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ANALYSIS OF A SIMPLE EQUATION FOR THE GROUND STATE
OF THE BOSE GAS II: MONOTONICITY, CONVEXITY, AND
CONDENSATE FRACTION*
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Abstract. In a recent paper we studied an equation (called the “simple equation”) introduced
by one of us in 1963 for an approximate correlation function associated with the ground state of
an interacting Bose gas. Solving the equation yields a relation between the density p of the gas
and the energy per particle. Our construction of solutions gave a well-defined function p(e) for the
density as a function of the energy e. We had conjectured that p(e) is a strictly monotone increasing
function, so that it can be inverted to yield the strictly monotone increasing function e(p). We
had also conjectured that pe(p) is convex as a function of p. We prove both conjectures here for
small densities, the context in which they have the most physical relevance, and the monotonicity
also for large densities. Both conjectures are grounded in the underlying physics, and their proof
provides further mathematical evidence for the validity of the assumptions underlying the derivation
of the simple equation, at least for low or high densities, if not intermediate densities, although the
equation gives surprisingly good predictions for all densities p. Another problem left open in our
previous paper was whether the simple equation could be used to compute accurate predictions of
observables other than the energy. Here, we provide a recipe for computing predictions for any one-
or two-particle observables for the ground state of the Bose gas. We focus on the condensate fraction
and the momentum distribution, and show that they have the same low density asymptotic behavior
as that predicted for the Bose gas. Along with the computation of the low density energy of the
simple equation in our previous paper, this shows that the simple equation reproduces the known
and conjectured properties of the Bose gas at low densities.
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1. Introduction. We study the system of equations

2e
n = /(1 —u(z))v(z) dx

to be solved for an integrable function u on R3 where v is a given nonnegative ra-
dial function representing a repulsive interaction between particles with (1 + |z|*)v €
LY(R3) N L%(R3), and where e and p are positive parameters representing, respec-
tively, the energy per particle and the density in the ground state of a Bose gas,
and are related by the second equation in (1.1). As we explain below, the solution
u(x) specifies a pair correlation function for the Bose gas in terms of which many
observables of physical interest can be computed. This system was first introduced
in [Lie63, LS64, LL64] and the equation on the left is referred to here as the sim-

(1.1)  (—A+44de+v(z))u(z) =v(x) + 2epu * u(x) ,
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ple equation; it results from applying some approximations to a more complicated
equation derived in [Lie63]. For the reader interested in the origins of this equation,
we give a brief account of its derivation and motivation. The simple equation arises
in connection with the ground state 1y of a many-body Bose gas, whose N-particle
Hamiltonian is given by

(1.2) Hy = —%ZAMLZU(%—%‘)

for N particles in a cubic box of finite volume V with periodic boundary conditions.
The ground state eigenfunction 1, is unique and nonnegative, as can be shown using
the Perron—Frobenius theorem, and thus we may normalize vy to obtain a probabil-
ity measure. This is not the usual probability measure associated with a quantum
state, which would be quadratic in the wave function, but since 1) is nonnegative and
integrable (|[1o|l1 < V¥2||40l2), we may use it directly to define a probability mea-
sure, and this is the starting point of [Lie63]. Because particles interact pairwise, the
ground state energy and other observables can be calculated in terms of the two-point
correlation function associated with this probability measure:

V2 [des---d .
(13) (w1 — ) = lim J dxs TN Yo(®1, T2, 23, ..., TN)
N,V—00,N/V=p Jdyy - dyn Yo(yr, ... yn)

In [Lie63], under a few physically motivated approximations, in the thermodynamic
limit, in which the number of particles N and the volume of the gas V are taken to
infinity, with p := % fixed, an equation for the limiting two-point correlation function
g is derived. The function u(z) in (1.1) is then defined as u(z) := 1 — g(x). Note that
since by definition g(z) > 0, u(x) < 1.

Because the expected values in the ground state of many physical observables
can be calculated in terms of g, any method for computing g that bypasses directly
solving the N-body Schrédinger equation for the Hamiltonian (1.2) provides an effec-
tive means for the computation of these values, and this motivates the study of the
simple equation system (1.1). Indeed, the ground state energy per particle is given
in terms of g by the second equation in (1.1). There is so far no rigorous derivation
of (1.1) from the N-body Schrodinger equation and, hence, there is no mathematical
understanding of how closely the solutions of (1.1) approximate the actual two-point
correlation function associated with the N-body ground state 9. However, we have
conducted extensive numerical work on (1.1) and other, more refined, equations, and
have found that these equations are surprisingly accurate. Details on the numerical
results will be published elsewhere [CHJL].

The ground state of the many-body Bose gas in the thermodynamic limit is still
the focus of much current research. While there are many results in other scaling
regimes (see, to name but a few, [LS02, GS09, Seill, BBCS17]; for a more comprehen-
sive review, see [LSSY05]) rigorous results in the thermodynamic limit are mostly fo-
cused on the ground state energy [Bogd7, LHY57, Dys57, LY98, ESY08, YY09, FS20].
Notably, it was recently shown [YY09, FS20] that for the Bose gas the ground state
energy behaves, as p — 0, as

).

where ag is the scattering length of the potential v; see [LSSY05]. However, a more
precise understanding of the physics of the ground state is still lacking. In particular,

Nl

(1.4) (p) = 2mpas (1 i %@aaﬁ Tolp
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it is expected that the Bose gas should exhibit Bose—FEinstein condensation, in which
a macroscopic number of particles occupy the same quantum state. So far, Bose-
Einstein condensation has only been proved in the thermodynamic limit for a lattice
gas in dimensions > 2 at half-filling [KLS88], as well as in other scaling regimes, such
as the Gross—Pitaevskii regime [LS02, BBCS17]. It has never been proved in the
thermodynamic limit for a continuum system.

