therefore, in our later study, the normalized 

diffusivity will be limited to less than 20. Below this limit, a higher normalized diffusivity 

leads to a larger photo moment and higher work input, which increases the amplitude of 

the deflection faster (Fig. 2e).  

D. With damping 
Next, we consider self-excited hydrogel oscillators subjected to damping. Given 

different normalized damping factors, the tip deflection amplitude wA  either increases or 

decreases over time and then saturates (Fig. 3a), the saturated value is called the stable 

amplitude. As the normalized damping factor increases, the stable amplitude decreases 

(Fig. 3a), and the diminishing amplitude causes the angular frequency 2 pT   to 

increase (Fig. 3b), where pT  is the period of the vibration. The normalized diffusivities 

i d/t t  within certain range show little effect on the vibration frequency (Fig. 3b). If the 

normalized diffusivity is further increased, i.e. i d/ 100000t t  , the vibration frequency 

increases (Appendix B). The energy loss due to damping over time t  can be calculated as 

  2

0 0

t L

cW cw dxdt    . As a result, when the cantilever just starts to vibrate, the system with 

a larger normalized damping factor exhibits higher energy dissipation. However, when the 

vibration reaches the steady state, it has lower energy dissipation due to a lower stable 

amplitude (Fig. 3c), implying the energy loss is influenced by both the vibration amplitude 

and damping factor. 

E. Scaling analysis for energy flow 
We further investigate the effect of other parameters on the self-excited oscillation, 

and conduct scaling analysis for the work input and energy dissipation to construct a phase 

diagram for the increase and decrease of the oscillation amplitude (Figs. 4 and 5). The 



radiation does work 
ph

0
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pT

lpW EI R dt   to the cantilever over a period. Since the bending 

angle scales as ~ /wA L , the work done to the cantilever can be rewritten as 

 ph~ /lp wW EIA R L . Using Eq. (3)(3) and assuming a linear distribution of spontaneous photo 

strain along the thickness direction, we find that the spontaneous radius of curvature scales 

with the square of the thickness, 
2

ph ~R h , is inversely proportional to the diffusion 

thickness pDT , and nonlinearly depends on the photo chemical potential ph B/ k T  

(Appendix C). Therefore, the work per period can be further rewritten as 

  2

ph B~ / /lp w pW f k T EIA DT Lh , with f  an increasing function of ph B/ k T . As Fig. 

3b shows, the period pT  can be further expressed as  ,i i d i ct g t t t t , where g  is a weak 

function of i dt t  and i ct t , and we can treat it as a constant. Combining with the diffusion 

time scale 
2

d /t h D , we have  

     ph B~ / 1lp wi d
W f k T A Lh EI t t .  (5) 

In the meantime, the cantilever loses energy over a period due to damping can be calculated 

by 2

0 0
~

pT L

cpW cw dxdt  , where the deflection w scales with the tip amplitude wA , so we 

have 

    
22 3~ 1cp w p i wW cLA T t A LcL .  (6) 

Consistent with the classical self-excited oscillation [42], our numerical results indeed 

show that under various damping factors and geometric parameters the normalized work 

done to the cantilever  lp i dW h EI t t  is proportional to the normalized tip amplitude 

wA L  with the fitted slope 
33.793 10lk    (Fig. 4a), and the normalized damping energy 

3

cp iW t cL  is proportional to the square of the normalized tip amplitude  
2

wA L  with the 

fitted slope 2.895ck   (Fig. 4b). To further compare the work input and energy dissipation 

within a period, we normalize both of them by 
3

icL t , which are equal to 

    l w i d i ck A L t t t tL h  and  
2

c wk A L , respectively, and are plotted as functions 

of 
wA L  (Fig. 4c). The results are based on the parameters 1i ct t  , 1i dt t   and / 10L h 

, which have not been used for the fitting in Fig. 4a and b. The intersection of the two 

curves determines the stable amplitude, and it agrees well with the results obtained in Fig. 

