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Abstract

Stimuli-responsive materials have been designed for self-sustained soft robots. Using a
photo-thermally responsive hydrogel cantilever as a model system, this paper investigates
its mechanism of and energy flow in self-excited oscillation under a constant light source.
Based on an analytical model, we show that a periodic photo moment, produced by non-
uniform water concentration across the cantilever’s thickness driven by diffusion, is
imposed on the cantilever by the ever-switching light incidence between the top and bottom
surfaces. The synergy between the photo moment and oscillation ensures positive work
input to the cantilever when the diffusion time scale is comparable to the period of free
oscillation. When the input energy is higher than the damping energy, the oscillation
amplitude increases, while when the input energy is lower, the amplitude decreases. Based
on dimensional energy analysis, we determine the stable oscillation amplitude, and
construct phase diagrams for the increase and decrease of the oscillation amplitude, which
are further confirmed experimentally. A mass-spring-damper system subjected to a
displacement-dependent excitation force is developed to investigate the features in
generalized self-excited oscillating systems. This work lays a solid foundation for
understanding self-excited oscillation, and provides design guidelines for self-sustainable
soft robots.

I. Introduction

Stimuli-responsive materials can alter their shapes, volumes or functions in response
to external stimuli, such as heat, light, chemical, or electrical fields [1]. Building soft robots
with stimuli-responsive materials is the most promising strategy to achieve their
miniaturization and untethered locomotion. However, to accomplish sustainable motions
of such soft robots, complex control of external stimuli is usually essential [2—6]. An
emergent trend is designing self-sustainable soft robots that can maintain motions under
simple or constant external stimuli through the sophisticated interaction between stimuli-
responsive materials and external stimuli [7-15].

One of the most useful self-sustainable motions is self-excited oscillation, i.e.
autonomous oscillation of stimuli-responsive materials without artificially switching on/off
external stimuli [8,16-21]. It is especially inspired by biological rhythms, i.e. oscillatory
changes of chemical or mechanical functions, in living organisms; examples include
circadian clocks and heartbeats. A hydrogel with its polymer network undergoing a non-
equilibrium oscillatory reaction, such as Belousov—Zhabotinsky reaction, is capable of
autonomous swelling and deswelling cycles [22,23]. A humidity-responsive material in a
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humidity gradient can bend and oscillate [24]. An alternative strategy is to utilize the fact
that deformation of photo-responsive materials can alter or even block light incidence
[13,25], which drives the recovery of the deformation, inducing a cyclic response.
Autonomous oscillation [16,26-29] and continuous wave propagation [30] have been
achieved and modeled [7,31-33] in photo-responsive liquid crystal elastomers and
hydrogels under constant light radiation. Although the process of the self-excited
oscillation is relatively intuitive, it is not clear how the autonomous oscillation is
maintained through the sophisticated interaction and energy flow between the stimuli-
responsive materials and external stimuli, and how material and geometric parameters
govern the stable oscillation behavior.

Here we investigate a photo-driven self-excited hydrogel oscillator that can
autonomously vibrate under constant light, and determine its stable oscillation behavior by
examining its energy flow (Fig. 1). A hydrogel is a polymer network dispersed in water. In
a photo-thermally responsive hydrogel, heating due to photo-absorption can trigger a
chemical potential increase of the water molecules, and induce deswelling of the hydrogel.
When the photo-thermally responsive hydrogel cantilever (Fig. la) deviates from its
horizontal rest position, the light is shined on one of its surfaces, driving water molecules
to diffuse out of the hydrogel and forming a concentration gradient, which produces a
moment to bend the cantilever towards the opposite direction. Since the moment is photo-
induced, we simply call it photo moment. Once the cantilever deflects beyond the rest
position, the light relocates onto the opposite surface, creating an additional negative photo
moment to bend the cantilever back to the original side. This process can go on periodically
under an ever-switching photo moment. Our system falls into the categories of non-smooth
piecewise systems and non-harmonic dynamically shifted oscillators [34-37]. We will
analyze the work input into the hydrogel through its sophisticated interaction with the
constant light, and the damping energy output to the external water. Balance of the work
input and damping energy will allow us to determine the stable oscillation amplitude,
which is governed by several dimensionless material and geometric parameters. We will
theoretically and experimentally show that oscillation with a different amplitude will
autonomously increase or decrease its amplitude until reaching the stable value. A
simplified mass-spring-damper model is further developed to manifest the mechanism of
and energy flow in generalized self-excited oscillating systems.

I1. Theory for self-excited hydrogel oscillators
We model vibration of a hydrogel cantilever of length L and thickness 4 in water
triggered by constant light radiation in the axial direction (Fig. 1a). The cantilever is
assumed to undergo a small deflection W(X, t ) with respect to its equilibrium free swelling
state, as a function of the coordinate x and time ¢, governed by
dw  ow _ o'w O (U/R,)
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with density 0, cross section area 4, Young’s modulus E, and area moment of inertia /'

. The second term assumes that the damping force on a unit length of the hydrogel is
proportional to the deflection velocity, with the damping coefficient ¢, due to the drag from
the water. With the left end clamped and the right end free, the boundary conditions are
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The term on the right hand side of Eq. (1) is the distributed load produced by the photo

moment EI/ Rph , where Rph is the spontaneous radius of curvature in the illuminated
region XE[O,dph] arising from a gradient of photo-driven deformation through the

thickness. This causes local bending of the beam in the region X € [0, dph] . The spontaneous
curvature can be obtained as (Appendix A)

VR, =~[ en(2)zd4 /1, 3)
where &, (z)= diag(eph (2),6,,(2), &, (z)) is the the spontaneous photo-strain at the
position z induced by the photo-driven diffusion. Assuming the hydrogel undergoes pure
bending with respect to the non-irradiated state, the photo-strain is related to the water
concentration C through &, (2)= )+1)/(QC0 +1)—1]/3, where CO is the water

concentration in hydrogel when the hydrogel is in equilibrium with pure water without
radiation.