If it is indeed true that the simple equation describes the many-body Bose gas
in the thermodynamic limit with meaningful accuracy, then it seems important to
understand this equation beyond simple numerics. We have started this effort in a
previous publication [CJL20], where we showed that, under the assumption that v > 0
and that v € L*(R%) N L27(R%) but not necessarily radial, then in each dimension d,
for each e > 0, there is a unique value p(e) for which (1.1) has an integrable solution
satisfying v < 1, and for each e > 0, there is exactly one integrable solution v with
u < 1. (Recall that u < 1 is equivalent to g > 0, a necessary condition for the solution
to be physically meaningful.) We also proved that all such solutions are necessarily
nonnegative, so that

(1.5) 0<u(z) <1

Although the two parameters e and p appear to enter (1.1) in a symmetric way, this
is not the case in the analysis [CJL20]. We first fix e, and then construct p(e) and
the corresponding solution « in an iterative process. We show that the function p(e)
that we construct is continuous, but the analysis in [CJL20] does not show that p(e)
is strictly monotone increasing in e, which would permit us to invert the functional
relationship and define the function e(p), which of course would then also be strictly
monotone. In [CJL20], we showed that for each p > 0, there was at least one e such
that p = p(e), and that

(1.6)

(see (1.21) in [CJL20]), and finally we showed that for any such e, (1.4) was satisfied,
following the lines of a calculation in [Lie63].

In addition, we showed that, under the further assumption that v is of positive
type (its Fourier transform is nonnegative), the quantity e defined in (1.1) coincides
with the ground state energy per particle of the many-body Bose gas, asymptotically
both for small and large values of p. Finally, we showed that, if the potential v is
spherically symmetric and decays exponentially, then u ~ |z|~% for large |z|.

In the present paper we take this analysis further, and prove some of the conjec-
tures in [CJL20], namely, that the map p — e(p) is strictly monotone increasing for
small and for large p, as well as the fact that the map p — pe(p) is convex for small
values of p. Both of these properties hold for the many-body Bose gas: indeed, the
monotonicity follows simply from the fact that v > 0, and the convexity statement
is equivalent to saying that the compressibility of the Bose gas is positive (that is, if
the gas is compressed, then the pressure increases). In addition, whereas the analysis
in [CJL20] focused solely on the energy of the Bose gas, we will show that the simple
equation can be used to compute an approximation for any one-particle observable. In
particular, we show that the condensate fraction (that is, the proportion of particles
in the Bose-Einstein condensate) agrees with the prediction by Bogolyubov [LHY57].
This is rather significant since, if we could show that the simple equation approx-
imates the Bose gas, this would imply the existence of a Bose—Einstein condensate
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in the thermodynamic limit. Furthermore, we show that the |z|~* decay proved in
[CJL20] can be extended to a much larger class of potentials. Finally, we exhibit an
explicit solution of (1.1) for a special potential.

These results solve some of the open problems posed in [CJL20], though others
remain unsolved. In particular, the monotonicity result only holds for small and large
densities, and the convexity result only for small densities. We conjecture that this
should be true for all densities, but do not have a proof for this. Another open problem
concerns the so-called full equation (see [CJL20, (7.2)]), which is the other more
intricate effective equation for the two-point correlation function that was mentioned
above, and of which the simple equation is an approximation. Though our numerical
results [CHJL] predict that the full equation is very accurate in reproducing the
behavior of the ground state of the many-boson system, there is so far no proof that
it admits any solution, let alone theorems about its properties.

While the results presented in this paper may seem disparate, for the most part
they are obtained through the use of a common set of mathematical tools. To see
this, let us first consider the monotonicity result. To prove that the map e — p(e)
is monotone increasing, formally differentiate (1.1) with respect to e, and find that,
denoting derivatives with respect to e by primes,

(1.7) U = Re(—4u + 2pu x u + 2p"u * u)
with
(1.8) Re=(—A+v+4e(1-Cp))"

in which C,,, denotes the convolution by pu. Now, differentiating the second equation
in (1.1) in e yields
p P

(1.9) o= - 5% u'v d.

Multiplying (1.8) by v and integrating yields an expression for p’ in terms of e, p, u,
and the operator R.:

(1.10) Ep' _ 1+ p [(Rev)(pu * u — 2u)dz
p 1 —p? [(Rev)u * udx

Justifying these formal calculations and analyzing the resulting expression for p’,
we will prove its strict positivity at all sufficiently low or high densities, and in some
cases, depending on v, for all densities (see Theorem 1.3). It is easy to see that the
same operator K, will again show up in the computations we do to prove convexity
of ep(e). It is probably less clear that it will again show up when we derive formulas
for other observable such as the condensate fraction, and we now explain why this is
the case.