3a. By using lp cpW W , we obtain the scaling of the stable amplitude 
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Clearly, a higher normalized diffusivity i d/t t  , higher length-to-thickness ratio /L h  or 

lower normalized damping factor i ct t  increases the normalized work 
3

lp iW t cL , and 

therefore, increases the stable amplitude (Fig. 4c).  

Depending on whether the initial amplitude 0A  is smaller or larger than 
wA , the 

amplitude increases or decreases to reach 
wA . Since the initial amplitude scales with the 

initial velocity 0 0 0( ) ( )p iA L v L T L v L t L , the boundary between amplitude increase 

and decrease 0 wA L A L  gives 

    0 i ph B( ) ~ /
i d

i c

t tL
v L t L f k T

h t t
 .   (8) 

The decisive dimensionless material and geometric parameters for the phase boundary are 

ph B/ k T ,  0 i /v L t L , 
i dt t  , i ct t  and /L h . Consistent with Eq. (8), the numerical 

results show linear boundaries between the amplitude increase and decrease regions in the 

phase plane of c it t  and  0 i /v L t L  (Fig. 4d), the phase plane of i ct t  and i dt t  (Fig. 

4e), and the phase plane of i ct t and /L h  (Fig. 4f). Fig. 4g shows a nonlinear boundary 

between the amplitude increase and decrease in the phase plane of i ct t  and ph B/ k T . 

The successful prediction of the phase boundary further verifies the stable amplitude Eq. 

(7)(7). 

 Now let us use the scaling analysis to examine the oscillation behavior of the two 

hydrogel beams in the experiment. The inertia time scale 
4

i /t AL EI can be calculated 

as 0.51 s for the thick beam, and 0.82 s for the thin beam, given 𝜌 = 103𝑘𝑔/𝑚3. The 

corresponding frequencies can be approximated as 𝜔 ≈ 3.5/𝑡𝑖 = 6.84 rad/s and 4.26 

rad/s, respectively. These agree with the experimentally observed frequencies 6.28 rad/s 

and 1.19 rad/s, indicating the simplification of the hydrogels as cantilever beams vibrating 

in the 1st mode is reasonable. The deviation is because in the experiment the end of a 

horizontal hydrogel is not fixed, but connected to a vertical portion of the hydrogel, which 

has the freedom to vibrate itself; a thinner hydrogel pillar corresponds to a weaker 

boundary constraint, and therefore, a lower frequency. To further estimate the viscous 

relaxation time scale 𝑡𝑐 in the experiment, we have approximated the damping coefficient 

𝑐 to be 4.45 × 10−3𝑃𝑎 ∙ 𝑠 (Appendix D), and as a result, 0.14 sct A c   for the thick 

beam, and 0.055 sct   for the thin beam. By using the diffusivity of our hydrogel 𝐷 =

10−8 m2 s⁄ , we can calculate 
2

d / 81 st h D   for the thick beam, and 31.36 sdt   for the 

thin beam. Consequently, the normalized diffusivity 𝑡𝑖/𝑡𝑑 is 6.3 × 10−3 and the 

normalized damping factor 𝑡𝑖/𝑡𝑐 is 3.58 for the thick beam, while 𝑡𝑖/𝑡𝑑 = 2.62 × 10−2 

and 𝑡𝑖/𝑡𝑐  = 14.86 for the thin beam. The length-to-thickness ratios for the thick and thin 

beams in the experiment are L/h = 18.9 and 30.4, respectively. The spontaneous photo 

strain on the shined surface  0 ph B/f k T   (Appendix C) for PNIPAAm hydrogels can 

be estimated as 0.2. Using Eq. (8)(8), we can calculate the normalized stable amplitudes 



 ph B/
i d

i c

t tL
f k T

h t t
  are comparable for the thick and thin beams, and are 0.084 and 

0.066, respectively. However, as their normalized initial amplitudes 0 i( ) /v L t L  are very 

different, and are 0.12 and 9.7 × 10−3 for the thick and thin beams, respectively, this 

explains why we observe amplitude decrease in the thick beam and amplitude increase in 

the thin beam. Note that a pre-factor is needed on the right hand side of the scaling relation 

in Eq. (8)(8) to equate the initial amplitude to the stable amplitude. The pre-factor obtained 

from our numerical calculation is about 0.1, which makes the stable amplitude of the thin 

beam to be slightly smaller than the initial amplitude. Considering the simplicity of the 

scaling analysis, we can still claim its success in predicting the amplitude variation of the 

self-excited oscillation. Since the damping from water is high, it is usually challenging in 

observing autonomous vibration of hydrogels in water. In our experiments, the relatively 

high diffusivity of water in the hydrogels is the enabling factor for the self-excited 

oscillation. 