We model the photo-thermally driven water migration as a one-dimensional
diffusion problem along the thickness [38,39]
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where /12 is the stretch ratio of the hydrogel in the current state with respect to its non-
radiated equalibrium state, 4 is the chemical potential of the water molecules in the
hydrogel (defined in Appendix A), and D is the diffusivity of water molecules in the
hydrogel. Although it should be noted that hydrogels may have different diffusion kinetics
for swelling and deswelling [40], here in our theory, we just use Eq. (4)f4) to describe both
swelling and deswelling. To capture that water molecules diffuse out of the hydrogel
through the illuminated surface, we simply assume the light changes the chemical potential
of the water molecules on the illuminated boundary, i.e. apply A==k <0 on the

illuminated surface and =0 on the non-illuminated surface.
The photo-induced bending curvature Eq. (3)(3) produces a photo moment in the region
xel0, dph] in Eq. (1). In the meantime, Eph(Z) is governed by the diffusion equation (4).

Solving Egs. (1) and (4)}(4) together, we can fully determine the spatiotemporal response of
the photo-driven hydrogel oscillator. Both equations (1) and (4){4) are solved by the forward-
time central-space finite difference method. The solution of Eq. (4} will enable one to
calculate the spontaneous radius of curvature by Eq. (3)3) as an input to the right hand side
of Eq. (1) at every time step. In such a coupling process between the beam vibration and

water diffusion, there are three time scales, the viscous relaxation time scale , = ,DA/ c,

the inertia time scale #, =+/pAL'/ EI and the diffusion time scale , . = k> /D, arising from



Eq. (1) and Eq. (4)4), which leads to two time-scale ratios t]t andt/t, . Clearly, the time-
scale ratio / !, represents the normalized damping factor, indicating how large the

damping force is compared to the inertia force, and t,-/ I; represents the normalized

diffusivity, indicating how fast the water diffuses compared to the vibration velocity. We
shall show these two normalized parameters can greatly influence the vibration behavior.

III. Results
A. Amplitude increase and decrease

A cantilever starting from the horizontal position with an initial velocity, V, (X) =t
, vibrates under inertia and radiation. Following our previous work [7], parameters for all

simulations are set as d,/L=1/20, NQ=10", x=03, ,uph/kBT=3><104,

Yo (L)l,- / L= —1/ 3 and L/h =10, unless otherwise stated. Two types of vibration behavior

are observed: the amplitude of the deflection decreases (Fig. 1b and Movie S1 within the
Supplemental Material [41]) or increases (Fig. 1¢ and Movie S2 within the Supplemental
Material [41]) over time, and saturates when time is long enough for both cases. Although
the light radiation is constant, it passively switches its incident spot piecewise between the
top and bottom surfaces in the same period as the oscillation, forming a photo-driven self-
excited oscillation. Whether the amplitude decreases or increases depends on different
parameters, including the normalized damping factor, the normalized diffusivity, the
geometry, the radiation-induced chemical potential decrease, and the initial velocity. As a
demonstration, we only vary the length-to-thickness ratio (L/h=5 for Fig. 1b and
L/h=10 for Fig. 1c), and detailed phase diagrams for the increase and decrease of the
oscillation amplitude will be provided later. The angular frequencies in both cases are close

to the classical limit of cantilever vibration, 35/ f;, indicating that the bending shape is

roughly in the 1% mode of cantilever vibration (Figs. 1b and c).
B. Experiments

To experimentally verify the existence of both cases of amplitude increasing and
decreasing, we demonstrate oscillation of a Poly(N-isopropylacrylamide) (PNIPAAm)
hydrogel (Fig. 1d), where gold nanoparticles (AuNPs) are added to incorporate the photo-
thermal effect [7]. To fabricate hydrogel pillars, the AuNPs/PNIPAAm precursor solution
was prepared with 40 wt% NIPAAm monomer, 1.5 wt% N,N’-methylenebis(acrylamide)
(BIS), 0.5 vol% Darocur 1173, and 0.5 wt% AuNPs in dimethyl sulfoxide, and then cured
in a PDMS mold under UV light for 80 s. Details of the synthesis and characterization of
the gold nanoparticles can be found in the literature [7]. Pillars with a circular cross-section
of two different diameters were fabricated. The as-prepared diameters were 0.71 mm and
0.50 mm, and the corresponding equilibrium swelling diameters were 0.9 mm and 0.56
mm, respectively. After the hydrogels reach equilibrium in water, the Young’s modulus is
measured to be 6.3kPa. Upon exposure to a green laser (532 nm and = 200 mW with the
beam diameter of 1 mm), the hydrogel is heated on the front surface due to photo absorption
of the gold nanoparticles. Once the temperature reaches the lower critical solution
temperature (LCST) of PNIPAAm (~32°C), water molecules diffuse out, which creates a
concentration gradient in the thickness direction, and bends the initially vertical hydrogel



pillar to the horizontal direction, followed by autonomous oscillation of the effective
cantilever about the horizontal plane (Fig. 1d). For a hydrogel cantilever of a length L =17
mm, the amplitude decays over time when the diameter is 2 = 0.9 mm (L/2 = 18.9, Fig. le
and Movie S3 within the Supplemental Material [41]), while the amplitude grows over
time when the diameter is # = 0.56 mm (L/h = 30.4, Fig. 1f and Movie S4 within the
Supplemental Material [41]).

