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ANALYSIS OF A SIMPLE EQUATION FOR THE GROUND STATE
OF THE BOSE GAS II: MONOTONICITY, CONVEXITY, AND

CONDENSATE FRACTION⇤

ERIC A. CARLEN† , IAN JAUSLIN‡ , AND ELLIOTT H. LIEB§

Abstract. In a recent paper we studied an equation (called the “simple equation”) introduced
by one of us in 1963 for an approximate correlation function associated with the ground state of
an interacting Bose gas. Solving the equation yields a relation between the density ⇢ of the gas
and the energy per particle. Our construction of solutions gave a well-defined function ⇢(e) for the
density as a function of the energy e. We had conjectured that ⇢(e) is a strictly monotone increasing
function, so that it can be inverted to yield the strictly monotone increasing function e(⇢). We
had also conjectured that ⇢e(⇢) is convex as a function of ⇢. We prove both conjectures here for
small densities, the context in which they have the most physical relevance, and the monotonicity
also for large densities. Both conjectures are grounded in the underlying physics, and their proof
provides further mathematical evidence for the validity of the assumptions underlying the derivation
of the simple equation, at least for low or high densities, if not intermediate densities, although the
equation gives surprisingly good predictions for all densities ⇢. Another problem left open in our
previous paper was whether the simple equation could be used to compute accurate predictions of
observables other than the energy. Here, we provide a recipe for computing predictions for any one-
or two-particle observables for the ground state of the Bose gas. We focus on the condensate fraction
and the momentum distribution, and show that they have the same low density asymptotic behavior
as that predicted for the Bose gas. Along with the computation of the low density energy of the
simple equation in our previous paper, this shows that the simple equation reproduces the known
and conjectured properties of the Bose gas at low densities.
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1. Introduction. We study the system of equations

(1.1) (��+ 4e+ v(x))u(x) = v(x) + 2e⇢u ⇤ u(x) ,
2e

⇢
=

Z
(1� u(x))v(x) dx

to be solved for an integrable function u on R3 where v is a given nonnegative ra-
dial function representing a repulsive interaction between particles with (1 + |x|4)v 2

L1(R3) \ L2(R3), and where e and ⇢ are positive parameters representing, respec-
tively, the energy per particle and the density in the ground state of a Bose gas,
and are related by the second equation in (1.1). As we explain below, the solution
u(x) specifies a pair correlation function for the Bose gas in terms of which many
observables of physical interest can be computed. This system was first introduced
in [Lie63, LS64, LL64] and the equation on the left is referred to here as the sim-
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ple equation; it results from applying some approximations to a more complicated
equation derived in [Lie63]. For the reader interested in the origins of this equation,
we give a brief account of its derivation and motivation. The simple equation arises
in connection with the ground state  0 of a many-body Bose gas, whose N -particle
Hamiltonian is given by

(1.2) HN := �
1

2

NX

i=1

�i +
X

i<j

v(xi � xj)

for N particles in a cubic box of finite volume V with periodic boundary conditions.
The ground state eigenfunction  0 is unique and nonnegative, as can be shown using
the Perron–Frobenius theorem, and thus we may normalize  0 to obtain a probabil-
ity measure. This is not the usual probability measure associated with a quantum
state, which would be quadratic in the wave function, but since  0 is nonnegative and
integrable (k 0k1 6 V 1/2

k 0k2), we may use it directly to define a probability mea-
sure, and this is the starting point of [Lie63]. Because particles interact pairwise, the
ground state energy and other observables can be calculated in terms of the two-point
correlation function associated with this probability measure:

(1.3) g(x1 � x2) := lim
N,V!1,N/V=⇢

V 2
R
dx3 · · · dxN  0(x1, x2, x3, . . . , xN )R
dy1 · · · dyN  0(y1, . . . , yN )

.

In [Lie63], under a few physically motivated approximations, in the thermodynamic
limit, in which the number of particles N and the volume of the gas V are taken to
infinity, with ⇢ := N

V fixed, an equation for the limiting two-point correlation function
g is derived. The function u(x) in (1.1) is then defined as u(x) := 1� g(x). Note that
since by definition g(x) > 0, u(x) 6 1.

Because the expected values in the ground state of many physical observables
can be calculated in terms of g, any method for computing g that bypasses directly
solving the N -body Schrödinger equation for the Hamiltonian (1.2) provides an e↵ec-
tive means for the computation of these values, and this motivates the study of the
simple equation system (1.1). Indeed, the ground state energy per particle is given
in terms of g by the second equation in (1.1). There is so far no rigorous derivation
of (1.1) from the N -body Schrödinger equation and, hence, there is no mathematical
understanding of how closely the solutions of (1.1) approximate the actual two-point
correlation function associated with the N -body ground state  0. However, we have
conducted extensive numerical work on (1.1) and other, more refined, equations, and
have found that these equations are surprisingly accurate. Details on the numerical
results will be published elsewhere [CHJL].

The ground state of the many-body Bose gas in the thermodynamic limit is still
the focus of much current research. While there are many results in other scaling
regimes (see, to name but a few, [LS02, GS09, Sei11, BBCS17]; for a more comprehen-
sive review, see [LSSY05]) rigorous results in the thermodynamic limit are mostly fo-
cused on the ground state energy [Bog47, LHY57, Dys57, LY98, ESY08, YY09, FS20].
Notably, it was recently shown [YY09, FS20] that for the Bose gas the ground state
energy behaves, as ⇢! 0, as

(1.4) e(⇢) = 2⇡⇢a0

✓
1 +

128

15
p
⇡
(⇢a30)

1

2 + o(⇢
1

2 )

◆
,

where a0 is the scattering length of the potential v; see [LSSY05]. However, a more
precise understanding of the physics of the ground state is still lacking. In particular,
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it is expected that the Bose gas should exhibit Bose–Einstein condensation, in which
a macroscopic number of particles occupy the same quantum state. So far, Bose-
Einstein condensation has only been proved in the thermodynamic limit for a lattice
gas in dimensions > 2 at half-filling [KLS88], as well as in other scaling regimes, such
as the Gross–Pitaevskii regime [LS02, BBCS17]. It has never been proved in the
thermodynamic limit for a continuum system.

If it is indeed true that the simple equation describes the many-body Bose gas
in the thermodynamic limit with meaningful accuracy, then it seems important to
understand this equation beyond simple numerics. We have started this e↵ort in a
previous publication [CJL20], where we showed that, under the assumption that v > 0
and that v 2 L1(Rd)\L

3

2
+"(Rd) but not necessarily radial, then in each dimension d,

for each e > 0, there is a unique value ⇢(e) for which (1.1) has an integrable solution
satisfying u 6 1, and for each e > 0, there is exactly one integrable solution u with
u 6 1. (Recall that u 6 1 is equivalent to g > 0, a necessary condition for the solution
to be physically meaningful.) We also proved that all such solutions are necessarily
nonnegative, so that

(1.5) 0 6 u(x) 6 1.

Although the two parameters e and ⇢ appear to enter (1.1) in a symmetric way, this
is not the case in the analysis [CJL20]. We first fix e, and then construct ⇢(e) and
the corresponding solution u in an iterative process. We show that the function ⇢(e)
that we construct is continuous, but the analysis in [CJL20] does not show that ⇢(e)
is strictly monotone increasing in e, which would permit us to invert the functional
relationship and define the function e(⇢), which of course would then also be strictly
monotone. In [CJL20], we showed that for each ⇢ > 0, there was at least one e such
that ⇢ = ⇢(e), and that

(1.6)
2e

kvk1
6 ⇢(e) 6 4e

kvk1

(see (1.21) in [CJL20]), and finally we showed that for any such e, (1.4) was satisfied,
following the lines of a calculation in [Lie63].

In addition, we showed that, under the further assumption that v is of positive
type (its Fourier transform is nonnegative), the quantity e defined in (1.1) coincides
with the ground state energy per particle of the many-body Bose gas, asymptotically
both for small and large values of ⇢. Finally, we showed that, if the potential v is
spherically symmetric and decays exponentially, then u ⇠ |x|�4 for large |x|.

In the present paper we take this analysis further, and prove some of the conjec-
tures in [CJL20], namely, that the map ⇢ 7! e(⇢) is strictly monotone increasing for
small and for large ⇢, as well as the fact that the map ⇢ 7! ⇢e(⇢) is convex for small
values of ⇢. Both of these properties hold for the many-body Bose gas: indeed, the
monotonicity follows simply from the fact that v > 0, and the convexity statement
is equivalent to saying that the compressibility of the Bose gas is positive (that is, if
the gas is compressed, then the pressure increases). In addition, whereas the analysis
in [CJL20] focused solely on the energy of the Bose gas, we will show that the simple
equation can be used to compute an approximation for any one-particle observable. In
particular, we show that the condensate fraction (that is, the proportion of particles
in the Bose–Einstein condensate) agrees with the prediction by Bogolyubov [LHY57].
This is rather significant since, if we could show that the simple equation approx-
imates the Bose gas, this would imply the existence of a Bose–Einstein condensate
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in the thermodynamic limit. Furthermore, we show that the |x|�4 decay proved in
[CJL20] can be extended to a much larger class of potentials. Finally, we exhibit an
explicit solution of (1.1) for a special potential.

These results solve some of the open problems posed in [CJL20], though others
remain unsolved. In particular, the monotonicity result only holds for small and large
densities, and the convexity result only for small densities. We conjecture that this
should be true for all densities, but do not have a proof for this. Another open problem
concerns the so-called full equation (see [CJL20, (7.2)]), which is the other more
intricate e↵ective equation for the two-point correlation function that was mentioned
above, and of which the simple equation is an approximation. Though our numerical
results [CHJL] predict that the full equation is very accurate in reproducing the
behavior of the ground state of the many-boson system, there is so far no proof that
it admits any solution, let alone theorems about its properties.

While the results presented in this paper may seem disparate, for the most part
they are obtained through the use of a common set of mathematical tools. To see
this, let us first consider the monotonicity result. To prove that the map e 7! ⇢(e)
is monotone increasing, formally di↵erentiate (1.1) with respect to e, and find that,
denoting derivatives with respect to e by primes,

(1.7) u0 = Ke(�4u+ 2⇢u ⇤ u+ 2⇢0u ⇤ u)

with

(1.8) Ke = (��+ v + 4e(1� C⇢u))
�1

in which C⇢u denotes the convolution by ⇢u. Now, di↵erentiating the second equation
in (1.1) in e yields

(1.9) ⇢0 =
⇢

e
+
⇢2

2e

Z
u0v dx.

Multiplying (1.8) by v and integrating yields an expression for ⇢0 in terms of e, ⇢, u,
and the operator Ke:

(1.10)
e

⇢
⇢0 =

1 + ⇢
R
(Kev)(⇢u ⇤ u� 2u)dx

1� ⇢2
R
(Kev)u ⇤ udx

.

Justifying these formal calculations and analyzing the resulting expression for ⇢0,
we will prove its strict positivity at all su�ciently low or high densities, and in some
cases, depending on v, for all densities (see Theorem 1.3). It is easy to see that the
same operator Ke will again show up in the computations we do to prove convexity
of e⇢(e). It is probably less clear that it will again show up when we derive formulas
for other observable such as the condensate fraction, and we now explain why this is
the case.

Let A be a self-adjoint operator on the N -particle Hilbert space, representing
some observable whose ground state expectation value h 0, A 0i we would like to
evaluate. Introduce a real parameter µ and the perturbed Hamiltonian

(1.11) H(µ)
N := �

1

2

NX

i=1

�i +
X

i<j

v(xi � xj)� µA
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and denote its ground state by  (µ)
0 and its energy by E(µ)

N . Then

(1.12) E(µ)
N = h 0|H

(µ)
N | 0i

and

(1.13) h 0|A | 0i = �@µE
(µ)
N |µ=0.

The ground state of � 1
2�, the kinetic energy for one particle, is the constant function

V �1/2. Let Pj denote the projector onto this state acting on the coordinates of the
jth particle; i.e., for any ' in the N -particle Hilbert space,

Pj'(x1, . . . , xN ) =

Z
dxj

V
'(x1, . . . xN ) .

The condensate fraction, denoted by 1 � ⌘, is the quantity obtained by taking A =
1
N

PN
j=1 Pj , and it represents the fraction of the particles in the Bose–Einstein con-

densate. Thus ⌘ is the fraction of the particles that are not in the condensate:

(1.14) 1� ⌘ =
1

N

NX

j=1

h 0|Pj | 0i .

Following the procedure used in [Lie63] to derive the simple equation starting from

the Hamiltonian (1.2), we start from the perturbed Hamiltonian H(µ)
N to derive a

modified simple equation,

(1.15) (��+2µ+4eµ)uµ = (1�uµ)v+2⇢eµuµ ⇤uµ, eµ =
⇢

2

Z
(1�uµ(x))v(x) dx,

and then on account of (1.13) we obtain

(1.16) ⌘ = @µeµ|µ=0.