Let A be a self-adjoint operator on the IN-particle Hilbert space, representing
some observable whose ground state expectation value (g, Ahg) we would like to
evaluate. Introduce a real parameter p and the perturbed Hamiltonian

N
1
(1.11) HW = 752Ai+2v(xif:ﬂj) — pA
=1

1<j
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and denote its ground state by 1/1(()” ) and its energy by EI(\’;). Then
(1.12) B = (ol HY [to)

and

(1.13) (ol Altbo) = ~0, R’ |umo.

The ground state of —%A, the kinetic energy for one particle, is the constant function
V=12 Let P; denote the projector onto this state acting on the coordinates of the
jth particle; i.e., for any ¢ in the N-particle Hilbert space,

Pip(z1,...,2n) = /?gp(ml, LLIN)
The condensate fraction, denoted by 1 — ), is the quantity obtained by taking A =

% Z;\Ll P;, and it represents the fraction of the particles in the Bose-Einstein con-
densate. Thus 7 is the fraction of the particles that are not in the condensate:

N
(114) -n= = 3 (ol P )
j=1

Following the procedure used in [Lie63] to derive the simple equation starting from

the Hamiltonian (1.2), we start from the perturbed Hamiltonian HI(\’,‘) to derive a
modified simple equation,

(1.15) (—A+2p+4de,)u, = (1—uy)v+2pe u,*u,, €, =

(VIS

[0 u@)) d.
and then on account of (1.13) we obtain

(1.16) n = 0ueplu=o-

Differentiating (1.15) leads once more to the operator £e,- Note that, since ap-
proximations were made in computing the two-point correlation function, it is not
immediately clear that the quantity n defined in (1.30) satisfies 0 < < 1. In the
rest of this paper, we always use 7 to mean the quantity defined in (1.16), and not
the true uncondensed fraction, defined in (1.14). We shall see that at least for small
p, the approximation is very good.

Another observable of interest is the momentum distribution

1

N
v 2t

> (ol Ki(k) tho)

i=1

(1.17) M(k) =

with
(1.18)  K;(k)p(z1,...,zN) = /eik(yi*ri)go(xl, e L1, Yiy Titly - -5 TN) dYi -

A well-known prediction [CALO09] is that, for a delta function potential, the momen-
tum distribution should behave asymptotically as |k| — co as [NE17, 6.2.1.2]
1672a%p

(1.19) M(k) ~ -
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which is known as the wuniversal Tan relation [Tan08a, Tan08c, Tan08b]. We have
found that the simple equation reproduces this prediction, even when the potential
is finite, when the density is asymptotically small (see Theorem 1.7). To compute an
approximation for M(k), we follow the same procedure as above, which leads us to
the following equation: for k ## 0,

(1.20) (—A+4de,)u, = (1 —uu)v+ 2peuuy, * uy, + 2uto (k) cos(k - ),
e, = g/dl‘ (1 —uy(x))v(z),
and

(1.21) M(k) = g / (@), (7)o da.

Differentiating (1.20) leads once more to the operator £, .

Therefore, a significant part of the analysis in this paper is aimed at understanding
the operator K., as well as properties of solutions u of the simple equation. Consider
for example the problem of showing that p’(e) > 0 using the formula in (1.10). We
will need to have LP to L? mapping properties of K., among other things, but all LP
bounds on solutions w of the simple equation system. Integrating both sides of the
simple equation, one sees that all solutions of the system satisfy

(1.22) /u(x) dx = 1 .

p
Then since all physical solutions (those satisfying u(x) < 1) satisfy 0 < u(x) < 1, it
follows that u € LP (RS) for all 1 < p < oo, and the obvious estimate that follows from
this information is |jul|, < p~/P. However, one can do significantly better. We shall
prove the following lemma in section 7.

LEMMA 1.1. For 1 < p < 3, solutions u of (1.1) satisfy
(1.23)
lullp < Cpe™ @370, where  Cy = 2(4m)P7ITYP(3 = p)(2p) P P01

In particular,

[v]l1 —1/4
1.24 < ,
(1:24) Julla < e

while for large e we have the bound

1
(1.25) lull2 < 5 lloll -

On account of (1.6), this is significantly better than the bound |[ul, < p~'/2
that follows trivially from (1.22) and 0 < u(z) < 1. We shall also need various LP
bounds on u/, and for these we need a detailed understanding of the LP to L? mapping
properties on the operator K.. We briefly describe this at the end of the introduction
after first describing our main results on the simple equation itself.

1.1. Main results. Our first result on the decay at infinity of the solution of
the simple equation is used throughout the paper. For example, it is the basis of
applications of Lebesgue’s dominated convergence theorem to show the formal limit
taken in deriving the expression (1.7) does exist.

© 2021 Eric A. Carlen, Ian Jauslin, and Elliott H. Lieb
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THEOREM 1.2 (large |z| asymptotics of u). If (1 + |z|*)v(z) € L} (R?) N L3(R?),
then

_V2+pB 1

where
(1.27) B=p / j2l20(1 — w)dz < plla®o]s,

and where |z[*R(x) is in L?(R3) N L>(R3), uniformly in e on all compact sets. More-
over, for every pg > 0, there is a constant C that only depends on py such that for all
x, for all p < po,

(1.28) u(z) < min{l, C} .

pealt

The next two theorems concern the monotonicity of p — e(p) and convexity if
p — pe(p). These were conjectured in [CJL20] and, here, we prove them for small
density p (and, in the case of the monotonicity, also for large density).