F. Mass-spring-damper system with non-smooth excitation force 

We further propose a simplified single-degree-of-freedom mass-spring-damper 

system to shed light on the various features we observe in the photo-driven hydrogel 

oscillator. Analogous to the photo moment, a position and time dependent forcing term F  

is added as an excitation force 
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

  
 (9) 

where m  is the mass, 𝛼 is the damping factor, k  is the stiffness of the spring,   denotes 

time derivative /d dt , F
 is an excitation force constant, and sgn(x)=|x|/x. The sgn term, as 

a non-smooth piecewise term, mimics the ever-switching light source in the hydrogel 

system. The excitation force F  changes exponentially in time, with a characteristic time 

scale   featuring a non-equilibrium process, such as diffusion or reaction. This simplified 

system, originating from the prototypical systems of dynamically shifted oscillators [34–

37], serves as a good approximation for us to understand the response-dependent excitation 

of the hydrogel cantilever. Similar to the hydrogel oscillator, we have three time scales, 

including the viscous relaxation time scale /m  , the inertia time scale /m k , and the 

excitation time scale  , which defines two time-scale ratios, the normalized damping factor 

km  and the normalized excitation velocity /m k  .  

First consider the ideal scenario where there is no damping 𝛼 = 0. When the 

excitation time scale is comparable to the inertia time scale, / / 1m k   , the vibration 

amplitude increases as a function of time and the trajectory on the phase plane diverges 

away from the initial position (Figs. 5a and d). When the excitation time scale is much 

larger than the inertia time scale, / / 0.001m k   , the excitation force F  is very small, 

and therefore, hardly affects the motion (Fig. 5b). The trajectory on the phase plane is close 

to a circle (Fig. 5e), indicating that the motion is similar to a harmonic oscillation. The 

amplitude can decrease (Fig. 5c) by adding a damping term x  and the trajectory goes to 

a stable limit cycle on its phase plane (Fig. 5f). The simplified model predicts that a higher 



normalized damping factor km  or a higher normalized excitation velocity /m k   

raises the frequency /m k  (Fig. 5g), which is consistent with the prediction of the 

hydrogel cantilever model. The increase of frequency can be observed from the limit cycle 

that changes from circular to oval shape, where the ratio between the amplitude of velocity 

and displacement increases (Figs. 5f, h and i).  

We further study the work done and damping energy through scaling analysis. 

When the excitation velocity / /m k   is limited to less than 0.1, the normalized 

vabriation frequency is almost a constant. The work done by the force over a period is 

0

pT

fW Fxdt   and can be rewritten as    2
/ /f xW kA FF k m k   , where 

xA  is the 

vibration amplitude (Appendix E). The damping energy over a period is 2

0

pT

W x dt    

and can be rewritten as    
22

xW kA FF k km  
 (Appendix E). The numerical 

results prove that the normalized work   2
/ /fW F k m k 

    is proportional to the 

normalized amplitude 
xkA F

 (Fig. 5j), and the damping energy   2W F k km 
 
 

 

is proportional to the square of the normalized amplitude  
2

xkA F  (Fig. 5k). By equating 

fW  and W
, the stable amplitude is obtained as    /xkA F m k km  . 

Consistent with the prediction, the numerical results show that the stable amplitude is 

proportional to the excitation velocity and inversely proportional to the damping factor 

(Fig. 5l).  