Di↵erentiating (1.15) leads once more to the operator Keµ . Note that, since ap-
proximations were made in computing the two-point correlation function, it is not
immediately clear that the quantity ⌘ defined in (1.30) satisfies 0 6 ⌘ 6 1. In the
rest of this paper, we always use ⌘ to mean the quantity defined in (1.16), and not
the true uncondensed fraction, defined in (1.14). We shall see that at least for small
⇢, the approximation is very good.

Another observable of interest is the momentum distribution

(1.17) M(k) :=
1

N

NX

i=1

h 0|Ki(k) | 0i

with

(1.18) Ki(k)'(x1, . . . , xN ) :=

Z
eik(yi�xi)'(x1, . . . , xi�1, yi, xi+1, . . . , xN ) dyi .

A well-known prediction [CAL09] is that, for a delta function potential, the momen-
tum distribution should behave asymptotically as |k| ! 1 as [NE17, 6.2.1.2]

(1.19) M(k) ⇠
16⇡2a2⇢

|k|4
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which is known as the universal Tan relation [Tan08a, Tan08c, Tan08b]. We have
found that the simple equation reproduces this prediction, even when the potential
is finite, when the density is asymptotically small (see Theorem 1.7). To compute an
approximation for M(k), we follow the same procedure as above, which leads us to
the following equation: for k 6= 0,

(��+ 4eµ)uµ = (1� uµ)v + 2⇢eµuµ ⇤ uµ + 2µû0(k) cos(k · x),(1.20)

eµ =
⇢

2

Z
dx (1� uµ(x))v(x),

and

(1.21) M(k) =
⇢

2

Z
v(x)@µuµ(x)|µ=0dx.

Di↵erentiating (1.20) leads once more to the operator Keµ .
Therefore, a significant part of the analysis in this paper is aimed at understanding

the operator Ke, as well as properties of solutions u of the simple equation. Consider
for example the problem of showing that ⇢0(e) > 0 using the formula in (1.10). We
will need to have Lp to Lq mapping properties of Ke, among other things, but all Lp

bounds on solutions u of the simple equation system. Integrating both sides of the
simple equation, one sees that all solutions of the system satisfy

(1.22)

Z
u(x) dx =

1

⇢
.

Then since all physical solutions (those satisfying u(x) 6 1) satisfy 0 6 u(x) 6 1, it
follows that u 2 Lp(R3) for all 1 6 p 6 1, and the obvious estimate that follows from
this information is kukp 6 ⇢�1/p. However, one can do significantly better. We shall
prove the following lemma in section 7.

Lemma 1.1. For 1 6 p < 3, solutions u of (1.1) satisfy
(1.23)
kukp 6 Cpe

�(p�3)/2p, where Cp := 2(4⇡)1/p�1�1/p(3� p)(2p)(p�3)/p
kvk1 .

In particular,

(1.24) kuk2 6 kvk1
4
p
⇡
e�1/4 ,

while for large e we have the bound

(1.25) kuk2 6 1

2e
kvk2 .

On account of (1.6), this is significantly better than the bound kuk2 6 ⇢�1/2

that follows trivially from (1.22) and 0 6 u(x) 6 1. We shall also need various Lp

bounds on u0, and for these we need a detailed understanding of the Lp to Lq mapping
properties on the operator Ke. We briefly describe this at the end of the introduction
after first describing our main results on the simple equation itself.

1.1. Main results. Our first result on the decay at infinity of the solution of
the simple equation is used throughout the paper. For example, it is the basis of
applications of Lebesgue’s dominated convergence theorem to show the formal limit
taken in deriving the expression (1.7) does exist.
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Theorem 1.2 (large |x| asymptotics of u). If (1 + |x|4)v(x) 2 L1(R3)\L2(R3),
then

(1.26) ⇢u(x) =

p
2 + �

2⇡2
p
e

1

|x|4
+R(x),

where

(1.27) � = ⇢

Z
|x|2v(1� u)dx 6 ⇢kx2vk1,

and where |x|4R(x) is in L2(R3)\L1(R3), uniformly in e on all compact sets. More-
over, for every ⇢0 > 0, there is a constant C that only depends on ⇢0 such that for all
x, for all ⇢ < ⇢0,

(1.28) u(x) 6 min

⇢
1,

C

⇢e
1

2 |x|4

�
.

The next two theorems concern the monotonicity of ⇢ 7! e(⇢) and convexity if
⇢ 7! ⇢e(⇢). These were conjectured in [CJL20] and, here, we prove them for small
density ⇢ (and, in the case of the monotonicity, also for large density).

Theorem 1.3 (monotonicity). Assume that (1 + |x|4)v(x) 2 L1(R3) \ L2(R3).
For

e < e? :=

p
2⇡3

kvk21
and for e >

23kvk42
⇡4

⇢(e) is strictly monotone increasing in e, and in these intervals ⇢(e) is continuously
di↵erentiable. If u(e, ·) denotes the solution of (1.1) as a function of e, u(e, ·) is
continuously di↵erentiable in L2(R3). Moreover,

(1.29) for e < e? ⌘

p
2⇡3

kvk21
we have ⇢0 ⌘

d⇢

de
6 16

kvk1
.

Remark 1.4. Notice that when kvk42kvk
2
1 6 2�

5

2⇡7, the intervals overlap, and
monotonicity holds for all e.

Theorem 1.5 (convexity). Assume that (1 + |x|4)v(x) 2 L1(R3) \ L2(R3) and
that (1 + |x|3)v(x) 2 L8(R3). For

e < e? ⌘

p
2⇡3

kvk21
,

⇢e(⇢) is a convex function of ⇢.

The next theorem concerns the condensate fraction. In it we provide a formula
for the prediction the simple equation makes for the condensate fraction of the many-
body Bose gas, and we show that this prediction satisfies the low density asymptote
that is conjectured to hold for the many-body Bose gas.

Theorem 1.6 (condensate fraction). Assume that (1 + |x|4)v(x) 2 L1(R3) \
L2(R3). The noncondensed fraction ⌘ defined in (1.16) satisfies

(1.30) ⌘ =
⇢
R
v(x)Keu(x) dx

1� ⇢
R
v(x)Ke(2u(x)� ⇢u ⇤ u(x)) dx

.
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As ⇢! 0, ⌘ goes to 0 asymptotically as

(1.31) ⌘ ⇠
8
p
⇢a30

3
p
⇡

,

where a0 is the scattering length of v. This coincides with a well-known prediction for
the many-body Bose gas [LHY57, (41)].

In the next theorem, we show that, in a certain limiting regime, the prediction of
the simple equation for the momentum distribution satisfies Tan’s universal relation,
which is conjectured to hold for the many-body Bose gas.

Theorem 1.7 (momentum distribution). Assume that (1+ |x|4)v(x) 2 L1(R3)\
L2(R3). The momentum distribution defined in (1.21) satisfies

(1.32) M(k) =
⇢û0(k)

R
v(x)Ke cos(k · x) dx

1� ⇢
R
vKe(2u0 � ⇢u0 ⇤ u0) dx

.

Consider the limit |k| ! 0 and ⇢ ! 0 in such a way that  := |k|
2
p
e
! 1. In this

limit,

(1.33) M(k) ⇠
1

4⇢4
⇠

C2

|k|4
, C2 =:

4e2

⇢

which coincides with (1.19) in the limit ⇢! 0.

Finally, we exhibit an explicit solution to the simple equation in the next theorem.

Theorem 1.8 (explicit solution). For e, b, c > 0 such that

(1.34)
e

b2
> 7

9
and c 6 1 ,

the function

(1.35) u(x) =
c

(1 + b2x2)2

is the solution of (1.1) with ⇢ = b3

c⇡2 and the potential

(1.36) v(x) =
12c(x6b6(2e� b2) + b4x4(9e� 7b2) + 4b2x2(3e� 2b2) + (5e+ 16b2))

(1 + b2x2)2(4 + b2x2)2((1 + b2x2)2 � c)

which is in L1(R3) \ L1(R3), and is nonnegative for all c 6 1.

Remark 1.9. Theorem 1.8 actually holds if the first condition (1.34) is replaced
by

(1.37)
e

b2
> �263 + 23

p
161

48
⇡ 0.60

which is the necessary and su�cient condition for the numerator in (1.36) to be
nonnegative. We do not give the proof of this statement here, as it is a bit tedious,
and only marginally improves the 7

9 constant.
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1.2. Tools for the proofs: The operator Ke and a variant of the Hardy–
Littlewood–Sobolev inequality. We now describe some of the main results on Ke

that we shall need. On account of (1.22), ⇢u is a probability density, and

(1.38) 0 6 4e(I � C⇢u) 6 4e

so that Ke, as an operator from L1(R3) to L1(R3), is unbounded. However, et4e(I�C⇢u)

is easily seen to be a positivity preserving contraction semigroup on Lp for all p, as is
et(��+v) [Nel64, RS75]. Then by the Trotter product formula, so is et(��+v+4e(1�C⇢u).
Since

(1.39) Ke =

Z 1

0
dtet(��+v+4e(1�C⇢u) ,

Ke has a positive kernel denoted Ke(x, y). We also define the convolution operator

(1.40) Ye := (��+ 4e(1� C⇢u))
�1

which is related to Ke by the resolvent identity

(1.41) Ke = Ye �YevKe .

Reasoning as above, we conclude that Ye preserves positivity and hence is given by
convolution with a nonnegative function also denoted Ye(x), and then by (1.41) and
the nonnegativity of v,

(1.42) Ke(x, y) 6 Ye(x� y) .

The Fourier transform of Ye(x), cYe(k) is given by

cYe(k) =
�
k2 + 4e(1� ⇢bu(k))

��1
.

Fourier transforming the simple equation, one finds

(1.43) ⇢bu(k) = k2

4e
+1�

s✓
k2

4e
+ 1

◆2

�
⇢

2e
bS(k), bS(k) :=

Z
dx eikx(1�u(x))v(x) .

By (1.22), ⇢bu(0) = 1 and by the second equation in (1.1), ⇢
2e
bS(0) = 1, and from here

one obtains

(1.44)
�
k2 + 4e(1� ⇢bu(k))

��1 6 |k|�1
⇣
k2 + 2

p

2e
⌘�1/2

.

The right side is square integrable, and in this way we obtain a bound on Ye from
L1(R3) to L2(R3). The following lemma (proved in section 7) summarizes information
that we obtain on Ke that su�ces to prove Theorem 1.3 on monotonicity.

Lemma 1.10. Let v 2 L1(R3) \ L2(R3). For all  2 L1(R3),

(1.45) kKe k2 6 1

⇡
(2e)�1/4

k k1

and for all ', 2 L1(R3) \ L2(R3)

(1.46)

Z

R3

dx'(x)(Ke )(x) =

Z

R3

dx(Ke')(x)  (x)
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and

(1.47) e 7!

Z

R3

'(x)(Ke )(x) dx

is continuous. Finally, for all x,

(1.48) 0 6 Kev(x) 6 1 .

Then, as a direct consequence of (1.7), Lemma 1.1, and the bound on ⇢0 provided
by Theorem 1.3 we have the following.

Lemma 1.11. There is a constant independent of C such that for all e,

ku0
k2 6 C⇢�1e�1/4 .

In the course of proving Theorem 1.5 on convexity, we will need a bound on

(1.49) ⇢2
Z

R3

(Kev)u
0
⇤ u0 dx

which shows that for small ⇢, this is negligible compared to ⇢�2. By Young’s inequality
for convolutions, if we have bounds on kKevkp and ku0

kq with 1/p+ 2/q = 2, we can
bound the integral in (1.49). As we shall see below, since v > 0, Kev can decay at
infinity no faster than |x|�2 and, hence, cannot belong to Lp for p 6 3/2. Therefore,
we will need to have a bound on ku0

kq for fairly small q. We shall see that ku0
kq < 1

for all q > 1 (see Theorem 1.14), and we shall obtain a bound on ku0
k4/3 that can be

combined with our bound on kKevk2 to obtain the necessary control on the integral
in (1.49).

To do this, we need something more incisive than the bound (1.44). We shall
show (see section 9) that Ye factors as the product of three commuting operators

(1.50) Ye = (��)�1/2(��+ 8e)�1/2[I + He],

where He is the convolution by an L1 function with the L1 norm bounded by a
constant multiple of e1/2. Hence He is bounded on Lp for all p with a norm bounded
by a multiple of e1/2. Likewise, (��+4e)�1/2 is bounded on Lp for all p with a norm
bounded by a multiple of e�1/2. Thus Ye inherits the Lp to Lq mapping properties of
(��)�1/2, and these are given by the Hardy–Littlewood–Sobolev (HLS) inequality.
In particular, this implies that there is a constant C independent of e 6 e? such that
for all 1 < p < q < 1 with 1/p = 1/q � 1/3,

kKe kq 6 Ce�1/2
k kp .