THEOREM 1.3 (monotonicity). Assume that (1 + |x[*)v(z) € LY(R3) N L?(R3).

For . . .
2 2
V2 and for e > %

< =
R w

p(e) is strictly monotone increasing in e, and in these intervals p(e) is continuously
differentiable. If u(e,-) denotes the solution of (1.1) as a function of e, u(e,-) is
continuously differentiable in L?(R3). Moreover,

273 d 16
(1.29) fore<e, = Lﬂ-g we have p' = a < )
vl de = [[v][x

Remark 1.4. Notice that when |[v||4|[v]|2 < 27 %x7, the intervals overlap, and
monotonicity holds for all e.

THEOREM 1.5 (convexity). Assume that (1 + |z|*)v(z) € LY(R3) N L?(R?) and
that (1 + |z3)v(x) € L3(R3). For

VA
=T

pe(p) is a convex function of p.

The next theorem concerns the condensate fraction. In it we provide a formula
for the prediction the simple equation makes for the condensate fraction of the many-
body Bose gas, and we show that this prediction satisfies the low density asymptote
that is conjectured to hold for the many-body Bose gas.

THEOREM 1.6 (condensate fraction). Assume that (1 + |z|*)v(z) € LY(R3) N
L?(R3). The noncondensed fraction n defined in (1.16) satisfies

p [v(x)Reu(x) du

(1.30) T 1= Tu(@)Re2u(z) — puru(z)) dz’

© 2021 Eric A. Carlen, Ian Jauslin, and Elliott H. Lieb
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As p— 0, n goes to 0 asymptotically as
8 3
(1.31) n~ VP
3T

where ag is the scattering length of v. This coincides with a well-known prediction for
the many-body Bose gas [LHY57, (41)].

In the next theorem, we show that, in a certain limiting regime, the prediction of
the simple equation for the momentum distribution satisfies Tan’s universal relation,
which is conjectured to hold for the many-body Bose gas.

THEOREM 1.7 (momentum distribution). Assume that (1+|z|*)v(z) € L*(R3)N
L?(R3). The momentum distribution defined in (1.21) satisfies

_ plg(k) [v(z)Re cos(k - x) da
(1.32) M(k) = 1—p [vRe(2ug — pug * ug) dz’

Consider the limit k| — 0 and p — 0 in such a way that Kk := ;L\/lg — o00. In this
limit,
(1.33) M (k) 1 & O, — 4e?

' dprt R TP

which coincides with (1.19) in the limit p — 0.
Finally, we exhibit an explicit solution to the simple equation in the next theorem.

THEOREM 1.8 (explicit solution). For e,b,c > 0 such that
(1.34) 3>g and c<1,

the function

c
is the solution of (1.1) with p = CZ;—SQ and the potential

(1.36) v(x) = 12¢(2905(2¢ — b2) + brat(9e — Tb2) + 4b222(3e — 2b2) + (5e + 16b2))
' B (14 0222)2(4 + b222)2((1 + b222)%2 — ¢)

which is in L*(R®) N L>=(R?), and is nonnegative for all ¢ < 1.

Remark 1.9. Theorem 1.8 actually holds if the first condition (1.34) is replaced
by

e —263 + 23v/161
1.37 —-—>—— ~0.60

(137) b2~ 48

which is the necessary and sufficient condition for the numerator in (1.36) to be
nonnegative. We do not give the proof of this statement here, as it is a bit tedious,
and only marginally improves the % constant.

© 2021 Eric A. Carlen, Ian Jauslin, and Elliott H. Lieb
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1.2. Tools for the proofs: The operator K. and a variant of the Hardy—
Littlewood—Sobolev inequality. We now describe some of the main results on K,
that we shall need. On account of (1.22), pu is a probability density, and

(1.38) 0 <4e(I —Cpy) < 4de

so that £, as an operator from L' (R?) to L'(R?), is unbounded. However, e?4¢(/=Cou)

is easily seen to be a positivity preserving contraction semigroup on L? for all p, as is
e!(=A+v) [Nel64, RS75]. Then by the Trotter product formula, so is e!(—A+v+4e(1=Cou)
Since

(1.39) Re = /Oo dte!(AtoHact=Cou)
0

. has a positive kernel denoted R (z,y). We also define the convolution operator
(1.40) D, = (~A+de(1 = Cp)) ™"

which is related to K. by the resolvent identity

(1.41) Re=De — Voo .

Reasoning as above, we conclude that ). preserves positivity and hence is given by
convolution with a nonnegative function also denoted .(x), and then by (1.41) and
the nonnegativity of v,

(1.42) Re(z,y) <Yelz —y) .
The Fourier transform of 9).(x), ij\e(k) is given by

. (k) = (K + de(1 — pii(k)))~

Fourier transforming the simple equation, one finds

2 2 2 ~ . .
(1.43) pu(k) = k+1\/( + 1) - ﬁS(k), S(k) := /d:z: e (1—u(z))v(z) .