It should be noted that there are some differences between the theoretical modeling
and the experiment. Our goal is to build a generic framework to study the self-excitation
of hydrogel beam structures and understand the mechanism of the self-excitation. The
experiment is a demonstration of the self-excitation phenomenon. In the experiment, the
hydrogel pillar is bent from the initially vertical position to the horizontal direction, while
a horizonal hydrogel cantilever is modelled in the theory. The experimental setup is to give
a substantial initial speed of the hydrogel beam as it hits the horizontal position. Our theory
starts from a horizontal position with an input initial speed, so the theory and experiment
are consistent. We skip the initial process from the vertical to horizontal position in the
theory since that is not the essential part we are interested in. In the experiment, when the
hydrogel is at the largest downward deflection, the light is almost blocked by its tip, leading
to different boundary conditions between the top and bottom surfaces. Ideally, when the
beam is thin enough, the light could be shined on the corner of the top surface, resulting in
better agreement between the experiment and theory. On the other hand, our theory is also
capable of modeling the case when the light is blocked by the tip of the hydrogel by setting
the chemical potential boundary condition of the top surface to be always zero.

C. Without damping

To understand the requirements for a self-excited oscillation, we first investigate the

effect of the normalized diffusivity for an ideal scenario without damping. When the

diffusion time scale is comparable to the inertia time scale (4 / Iy =1 in Fig. 2a), the

vibration amplitude increases over time. The amplitude grows without saturation due to
lack of damping. The photo curvature changes in a periodic manner, but with about 7 /2
phase lag with respect to the tip deflection due to the non-equilibrium diffusion process
(Fig. 2a). The photo curvature is a consequence of inhomogeneous distribution of water

concentration C and photo strain &, through the thickness direction (Fig. 2¢). The work

done to the cantilever by the light over time ! can be calculated as 1, (;) = J" EI¢
0

, where ¢ is the change rate of the angle at X = dph (Fig. 2b). The irregular time response

of ¢ is due to the vibration with multiple modes. When the cantilever strokes downward
from the horizontal position, the radiation spot leaves the bottom surface and moves onto
the top surface, and the photo curvature reaches the valley (insets of Fig. 2a). The radiation
on the top surface decreases the water concentration in its vicinity, and increases the photo
curvature. Due to diffusion, it takes some time (less than a quarter period) for the curvature
to reach zero. Considering that ¢ is negative, the photo moment does positive and
negative work to the cantilever, before and after the curvature reaches zero, respectively
(insets of Figs. 2a and b). After the tip deflection reaches its valley, ¢ becomes positive
and the photo moment does positive work to the cantilever again. When the cantilever hits
the horizontal line, the irradiated spot switches to the bottom surface, and the photo
curvature reaches its peak. Therefore, within the half vibration period, the total work done



to the cantilever first increases, then decreases and increases again (insets of Fig. 2b); the
total work follows the similar trend within the next half period. Due to the synergy of the
photo moment and the change rate of the bending angle, the net work done to the system
over a period is positive, which leads to the increase of the deflection amplitude. When the
cantilever just starts to vibrate, the water concentration only decreases in the outer layer in
response to the radiation (the black curve in Fig. 2¢). In the later cycles, the outer layer on
the side illuminated shrinks more, and the outer layer without radiation partially re-swells.
The shrinkage zone goes deeper and deeper into the cantilever (the red curve in Fig. 2¢),
and eventually saturates.

When the diffusion is much slower than the vibration, the beam vibrates periodically

with a fixed amplitude (; / 1, =0.0001 in Fig. 2d), as the photo moment built up in a time

scale of inertia is so small that the work done to the cantilever is negligible. When the
diffusion is much faster than the vibration, the photo curvature acts like a step-function
excitation (Appendix B). Therefore, once the cantilever goes below the horizontal line, the
photo curvature immediately becomes positive, so the positive and negative work cancel
each other, and vice versa. Also since the diffusion is fast, it perturbs the regular bending
mode of the cantilever, leading to the excitation composed of multiple bending modes other
than the 1% mode. In this case, the beam will block the light, violating the assumption that

the beam is shined in the region X € [0, dph] . Therefore, in our later study, the normalized

diffusivity will be limited to less than 20. Below this limit, a higher normalized diffusivity
leads to a larger photo moment and higher work input, which increases the amplitude of
the deflection faster (Fig. 2e).
D. With damping
Next, we consider self-excited hydrogel oscillators subjected to damping. Given

different normalized damping factors, the tip deflection amplitude Aw either increases or

decreases over time and then saturates (Fig. 3a), the saturated value is called the stable
amplitude. As the normalized damping factor increases, the stable amplitude decreases