 

Ⅳ. Conclusions 

This paper investigates the mechanism of and energy flow in photo-driven self-excited 

hydrogel oscillators, whose amplitude can increase or decrease with time under constant 

light radiation. When the hydrogel cantilever oscillates, the light incidence switches 

between the top and bottom surfaces, inducing a periodic photo moment with the same 

frequency as the oscillation. Since the photo moment is induced by an inhomogeneous 

distribution of water concentration through the thickness of the cantilever due to a non-

equilibrium diffusion process, diffusion kinetics determines the temporal evolution of the 

photo moment. We find that when the diffusion time scale is comparable to the inertia time 

scale, the vibration of the cantilever can reach a significantly high amplitude, and remain 

stable. By analyzing the work done by radiation, it turns out that the synergy between the 

photo moment and oscillation ensures positive photo-mechanical energy pumped into the 

system every cycle to maintain self-excited oscillation overcoming damping. Based on 

dimensional analysis, we find that the work input is proportional to the vibration amplitude 

and the damping energy is proportional to the square of the amplitude. The balance of the 

work input and the energy dissipation determines the stable amplitude, which turns out to 

scale with the length-to-thickness ratio /L h , square root of the normalized diffusivity i d/t t  

and inverse of the normalized damping factor i ct t , and depend on the radiation-induced 

chemical potential change of water ph B/ k T . By equating the initial and stable amplitude, 

we construct phase diagrams for the increase and decrease of the oscillation amplitude. To 



further shed light on the self-excited oscillation, a simplified mass-spring-damper system 

with a single degree-of-freedom is proposed to understand the major features and energy 

flow in generalized self-excited oscillating systems. The effect of the material and 

geometric parameters on the vibration frequency, amplitude and energy of the hydrogel 

cantilever can be mostly reproduced by the simplified system. This study elucidates the 

design requirements of stimuli-responsive self-excited oscillators. 
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Equation Chapter (Next) Section 1 

APPENDIX A: Theory for self-excited hydrogel oscillators 

We model vibration of a hydrogel cantilever of length L and thickness h in water 

triggered by constant light radiation in the axial direction (Fig. 1a). The cantilever is 

assumed to undergo small deflection  ,w x t , as a function of the coordinate x and time t, 

governed by  

 
 22 4

2 4 2

1/ phRw w w
A c EI EI

t t x x


  
  

   
,  (A1) 

with density  , cross section area A, Young’s modulus E, and area moment of inertia I . 

The second term assumes that the damping force on unit length of the hydrogel is 

proportional to the deflection velocity, with the damping coefficient c, due to the drag from 

the water. The term on the right hand side of Eq. (A1)(A1) is the distributed load produced by 

the photo moment / phEI R , where phR  is the spontaneous radius of curvature in the region 

ph[0, ]x d , with the width of the light beam phd , arising from a gradient of photo-driven 

deformation through the thickness, yet to be determined by solving a diffusion equation of 

water molecules. With the left end clamped and the right end free, the boundary conditions 

are 

 

2 3

2 3
(0, ) (0, ) 0,  ( , ) ( , ) 0

w w w
w t t L t L t

x x x

  
   
  

.       (A2) 

We model the diffusion of water molecules driven by a gradient of its chemical 

potential. The free energy density of a hydrogel consists of an elastic part and a mixing 

part,      net mix,W C W W C F F . The elastic part considers the elastic energy of the 

polymer network as a function of the deformation gradient F per volume in the reference 

dry state [43,44]  

      net B

1
tr 3 2log det

2

TW Nk T    
 

F FF F ,       (A3) 



where N is the crosslink density of the hydrogel, Bk  is the Boltzmann constant, and T  is 

the temperature. The mixing energy density between the polymer and water per reference 

volume is a function of the water concentration C, the number of water molecules per unit 

reference volume [45]  

  mix B log
1 1

C
W C k TC

C C

   
      

,       (A4) 

where   is the volume of a water molecule, and   is the Flory-Huggins interaction 

constant between the polymer and water. Both the polymer network and the water are 

assumed incompressible, so the volume change of the hydrogel is purely due to the 

migration of water molecules, det( ) 1J C   F . The chemical potential of the water 

molecules in the hydrogel,  , can be calculated as the following [38], 

 
W

C



 


,       (A5) 

where   is the osmotic pressure, determined by the boundary conditions. When the 

hydrogel freely swells in water without constraints, the Cauchy stress 

   T/ /W Jσ F F I           (A6) 

is zero, i.e. 0σ , and the osmotic pressure can be determined as  1 3

0 B 0 0Nk T      , 

where 0  is the equilibrium isotropic stretch ratio with respect to the dry state, relating to 

the water concentration 0C  by  
1/3

0 01 C   . The equilibrium water concentration 0C  

can be determined by  0 0C   using Eq. (A5), i.e. the chemical potential of water in the 

hydrogel equals that of the pure water outside the hydrogel. 