4de

By (1.22), pu(0) = 1 and by the second equation in (1.1), 2—"@5’\(0) =1, and from here
one obtains

(1.44) (k2 + et - pa(k) ™ < K7 (k2 4 2v20)

The right side is square integrable, and in this way we obtain a bound on ). from
LY (R3) to L?(R3). The following lemma (proved in section 7) summarizes information
that we obtain on R, that suffices to prove Theorem 1.3 on monotonicity.

LEMMA 1.10. Let v € L*(R3) N L3(R3). For all ¢ € L*(R3),

(1.45) 1Rl < = (2¢) 74|19y

|

and for all p, € L*(R?) N L?(R3)

(1.46) [, dwela)(80)ie) = [ delseo)@) via)

R3

© 2021 Eric A. Carlen, Ian Jauslin, and Elliott H. Lieb
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and

(1.47) e p()(Ret) () dx
R3

is continuous. Finally, for all z,

(1.48) 0< Rev(z) < 1.

Then, as a direct consequence of (1.7), Lemma 1.1, and the bound on p’ provided
by Theorem 1.3 we have the following.

LEMMA 1.11. There is a constant independent of C' such that for all e,
lo/lla < Cple V4.

In the course of proving Theorem 1.5 on convexity, we will need a bound on
(1.49) p2/ (Rev)u xu dx
R3

which shows that for small p, this is negligible compared to p~2. By Young’s inequality
for convolutions, if we have bounds on ||[R.v||, and ||u'[|; with 1/p +2/q = 2, we can
bound the integral in (1.49). As we shall see below, since v > 0, R.v can decay at
infinity no faster than |x|~2 and, hence, cannot belong to L? for p < 3/2. Therefore,
we will need to have a bound on ||u'||, for fairly small g. We shall see that ||u/]|, < oo
for all ¢ > 1 (see Theorem 1.14), and we shall obtain a bound on [|u'[|4/3 that can be
combined with our bound on ||R.v||2 to obtain the necessary control on the integral
in (1.49).

To do this, we need something more incisive than the bound (1.44). We shall
show (see section 9) that ). factors as the product of three commuting operators

(1.50) Ve = (—A) V2 (=A +8e) V2T + 9],

where ). is the convolution by an L' function with the L' norm bounded by a
constant multiple of e!/2. Hence §). is bounded on L? for all p with a norm bounded
by a multiple of e'/2. Likewise, (—A +4e)~'/2 is bounded on L? for all p with a norm
bounded by a multiple of e~1/2. Thus 9). inherits the L? to L? mapping properties of
(—=A)~/2 and these are given by the Hardy Littlewood-Sobolev (HLS) inequality.
In particular, this implies that there is a constant C' independent of e < e, such that
foralll <p<g<oowithl/p=1/q—1/3,

18l < Ce 20, -

Of course, since K, is not scale invariant, it further satisfies LP to L? bounds beyond
those supplied by HLS, as we have already in Lemma 1.10. However, this line of
argument can only provide a bound on || R.¢||, for ¢ > 3/2 and, hence, using this and
u' = Re(—4u + 2pu * u + 2p'u x u) can only provide bounds on ||v'||, for ¢ > 3/2. To
get down to ||lu'[|4/3 and below, we need another self-referential formula for v’ which
is

(1.51) u =9, where 9 = 2pu * u — 4u + 2ep'u x u — vu’ .

The merit of this formula is that, as we shall see, f]R3 1 dx = 0. Recall that

_ 1 _
(-8) 2% = o5 [le = ol otw) dy
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so that for ¢ > 0, one can have at best that (—A)~'/2p(z) decays at infinity like
|#|=2 and, hence, cannot belong to L? for ¢ < 3/2. However, when ¢ integrates to
zero and decays sufficiently rapidly at infinity, there will be a cancellation so that
(—=A)~12p(z) will decay more rapidly, up to as fast as |z|~3. We are therefore led
to prove a variant of the HLS inequality for functions that integrate to zero, and of
course are using a norm on the input that is not scale invariant, but which measures
the rate of decay at infinity. This may be of wider utility, and we carry this out in
dimension d for arbitrary d.

The norm we use on the input is built using the Lorentz norms L,, ,. These are
recalled in some more detail below, but recall that L, o, is weak L?, L, , is LP, and
L, 1 is a strict subset of LP. For 0 < 3 < d, let Gg denote the operator

(1.52) Gs1(e) = [ lo= v )y

DEFINITION 1.12. Let f be a function such that (1 + |x|)*f(x) € L', and such
that f € Lgja—py1 (Laja—p)y,1 s the Lorentz space with indices d/(d — 3),1). Let
f<r denote f multiplied by the indicator function of the closed ball of radius R, and
let fsr:=f— f<r. Given s > d, define

(1.53) I£lls.s = /Rd(l +[a])* 7 f(2)|de + IS%u>I())(1 + R f plla iy a-

Define the space L3 s to be the space of all measurable functions f for which || f]|a,s <
00.

We show below that if f satisfies the bound
(1.54) |f(@)] < M1+ |z)7",

then f € L3, for all s < r. Then by Theorem 1.2, we shall be able to apply the
following theorem with s arbitrarily close to 4, granted v decays sufficiently rapidly
so that vu' € Lgs. Taking R = 0 in (1.53), we see that || f|lq/@a—g),1 < [Iflls.s
and since LY@=%) C Ly a_py1, LY P C Lg,. Evidently, L' C Lg,. Thus,
Lz, C L N L% (4=P) and, hence, for all f € Ls s with 3, s as specified, f € LP for all
1< p<d/(d—pB),ie., the whole HLS interval including the endpoints.