(Fig. 3a), and the diminishing amplitude causes the angular frequency a):Zﬂ/Tp to
increase (Fig. 3b), where 7, » 1s the period of the vibration. The normalized diffusivities
A / I within certain range show little effect on the vibration frequency (Fig. 3b). If the

normalized diffusivity is further increased, ie. £/t =100000, the vibration frequency

increases (Appendix B). The energy loss due to damping over time ! can be calculated as

W.(1)= J' ' J' Fev . As a result, when the cantilever just starts to vibrate, the system with
0J0

a larger normalized damping factor exhibits higher energy dissipation. However, when the
vibration reaches the steady state, it has lower energy dissipation due to a lower stable
amplitude (Fig. 3c), implying the energy loss is influenced by both the vibration amplitude
and damping factor.
E. Scaling analysis for energy flow

We further investigate the effect of other parameters on the self-excited oscillation,
and conduct scaling analysis for the work input and energy dissipation to construct a phase
diagram for the increase and decrease of the oscillation amplitude (Figs. 4 and 5). The



radiation does work , = _[ " EI¢ to the cantilever over a period. Since the bending
0 .

angle scales as 6~ AW /L , the work done to the cantilever can be rewritten as
W, ~EIA,/ (RphL) . Using Eq. (3)f3) and assuming a linear distribution of spontaneous photo
strain along the thickness direction, we find that the spontaneous radius of curvature scales

with the square of the thickness, Rph ~ hz, is inversely proportional to the diffusion

thickness /DT, , and nonlinearly depends on the photo chemical potential £, ! kyT
(Appendix C). Therefore, the work per period can be further rewritten as
W, ~ f(,uph /kBT)EIAw DT, /LK, with £ an increasing function of Hon / kT . As Fig.

3b shows, the period Tp can be further expressed as t,-/g(tl-/td,ti/le) , where g is a weak
function of f,»/ t, and fl-/ I, , and we can treat it as a constant. Combining with the diffusion

time scale f; = ) , we have
W, ~ f (# 1T ) (/1) (EL 1 ]2, ) (A, /L) 5)
In the meantime, the cantilever loses energy over a period due to damping can be calculated
by w,, ~ J'OT” J'OL o , where the deflection w scales with the tip amplitude 4,, so we
have
W, ~ o~ (V) ez ) (A4, /L) (6)

Consistent with the classical self-excited oscillation [42], our numerical results indeed
show that under various damping factors and geometric parameters the normalized work

done to the cantilever W, / (EI L/t d) is proportional to the normalized tip amplitude

4, /1 with the fitted slope &, =3.793x 107 (Fig. 4a), and the normalized damping energy

Wt / cL’ is proportional to the square of the normalized tip amplitude (4,/L )2 with the

fitted slope kc =2.895 (Fig. 4b). To further compare the work input and energy dissipation

within a period, we normalize both of them by CLz/fi, which are equal to
k,(L/h)(A, /L)t /1, /(t,./tc) and k, (A, /L)’ , respectively, and are plotted as functions

of 4, /L (Fig. 4c). The results are based on the parameters f,-/tc =1, f,-/ld =land L/h=10
, which have not been used for the fitting in Fig. 4a and b. The intersection of the two
curves determines the stable amplitude, and it agrees well with the results obtained in Fig.
3a. By using W1p = W(.p , we obtain the scaling of the stable amplitude

- i3 1 1

A,/L~ ~ PUEDC. (7)



Clearly, a higher normalized diffusivity f; / !y , higher length-to-thickness ratio L/h or

lower normalized damping factor ’/!, increases the normalized work Wt / cL’, and
therefore, increases the stable amplitude (Fig. 4c).

Depending on whether the initial amplitude AO is smaller or larger than 4 , the
amplitude increases or decreases to reach 4 . Since the initial amplitude scales with the

initial velocity Ao/ L~ ~ , the boundary between amplitude increase

and decrease Ao / L= Aw/ L gives
Lt /t
Vo (L)t /L ~ [ ( 14 /kBT);thd. (®)

The decisive dimensionless material and geometric parameters for the phase boundary are
fon T RgT vy (L)ti IL, ¢/, , l‘,‘/ft, and L/h. Consistent with Eq. (8), the numerical
results show linear boundaries between the amplitude increase and decrease regions in the
phase plane of fc/f,» and V, (L)Ii /'L (Fig. 4d), the phase plane of fl-/fc and Jt,./td (Fig.
4e), and the phase plane of [; / t.and L/h (Fig. 4f). Fig. 4g shows a nonlinear boundary

between the amplitude increase and decrease in the phase plane of ; / I, and My kT .

The successful prediction of the phase boundary further verifies the stable amplitude Eq.
.