Of course, since Ke is not scale invariant, it further satisfies Lp to Lq bounds beyond
those supplied by HLS, as we have already in Lemma 1.10. However, this line of
argument can only provide a bound on kKe kq for q > 3/2 and, hence, using this and
u0 = Ke(�4u+ 2⇢u ⇤ u+ 2⇢0u ⇤ u) can only provide bounds on ku0

kq for q > 3/2. To
get down to ku0

k4/3 and below, we need another self-referential formula for u0 which
is

(1.51) u0 = Ye , where  = 2⇢u ⇤ u� 4u+ 2e⇢0u ⇤ u� vu0 .

The merit of this formula is that, as we shall see,
R
R3  dx = 0. Recall that

(��)�1/2' =
1

2⇡2

Z
|x� y|�2'(y) dy
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so that for ' > 0, one can have at best that (��)�1/2'(x) decays at infinity like
|x|�2 and, hence, cannot belong to Lq for q 6 3/2. However, when ' integrates to
zero and decays su�ciently rapidly at infinity, there will be a cancellation so that
(��)�1/2'(x) will decay more rapidly, up to as fast as |x|�3. We are therefore led
to prove a variant of the HLS inequality for functions that integrate to zero, and of
course are using a norm on the input that is not scale invariant, but which measures
the rate of decay at infinity. This may be of wider utility, and we carry this out in
dimension d for arbitrary d.

The norm we use on the input is built using the Lorentz norms Lp,q. These are
recalled in some more detail below, but recall that Lp,1 is weak Lp, Lp,p is Lp, and
Lp,1 is a strict subset of Lp. For 0 < � < d, let G� denote the operator

(1.52) G�f(x) =

Z

Rd

|x� y|��f(y)dy .

Definition 1.12. Let f be a function such that (1 + |x|)sf(x) 2 L1, and such
that f 2 Ld/(d��),1 (Ld/(d��),1 is the Lorentz space with indices d/(d � �), 1). Let
f6R denote f multiplied by the indicator function of the closed ball of radius R, and
let f>R := f � f6R. Given s > d, define

(1.53) |||f |||�,s =

Z

Rd

(1 + |x|)s�d
|f(x)|dx+ sup

R>0
(1 +R)�+s�d

kf>Rkd/(d��),1.

Define the space L�,s to be the space of all measurable functions f for which |||f |||�,s <
1.

We show below that if f satisfies the bound

(1.54) |f(x)| 6 M(1 + |x|)�r ,

then f 2 L�,s for all s < r. Then by Theorem 1.2, we shall be able to apply the
following theorem with s arbitrarily close to 4, granted v decays su�ciently rapidly
so that vu0

2 L�,s. Taking R = 0 in (1.53), we see that kfkd/(d��),1 6 |||f |||�,s,

and since Ld/(d��)
⇢ Ld/(d��),1, Ld/(d��)

⇢ L�,s. Evidently, L1
⇢ L�,s. Thus,

L�,s ⇢ L1
\Ld/(d��) and, hence, for all f 2 L�,s with �, s as specified, f 2 Lp for all

1 6 p 6 d/(d� �), i.e., the whole HLS interval including the endpoints.

Theorem 1.13. Let f 2 L�,s for some d + 1 � s > d satisfying
R
Rd f(x)dx = 0.

Then for all q 6 d/� such that

(1.55) q >
d

� + s� d
,

there is a constant C depending only on q, s, and � such that

(1.56) kG�fkq 6 C|||f |||�,s

With s taken su�ciently close to 4 and � = 2 and d = 3, we can get control on
kG2fkq for q arbitrarily close to 1. In this way we prove the following.

Theorem 1.14. Let e? be defined as in Theorem 1.3. Assume that (1+|x|4)v(x) 2
L1(R3) \ L2(R3) and that (1 + |x|3)v(x) 2 L8(R3). For all p > 1, there is a constant
C depending only on p such that for all e 6 e?,

ku0
kp 6 Ce�3/2 .
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This provides the control on ku0
kq that we need to prove the theorem on convexity.

Remark 1.15. As stated at the very beginning of the paper, we assume that v is
spherically symmetric. This is, however, used very little in the proofs. In fact, the only
theorem that relies on the spherical symmetry is Theorem 1.2. We believe it should
still hold (provided the decay constant in (1.26) is suitably adapted) without the
spherical symmetry. In this case, the other theorems would not require the spherical
symmetry.

2. Pointwise bounds on u(x): Proof of Theorem 1.2. Let

(2.1)  :=
|k|

2
p
e

in terms of which (1.43) becomes

(2.2) ⇢bu = (2 + 1)

0

@1�

s

1�
⇢
2e
bS

(2 + 1)2

1

A .

For small , since x4v is integrable, bS is C4,

(2.3)
⇢

2e
bS = 1� �2 +O(e24)

and � is defined in (1.27):

(2.4) � = �
⇢

4e
@2 bS 6 ⇢kx2vk1.

Therefore, defining

(2.5) bU1 := (2 + 1)�2

 
1�

s

1�
(1� �2)

(2 + 1)2

!
,

bU1 coincides with bu asymptotically as  ! 0 and we chose the prefactor (2 + 1)�2

in such a way that bU1 is integrable. Define the remainder term

(2.6) bU2 := ⇢bu� bU1 = (2 + 1)
⇣
1�

p
1� 2⇣1

⌘
� (2 + 1)�2

⇣
1�

p
1� 2⇣2

⌘

with

(2.7) ⇣1 :=
⇢
4e
bS

(2 + 1)2
, ⇣2 :=

1� �2

2(2 + 1)2
.

The rest of the proof proceeds as follows: we show that the Fourier transform of bU1

decays like |x|�4 by direct analysis, then we show that �2 bU2 is integrable and square
integrable, which implies that it is subdominant as |x| ! 1.

1: We compute U1(x) :=
R

dk
(2⇡)3 e

�ikx bU1(k). We write

s

1�
1� �2

(1 + 2)2
=



1 + 2
p
2 + � + 2(2.8)

=
1

⇡

||(2 + � + 2)

1 + 2

Z 1

0

1

2 + � + t+ 2
t�1/2dt.
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Therefore,
(2.9)

bU1 := (2 + 1)�2
�


⇡
(2 + 1)�2

✓
1 + (� + 1)

1

1 + 2

◆Z 1

0

1

2 + � + t+ 2
t�1/2dt.

We take the inverse Fourier transform of bU1, recalling the definition of  (2.1),

(2.10) U1(x) =
e

3

2

⇡
e�2

p
e|x|

�
1

⇡

 
�(x) +

(� + 1)e

⇡

e�2
p
e|x|

|x|

!
⇤ f1 ⇤ f2,

where

(2.11) f1(x) :=
e

3

2

⇡3

Z
dk e�ik(2

p
ex) |k|

(k2 + 1)2

and

f2(x) :=
e

3

2

⇡3

Z
dk e�ik(2

p
ex)

Z 1

0

dt
p
t

1

2 + � + t+ k2
(2.12)

=
e

⇡|x|

Z 1

0
e�

p
2+�+t(2

p
e|x|)t�1/2dt;

now, for all T > 0,
Z 1

0
e�

p
2+�+t(2

p
e|x|)t�1/2 dt(2.13)

=

Z T

0
e�

p
2+�+t(2

p
e|x|)t�1/2 +

Z 1

T
e�

p
2+�+t(2

p
e|x|)t�1/2 dt

6 2T 1/2e�
p
2+�(2

p
e|x|) +

1
p
e|x|

e�
p
T (2

p
e|x|).

Choosing T = 2 + �, we see that for large (2
p
e|x|), 0 6 f2(x) 6 Ce�

p
2+�(2

p
e|x|).

Furthermore,
(2.14)

f1(x) =
e

3

2

⇡3

Z
dk e�ik(2

p
ex) 1

|k|

k2

(k2 + 1)2
=

e
3

2

⇡3

1

|x|2
⇤g, g(x) =

(1�
p
e|x|)e�(2

p
e)|x|

|x|
.

Using

(2.15)
1

|x� y|2
=

1

|x|2
+

�|y|2 + 2x · y

|x|2|x� y|2

twice and the fact that g(y) is even, integrates to zero, and
R
yg(y) dy = 0,

(2.16) f1(x) =
1

|x|4
e

3

2

⇡3

✓
�

Z

R3

|y|2g(y)dy +

Z

R3

(�|y|2 + 2x · y)2

|x� y|2
g(y)dy

◆
.

We compute
R
R3 |y|2g(y)dy = �

3⇡
2e2 , and then using the symmetry of g once more,

(2.17) lim
|x|!1

Z

R3

(x · y)2

|x� y|2
g(y)dy =

1

3

Z

R3

|y|2g(y)dy = �
⇡

2e2
.
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Therefore,

(2.18) lim
|x|!1

|x|4f1(x) = �
1

2⇡2
p
e

and lim
|x|!1

|x|4U1(x) =
1

2⇡2
p
e

p
2 + � .

We now turn to an upper bound of U1. First of all, if |x| 6 1p
e
, then by (2.14)

and (2.16),

(2.19) f1(x) > 0

and if |x| > 1p
e
, then

(2.20) f1(x) > �
1

|x|4
e2

⇡3

Z

R3

(�|y|2 + 2x · y)2

|x� y|2
e�(2

p
e)|y|dy.

We split the integral into two parts: |y�x| > |x| and |y�x| < |x|. We have (recalling
|x| > 1p

e
),

(2.21)

Z

|y�x|>|x|

(�|y|2 + 2x · y)2

|x� y|2
e�(2

p
e)|y|dy 6 e�

5

2C

for some constant C (we use a notation where the constant C may change from one
line to the next). Now,

Z

|y�x|<|x|

(�|y|2 + 2x · y)2

|x� y|2
e�(2

p
e)|y|dy(2.22)

6 e�
p
e|x|
Z

|y�x|<|x|

(|y|2 + 2|x||y|)2

|x� y|2
dy 6 |x|5e�

p
e|x|C.

Therefore, for all x,

(2.23) f1(x) > �
1

|x|4
C(e�

1

2 + e2|x|4e�
p
e|x|).

Finally, by using (2.13),

(2.24) |x|4
 
�(x) +

(� + 1)e

⇡

e�2
p
e|x|

|x|

!
⇤ f1 ⇤ f2(x) > �Ce�

1

2 .

All in all, by (2.10) (since |x|4e
3

2 e�2
p
e|x| < Ce�

1

2 ),

(2.25) |x|4U1(x) 6 Ce�
1

2 .

2: We now show that �2 bU2 is integrable and square integrable. We use the fact
that

(2.26) 16e2�2
⌘ @4 +

4


@3.

We have, by the Leibniz rule,
(2.27)

@n bU2 =
nX

i=0

✓
n

i

◆⇣
@n�i
 (2 + 1)@i(1�

p
1� 2⇣1)� @n�i

 (2 + 1)�2@i(1�
p
1� 2⇣2)

⌘
.
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Furthermore,

(2.28) @n (1�
p
1� 2⇣j) =

nX

p=1

@p⇣j (1�
p

1� 2⇣j)
X

l1,...,lp2{1,...,n}
l1+···+lp=n

c(p,n)l1,...,lp

nY

i=1

@li ⇣j

for some family of constants c(p,n)l1,...,lp
which can easily be computed explicitly, but this

is not needed. Now, since S > 0, ⇢
1e |
bS| 6 1, so |⇣1| 6 1

2 and ⇣1 = 1
2 if and only if

 = 0. Therefore, bU2 is bounded when  is away from 0, so it su�ces to show that
�2 bU2 is integrable and square integrable at infinity and at 0.

2.1: We first consider the behavior at infinity, and assume that  is su�ciently
large. The fact that @n�i

 (2+1)�2@i(1�
p
1� 2⇣2) is integrable and square integrable

at infinity follows immediately from (2.7). To prove the corresponding claim for ⇣1, we
use the fact that |x|4v is square integrable, which implies that bS is as well. Therefore,
by (2.7) for 0 6 n 6 4, 2@n ⇣1 is integrable at infinity and, therefore, square integrable
at infinity. Furthermore, by (2.7), ⇣1 < 1

2 � " for large , and @n⇣1 is bounded, so
@n�i
 (2 + 1)@i(1�

p
1� 2⇣1) is integrable and square integrable.

2.2: As ! 0

(2.29) ⇣i =
1

2
(1� (� + 2)2) +O(4)

and, since � > 0,

(2.30) 1� 2⇣i > 2 +O(4);

therefore, for p > 1

(2.31) @p⇣j (1�
p
1� 2⇣j) = O(1�2p)

and, since ⇣i is C4, for 3 6 n 6 4,

(2.32) @⇣i = �(� + 2)+O(3), @2⇣i = �(� + 2) +O(2), @n⇣i = O(4�n).