THEOREM 1.13. Let f € Lg s for some d+1 > s > d satisfying f]Rd f(x)dx = 0.
Then for all ¢ < d/B such that

d

there is a constant C' depending only on q, s, and B such that

(1.56) 1Gsflla < ClI/]

6.5

With s taken sufficiently close to 4 and § = 2 and d = 3, we can get control on
G2 £l for ¢ arbitrarily close to 1. In this way we prove the following.

THEOREM 1.14. Let e, be defined as in Theorem 1.3. Assume that (1+|z|*)v(z) €
LY(R3) N L%(R3) and that (1 + |z|*)v(x) € LE(R3). For all p > 1, there is a constant
C depending only on p such that for all e < ey,

e, < Ce™/2 .
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This provides the control on ||u/||; that we need to prove the theorem on convexity.

Remark 1.15. As stated at the very beginning of the paper, we assume that v is
spherically symmetric. This is, however, used very little in the proofs. In fact, the only
theorem that relies on the spherical symmetry is Theorem 1.2. We believe it should
still hold (provided the decay constant in (1.26) is suitably adapted) without the
spherical symmetry. In this case, the other theorems would not require the spherical
Symimetry.

2. Pointwise bounds on u(x): Proof of Theorem 1.2. Let

L
2.1 Ki=—=
(2.1) NG

in terms of which (1.43) becomes

25
2.2 U= (k*+1)[1-4/1- =2—
(2:2) i = (52 1) e
For small k, since z%v is integrable, S is C4,
(2.3) %g =1- Br? 4+ 0(e*k?)
and S is defined in (1.27):
(2.4) B =-L923 < pllav|1.

4e "
Therefore, defining

S .2 —2 (1 *ﬂ“2)
(2.5) Uy :=(k*+1) (1— 1_(524‘1)2>7

U, coincides with @ asymptotically as s — 0 and we chose the prefactor (k2 + 1)~2
in such a way that U; is integrable. Define the remainder term

2.6) Us:=pi—0U) = (K2 +1) (1 — 1= 2g1) — (K2 41)72 (1 —1- 2@)
with
£

(27) Cl = m, 4-2 =

1 — Br?
2(k2+1)%

The rest of the proof proceeds as follows: we show that the Fourier transform of U,
decays like |2|~* by direct analysis, then we show that A2U, is integrable and square
integrable, which implies that it is subdominant as |z| — oco.

1: We compute Uy (z) := [ (2%3 e~ %, (k). We write

1— 2
(2.8) \/1—(1+i§)2=1f&2\/2+ﬁ+/€2

_ 1kl +B+57) /Oo 1 1204
o7 1+ K2 0 2+ B +t+k2 '
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Therefore,
(2.9)
U =2+ D)2 =224+ 1)2 (14 (B + 1)# /Oo L ey
L T 1+x2) )y 24+B+t+k2 '
We take the inverse Fourier transform of Uy, recalling the definition of x (2.1),
3
: 1 + 1)e e~2Velal
(2.10) Ui(o) = Se2velel _ L <5<x> IRCRR -
i T 7r ||
where
e ||
2.11 = — [ dk e Ve
( ) fl(x) 3 / € (k2 + 1)2
and
3
ez - o dt 1
2.12 = — [dk e Ve [ —
(2.12) f2(@) 7r3/ ‘ o Vi2+B+t+k?

:L/ e VEFBFIVelz) =172 gy
w|z| Jo

now, for all T" > 0,

(2.13) / T VIFBFIRVERD - 1/2 g
0
T 00
:/ 67\72+6Tt(2\/5\z|)t71/2+/ o VITBFIRVElz))-1/2 gy
0 T

< oTV2e—VIFBCVEl) 4 L —VTyell),

Vela|

Choosing T = 2 + 3, we see that for large (2v/e|z]), 0 < fo(x) < Ce~V2H2Vel2D),
Furthermore,
(2.14)

3 2 3 _ Vo)l
ez k(2 1 k _ex 1 (1= +/e|z|)e
fl(l’)—ﬁ/dk‘e ih( ﬁx)mm—ﬁw*% g(z) = |z| :
Using
1 1 —lyP+2z-y
2.15 =t 5
(249) e TP el o

twice and the fact that g(y) is even, integrates to zero, and [ yg(y) dy = 0,

1 e? —lyl? + 22 - y)?
2100 file) = S (= [ b+ [ EEEEE g,).

|z —yl?