Now let us use the scaling analysis to examine the oscillation behavior of the two

hydrogel beams in the experiment. The inertia time scale ¢, =+/pAL" / EI can be calculated

as 0.51 s for the thick beam, and 0.82 s for the thin beam, given p = 10%kg/m3. The
corresponding frequencies can be approximated as w =~ 3.5/t; = 6.84 rad/s and 4.26
rad/s, respectively. These agree with the experimentally observed frequencies 6.28 rad/s
and 1.19 rad/s, indicating the simplification of the hydrogels as cantilever beams vibrating
in the 1% mode is reasonable. The deviation is because in the experiment the end of a
horizontal hydrogel is not fixed, but connected to a vertical portion of the hydrogel, which
has the freedom to vibrate itself; a thinner hydrogel pillar corresponds to a weaker
boundary constraint, and therefore, a lower frequency. To further estimate the viscous
relaxation time scale t. in the experiment, we have approximated the damping coefficient
¢ to be 4.45 x 1073Pa - s (Appendix D), and as a result, ¢z, = p4/c =0.14 s for the thick

beam, and 7, =0.055 s for the thin beam. By using the diffusivity of our hydrogel D =
1078 m? /s, we can calculate 7, =h* / D =81's for the thick beam, and 7, =31.36 s for the

thin beam. Consequently, the normalized diffusivity t;/t; is 6.3 x 1073 and the
normalized damping factor t;/t, is 3.58 for the thick beam, while t;/ty = 2.62 X 1072
and t;/t, = 14.86 for the thin beam. The length-to-thickness ratios for the thick and thin
beams in the experiment are L/z = 18.9 and 30.4, respectively. The spontaneous photo
strain on the shined surface &, = f ( L, ! hegT ) (Appendix C) for PNIPAAm hydrogels can

be estimated as 0.2. Using Eq. (8)(8), we can calculate the normalized stable amplitudes



L/t
f ( M 1k T)£ﬁ are comparable for the thick and thin beams, and are 0.084 and
L N

0.066, respectively. However, as their normalized initial amplitudes v,(L)t, /L are very

different, and are 0.12 and 9.7 x 103 for the thick and thin beams, respectively, this
explains why we observe amplitude decrease in the thick beam and amplitude increase in
the thin beam. Note that a pre-factor is needed on the right hand side of the scaling relation
in Eq. (8)f8) to equate the initial amplitude to the stable amplitude. The pre-factor obtained
from our numerical calculation is about 0.1, which makes the stable amplitude of the thin
beam to be slightly smaller than the initial amplitude. Considering the simplicity of the
scaling analysis, we can still claim its success in predicting the amplitude variation of the
self-excited oscillation. Since the damping from water is high, it is usually challenging in
observing autonomous vibration of hydrogels in water. In our experiments, the relatively
high diffusivity of water in the hydrogels is the enabling factor for the self-excited
oscillation.
F. Mass-spring-damper system with non-smooth excitation force

We further propose a simplified single-degree-of-freedom mass-spring-damper
system to shed light on the various features we observe in the photo-driven hydrogel
oscillator. Analogous to the photo moment, a position and time dependent forcing term F
is added as an excitation force

m K
. 9
I Fsg(x)]/r, ®)
where M is the mass, « is the damping factor, & is the stiffness of the spring, * denotes
time derivative d/dt, F_is an excitation force constant, and sgn(x)=|x|/x. The sgn term, as
a non-smooth piecewise term, mimics the ever-switching light source in the hydrogel
system. The excitation force /' changes exponentially in time, with a characteristic time
scale T featuring a non-equilibrium process, such as diffusion or reaction. This simplified
system, originating from the prototypical systems of dynamically shifted oscillators [34—
37], serves as a good approximation for us to understand the response-dependent excitation
of the hydrogel cantilever. Similar to the hydrogel oscillator, we have three time scales,
including the viscous relaxation time scale m /o, the inertia time scale </m/k , and the
excitation time scale 7, which defines two time-scale ratios, the normalized damping factor

Ol/ M and the normalized excitation velocity Vm /k / T.

First consider the ideal scenario where there is no damping ¢ = 0. When the

excitation time scale is comparable to the inertia time scale, Nmlkl/t=1 , the vibration
amplitude increases as a function of time and the trajectory on the phase plane diverges
away from the initial position (Figs. 5a and d). When the excitation time scale is much

larger than the inertia time scale, VM Ik /7=0.001 , the excitation force F is very small,
and therefore, hardly affects the motion (Fig. 5b). The trajectory on the phase plane is close
to a circle (Fig. 5e), indicating that the motion is similar to a harmonic oscillation. The
amplitude can decrease (Fig. 5¢) by adding a damping term <" and the trajectory goes to
a stable limit cycle on its phase plane (Fig. 5f). The simplified model predicts that a higher



normalized damping factor IZ/M or a higher normalized excitation velocity v /k/T
raises the frequency w-/m/k (Fig. 5g), which is consistent with the prediction of the
hydrogel cantilever model. The increase of frequency can be observed from the limit cycle
that changes from circular to oval shape, where the ratio between the amplitude of velocity
and displacement increases (Figs. 5f, h and i).

We further study the work done and damping energy through scaling analysis.

When the excitation velocity Nm/k/7 is limited to less than 0.1, the normalized
vabriation frequency is almost a constant. The work done by the force over a period is

W, = J'OT” £~ and can be rewritten as Wf ~ :m/r)(kAx/Fx), where 4_is the
vibration amplitude (Appendix E). The damping energy over a period is w, = J'OT” a’

and can be rewritten as W, ~ :a/ N/ )(kAX /F, )2 (Appendix E). The numerical
results prove that the normalized work W, / [(F 2 / k)(m / z’)} is proportional to the
normalized amplitude k4 /F, (Fig. 5j), and the damping energy Wa/[(Fj /k)(a/M)]

is proportional to the square of the normalized amplitude (kAx /F. )2 (Fig. 5k). By equating

Wf and w,, the stable amplitude is obtained as k4 /F, ~ /T)/(Q/W).