Absorption of light raises the temperature of the hydrogel on the irradiated surface, 

increasing the chemical potential of the water molecules, driving the water molecules to 

diffuse out of the hydrogel. Since the cantilever length is much larger than its thickness, 

water diffusion in the length direction can be neglected. We model the photo-thermally 

driven water migration as a one-dimensional diffusion problem along the thickness, with 

Z the reference coordinate in the thickness direction [38,39]  

  C M    ,       (A7) 

where M is the mobility tensor of water molecules in the hydrogel. To capture that the 

water molecules diffuse out of the hydrogel through the illuminated surface, we simply 

assume the light changes the chemical potential of the water molecules on the illuminated 

boundary, i.e. apply ph 0     on the illuminated surface and 0   on the non-

illuminated surface. 

Next, we decompose the total deformation gradient F  into 0
F F F , where 

 0 0 0 0, ,diag   F  maps the dry configuration to the wet non-irradiated one, and F  

maps the wet non-irradiated configuration to the current irradiated configuration. We 

assume that the deformation arising from the swelling of the hydrogel with respect to the 

dry configuration is finite, while the deformation of oscillation under light radiation can be 

considered small. With linearized strain  T / 2   ε F F I , the Cauchy stress σ  Eq. (A6) 

can be linearized as 



   B
0

0

2
1 tr

Nk T


   σ ε Iε .       (A8) 

Then the diffusion equation (A7)(A7) can be rewritten as 

 
2

B z

C D C

t k T z z





   
  

   

,       (A9) 

where 1z z    is the z component of F  after the linearization, and D  is the diffusivity 

of the water molecules in the hydrogel. The photo-driven diffusion induces a spontaneous 

photo-strain,  ph ph ph ph( ) diag ( ), ( ), ( )z z z z  ε  as a function of position z, where 

ph ( ) 0z  . We assume the hydrogel undergoes pure bending with respect to the non-

irradiated state. Since the total volume change is due to diffusion, we have 

   ph 0tr tr 1 / 1 1C Cε ε      , namely    ph 0( ) [ ( ) 1 / 1 1] / 3z C z C      . 

Based on pure bending, the total strain should be diagonal in its principal axes, 

 ( ) diag ( ), ( ), ( )x y zz z z z  ε , where ( )x z  can be deemed linear in z, having a neutral 

plane at nz , namely  n( ) /x z z z R   , with. R  is the radius of curvature of the beam. We 

will show how to determine nz  and 
phR  using mechanical equilibrium hereafter. When diffusion 

just starts, there could be an infinitesimal curvature along the y direction alongside with 

the x curvature, but it will be easily suppressed by the dominant curvature 1/ R  as its 

magnitude develops [46]. Assuming there is no stress along y and z, we can solve for 

 ph ntr / / 2y z z z R       ε , and the osmotic pressure 

   B
0

0

tr 1 trx

Nk T



    ε ε . Inserting   into Eq. (A8), we can determine the only 

non-vanishing stress component along x, 

 B n
ph

0

3
x

Nk T z z

R
 



 
  

 
.  (A10) 

Using the relationship B 03E Nk T   between the Young’s modulus and the crosslink 

density, we can see Eq. (A10) is reminiscent of the 1D classical stress-strain relationship 

in the presence of a thermal strain, except the prefactor associated with pre-radiation 

swelling. Applying the force free condition to Eq. (A10)(A10), namely d 0x
A

A  , we get 

n ph/ ( )d /
A

z R z A A  . Then we calculate the internal moment using Eq. (A10)(A10), 

 ph
1 1dx

A
R Rz A EI  ,  (A11) 

with 

 condition and moment free conditionsbalance conditions to Eq. (A10)(A19), namely 

d 0x
A

A   and  ph
1 1dx

A
R Rz A EI  , we get 

n ph/ ( )d /
A

z R z A A  , with 

where we have taken the centroid of the cross-section as the origin of the coordinate system. 
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APPENDIX B: Time response of the cantilever’s tip displacement and photo-

curvature for i d/ 100000t t   

As shown in Fig. 6, when the diffusion is much faster than the vibration, the photo 

curvature acts like a step-function excitation. 