We compute f]m ly|*g(y)dy = —57”2, and then using the symmetry of g once more,
- (z-y)? 1 / , -

2.17 1 dy = - due

( ) \SC\ILHOO /]R3 |z 7y|29(y) Yy 3 Jgs lyl7g(y)dy 92
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Therefore,

1 1
2.18) i 4 = = d li U (2) = ——=1/2 )
( ) \x|1£>noo|x| fl(fE) 27T2\/é an |3:|1£>noo|m| 1($) 271'2\/5 +ﬁ

We now turn to an upper bound of U;. First of all, if |z| < ﬁ, then by (2.14)
and (2.16),

(2.19) fi(z) =0

and if |z| > ﬁ, then

1 e? (—|y)*> + 2z -y)? _
2.20 > = AN i VARl CAVE ] I P
( ) fl(x) |1’|4 7T3 /]R3 |x—y|2 € Yy

We split the integral into two parts: |y —x| > |z| and |y —z| < |z|. We have (recalling
2| > =),

2 2
(2.21) / EWE+22-9)° —evanlg, < 3¢
ly—a|>|e| |z —y?

for some constant C' (we use a notation where the constant C' may change from one
line to the next). Now,

2 2
(2.22) / Cll 42297 evamig,
ly—z|<|z| ‘IE - y|

2 2
< e—\/€|x\/ (lyl +2\l‘|2|y|) dy < |afPeVeliC,
ly—z|<|z] |z -y

Therefore, for all x,
1
(2.23) filz) > —WC(e_% + ?|x|te Velely,

Finally, by using (2.13),

N

(B+1e e~ 2Velz|
T

||

(2.24) || ((5(95) + ) % f1 % fa(x) > —Ce™ 2.

All in all, by (2.10) (since |z|*e3e2Velel < Ce3),
(2.25) l2|*U; (z) < Ce™ 2.

2: We now show that A2(72 is integrable and square integrable. We use the fact
that

(2.26) 16e2A% = 9% + éa}ij.
K
We have, by the Leibniz rule,
(2.27)
o0 =" (’Z) (a;';—i(n? F 1) (1 — /1= 200) — " (k2 +1)720% (1 — /T — 2@)) .

=0
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Furthermore,
) o0V = Y0 -V Y @, TTok
p=1 l1,..ulp€{l,....,n} i=1
l1++lp:’ﬂ
(p:n)

for some family of constants c¢;, which can easily be computed explicitly, but this

seenslp
is not needed. Now, since S > 0, 1%\§| < 1,80 |G| € % and (; = % if and only if
t = 0. Therefore, [72 is bounded when & is away from 0, so it suffices to show that
A?U, is integrable and square integrable at infinity and at 0.

2.1: We first consider the behavior at infinity, and assume that « is sufficiently
large. The fact that 07~ ¢(k?+1)729% (1—+/T — 2() is integrable and square integrable
at infinity follows immediately from (2.7). To prove the corresponding claim for (i, we
use the fact that |z|%v is square integrable, which implies that S is as well. Therefore,
by (2.7) for 0 < n < 4, k207¢; is integrable at infinity and, therefore, square integrable
at infinity. Furthermore, by (2.7), {1 < % — ¢ for large k, and 0"(; is bounded, so
O~ (k? +1)0% (1 — /T —2(7) is integrable and square integrable.

2.2: Ask —0

(2.29) G =501~ (8 +28%) +O(x*)

and, since > 0,

(2.30) 1—2G > K2+ O(kY);

therefore, for p > 1

(2.31) 9 (1= /1 =2) = O(k' )

and, since (; is C*, for 3 < n < 4,

(2.32) 3G =—(B+2)k+O(r°), ¢ =—(B+2)+0(K), 9"G=0(K"").
Therefore, for 1 < i < 4, by (2.28),

(2.33) (1= /1 =20) = 9(1 — V1 -26) = O(+* )

and

(2.34) On(1—V1-20) = 0('™), (1 - V1-20) = 0.

Thus, by (2.27), as k — 0,
~ 4 ~
(2.35) 002 = O(x™), 21020%] = O(x).

Thus, A20, is integrable and square integrable. And since the O(-) hold uniformly
in e on all compact sets, by (2.26),

4 8e? 4 45\ 7 ¢
(2.36) |z|*Us(z) < 16e2 a|k| + maw Us (k) dk < %

This along with (2.18) and (2.25) implies (1.26) and (1.28).
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3. Monotonicity of p(e): Proof of Theorem 1.3. The proof uses certain
estimates whose simple proofs are provided in section 7, and it also relies on the
following preliminary result.

LEMMA 3.1. The function e — ep(e) is strictly monotone increasing.

Proof. Suppose that for some ¢ > e, 5p(€) < ep(e). Define the operator K, =
(—A + v + 4e)~! and likewise Kz. We use a variant of the iterative scheme used in
[CJL20]. First, write the simple equation (1.1) as a fixed point equation,

(3.1) u(e,z) = Kev(x) + 2ep(e) Ke(u x u)(x)

as in [CJL20]. Next, inductively define a sequence of functions as follows:
(3.2)
un(e,x) = Kev(z) + 2ep(e)Ke(tun—1 * up—1)(x) forn>1 with wg(e,z)=0.

A simple induction shows that for all n > 1
0 < up_1(e,z) <uple,z) <ule,x) .