Consistent with the prediction, the numerical results show that the stable amplitude is
proportional to the excitation velocity and inversely proportional to the damping factor
(Fig. 51).

IV. Conclusions

This paper investigates the mechanism of and energy flow in photo-driven self-excited
hydrogel oscillators, whose amplitude can increase or decrease with time under constant
light radiation. When the hydrogel cantilever oscillates, the light incidence switches
between the top and bottom surfaces, inducing a periodic photo moment with the same
frequency as the oscillation. Since the photo moment is induced by an inhomogeneous
distribution of water concentration through the thickness of the cantilever due to a non-
equilibrium diffusion process, diffusion kinetics determines the temporal evolution of the
photo moment. We find that when the diffusion time scale is comparable to the inertia time
scale, the vibration of the cantilever can reach a significantly high amplitude, and remain
stable. By analyzing the work done by radiation, it turns out that the synergy between the
photo moment and oscillation ensures positive photo-mechanical energy pumped into the
system every cycle to maintain self-excited oscillation overcoming damping. Based on
dimensional analysis, we find that the work input is proportional to the vibration amplitude
and the damping energy is proportional to the square of the amplitude. The balance of the
work input and the energy dissipation determines the stable amplitude, which turns out to

scale with the length-to-thickness ratio L/, square root of the normalized diffusivity /; I,
and inverse of the normalized damping factor f,-/ !, , and depend on the radiation-induced

chemical potential change of water £, / kBT . By equating the initial and stable amplitude,

we construct phase diagrams for the increase and decrease of the oscillation amplitude. To



further shed light on the self-excited oscillation, a simplified mass-spring-damper system
with a single degree-of-freedom is proposed to understand the major features and energy
flow in generalized self-excited oscillating systems. The effect of the material and
geometric parameters on the vibration frequency, amplitude and energy of the hydrogel
cantilever can be mostly reproduced by the simplified system. This study elucidates the
design requirements of stimuli-responsive self-excited oscillators.
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Equation Chapter (Next) Section 1
APPENDIX A: Theory for self-excited hydrogel oscillators

We model vibration of a hydrogel cantilever of length L and thickness % in water

triggered by constant light radiation in the axial direction (Fig. 1a). The cantilever is

assumed to undergo small deflection w(x,t) , as a function of the coordinate x and time ¢,

governed by

pA P +c t+EI =Fl , (AD)

with density 0, cross section area 4, Young’s modulus E, and area moment of inertia [ .
The second term assumes that the damping force on unit length of the hydrogel is
proportional to the deflection velocity, with the damping coefficient ¢, due to the drag from
the water. The term on the right hand side of Eq. (A 1)fA1) is the distributed load produced by

the photo moment E7/ R, , where R, is the spontaneous radius of curvature in the region

x€[0,d,,], with the width of the light beam d , arising from a gradient of photo-driven

deformation through the thickness, yet to be determined by solving a diffusion equation of

water molecules. With the left end clamped and the right end free, the boundary conditions

are

o'w o'w

—(L,t)=—=(L,1) =0, A2

P (L,1) P (L,1) (A2)
We model the diffusion of water molecules driven by a gradient of its chemical

potential. The free energy density of a hydrogel consists of an elastic part and a mixing

part, W(F,C)=W,, (F)+W,, (C). The elastic part considers the elastic energy of the

mix

w(0,¢) = Z—;" (0,6)=0,

polymer network as a function of the deformation gradient F per volume in the reference
dry state [43,44]

W, (F):%NkBT[tr(FFT)—3—210g(detF)J, (A3)



where N is the crosslink density of the hydrogel, & is the Boltzmann constant, and T is
the temperature. The mixing energy density between the polymer and water per reference
volume is a function of the water concentration C, the number of water molecules per unit
reference volume [45]

QcC V4
W (C)=k,TC|log| ——— |+ , A4
e (C)=hy { g(ugcj 1+QC} (AD)

where Q is the volume of a water molecule, and } is the Flory-Huggins interaction

constant between the polymer and water. Both the polymer network and the water are
assumed incompressible, so the volume change of the hydrogel is purely due to the
migration of water molecules, J =det(F)=QC +1. The chemical potential of the water

molecules in the hydrogel, #, can be calculated as the following [38],

ﬂz%mg, (A5)

where II is the osmotic pressure, determined by the boundary conditions. When the
hydrogel freely swells in water without constraints, the Cauchy stress

6=(0W/oF)F"/J-TII (A6)
is zero, i.e. 6=0, and the osmotic pressure can be determined as 1, = j\lkﬁT(ﬂU’l —10’3) ,
where A, is the equilibrium isotropic stretch ratio with respect to the dry state, relating to
the water concentration C, by 4, = (1+QC0 )1/3 . The equilibrium water concentration C,

can be determined by £(C,)=0 using Eq. (A5), i.e. the chemical potential of water in the
hydrogel equals that of the pure water outside the hydrogel.