Therefore, for 1 6 i 6 4, by (2.28),

(2.33) @i(1�
p
1� 2⇣1)� @i(1�

p
1� 2⇣2) = O(3�i)

and

(2.34) @i(1�
p

1� 2⇣1) = O(1�i), @i(1�
p
1� 2⇣2) = O(1�i).

Thus, by (2.27), as ! 0,

(2.35) |@4 bU2| = O(�1),
4


|@3 bU2| = O(�1).

Thus, �2 bU2 is integrable and square integrable. And since the O(·) hold uniformly
in e on all compact sets, by (2.26),

(2.36) |x|4U2(x) 6
8e

3

2

16e2

Z ✓
@4|k| +

4

|k|
@3|k|

◆
Û2(|k|) dk 6 C

p
e
.

This along with (2.18) and (2.25) implies (1.26) and (1.28).
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3. Monotonicity of ⇢(e): Proof of Theorem 1.3. The proof uses certain
estimates whose simple proofs are provided in section 7, and it also relies on the
following preliminary result.

Lemma 3.1. The function e 7! e⇢(e) is strictly monotone increasing.

Proof. Suppose that for some ẽ > e, s̃⇢(ẽ) 6 e⇢(e). Define the operator Ke =
(�� + v + 4e)�1 and likewise Kẽ. We use a variant of the iterative scheme used in
[CJL20]. First, write the simple equation (1.1) as a fixed point equation,

(3.1) u(e, x) = Kev(x) + 2e⇢(e)Ke(u ⇤ u)(x)

as in [CJL20]. Next, inductively define a sequence of functions as follows:
(3.2)
un(e, x) = Kev(x) + 2e⇢(e)Ke(un�1 ⇤ un�1)(x) for n � 1 with u0(e, x) = 0 .

A simple induction shows that for all n � 1

0 6 un�1(e, x) < un(e, x) < u(e, x) .

Then by dominated convergence, limn!1 un(e, x) exists and is integrable and satisfies
(3.1). The iteration in (3.2) di↵ers from the one used to construct u(e, x) and ⇢(e)
in [CJL20] in that we are now using the function ⇢(e) constructed there, while in
[CJL20], we had to use an increasing sequence ⇢n(e) of minorants to it. Since for
each n, ⇢n(e) 6 ⇢(e), it follows that for each n, the function un(e, x) is pointwise
larger than the corresponding nth term in the approximating sequence constructed in
[CJL20], Since that sequence was shown to converge to u(e, x), it follows that so does
the sequence constructed here. That is,

u(e, x) = lim
n!1

un(e, x)

Now the integral kernel for Ke is monotone decreasing in e. Therefore, a simple
induction shows that if ẽ > e, ẽ⇢(ẽ) < e⇢(e), then un(ẽ, x) 6 un(e, x) for all n and,
hence,

u(ẽ, x) 6 u(e, x) .

Integrating we find that 1
⇢(ẽ) 6 1

⇢(e) , and this leads to ẽ⇢(ẽ) > e⇢(e) which contradicts
our hypothesis.

Proof of Theorem 1.3. Suppose for the moment that both ⇢(e) and u(e, x) are
di↵erentiable in e and define

(3.3) ⇢0(e) =
d

de
⇢(e) and u0(e, x) =

@

@e
u(e, x) ;

we shall come back and justify this later. Di↵erentiating (1.1) in e, we find

(3.4) u0 = Ke(�4u+ 2⇢u ⇤ u+ 2⇢0u ⇤ u),

where Ke is given by (1.8). Combining this with (1.9) and (1.46) yields, as explained
in the introduction,

(3.5)
e

⇢
⇢0 =

1 + ⇢
R
(Kev)(⇢u ⇤ u� 2u)dx

1� ⇢2
R
(Kev)u ⇤ udx

.
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By Lemma 1.10, 0 6 Kev(x) 6 1 with strict inequality for x su�ciently large and,
hence, by (1.22), Z

(Kev)u ⇤ udx <

Z
u ⇤ udx =

1

⇢2
.

Consequently,

1� ⇢2
Z
(Kev)u ⇤ udx > 0 ,

so that the denominator in (1.10) is positive and, hence, granted our di↵erentiability
assumptions, we shall have proved that ⇢0 > 0 once we have proved that the numerator
is positive, i.e., that

1 + ⇢

Z
(Kev)(⇢u ⇤ u� 2u)dx > 0 .

One might hope to use Lemma 7.5 once more, as we did for the denominator in (1.10).
If it were true that

(3.6) ⇢u ⇤ u� 2u 6 0

everywhere, this would be immediate. The explicit solution provided in section 10 has
this property, and it appears to be true in cases that we have examined numerically.
However, we lack an analytic proof, and must resort to estimates that yield the desired
conclusion but only when e is su�ciently small or large.

We have

(3.7) 1 + ⇢

Z
(Kev)(⇢u ⇤ u� 2u)dx � 1� 2⇢kKevk2kuk2,

and we need only show that for all e su�ciently small 2⇢kKevk2kuk2 6 1 and, under
the additional assumption that kvk1 < 1, the same is true for all e su�ciently large.
We first consider small e.

By Lemmas 1.1 and 1.10,

2kKevk2kuk2 6 1

2
7

4⇡
3

2

kvk21(2e)
� 1

2 .

By (1.6), ⇢ 6 4e
kvk1

and, hence,

2⇢kKevk2kuk2 6 1

2
1

4⇡
3

2

kvk1e
1

2 .

Hence ⇢0 is positive when e <
p
2⇡3

kvk2

1

. Moreover, since for all such e, 2⇢kKevk2kuk2 6 1,

⇢2
Z
(Kev)u ⇤ u =

Z
[(⇢Kev) ⇤ u]⇢u 6 ⇢kKevk2kuk2 6 1

2 ,

we have from (1.10) and (1.6) that

(3.8) ⇢0 6 4
⇢

e
6 16

kvk1
,

and this proves (1.29).
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We next consider large e. By (1.6) and Lemma 7.2,

⇢kuk2 6 4e

kvk1

kvk2
2e

= 2
kvk2
kvk1

.

By Lemma 1.10 once more,

2⇢kKevk2kuk2 6 1

⇡
(2e)�

1

4 kvk1

✓
2kvk2
kvk1

◆
6 2

3

4

⇡
kvk2e

� 1

4 .

Thus, ⇢(e) is also strictly monotone for e > 23kvk4

2

⇡4 .
We now deal with the di↵erentiability assumptions by first considering finite dif-

ferences. Fix ẽ > e > 0 and let ũ(x) ⌘ u(ẽ, x) and let u(x) ⌘ u(e, x). Likewise let
⇢̃ ⌘ ⇢(ẽ) and ⇢ ⌘ ⇢(e). Finally, define �e := ẽ� e, �u := ũ�u, and �⇢ := ⇢̃�⇢. Using
the identity ãb̃� ab = ã(b̃� b) + b(ã� a) repeatedly, we find

(��+ v + 4ẽ)�u+ 4u�e = 2(ẽ�⇢+ ⇢�ẽ)ũ ⇤ ũ+ 4e⇢

✓
u+ ũ

2

◆
⇤ �u .

Define the operator

(3.9) fKe = (��+ v + 4ẽ� 2e⇢Cu � 2e⇢Cũ)
�1 .

Now,

2e⇢Cũ = 2
e⇢

ẽ⇢̃
ẽ⇢̃Cũ,

and since e 7! e⇢(e) is monotone by Lemma 3.1,

k2e⇢Cũk 6 k2ẽ⇢̃Cũk 6 2ẽ,

where the norm is the operator norm on Lp(R3) for any p. Thus, the operator fKe

is even somewhat better behaved than Ke; it is bounded on L2(R3) as well as being
bounded from L1(R3) to L2(R3), although the former bound deteriorates as ẽ # e.
However, the latter bound persists: as noted in Remark 7.4, it is easy to see that the
bound of Lemma 1.10 also holds for fKe, by the same proof. We now have

(3.10) �u = fKe(2(ẽ�⇢+ ⇢�e)ũ ⇤ ũ� 4u�e) .

Multiplying by v and integrating we see
Z

v�udx =

Z
(fKev)(2(ẽ�⇢+ ⇢�e)ũ ⇤ ũ� 4u�e)dx.

Next,
Z

v�udx =

Z
v(1� u)dx�

Z
v(1� ũ)dx =

2e

⇢
�

2ẽ

⇢̃
= 2ẽ

�⇢

⇢⇢̃
� 2

�e

⇢
.

We then conclude
✓

1

⇢⇢̃
�

Z
(fKev)ũ ⇤ ũdx

◆
ẽ�⇢ = �e

✓
1

⇢
+

Z
fKev(⇢ũ ⇤ ũ� 2u)dx

◆
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and, hence,

(3.11)
ẽ

⇢̃

�⇢

�e
=

1 + ⇢
R
(fKev)(⇢ũ ⇤ ũ� 2u)dx

1� ⇢⇢̃
R
(fKev)ũ ⇤ ũdx

which may be compared to (1.10).
Theorem 1.2 says that, under the additional assumption that (1 + |x|4)v(x) 2

L1(R3) \ L2(R3), for any compact interval [a, b], supe2[a,b] u(x, e) is integrable. Then

by Lebesgue’s dominated convergence theorem, e 7! u(x, e) is continuous into L1(Rd).
We already know that e 7! ⇢(e) is continuous by [CJL20, Theorem 1.3], even without
the additional assumption, though with this assumption, it also follows from the
pointwise continuity of u(x, e) since ⇢(e) = (

R
u(x, e)dx)�1. Now by Lemma 7.7 and

Remark 7.8, it follows that

lim
ẽ!e

1� ⇢
R
(fKev)(⇢ũ ⇤ ũ� 2u)dx

1� ⇢⇢̃
R
(fKev)ũ ⇤ ũdx

=
1� ⇢

R
(Kev)(⇢u ⇤ u� 2u)dx

1� ⇢⇢̃
R
(Kev)u ⇤ udx

,

and the right side is a continuous function of e. It follows from (3.11) that ⇢(e) is
continuously di↵erentiable.

Finally, by (3.10),

(3.12)
�u

�e
= fKe

✓
2(ẽ

�⇢

�e
+ ⇢)ũ ⇤ ũ� 4u

◆

and now the limit ẽ ! e is controlled by Lemma 7.3 and Remark 7.4, yielding the
proof of (3.4).

4. Convexity of ⇢e(⇢): Proof of Theorem 1.5. In this section we prove the
convexity of ⇢e(⇢) for small ⇢.

First of all, we show that the convexity of ⇢ 7! ⇢e(⇢) is equivalent to the convexity
of e 7!

1
⇢(e) . Let a prime denote di↵erentiation with respect to e and a dot denote

di↵erentiation with respect to ⇢. Assuming di↵erentiability for now, we have ė =
(⇢0)�1 and ë = �(⇢0)�3⇢00. Therefore,

(4.1)
d2

d⇢2
(⇢e(⇢)) = 2ė+ ⇢ë = (⇢0)�3[2(⇢0)2 � ⇢⇢00].

Now one computes

(4.2)
d2

de2

✓
1

⇢(e)

◆
=

2

⇢3
(⇢0)2 �

1

⇢2
⇢00 = ⇢�3[2(⇢0)2 � ⇢⇢00] .

Finally, by Theorem 1.3, ⇢0 > 0, so ⇢ 7! ⇢e(⇢) is convex if and only if e 7! 1
⇢(e) is. We

will now show that 1
⇢ is a convex function of e.

Proof of Theorem 1.5. As in the proof of the monotonicity, we begin by assuming
the u0 and ⇢0 are di↵erentiable and formally compute u00 and ⇢00. Start from (3.4) and
di↵erentiate again to find
(4.3)

(��+4e+v)u00+4u0 = 4⇢0u⇤u+8

✓
1 +

e

⇢
⇢0
◆
⇢u⇤u0+4e⇢u0

⇤u0+2e⇢00u⇤u+4e⇢u⇤u00 .
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Therefore

(4.4) u00 = Ke

✓
�4u0 + 4⇢0u ⇤ u+ 8

✓
1 +

e

⇢
⇢0
◆
⇢u ⇤ u0 + 4e⇢u0

⇤ u0 + 2e⇢00u ⇤ u

◆
.

Multiplying by v and integrating,

Z
vu00dx =

Z
Kev


�4u0 + 4⇢0u ⇤ u+ 8

✓
1 +

e

⇢
⇢0
◆
⇢u ⇤ u0 + 4e⇢u0

⇤ u0
�

(4.5)

+ 2e⇢00
Z
(Kev)u ⇤ udx .

By (4.2),

e⇢00 = �e⇢2
✓
1

⇢

◆00
+

2⇢

e

✓
e

⇢
⇢0
◆2

and, hence,

(4.6) 2e⇢00
Z
(Kev)u⇤udx = �2e⇢2

Z
(Kev)u⇤udx

✓
1

⇢

◆00
+
4⇢

e

✓
e

⇢
⇢0
◆2 Z

(Kev)u⇤ud .