Equation Chapter (Next) Section 1 

APPENDIX C: The scaling of the radius of curvature of a hydrogel oscillator 

To estimate the radius of curvature of a hydrogel oscillator due to inhomogeneous 

water concentration along the thickness, we simply consider water diffuses up to certain 

diffusion distance ~d ph DT , where D  is the diffusivity of water molecules in the 

hydrogel and pT  is the period of the vibration. The spontaneous photo strain is assumed to 

be 0  on the shined surface / 2z h  , linearly decreases with z , and reach zero at 

/ 2 dz h h  , i.e. 

                           0
ph ( )

2
d

d

h
z z h

h




  
     

,   / 2 / 2dh h z h    (C1) 

Using Eq. (3) and we have 

 00 02
ph ph 3 2 2

2

1
1/ ( ) d

2d

h
pd

h dA h
d

DThh
R z z A I z zdzh

h h h h

 




  
     

  
  ,  (C2) 

where 0  is determined by the photo chemical potential ph B/ k T , and we have assumed 

dh h . Therefore, the spontaneous radius of curvature scales with the square of the 

thickness, 
2

ph ~R h , is inversely proportional to the diffusion thickness 
pDT , and 

nonlinearly depends on the photo chemical potential ph B/ k T .  

 

APPENDIX D: The estimation of the damping coefficient 

 For a slender structure with length 𝐿 and width 𝑏 vibrating with velocity 𝑣, the 

Reynolds number can be calculated as Re = 𝜌𝑤𝑣𝑏/𝜇𝑤. Given the density of water 

𝜌𝑤 = 103𝑘𝑔/𝑚3, viscosity of water 𝜇𝑤 = 8.9 × 10−4𝑃𝑎 ∙ 𝑠, 𝑏 = 10−3 mm and velocity 

𝑣 = 10−3𝑚/𝑠, we can know that the fluid has a low Reynold number, Re ≈ 1. The 

damping coefficient 𝑐 can be calculated from the drag force 𝐹𝑑, 𝑐 = 𝐹𝑑/𝐿𝑣. For a low-

Reynolds-number fluid, the drag coefficient defined as 𝑐𝑑 = 2𝐹𝑑/𝜌𝑤𝑣2𝐿𝑏 equals 𝐴𝑑/Re, 

with 𝐴𝑑 a constant coefficient depending on the cross-section of the slender structure [47]. 

Therefore, the damping coefficient is calculated as 𝑐 = 𝐴𝑑𝜇𝑤/2. When the cross-section 

is circular, 𝐴𝑑 is 24. Here we just generically set 𝐴𝑑 to be 10. Therefore, the damping 

coefficient is estimated to be 4.45 × 10−3𝑃𝑎 ∙ 𝑠. 

Equation Chapter (Next) Section 1 

APPENDIX E: The scaling of the work done and damping energy of the mass-

spring-damper system 

When the excitation velocity / /m k   is limited to less than 0.1, the normalized 

vabriation frequency is almost a constant. Using Eq. (9), the maximum applied force maxF  

is proportional to / /F m k  , namely, max / /F F m k  . Therefore, we have 



    2
max

0
/ /

pT

f x xW Fxdt F A kA FF k m k  
  .  (E1) 

The damping energy is obtained as 

    
2 2

22 2
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x x

x
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A A
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Figures and Tables 

 

Figure 1. 