Absorption of light raises the temperature of the hydrogel on the irradiated surface,
increasing the chemical potential of the water molecules, driving the water molecules to
diffuse out of the hydrogel. Since the cantilever length is much larger than its thickness,
water diffusion in the length direction can be neglected. We model the photo-thermally
driven water migration as a one-dimensional diffusion problem along the thickness, with
Z the reference coordinate in the thickness direction [38,39]

¢ V), (A7)
where M is the mobility tensor of water molecules in the hydrogel. To capture that the
water molecules diffuse out of the hydrogel through the illuminated surface, we simply
assume the light changes the chemical potential of the water molecules on the illuminated
boundary, i.e. apply #=-p, <0 on the illuminated surface and =0 on the non-
illuminated surface.

Next, we decompose the total deformation gradient F into F=F'F,, where

F, =diag (2,2, 4) maps the dry configuration to the wet non-irradiated one, and F’

maps the wet non-irradiated configuration to the current irradiated configuration. We
assume that the deformation arising from the swelling of the hydrogel with respect to the
dry configuration is finite, while the deformation of oscillation under light radiation can be

considered small. With linearized strain € = (F "+F7T ) /2—-1, the Cauchy stress 6 Eq. (A6)

can be linearized as



o 2Nk, T

e+[I1, (1—trg) - TT]I. (A8)

Then the diffusion equation (A7)A7) can be rewritten as

C_D ofCou (A9)
ot kT oz\ A2 oz )

where A, =1+ ¢, is the z component of F after the linearization, and D is the diffusivity

of the water molecules in the hydrogel. The photo-driven diffusion induces a spontaneous
photo-strain, €,,(2) :diag(eph (2), 6, (2), &4 (z)) as a function of position z, where
£,,(2)<0. We assume the hydrogel undergoes pure bending with respect to the non-
irradiated state. Since the total volume change is due to diffusion, we have
tre = trg,, = )/(QC,+1)-1, namely &n(2)= )+1)/(QC, +1)-1]/3.
Based on pure bending, the total strain should be diagonal in its principal axes,
&(z) = diag(s,(2),£,(2).£.(2)) , Where &,(z) can be deemed linear in z, having a neutral

plane at z_, namely ¢ (z) = (z]1 = z) / R , with-_ R -s the radius of curvature of the beam. We

will show how to determine z,, ané-R-using mechanical equilibrium hereafter. When diffusion

just starts, there could be an infinitesimal curvature along the y direction alongside with
the x curvature, but it will be easily suppressed by the dominant curvature 1/ R as its
magnitude develops [46]. Assuming there is no stress along y and z, we can solve for

£,=¢€,= [traph —(z,—z)/ R] /2, and the osmotic pressure
Nk, T

I= (trs—é‘x)+l_lo (1—trg) . Inserting IT into Eq. (A8), we can determine the only

non-vanishing stress component along x,
3Nk,T (z,—z
CTX=T T—Sph . (AlO)
Using the relationship E =3Nk,T'/, between the Young’s modulus and the crosslink

density, we can see Eq. (A10) is reminiscent of the 1D classical stress-strain relationship
in the presence of a thermal strain, except the prefactor associated with pre-radiation

swelling. Applying the force free condition to Eq. (A10){A+9), namely L o,d4 =0, we get

z, /R :j &,(2)d4/ A. Then we calculate the internal moment using Eq. (A10)}A1+0),
A

| ,o.7d4=EI(/R-1/R,,) (A1)

with

Fa a on na momen faya An-.- o n n 141 al
oReoR—ahe S ondtttonsbata -
'Acdi—G and ‘AUXZCH—E{(#H bﬂph)’ n =1, %m ~with

where we have taken the centroid of the cross-section as the origin of the coordinate system.
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APPENDIX B: Time response of the cantilever’s tip displacement and photo-
curvature for ¢, /¢, =100000
As shown in Fig. 6, when the diffusion is much faster than the vibration, the photo
curvature acts like a step-function excitation.
Equation Chapter (Next) Section 1
APPENDIX C: The scaling of the radius of curvature of a hydrogel oscillator
To estimate the radius of curvature of a hydrogel oscillator due to inhomogeneous
water concentration along the thickness, we simply consider water diffuses up to certain

diffusion distance %, ~,/DT,, where D is the diffusivity of water molecules in the

hydrogel and 7, is the period of the vibration. The spontaneous photo strain is assumed to

be &, on the shined surface z=%4/2 , linearly decreases with z, and reach zero at

z=h/2-h;,ie.

r e
£ (2) ﬁ_hdﬂ, h/2—h <z<h/2 1)
gL 2
Using Eq. (3) and we have
b o N . ~ ImT
U Ry, == &,(2)zd4/1 ~ -~ - , (€2
2 g L N4 /1 " "

where &, is determined by the photo chemical potential £4,, / kxT , and we have assumed
hy, <h. Therefore, the spontaneous radius of curvature scales with the square of the

thickness, R ~Hh?, is inversely proportional to the diffusion thickness /DT” , and
nonlinearly depends on the photo chemical potential £, / kT .