Twice di↵erentiating the second equation in (1.1),

(4.7) 2e

✓
1

⇢

◆00
= 4

⇢0

⇢2
+ 2

✓
e

⇢

◆00
=

4

e⇢

e

⇢
⇢0 �

Z
vu00dx .

Then by the calculations above,


2e� 2e⇢2

Z
(Kev)u ⇤ udx

�✓
1

⇢

◆00
(4.8)

=
4

e⇢

e

⇢
⇢0

�

Z
Kev


�4u0 +

4

e

✓
e

⇢
⇢0
◆
⇢u ⇤ u+ 8

✓
1 +

e

⇢
⇢0
◆
⇢u ⇤ u0 + 4e⇢u0

⇤ u0
�

�
4⇢

e

✓
e

⇢
⇢0
◆2 Z

(Kev)u ⇤ udx .

Note that, by Lemma 1.10 and (1.22),


2e� 2e⇢2

Z
(Kev)u ⇤ udx

�
> 2e� 2e⇢2

Z
u ⇤ udx = 0

and, hence, if the right side of (4.8) is nonnegative, the convexity is proved. This will
be proved by showing that the largest term on the right is 4

e⇢
e
⇢⇢

0 which is of order

⇢�2 for small ⇢, while all the others are much smaller for small ⇢.
We require some estimates on ku0

kp and in most instances the estimate on ku0
k2

provided by Lemma 1.11 su�ces. For example, by Lemmas 1.11 and 7.3,

����
Z
(Kev)u

0dx

���� 6 kKevk2ku
0
k2 6 C⇢�1e�

1

2 .
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The others, except one, are similar and the required estimate on ⇢0 is provided by
Theorem 1.3. The exceptional term is

4e⇢

Z
(Kev)u

0
⇤ u0dx .

To handle this term we need a good estimate on ku0
kp for p < 4

3 in order to use
Young’s inequality and our bound on kKevk2. It is much harder to control ku0

kp for
p smaller than 2 than for p greater than 2. Lemma 1.14 proved below says that for
all p > 1 and e0 > 0, there is a constant C depending only on p and e0 such that for
all e 6 e0, ku0

kp 6 C⇢�1e�1/2. Then by Young’s inequality, we have
����4e⇢

Z
(Kev)u

0
⇤ u0dx

���� 6 4e⇢kKevk2ku
0
k
2
4/3 6 Ce⇢e�1/4(e�3/2)2 = C⇢�1e�1/4 .

For small e, this is negligible compared to the main term, 4
e⇢

e
⇢⇢

0.
To make this rigorous, we write out the same computation in finite di↵erences as

in the proof of monotonicity. This is straightforward, and left to the reader.

5. The condensate fraction: Proof of Theorem 1.6. 1: Let us start by
proving (1.30). Recall (1.15)–(1.16):

(5.1) (��+2µ+4eµ)uµ = (1�uµ)v+2⇢eµuµ ⇤uµ, eµ =
⇢

2

Z
(1�uµ(x))v(x) dx,

and

(5.2) ⌘ = @µeµ|µ=0.

Note that e0 = e, and we write u = u0 to denote the solution of the simple equation.
One can show the existence of a solution to this equation in a very similar way to
the proof in [CJL20] that (1.1) has a solution. Furthermore, one can prove that uµ is
di↵erentiable with respect to µ in the same way as in the proof of the di↵erentiability
of ⇢ with respect to e in section 3. The details of these two proofs are left to the
reader.

Define

(5.3) s := @µuµ|µ=0 .

Di↵erentiating (1.15) in µ and setting µ = 0, one has

(5.4) (2 + 4⌘)u+ (��+ 4e)s = �sv + 4⇢es ⇤ u+ 2⇢⌘u ⇤ u .

Recalling the definition (1.8) of Ke := (��+ v + 4e(1� C⇢u))�1, we have

(5.5) s = Ke(2⌘⇢u ⇤ u� 2u� 4⌘u).

Furthermore, by (5.2), ⌘ = �
⇢
2

R
sv dx, so

(5.6) ⌘ = �
⇢

2

Z
vK(2⌘⇢u ⇤ u� 2u� 4⌘u) dx.

Solving for ⌘ yields (1.30), which we recall here:

(5.7) ⌘ =
⇢
R
v(x)Keu(x) dx

1� ⇢
R
v(x)Ke(2u(x)� ⇢u ⇤ u(x)) dx

.
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2: We now turn to (1.31). First, note that the estimate in (5.27) also holds for

(5.8)

Z
(Kev)u ⇤ u dx 6 kKevk2kuk2 6 1

2
11

4 ⇡
3

2

kvk21(2e)
� 1

2

which shows that

(5.9) ⌘ =

Z
vKe(⇢u) dx + o(⇢).

By the resolvent identity, we rewrite

(5.10) Ke(⇢u) = ⇠ � Ke(v⇠)

with

(5.11) ⇠ := Ye(⇢u)

in which Ye is defined in (1.40).
2.1: We first prove that

(5.12) ⇠(x) =

p
2e

3⇡2
+ o(

p
e)

uniformly in x. We work in Fourier space: by (1.43),

(5.13) b⇠(2
p
ek) =

1

4e

0

@ k2 + 1q
(k2 + 1)2 � ⇢

2e
bS(2

p
ek)

� 1

1

A .

Since S(x) > 0, |bS(k)| 6 |bS(0)| = 2e
⇢ and, since S is symmetric, bS is real, so

(5.14) |b⇠(2
p
ek)| 6 1

4e

 
k2 + 1p

(k2 + 1)2 � 1
�

k2 + 1p
(k2 + 1)2 + 1

!

which is integrable. Next, note that ⇢
2e
bS(2

p
ek) ! 1 and

(5.15)

Z  
k2 + 1p

(k2 + 1)2 � 1
� 1

!
dk

8⇡3
=

1

3⇡2
p
2

which yields the leading order term in (5.12). Next, by (5.13) and (5.15),
(5.16)

⇠(x)�

p
2e

3⇡2
=

p
e

4⇡3

Z
(e�i2

p
ekx

� 1)

0

@ k2 + 1q
(k2 + 1)2 � ⇢

2e
bS(2

p
ek)

� 1

1

A dk

+

p
e

4⇡3

Z 0

@ k2 + 1q
(k2 + 1)2 � ⇢

2e
bS(2

p
ek)

�
k2 + 1p

(k2 + 1)2 � 1

1

A dk.

By (5.14), the first integrand is absolutely integrable, so

(5.17)

p
e

4⇡3

Z
(e�i2

p
ekx

� 1)

0

@ k2 + 1q
(k2 + 1)2 � ⇢

2e
bS(2

p
ek)

� 1

1

A dk = o(
p
e)
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uniformly in x. Furthermore, since ⇢
2e
bS 6 1 and 1� (1 + ")�

1

2 6 "
2 for all " > 0,

(5.18)������
k2 + 1q

(k2 + 1)2 � ⇢
2e
bS(2

p
ek)

�
k2 + 1p

(k2 + 1)2 � 1

������
6 k2 + 1

((k2 + 1)2 � 1)
3

2

1� ⇢
2e
bS(2

p
ek)

2

and, since bS is the Fourier transform of (1 � u)v which is absolutely integrable, bS is
uniformly continuous, so

(5.19)

p
e

4⇡3

Z
dk

������
k2 + 1q

(k2 + 1)2 � ⇢
2e
bS(2

p
ek)

�
k2 + 1p

(k2 + 1)2 � 1

������
= o(

p
e).

This proves (5.12).
2.2: By (5.10)

(5.20) ⌘ =

Z
v⇠ dx�

Z
(Kev)v⇠ dx+ o(⇢)

and by (5.12), since vKev is integrable (which follows from Lemma 1.10),

(5.21) ⌘ =

p
2e

3⇡2

✓Z
v dx�

Z
vKev dx

◆
+ o(

p
e).

Furthermore,

(5.22) lim
e!0

Ke = (��+ v)�1.

Therefore, by dominated convergence, (we have vKev 6 v(��+ v)�1v which is inte-
grable)

(5.23)

Z
v(x)Kev(x) dx !

Z
v(x)'(x) dx,

where ' is the solution of the scattering equation (�� + v)' = v. Furthermore, by
[CJL20, Lemma 4.2],

(5.24)

Z
v(x)'(x) dx = �4⇡a0 +

Z
v(x) dx.

Inserting this into (5.21), we find

(5.25) ⌘ =
4
p
2e

3⇡
a0 + o(

p
e).

We conclude the proof of (1.31) using the fact that e = 2⇡⇢a0 + o(⇢), which was
proved in [CJL20, Theorem 1.4].

Remark 5.1. If we knew that 2u � ⇢u ⇤ u � 0, we would have from Lemma 7.5
and (1.22) that

(5.26) ⇢

Z
dx Kev(x)(2u(x)� ⇢u ⇤ u(x)) < ⇢

Z
dx (2u(x)� ⇢u ⇤ u(x)) = 1

and, then, we would know that ⌘ � 0. We can at least prove the positivity of ⌘ for
small and large ⇢. By Lemmas 1.1 and 7.3,

(5.27)

Z
(Kev)udx 6 kKevk2kuk2 6 1

2
11

4 ⇡
3

2

kvk21(2e)
� 1

2 .

Therefore ⌘ > 0 for ⇢e�1/2 6 2
13

4 ⇡2

kvk2

1

.
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6. The momentum distribution: Proof of Theorem 1.7. Equation (1.32)
follows directly by di↵erentiating (1.20) in a computation that is very similar to the
proof of (1.30) in section 5. As was the case there, one first needs to prove that the
solution uµ exists and is di↵erentiable, and, as before, we leave those details to the
reader. We now turn to the proof of (1.33). First of all, by (5.8),

(6.1) M(k) = ⇢bu0(k)(1 +O(⇢))

Z
v(x)Ke cos(k · x) dx.

Proceeding as in section 5, we use the resolvent identity to rewrite

(6.2)

Z
v(x)Ke cos(kx) dx =

Z
v(x)Ye cos(kx) dx�

Z
(vKev)(Ye cos(kx)) dx

in which Ye is defined in (1.40), so

(6.3)

Z
v(x)Ke cos(kx) dx =

bv(k)�
R
eikxvKev dx

k2 + 4e(1� ⇢bu(k)) .

Since vKe 6 v(��+ v)�1v which is integrable, by (5.24)

(6.4)

Z
v(x)(��+ v)�1v(x) = �4⇡a0 +

Z
v(x) dx,

we have, by dominated convergence, in the limit e ! 0 and |k| ! 0,

(6.5)

Z
v(x)Ke cos(kx) dx ⇠

4⇡a0
k2 + 4e(1� ⇢bu(k))

so, as ! 1,

(6.6)

Z
v(x)Ke cos(kx) dx ⇠

⇡a0
e2

.

We conclude the proof of the theorem using e ⇠ 2⇡⇢a0 [CJL20, Theorem 1.4].

7. Bounds on u and Ke: Proof of Lemmas 1.1 and 1.10.

Lemma 7.1. Let Ke := (��+ v + 4e)�1 and

(7.1) u1 := Kev .

For all p � 1,

(7.2) ku1kp 6 kukp 6 2ku1kp .

Furthermore, the operator Ke has a positive kernel Ke(x, y) satisfying

(7.3) Ke(x, y) 6 Y4e(x� y) ,

where Y4e(x) :=
e�2

p
e|x|

4⇡|x| , so that Y4e(x� y) is the kernel of (��+ 4e)�1.

Proof. Note that Ke =
R1
0 dte�4etet(��v) and et(��v) has a positive kernel by the

Trotter product formula. Hence Ke has a positive kernel Ke(x, y). By the resolvent
identity it then follows that Ke(x, y) 6 Y4e(x � y), the kernel for (�� + 4e)�1. By
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(1.1), u � u1 = 2e⇢Keu ⇤ u and, since, Ke(x, y) > 0 is nonnegative, so u1 6 u, and
moreover, by (7.3),

(7.4) u� u1 6 2e⇢Y4e ⇤ u ⇤ u .

Since kY4ek1 = 1
4e , it follows from Young’s inequality and (1.22) that for all p � 1

(7.5) ku� u1kp 6 1

2
kukp

and, hence, kukp 6 ku� u1kp + ku1kp 6 1
2kukp + ku1kp.

Lemma 7.2. Let v 2 L2. Then

kuk2 6 1

2e
kvk2 .

Proof. By Lemma 7.1,

ku1k
2
2 6 1

(2⇡)d

Z
(k2 + 4e)�2bv2(k)dk 6 1

16e2
kvk22 .

Now apply Lemma 7.1 once more.

We are now ready to prove Lemma 1.1 which gives bounds on kukp for 1 6 p < 3.

Proof of Lemma 1.1. As in the previous proof, u1 = Kev 6 Y4e ⇤ v. Therefore,
ku1kp 6 kY4ekpkvk1 and

kY4ek
p
p = (4⇡)1�p(2p

p
e)p�3�(3� p) .