 
FIG. 1 (a) Schematic of self-excited oscillation of a hydrogel cantilever in response to 

constant light radiation. (b), (c) Time response of the cantilever’s tip displacement for 

different length-to-thickness ratios. The tip amplitude decreases with time for / 5L h   and 

increases for / 10L h  . (d) Schematics of the experimental setup for self-excited 

oscillation of a photo-thermally responsive hydrogel. Time response of the tip 

displacement of a (e) thick (h=0.9mm, L/h = 18.9), and (f) thin (h=0.56mm, L/h = 30.4) 

cantilever of length L=17mm. 

(Note: 2 columns are used for this figure.) 
  



Figure 2. 

 

FIG. 2 (a), (d) Time response of the cantilever’s tip displacement  w L L  and photo-

curvature ph/h R  for different normalized diffusivities i d/ 1,  0.0001t t  , respectively. (b) 

Time response of the change rate of the bending angle   at phx d  and the work done to 

the cantilever lW L EI . (c) Water concentration depth profiles at different time 

i/ 2.19t t   and i/ 17.15t t  , corresponding to the valley and peak of tip displacements 

indicated by the black square and red circle in (a). (e) Amplitude of the tip displacement as 

a function to time for different i d/t t . 

(Note: 2 columns are used for this figure.) 
  



Figure 3. 

 
FIG. 3 (a) Time response of the amplitude of the tip displacement for different normalized 

damping factors. (b) Influence of the normalized damping factor and diffusivity on the 

cantilever oscillation frequency. (c) Time response of the energy loss for different damping 

factors. 

(Note: 2 columns are used for this figure.) 
  



Figure 4. 

 

FIG. 4 (a) Normalized work done  lp i dW h EI t t  as a function of the normalized tip 

amplitude 
wA L , and (b) normalized damping energy 

3

cp iW t cL  as a function of the square 

of the tip amplitude  
2

wA L  for a wide range of 
i ct t , 

i dt t  and /L h . (c) Normalized 

work input and energy dissipation as a function of the normalized tip amplitude 
wA L . 

Boundaries between amplitude increase and decrease in phase planes of different 

dimensionless parameters: (d) in the phase plane of c it t  and  0 i /v L t L  under constant 

ph B/ k T  , 
i dt t  and /L h ; (e) in the phase plane of i ct t  and i dt t  under constant 

ph B/ k T ,  0 i /v L t L  and /L h ; (f) in the phase plane of i ct t  and /L h  under constant 

ph B/ k T ,  0 i /v L t L  and 
i dt t ; (g) in the phase plane of i ct t  and ph B/ k T  under 

constant  0 i /v L t L , 
i dt t  and /L h . All the symbols are numerical results, and the lines 

are fitting results from the scaling analysis. 

(Note: 2 columns are used for this figure.) 
  



Figure 5. 

 
FIG. 5 (a), (b) Undamped time response of the displacement and the excitation force for 

time-scale ratios / / 1m k    and / / 0.001m k   , respectively. (d), (e) Undamped 

phase plane for time scale / / 1m k    and / / 0.001m k   , respectively. (c) Damped 

time response of the displacement and the excitation force. (f) (h) (i) Damped phase plane 

for different normalized excitation velocities and damping factors. (g) Dependence of 

vibration frequency /m k  on the normalized excitation velocity / /m k   under 



different normalized damping factors km . (j) Normalized work done as a function of 

the normalized vibration amplitude, and (k) normalized damping energy as a function of 

the square of the vibration amplitude for a wide range of / /m k   and km . (l) 

Normalized stable amplitude as a function of the ratio between the excitation velocity 

/ /m k   and normalized damping factors km . In (j-l) all the symbols are numerical 

results under different combinations of data sets  / / 0.01,0.02,0.05,0.1m k    and 

 0.1,0.2,0.5,1km  , and the lines are fitting results from the scaling analysis.  

(Note: 2 columns are used for this figure.) 

 

 

  



Figure 6. 

 
FIG. 6 Time response of the cantilever’s tip displacement and photo-curvature for the 

normalized diffusivity i d/ 100000t t  . The curvature behaves like a step function. The 

frequency is higher than that with a smaller normalized diffusivity. 

(Note: 1 column is used for this figure.) 

 