APPENDIX D: The estimation of the damping coefficient

For a slender structure with length L and width b vibrating with velocity v, the
Reynolds number can be calculated as Re = p,,vb/u,,. Given the density of water
pw = 103kg/m3, viscosity of water p,, = 8.9 X 10™*Pa - s, b = 10~2 mm and velocity
v =10"3m/s, we can know that the fluid has a low Reynold number, Re =~ 1. The
damping coefficient ¢ can be calculated from the drag force F;, ¢ = F;/Lv. For a low-
Reynolds-number fluid, the drag coefficient defined as ¢; = 2F;/p,, v2Lb equals A,4/Re,
with A, a constant coefficient depending on the cross-section of the slender structure [47].
Therefore, the damping coefficient is calculated as ¢ = A,u,, /2. When the cross-section
is circular, A, is 24. Here we just generically set A; to be 10. Therefore, the damping
coefficient is estimated to be 4.45 x 1073Pa - s.

Equation Chapter (Next) Section 1
APPENDIX E: The scaling of the work done and damping energy of the mass-
spring-damper system

When the excitation velocity vm/k /7 is limited to less than 0.1, the normalized

vabriation frequency is almost a constant. Using Eq. (9), the maximum applied force F,

is proportional to F,\'m Ik, namely, F_~ kit. Therefore, we have

ax



wellE - - WTRE). ED

The damping energy is obtained as
2 'yl

A ~ "iam ) (KA, /F., ). (E2)

lp »\l’ll/n
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FIG. 1 (a) Schematic of self-excited oscillation of a hydrogel cantilever in response to
constant light radiation. (b), (c) Time response of the cantilever’s tip displacement for
different length-to-thickness ratios. The tip amplitude decreases with time for L/ h =5 and
increases for L/h=10. (d) Schematics of the experimental setup for self-excited
oscillation of a photo-thermally responsive hydrogel. Time response of the tip
displacement of a (e) thick (A=0.9mm, L/h = 18.9), and (f) thin (h=0.56mm, L/h = 30.4)
cantilever of length Z=17mm.

(Note: 2 columns are used for this figure.)
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FIG. 2 (a), (d) Time response of the cantilever’s tip displacement W(L)/ L and photo-

curvature /1/ Ry, for different normalized diffusivities 4 /1, =1, 0.0001, respectively. (b)

Time response of the change rate of the bending angle ¢ at X = d i and the work done to

the cantilever W,L/ EI (c) Water concentration depth profiles at different time

t/ = 2.19 and t/ f= 17.15 , corresponding to the valley and peak of tip displacements
indicated by the black square and red circle in (a). (¢) Amplitude of the tip displacement as

a function to time for different £ /1.
(Note: 2 columns are used for this figure.)
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FIG. 3 (a) Time response of the amplitude of the tip displacement for different normalized
damping factors. (b) Influence of the normalized damping factor and diffusivity on the
cantilever oscillation frequency. (c¢) Time response of the energy loss for different damping
factors.
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FIG. 4 (a) Normalized work done 4 / (EI L/t d) as a function of the normalized tip

amplitude 4_/7 ,and (b) normalized damping energy W_ 1, cL’ asa function of the square
p w/ p g gy cp”i q

of the tip amplitude (Aw/ L )2 for a wide range of ¢, /7, , ¢, /¢, and L/h. (c) Normalized
work input and energy dissipation as a function of the normalized tip amplitude 4, /L.
Boundaries between amplitude increase and decrease in phase planes of different

dimensionless parameters: (d) in the phase plane of t.Jt and v, (L)t,/L under constant
fo 1 ksT . ¢ /¢, and L/h; (e) in the phase plane of £/t and \/t,-/_td under constant
My, 1kgT | v, (L)li /'L and L/h; (f) in the phase plane of t,-/tc and L/h under constant
o, 1 kT, vy (L)t /L and ¢, /¢, ; (g) in the phase plane of t/t. and Uy, | kT under

constant V, (L)fi /L, ¢,/t, and L/h. All the symbols are numerical results, and the lines

are fitting results from the scaling analysis.
(Note: 2 columns are used for this figure.)
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FIG. 5 (a), (b) Undamped time response of the displacement and the excitation force for
time-scale ratios Vm/k/7=1 and Vm/k /7 =0.001, respectively. (d), (¢) Undamped

phase plane for time scale V1 [k/t=1and Nm/k/7=0.001, respectively. (¢) Damped
time response of the displacement and the excitation force. (f) (h) (i) Damped phase plane
for different normalized excitation velocities and damping factors. (g) Dependence of

vibration frequency w~/m/k on the normalized excitation velocity Nm/k/t under



different normalized damping factors 0!/ Vkm . (j) Normalized work done as a function of
the normalized vibration amplitude, and (k) normalized damping energy as a function of

the square of the vibration amplitude for a wide range of Vm/k /T and 05/ Nkm . (1)
Normalized stable amplitude as a function of the ratio between the excitation velocity

\Nm/k /7 and normalized damping factors Ol/ M . In (j-1) all the symbols are numerical
results under different combinations of data sets vm/k /1=[0.01,0.02,0.05,0.1] and

a/\/km = [0.1,0.2,0.5,1] , and the lines are fitting results from the scaling analysis.
(Note: 2 columns are used for this figure.)
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t;/t4 =100000

0 5 10 15 20

t/t;
FIG. 6 Time response of the cantilever’s tip displacement and photo-curvature for the
normalized diffusivity /¢, =100000. The curvature behaves like a step function. The

frequency is higher than that with a smaller normalized diffusivity.
(Note: 1 column is used for this figure.)