Then by Lemma 7.1, kukp 6 2ku1kp. The final statement is given by Lemma 7.2.

We now turn to the proof of Lemma 1.10.

Lemma 7.3. For all nonnegative  2 L1(R3), kKe k2 6 1
2⇡ (2e)

�1/4
k k1. For all

real  2 L1(R3), kKe k2 6 1
⇡ (2e)

�1/4
k k1.

Proof. Let Ye be defined as in (1.40). Then the positive kernels of the operators
Ke and Ye are related by (1.42) and, hence, for all positive  

0 6 Ke 6 Ye and, hence, kKe k2 6 kYe k2 .

Then by (1.40), for nonnegative  2 L1, Ye 2 L2(R3) with

(7.6) kYe k
2
2 6 k k21

(2⇡)3

Z
dk[k2 + 4e(1� ⇢bu(k))]�2 .

Recall from (1.43) that

⇢bu(k) = 1 +
k2

4e
�

s✓
1 +

k2

4e

◆2

�
⇢

2e
bS(k) where bS(k) =

Z
v(1� u)e�ikxdx

and, hence,

(1� ⇢bu(k)) >
s✓

1 +
k2

4e

◆2

�
⇢

2e
bS(k) .
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By (1.1) ⇢
2eS(k) 6 1 and, hence, 4e(1� ⇢bu(k)) >

p
k4 + 8ek2 >

p

8e|k|. Therefore

Z
[k2 +4e(1� ⇢bu(k))]�2dk 6

Z
dk[k2 +

p

8e|k|]�2 = 4⇡

Z 1

0
dr

r2

[r2 +
p
8er]2

=
2⇡
p
2e

.

For the final part, we apply the bound just proved to the positive and negative parts
of  separately.

Remark 7.4. Let fKe be the operator defined in (3.9). It is easy to see that the
same proof yields essentially the same bound for this operator.

Lemma 7.5. For v > 0, and v 2 L1(R3) \ L2(R3), 0 6 Kev(x) 6 1 for all x, and
Kev(x) < 1 on a set of positive measure.

Proof. As we have already explained, Ke preserves positivity and since v 6 0,
Kev(x) > 0. Next, for � > 0, define

Ke,� := (��+ v + 4e(I � C⇢u) + �)�1 =

Z 1

0
dte�t�e��v�4e(I�C⇢u) .

As � decreases toward 0, Ke,�v(x) increases toward Ke,�v(x). To show that Kev(x) 6 1,
it su�ces to show that Ke,�v(x) 6 1 for all � > 0.

We next show that Ke,�v belongs to the Sobolev space H2(R3) and, hence, is
continuous. This is a consequence of the Kato–Rellich theorem [RS75]: since the
operator 4e � 4e⇢Cu is bounded and accretive on all Lp, and since we are assuming
v 2 L2, it follows that the domain of �� + � + v + 4e(I � C⇢u) is the same as the
domain of ��+�, which is H2(R3) and, moreover, (��+v+4e(I�C⇢u)+�)�1 maps
L2(R3) onto H2(R3). Since functions in H2(R3) are continuous, Ke,�v is continuous.
Let  := Ke,�v so that, by (1.8),

� = v( � 1) + 4e( � ⇢u ⇤  ) + � .

Now, suppose k k1 > 1. Then, by (1.22), k⇢u ⇤  k1 < k k1. Let r := (k k1 �

k⇢u ⇤  k1)/2 and
U := {x :  > max{k k1 � r, 1}} ,

which is open. Then evidently  is subharmonic on U and, hence, is maximized on
the boundary, but this is impossible, so U is empty, which is, again, impossible. Hence
k k1 6 1. Finally by Lemma 7.3, since v 2 L1(R3), Kev 2 L2(R3), the set on which
this function exceeds 1/2 has finite measure.

Lemma 7.6. For all  ,' 2 L1(R3) \ L2(R3),

�1 <

Z

R3

'(x)(Ke )(x) dx =

Z

R3

(Ke')(x)  (x) dx < 1 .

Proof. For all � > 0, the operator Ke,� defined in the proof of Lemma 7.5 is
bounded and self-adjoint so that

R
R3 '(x)(Ke,� )(x) dx =

R
R3(Ke,�')(x)  (x) dx By

the monotonicity noted in the proof of Lemma 7.5, the Lebesgue dominated con-
vergence theorem applied separately to the positive and negative parts shows that
lim�#0 kKe,�'�Ke'k2 = 0 and lim�#0 kKe,� �Ke k2 = 0. The finiteness then follows
from Lemma 7.3.

Lemma 7.7. For any ' 2 L1(R3) function e 7!
R
R3(Kev)'dx is continuous and,

consequently, if e 7! 'e is continuous into L1(R3), then e 7!
R
R3(Kev)'edx is contin-

uous.
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Proof. Let e1, e2 > 0, and let ⇢j = ⇢(ej) and uj = u(·, ej), j = 1, 2. Then by the
resolvent identity,

(7.7) Ke2v � Ke1v = 4Ke1 [(e1 � e2) + e2⇢2Cu2
� e1⇢1Cu1

]Ke2v .

Multiply by ' and integrate:

����
Z

R3

'(Ke2v)dx�

Z

R3

'(Ke1v)dx

����(7.8)

=

����
Z

R3

(Ke1')[4(e1 � e2) + 4e2⇢2Cu2
� e1⇢1Cu1

]Ke2vdx

����

6 kKe1'k2k[4(e1 � e2) + 4e2⇢2Cu2
� e1⇢1Cu1

]Ke2vk2

6 [4|e1 � e2|+ 4ke2⇢2u2 � e1⇢1u1k1]kKe1'k2kKe2vk2.

The claim now follows from the bound in Lemma 7.3 and the continuity of e 7!

e⇢(e)u(e, ·) in L1(R3). The final claim is now evident.

Remark 7.8. Let fKe be the operator defined in (3.9). It is easy to see that the

same proof yields the same statement for e 7!
R
R3(fKev)'dx (keeping ẽ fixed). The

same also holds if we exchange e and ẽ.

Proof of Lemma 1.10. Lemma 7.3 proves (1.45). Lemma 7.6 proves (1.46). Lemma
7.7 proves (1.47). Lemma 7.5 proves (1.48).

8. A variant of the HLS inequality: Proof of Theorem 1.13. Recall that
we have defined in (1.52) the operator

(8.1) G�f(x) =

Z

Rd

|x� y|��f(y)dy ,

where 0 < � < d. Up to a constant multiple, depending only on �, G� is the operator
(��)�(d��)/2. By the HLS inequality, for 1 < p < q < 1, related by 1

q = 1
p �

d��
d ,

there is a constant C depending only on d, �, and p such that

(8.2) kG�fkq 6 Ckfkp

holds for all f 2 Lp. Evidently we must have 1 < p 6 d
d�� and hence d/� < q < 1 .

To see that q = d/� is unobtainable, note that if f � 0 has compact support,

lim
x!1

|x|�
Z

|x� y|��f(x)dx =

Z
fdx .

Thus for f � 0, it is never the case that Gf 2 Lq for q 6 d/� unless f = 0.
Our goal in this section is to prove a theorem asserting that if f is integrable

with
R
Rd fdx = 0, and if f decays su�ciently rapidly at infinity, then kG�fkq will be

bounded for certain q 6 d/�. We introduce a norm that measures the decay of f at
infinity, and this involves Lorentz norms. We briefly recall the relevant facts:

For a measurable set A, let |A| denote the measure of A. For 1 6 p, q 6 1, the
Lorentz p, q quasi-norm of a function f is

(8.3) kfk⇤p,q := p1/q
✓Z 1

0
(�|{x : |f(x)| > �}|1/p)q

d�

�

◆1/q

.
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Then Lp,q consists of the measurable function f such that kfkp,q < 1. For p < 1,
kfk⇤p,1 < 1 if and only if for some finite constant C,

(8.4) |{x : |f(x)| > �}| 6 C��p .

That is Lp,1 is weak Lp and hence Lp,1 ⇢ Lp and, in this case,

kfkp,1 6 C1/p.

Next consider q = 1:

(8.5) kfk⇤p,1 = p

Z 1

0
|{x : |f(x)| > �}|1/pd� .

By the definitions, Chebychev’s inequality, and the layer cake representation,

kfkpp = p

Z 1

0
�p�1

|{x : |f(x)| > �}|d�

= p

Z 1

0

⇣
�p�1

|{x : |f(x)| > �}|(p�1)/p
⌘
|{x : |f(x)| > �}|1/pd�

6 pkfkp�1
p kfkp,1 .

Thus, kfkp 6 pkfkp,1 and hence Lp,1 ⇢ Lp. It would be natural to refer to Lp,1 as
strong Lp, but this terminology is not standard.

For 1 < p < 1 and 1 6 q 6 1, k · k⇤p,q is equivalent to an actual norm, k · kp,q,
given by

(8.6) kfkp,q = sup
g

⇢Z
|fg|dx : kgk⇤p0,q0 6 1

�
.

In particular, kfkp,1 is bounded by a universal multiple of

(8.7)

Z 1

0
|{x : |f(x)| > �}|1/pd� .

Definition 8.1. Let f be a function such that (1+ |x|)sf(x) 2 L1, and such that
f 2 Ld/(d��),1 (Ld/(d��),1 is the Lorentz space with indices d/(d � �), 1). Let f6R

denote f multiplied by the indicator function of the closed ball of radius R, and let
f>R := f � f6R. Given s > d, define

(8.8) |||f |||�,s =

Z

Rd

(1 + |x|)s�d
|f(x)|dx+ sup

R>0
(1 +R)�+s�d

kf>Rkd/(d��),1.

Define the space L�,s to be the space of all measurable functions f for which |||f |||�,s <
1.

We show below that if f satisfies the bound

(8.9) |f(x)| 6 M(1 + |x|)�r ,

then f 2 L�,s for all s < r. Taking R = 0 in (1.53), we see that kfkd/(d��),1 6 |||f |||�,s,

and since Ld/(d��)
⇢ Ld/(d��),1, Ld/(d��)

⇢ L�,s. Evidently, L1
⇢ L�,s. Thus,

L�,s ⇢ L1
\Ld/(d��) and, hence, for all f 2 L�,s with �, s as specified, f 2 Lp for all

1 6 p 6 d/(d� �), i.e., the whole HLS interval including the endpoints.
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Theorem 8.2. Let f 2 L�,s for some d + 1 � s > d satisfying
R
Rd f(x)dx = 0.

Then for all q 6 d/� such that

(8.10) q >
d

� + s� d
,

there is a constant C depending only on q, s, and � such that

(8.11) kG�fkq 6 C|||f |||�,s.

Furthermore, for all 1 < p < 1, there is a constant C depending only on p, q, s, and
� such that

(8.12) kG�fkq 6 C
⇣
kfk1�✓

d/(d��/p0)|||f |||
✓
�,s

⌘
,

where

(8.13) ✓ :=
dp� �q

qp

p0

� + p0(s� d)
, p0 :=

p

p� 1
.

Remark 8.3. If we take p ! 1 in (8.13), we find the limiting value of ✓ is ✓ =
d

q(�+s�d) . Since for all choices of p, 1 6 d/(d � �/p0) 6 d/(d � �), the remark after

the definition of the norm ||| · |||�,s provides

k · kd/(d��/p0) 6 C||| · |||�,s

and hence (1.56) follows from (8.12). However, it may be that kfkd/(d��/p0) is much
smaller than |||f |||�,s, as in our application, and then (8.12) gives better bounds.

Lemma 8.4. Let f 2 L�,s for some s > d satisfying
R
Rd fdx = 0. Then for a

universal constant C,

|G�(f6|x|/2)(x)| 6 C|||f |||�,s|x|
�(�+s�d) .

Proof. By the fundamental theorem of calculus, for |y| < |x|,

|x+ y|��
� |x|�� =

Z 1

0

d

dt
(|x+ ty|2)��/2dt

= ��

Z 1

0

h
(x · y + t|y|2)(|x+ ty|2)�(�+2)/2

i
dt .

Then for |x| > 2R with R to be chosen below, and |y| 6 R,

(8.14) ||x+ y|��
� |x|��

| 6 �2�+2
|x|���2(|x||y|+ |y|2) .

Therefore,

����
Z

|x� y|��f6R(y)dy � |x|��

Z
f6R(y)dy

���� 6 �2�+2
|x|���2

Z
(|x||y|+|y|2)|f6R(y)|dy ,

and then since Z
f6R(y)dy = �

Z
f>R(y)dy ,
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(8.15) |G�f6R(x)| 6 |x|��

Z
|f>R|(y)dy+�2

�+2
|x|���2

Z
(|x||y|+ |y|2)|f6R(y)|dy .

Next,

(8.16)

Z
|f>R(y)|dy 6 Rd�s

Z
(1 + |y|)s�d

|f(y)|dy 6 Rd�s
|||f |||�,s ,

and then since 0 6 s� d 6 1, |y| 6 |y|1+d�s(1 + |y|)s�d 6 R1+d�s(1 + |y|)s�d ,

(8.17)

Z
|y||f6R(y)|dy 6 Rd+1�s

Z
(1 + |y|)s�d

|f(y)|dy 6 R1+d�s
|||f |||�,s ,

and similarly if s� d 6 2,

(8.18)

Z
|y|2|f6R(y)|dy 6 Rd+2�s

Z
(1 + |y|)s�d

|f(y)|dy 6 R2+d�s
|||f |||�,s .

Using (8.16) through (8.18) in (8.15) yields
����
Z

|x� y|��f6R(y)dy

���� 6
✓

1

|x|�Rs�d
+

�2�+2

|x|�+1Rs�d�1
+

�2�+2

|x|�+2Rs�d�2

◆
|||f |||�,s .

Taking R = |x|/2 we have the desired bound.

In the next lemma, we use O’Neil’s extension of Hölder’s inequality to the Lorentz
seminorms [O’N63], recalled below. A special case says that for a universal constant
M , Z

|fg|dx 6 Mkgkp,1kfkp0,1 .

Lp,1 is weak Lp and hence for p = d
� , k|x|

��
kd/�,1 < 1.

Lemma 8.5. Let f 2 L�,s \ L3. Then for a universal constant C,

|G�(f>|x|/2)(x)| 6 C|||f |||�,s(1 + |x|)�(�+s�d) .

Proof. Fix any R > 0. Since |x|��
2 Ld/�,1, O’Neil’s inequality gives

k|x|��
⇤ f>Rk1 6 Ck|x|��

kd/�,1kf>Rkd/(d��),1 .

Thus, for another universal constant C, we have from the definition of the norm ||| · |||�,s

that
|G�(f>R)(x)| 6 C|||f |||�,s(1 +R)�(�+s�d) .

Again choosing R = |x|/2 yields the result.

Proof of Theorem 8.2. By the previous two lemmas,

|G�f(x)| 6 C|||f |||�,s|x|
�(�+s�d)

for some universal C. Pick q such that

(8.19) 1 6 q 6 d/� .

For any R > 0 we decompose G�f = (G�f)6R + (G�f)>R, and will estimate the Lq

norm of (G�f)6R using the HLS inequality as follows. Pick p > 1 so that kG�fkpd/�
can be bounded using the HLS inequality. Then by Hölder’s inequality,

k(G�f)6Rk
q
q 6 kG�fk

q
pd/�(|Bd|R

d)1��q/pd,
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where |Bd| is the volume of the d-dimensional unit ball. By the HLS inequality, since
1 < d

d��/p0 <
d

d�� ,

kG�fkpd/� 6 Ckfkd/(d��/p0) .

Then, if C is a universal constant that may change from line to line,
Z

Rd

|G�f |
qdx =

Z

Rd

|(G�f)6R|
qdx+

Z

Rd

|(G�f)>R|
qdx

6 Ckfkqd/(d��/p0)(|Bd|R
d)1��q/pd

+ d|Bd|(C|||f |||�,s)
q

Z 1

R
td�1�q(�+s�d)dt

6 C
⇣
kfkqd/(d��/p0)R

d��q/p + |||f |||q�,sR
d�q(�+s�d)

⌘
,

where the last displayed integral is convergent on account of (1.55). In the final line,
the first exponent on R is positive on account of (8.19), and the second is negative
on account of (1.55). Now choose

R =

✓
|||f |||�,s

kfkd/(d��/p0)

◆ p0
�+p0(s�d)

.

The next lemma provides a simple estimate on the L�,s norm that we shall apply
in the next section.

Lemma 8.6. Suppose that for some constant M , |f(x)| 6 M(1+ |x|)�r. Then for
all s < r, there is a constant C depending only on s such that

(8.20) |||f |||�,s 6 CM .

Proof. Note that {x : |f(x)| > �} ⇢ {x : |x| 6 (M/�)1/r} and, hence,

(8.21) |{x : |f>R(x)| > �}| 6
(
|Bd|

�
M
�

�d/r
, � 6 M(1 +R)�r,

0, � > M(1 +R)�r.

One then computes that for p0 > d
r ,

kf>Rk
⇤
p0,1

6 Md/rp0
p0|Bd|

1/p0
Z M(1+R)�r

0
��d/rp0

d�

= Mp0|Bd|
1/p0

✓
1

1� d/rp0

◆
(1 +R)d/p

0�r .

We take p = d/�, so that p0 = d/(d� �) > d/r and, hence, we have

kf>Rk
⇤
d/(d��),1 6 Mp0|Bd|

1/p0
✓

1

1� d/rp0

◆
(1 +R)d���r 6 CM(1 +R)d���s .

Next, Z

Rd

(1 + |x|)s�d
|f(x)|dx 6 M

Z

Rd

(1 + |x|)s�r�ddx 6 CM .
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9. Bounds on u0: Proof of Theorem 1.14. Recall from (1.7) that

(9.1) u0 = Ke' , where ' = 2

✓
1 + ⇢0

e

⇢

◆
⇢u ⇤ u� 4u ,

and since u 2 Lp for all p, ' 2 Lp for all p. We need bounds on ku0
kq for small values

of q, close to 1, and to obtain these we shall need bounds on ku0
kq for large values of

q. These are relatively easy to obtain using what we know about the operators Ye

and Ke.
The operator Ye stands in the same relation to Ke = (��+v+4e(I�C⇢u))�1 as

does Ge := (��+ 4e)�1 to Ke := (��+ v + 4e)�1. In particular, all four operators
have positive kernels and we have that for all x, y

(9.2) Ke(x, y) 6 Ge(x, y) and Ke(x, y) 6 Ye(x, y) .

By the resolvent identity, Ke = Ke + 4eKeC⇢uKe. Therefore, by (9.2), for all
f � 0,

Kef 6 Gef + 4eGeC⇢uYef .

The kernel of Ge, Ge(x, y) = Y4e(x � y), where the function Y4e, is defined in
Lemma 7.1. Since Y4e is a probability density, it follows from Young’s inequality
that 4eGe is a contraction on Lp for all p. Likewise, since ⇢u is a probability density,
it follows in the same way that C⇢u is a contraction on Lp for all p. Hence for any
nonnegative function f , and any q � 1,

kKefkq 6 kGefkq + k4eGeC⇢uYefkq 6 kGefkq + kYefkq .

Applying this to the positive and negative parts of ' separately, yields

(9.3) ku0
kq 6 kKe'+kq + kKe'�kq 6 2kGe'kq + 2kYe'kq .

We now estimate these terms to prove the following.

Lemma 9.1. There is a constant C independent of e, such that for all 3/2 < q <
1,

ku0
kq 6 Ce�1/2�3/2q .

Proof. Since Ge' = Y4e ⇤ ', Young’s inequality yields

kGe'kq 6 kY4ekpk'kr ,

where 1 + 1/q = 1/p + 1/r. Y4e 2 Lp for 1 6 p < 3 with kY4ekp 6 Ce�(3�p)/2p. (In
what follows, the constant denoted by C will change from line to line.) Also, k'kp 6
Ckukp for all p by the definition of ' and the bound on ⇢0 provided by Theorem 1.3.
Taking q = 1 and p = r = 2, we have from Lemma 1.1, kGe'k1 6 Ce�1/2. Taking
q = 3/2 and p = r = 6/5 kGe'k3/2 6 Ce�3/2. It then follows that for 3/2 6 q 6 1,

(9.4) kGe'kq 6 Ce�1/2�3/2q .

The operator Ye is also a convolution operator, but somewhat more complicated.
It has a useful factorization that we now describe.

D
ow

nl
oa

de
d 

05
/2

4/
22

 to
 1

28
.6

.4
5.

20
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



© 2021 Eric A. Carlen, Ian Jauslin, and Elliott H. Lieb

5354 ERIC A. CARLEN, IAN JAUSLIN, AND ELLIOTT H. LIEB

Note that the Fourier transform renders Ye as the operation of multiplication by
[k2 + 4e(1� ⇢bu(k))]�1. Recall that

⇢bu(k) = 1 +
k2

4e
�

s✓
1 +

k2

4e

◆2

�
⇢

2e
bS(k) ,

where bS(k) =
R
v(1� u)e�ikxdx, ⇢

2eS(k) 6 1, and, hence,

(9.5) [k2 + 4e(1� ⇢bu(k))]�1 =
1 + bH(k)

k(k2 + 8e)1/2

with

bH(k) :=

 
1 +

16e2(1� ⇢
2e
bS(k))

k4 + 8ek2

!�1/2

� 1.

Since limk!1 bS(k) = 0, bH is integrable.
It is more work to see that its inverse Fourier transform, H(x) is also integrable,

but we show this below. It turns out that H(x) is not nonnegative. Had this been
the case we would have that kHk1 = bH(0). To compute this, we expand

(9.6)
⇢

2e
bS(k) = 1 + �k2 +O(k4).

Therefore, Z
H(x)dx = bH(0) = (1 + 2e�)1/2 � 1 6 e� .

The following lemma shows that kHk1 is not quite so small for small e, but is indeed
still small.

Lemma 9.2. There is a constant C independent of e such that

|H(x)| 6 e1/2
C

(1 + |x|2)2

and, in particular, for a di↵erent C still independent of e, kHk1 6 e1/2C.

Proof of Lemma 9.2. Recall that

bH(k) := (1 +G(k))�1/2
� 1, where G(k) :=

16e2(1� ⇢
2e
bS(k))

|k|4 + 8e|k|2
.

The proof is very similar to that of Theorem 1.2, except simpler: one shows that bH
and �2 bH are integrable with k bHk1 + k�2 bHk1 6 Ce1/2. The claim now follows from
the Riemann-Lebesgue lemma.

We can now explicitly specify the factorization of Ye mentioned above: let R

be the Riesz potential operator acting by bR = |k|�1 b (k). Let B be the Bessel

potential operator acting by bB = (|k|2 +8e)�1/2 b (k). Let H be the operator acting

by bH = bH(k) b (k). Then by (9.5),

(9.7) Ye = HBR+ BR .
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Since H and B are convolution operators with integrable kernels, they are bounded
on Lp for all p with B, the kernel of B, satisfying kBk1 = (8e)�1/2. Hence there is a
constant C independent of e such that

(9.8) kYe'kq 6 Ce�1/2
kR'kq .

Since

R'(x) =
1

2⇡2

Z
|x� y|�2'(y)dy =:

1

2⇡2
G2'(x) ,

we can apply the HLS inequality to estimate kR'kq: for 3/2 < q < 1, related by
1
q = 1

p �
1
3 , there is a constant C depending only on q such that

(9.9) kRfkq 6 Ckfk3q/(q+3)

holds for all f 2 Lp.
Going back to (9.8), we obtain kYe'kq 6 Ce�1/2

k'k3q/(3+q), and then by the
definition of ' and the bound on ⇢0 provided by Theorem 1.3, with C changing from
line to line,

(9.10) kYe'kq 6 Ce�1/2
kuk3q/(3+q) .

By Lemma 1.1, kukp 6 Ce�(3�p)/2p and, hence, we obtain

(9.11) kYe'kq 6 Ce�3/2q .

Using this and (9.4) in (9.3) we see that for small e, (9.4) is the dominant term.

To estimate ku0
kp for p 6 3/2, we will use Theorem 8.2, but now we need a

di↵erent expression for u0. By the resolvent identity,

Ke = Ye �YevKe ,

and then by (9.1),

(9.12) u0 = Ke' = Ye'�YevKe' = Ye('� vu0) .

We therefore define  := '� vu0. By Lemma 9.1, u0
2 L2, and since we assume that

v 2 L2, vu0 is integrable. Thus,  is integrable. Furthermore,

(9.13)

Z
 dx =

2e

⇢2
⇢0 �

2

⇢
�

Z
vu0dx =

2e

⇢2
⇢0 �

2

⇢
+

d

de

2e

⇢
= 0 .

We next show that ' inherits a bound of the form |'(x)| 6 Ce�3/2(1 + |x|4)�1

from u.

Lemma 9.3. Let f be any nonnegative function satisfying f(x) 6 C
1+|x|4 and 0 <R

f(x)dx =: ��1:

�f ⇤ f(x) 6 C

1 + |x/2|4

for the same constant C.
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Proof.
Z

|y|>|x|/2
�f(x� y)f(y)dy

6
Z

|y|>|x|/2
�f(x� y)

C

1 + |y|4
dy

6
Z

|y|>|x|/2
�f(x� y)

C

1 + |x/2|4
dy 6 C

1 + |x/2|4

and
Z

|y|<|x|/2
�f(x� y)f(y)dy

6
Z

|y|<|x|/2

C

1 + |x� y|4
�f(y)dy

6
Z

|y|<|x|/2

C

1 + |x/2|4
�f(y)dy =

C

1 + |x/2|4
.

It now follows that with e? defined as in Theorem 1.3, on account of the bound
on ⇢0 proved there, and on account of Theorem 1.2, there is a constant independent
of e such that for all e 6 e?,

(9.14) |'(x)| 6 Ce�3/2(1 + |x|4)�1 .

Now Lemma 8.6 provides an estimate on |||'|||2,s for all s < 4. We then need a
bound on |||vu0

|||2,s, and for this we shall use the estimate on ku0
kq for large q that we

have just proved.

Lemma 9.4. Let v be such that (1 + |x|3)v(x) 2 L8(R3) in addition to our usual
hypothesis that (1 + |x|4)v(x) 2 L1(R3) \ L2(R3). Then for all 3 < s < 4 there is a
constant C such that for all e 6 e?

|||vu0
|||2,s 6 Ce�5/4 .

Proof. We first estimate kv>Ru0
k3,1. For small �, we use

|{x : |v>Ru
0(x)| > �}| 6 kv>Ru0

k1

�
6 kv>Rk2ku0

k2

�

and, hence, for any L > 0,

Z L

0
|{x : |v>Ru

0(x)| > �}|1/3d� 6 3

2
kv>Rk

1/3
2 ku0

k
1/3
2 L2/3 .

For large �, we use

|{x : |v>Ru
0(x)| > �}| 6 kv>Ru0

k
4
4

�4
6 kv>Rk

4
8ku

0
k
4
8

�4

and, hence, for any L > 0
Z 1

L
|{x : |v>Ru

0(x)| > �}|1/3d� 6 3kv>Rk
4/3
8 ku0

k
4/3
8 L�1/3 .

D
ow

nl
oa

de
d 

05
/2

4/
22

 to
 1

28
.6

.4
5.

20
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



© 2021 Eric A. Carlen, Ian Jauslin, and Elliott H. Lieb

ANALYSIS OF A SIMPLE EQUATION II 5357

Optimizing in L, we find
Z 1

0
|{x : |v>Ru

0(x)| > �}|1/3d� 6 9

2

⇣
kv>Rk

1/3
2 ku0

k
1/3
2

⌘1/3 ⇣
kv>Rk

4/3
8 ku0

k
4/3
8

⌘2/3

=
9

2
ku0

k
1/9
2 ku0

k
8/3
8 kv>Rk

1/9
2 kv>Rk

8/9
8(9.15)

6 9

2
ku0

k
1/9
2 ku0

k
8/3
8 kvk1/92 kvk8/98 .(9.16)

By Lemma 9.1, ku0
k
1/9
2 ku0

k
8/9
8 6 Ce�3/4. Also, for all p > 0, kv>Rk

8
8 6 R�p8

k|x|pvk88,

so that kv>Rk
8/9
8 6 R�p8/9

k|x|pvk8/98 . Likewise, kv>Rk
1/9
2 6 R�4/9

k|x|4vk1/92 . Us-
ing (9.16) when R < 1 and choosing p = 3 when R > 1, we see that

sup
R>0

(1 +R)2+s�3
kv>Ru

0
k3,1 6 Ce�3/4

k|x|3vk8/98 k|x|4vk1/92 .

Finally, using Lemma 9.1
Z

R3

(1 + |x|)s�d
|vu0

|dx

6
✓Z

R3

(1 + |x|)2v2(x)dx

◆1/2

ku0
k2 6 Ce�5/4

✓Z

R3

(1 + |x|)2v2(x)dx

◆1/2

.

For e 6 e?, this is the dominant power of e.

Proof of Theorem 1.14. By Lemma 9.1, it only remains to get a bound on ku0
kp

for 1 < p < 3/2, and for this we make use of (9.12). By (9.7) and (9.8), for all q > 1,

ku0
kq 6 Ce�1/2

kG2 kq ,

where  = '� vu0.
We check that  satisfies assumptions of Theorem 8.2. First of all, by (9.13) and

the discussion just above it, ' 2 L1(R3) and
R
' = 0. Next, by the triangle inequality,

|||'|||2,s 6 |||2⇢u ⇤ u+ 2e⇢0u ⇤ u� 4u|||2,s + |||vu0
|||2,s .

By Theorem 1.2, there is a constant C such that

|2⇢u ⇤ u(x) + 2e⇢0u ⇤ u(x)� 4u(x)| 6 C⇢�1e�1/2(1 + |x|)�4 .

It now follows from Lemma 8.6 that for all 3 < s < 4,

|||2⇢u ⇤ u+ 2e⇢0u ⇤ u� 4u|||2,s 6 C⇢�1e�1/2 .

Next it follows from Lemma 9.4 that

|||vu0
|||2,s 6 C⇢�1e�1/4.

Therefore, for any e0 > 0, there is a constant C such that for all e 6 e0,

||| |||2,s 6 C⇢�1e�1/2 .

We now apply (8.12) of Theorem 8.2: in the limit s ! 4 and p ! 1, we would
have

kR kq 6 k k5/83 ||| |||3/82,s .
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We have that ||| |||2,s 6 Ce�3/2 and, for e 6 e?, the dominant contribution to k k3
comes from kvu0

k3 6 kvkpku0
k3p/(p�3) which holds for any p > 3. By Lemma 9.1,

using the assumption that v 2 L8(R3), kvu0
k3 6 Ce�1+3/2p for all 3 < p 6 8. This

would yield a bound proportional to e�19/16+15/16p. We can come arbitrarily close to
this, so, chosing p < 5, we certainly have

kR kq 6 Ce�1 ,

and then the result follows from (9.8) with  in place of '.

10. Explicit solution: Proof of Theorem 1.8. Given an integrable function
u(x) satisfying 0 6 u(x) 6 1, we seek to find ⇢, e, and a nonnegative potential v(x)
such that u(x) then solves (1.1). Since we must have ⇢�1 =

R
udx, the choice of u

fixes ⇢. Then pick any e > 0, and if u solves (1.1) for this ⇢, e, and some potential
v(x), we must have

(10.1) v =
��u+ 2e(2u� ⇢u ⇤ u)

(1� u)
.

The remaining question then is whether this potential v is nonnegative and integrable.
We look for a solution in the form of a Cauchy kernel

(10.2) u(x) =
c

(1 + b2x2)2

since this has the expected decay rate and since it is easy to compute u ⇤ u.
By direct computations, we find that

(10.3) ⇢ =
1R

dx u(x)
=

b3

c⇡2
, bu(k) = ⇡2c

b3
e�

|k|
b , u ⇤ u =

2⇡2c2

b3(4 + b2x2)2

so

(10.4) 2u� ⇢u ⇤ u =
6c(5 + 2b2x2)

(1 + b2x2)2(4 + b2x2)2
, �u =

12cb2(x2b2 � 1)

(1 + b2x2)4
.

Therefore,

��u+ 2e(2u� ⇢u ⇤ u)(10.5)

= 12c
x6b6(2e� b2) + b4x4(9e� 7b2) + 4b2x2(3e� 2b2) + (5e+ 16b2)

(1 + b2x2)4(4 + b2x2)2
,

that is,

(10.6) v(x) = 12c
x6b6(2e� b2) + b4x4(9e� 7b2) + 4b2x2(3e� 2b2) + (5e+ 16b2)

(1 + b2x2)2(4 + b2x2)2((1 + b2x2)2 � c)
,

The denominator is nonnegative for 0 6 c 6 1, and the leading power is |x|12. The
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leading power in the numerator is |x|6, unless 2e = b2, and the coe�cient is nonneg-
ative if and only if 2e > b2. If 2e = b2, then the leading term is |x|4, but with a
negative coe�cient. So we must have at least 9e > 7b2, all of the coe�cients in the
numerator are nonnegative, and, hence, the numerator is nonnegative. This provides
the condition (1.34)

(10.7)
e

b2
> 7

9
and c 6 1,

and we see that when this condition is satisfied, v(x) decays at infinity like |x|�6, so
that (1 + |x|2)v(x) is integrable, but with

R
|x|4v(x)dx = 1.

We conclude this section with some remarks.
1: For large |x|,

(10.8) u ⇠
c

b4x4
.

Theorem 1.2 states that if x4v were integrable, then

(10.9) u ⇠

p
2 + �

2⇡2⇢
p
ex4

,

where by (1.27)

(10.10) � = ⇢

Z
dx x2S(x).

From (10.2) and (10.6) we find that

(10.11) � =
6(2e� b2)

b2
.

Therefore, by (10.3)

(10.12)

p
2 + �

2⇡2⇢
p
ex4

=
c

b4x4

r
3�

b2

e
.

This agrees with (10.8) if and only if 2e = b2, but then the potential is negative for
large |x|. This is not a contradiction since our potentials v(x) never satisfy

R
|x|4vdx <

1 when they are nonnegative so that Theorem 1.2 does not apply. However, this
does imply that there are solutions, such as the one constructed above, in which x2v
is integrable, x4v is not, and (10.9) does not hold.

2: By (10.4), we see that

(10.13) 2u� ⇢u ⇤ u > 0.

Recalling the discussion surrounding (3.6) and (5.26), the monotonicity of e(⇢), and
the fact that ⌘ > 0 would follow directly from this inequality. The fact that it holds
for the explicit solution is further evidence that this inequality holds in general.

Acknowledgment. We are very grateful to Markus Holzmann for many enlight-
ening discussions on the physics of the Bose gas and for sharing his detailed numerical
results on the Bose gas.
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Heisenberg antiferromagnets, J. Stat. Phys., 53 (1988), pp. 1019–1030.

[LHY57] T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose
system of hard spheres and its low-temperature properties, Phys. Rev. (2), 106
(1957), pp. 1135–1145.

[Lie63] E. H. Lieb, Simplified approach to the ground-state energy of an imperfect Bose gas,
Phys. Rev. (2), 130 (1963), pp. 2518–2528.

[LL64] E. H. Lieb and W. Liniger, Simplified approach to the ground-state energy of an
imperfect Bose gas. III. Application to the one-dimensional model, Phys. Rev. (2),
134 (1964), pp. A312–A315.

[LS64] E. H. Lieb and A. Y. Sakakura, Simplified approach to the ground-state energy of
an imperfect Bose gas. II. Charged Bose gas at high density, Phys. Rev. (2), 133
(1964), pp. A899–A906.

[LS02] E. H. Lieb and R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped
gases, Phys. Rev. Lett., 88 (2002), 170409.

[LSSY05] E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The Mathematics of
the Bose Gas and its Condensation, Oberwolfach Semin. 34, Birkhauser, Basel,
Switzerland, 2005.

[LY98] E. H. Lieb and J. Yngvason, Ground state energy of the low density Bose gas, Phys.
Rev. Lett., 80 (1998), pp. 2504–2507.

[NE17] P. Naidon and S. Endo, Efimov physics: A review, Rep. Progr. Phys., 80 (2017),
056001.

[Nel64] E. Nelson, Feynman integrals and the Schrödinger equation, J. Math. Phys., 5 (1964),
pp. 332–343.

[O’N63] R. O’Neil, Convolution operators and l(p, q) spaces, Duke Math. J., 30 (1963), pp. 129–
142.

[RS75] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis,
Self-Adjointness, 2nd ed., Academic Press, New York, 1975.

[Sei11] R. Seiringer, The excitation spectrum for weakly interacting bosons, Comm. Math.
Physics, 306 (2011), pp. 565–578.

[Tan08a] S. Tan, Energetics of a strongly correlated fermi gas, Ann. Physics, 323 (2008),
pp. 2952–2970.

[Tan08b] S. Tan, Generalized virial theorem and pressure relation for a strongly correlated Fermi
gas, Ann. Physics, 323 (2008), pp. 2987–2990.

[Tan08c] S. Tan, Large momentum part of a strongly correlated Fermi gas, Ann. Physics, 323
(2008), pp. 2971–2986.

[YY09] H.-T. Yau and J. Yin, The second order upper bound for the ground energy of a Bose
gas, J. Stat. Phys., 136 (2009), pp. 453–503.

D
ow

nl
oa

de
d 

05
/2

4/
22

 to
 1

28
.6

.4
5.

20
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y


	Introduction
	Main results
	Tools for the proofs: The operator Ke and a variant of the Hardy–Littlewood–Sobolev inequality

	Pointwise bounds on u(x): Proof of Theorem 1.2
	Monotonicity of (e): Proof of Theorem  1.3
	Convexity of e(): Proof of Theorem 1.5
	The condensate fraction: Proof of Theorem 1.6
	The momentum distribution: Proof of Theorem 1.7
	Bounds on u and Ke: Proof of Lemmas 1.1 and 1.10
	A variant of the HLS inequality: Proof of Theorem 1.13
	Bounds on u': Proof of Theorem 1.14
	Explicit solution: Proof of Theorem 1.8
	References