Then by dominated convergence, lim,,_,~ u, (€, z) exists and is integrable and satisfies
(3.1). The iteration in (3.2) differs from the one used to construct u(e,z) and p(e)
in [CJL20] in that we are now using the function p(e) constructed there, while in
[CJL20], we had to use an increasing sequence p,(e) of minorants to it. Since for
each n, p,(e) < p(e), it follows that for each n, the function u,(e,z) is pointwise
larger than the corresponding nth term in the approximating sequence constructed in
[CJL20], Since that sequence was shown to converge to u(e, x), it follows that so does
the sequence constructed here. That is,

u(e,x) = lim wuy,(e, )
n—oo

Now the integral kernel for K. is monotone decreasing in e. Therefore, a simple
induction shows that if € > e, ép(€) < ep(e), then u,(€,x) < uy(e,z) for all n and,
hence,

u(é,z) < ule,x) .
Integrating we find that ﬁ < ﬁ, and this leads to €p(€) > ep(e) which contradicts
our hypothesis. 0

Proof of Theorem 1.3. Suppose for the moment that both p(e) and wu(e,x) are
differentiable in e and define

d

(3.3) pe) = &p(e) and  u'(e,x) = %u(e,m) ;

we shall come back and justify this later. Differentiating (1.1) in e, we find
(3.4) ' = Re(—4u + 2pu x u + 2p"u * u),

where £, is given by (1.8). Combining this with (1.9) and (1.46) yields, as explained
in the introduction,

e , 1+p[(Rev)(pux*u—2u)dx
P 1 —p? [(Rev)u * udz
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By Lemma 1.10, 0 < £.v(x) < 1 with strict inequality for x sufficiently large and,
hence, by (1.22),
1
2

/(ﬁev)u*udx < /u*udx:
p

Consequently,

1—p2/(.@ev)u*uda:>0,

so that the denominator in (1.10) is positive and, hence, granted our differentiability
assumptions, we shall have proved that p’ > 0 once we have proved that the numerator
is positive, i.e., that

1+p/(f{ev)(pu*uf2u)dx >0.

One might hope to use Lemma 7.5 once more, as we did for the denominator in (1.10).
If it were true that

(3.6) puxu—2u<0

everywhere, this would be immediate. The explicit solution provided in section 10 has
this property, and it appears to be true in cases that we have examined numerically.
However, we lack an analytic proof, and must resort to estimates that yield the desired

conclusion but only when e is sufficiently small or large.
We have

(3.7 1+ p/(ﬁev)(pu s u — 2u)dr > 1 — 2p||Rev||2]|ul|2,

and we need only show that for all e sufficiently small 2p||R.v||2|lull2 < 1 and, under
the additional assumption that ||v||ec < 00, the same is true for all e sufficiently large.
We first consider small e.

By Lemmas 1.1 and 1.10,

1 _1
2||Revf2)lullz € 5 [lv]lF(2e)"= .
2172

By (1.6), p < Hﬁﬁ and, hence,
1 1
2p[[Revll2llullz € v [lvllie> .
24732

. . . 3 .
Hence p’ is positive when e < ‘ﬁ—ﬂ; Moreover, since for all such e, 2p|[fev||2||ull2 < 1,
1

¢ [(evpusu= [(p8e0) s ulpu < plSvlalulla < §
we have from (1.10) and (1.6) that
(3.8) Pl <

and this proves (1.29).
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We next consider large e. By (1.6) and Lemma 7.2,

de_|vllz _ Il
[ofl1 2e vl

pllullz <

By Lemma 1.10 once more,

2p||Revll2]lullz <

. 2llv 24 .
(20) invnl( ” ”2) < B loflaet .

1
m l[o]lx m

Thus, p(e) is also strictly monotone for e > ﬂiz”%

We now deal with the differentiability assumptions by first considering finite dif-
ferences. Fix é > e > 0 and let @(z) = u(é,z) and let u(z) = u(e,x). Likewise let
p = p(é) and p = p(e). Finally, define de := é —e, du := @ —u, and 6p := p— p. Using
the identity ab — ab = a(b —b) + b(a — a) repeatedly, we find

(—A + v+ 48)8u + dude — 2(E6p + po&)i = i + dep (“;“) «Su .

Define the operator
(3.9) R = (=A + v 4 4é — 2epC,, — 2epCq) " .
Now,
2epCy = 22650,
ép
and since e — ep(e) is monotone by Lemma 3.1,
12epCall < [126pCal| < 2€,
where the norm is the operator norm on LP(R3) for any p. Thus, the operator f%:
is even somewhat better behaved than £; it is bounded on L?(R?) as well as being
bounded from L!(R3) to L?(R?), although the former bound deteriorates as € | e.

However, the latter bound persists: as noted in Remark 7.4, it is easy to see that the
bound of Lemma 1.10 also holds for K., by the same proof. We now have

(3.10) du = Rc(2(80p + pde)t * a4 — 4ude) .

Multiplying by v and integrating we see
/vSudm = /(Ev)(?(éép + pde)u x 4 — dude)dz.
Next,

/véud:v:/v(l—u)dm—/v(l—ﬂ)dx:%—2—?:266—’2—2%.
p

We then conclude

<1~ — /(jﬁ\;v)ﬂ * ﬁdw) edp = de (1 + /gv(pﬂ * U — 2u)da:>
pp p

© 2021 Eric A. Carlen, Ian Jauslin, and Elliott H. Lieb



Downloaded 05/24/22 to 128.6.45.205 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

5340 ERIC A. CARLEN, IAN JAUSLIN, AND ELLIOTT H. LIEB
and, hence,

edp 1+p[(R R0 (pii * 1 — 2u)da

poe 1—ppfﬁevu*uda:

(3.11)

which may be compared to (1.10).

Theorem 1.2 says that, under the additional assumption that (1 + |x|*)v(z) €
L'(R?) N L*(R?), for any compact interval [a, b], sup, ¢, u(, €) is integrable. Then
by Lebesgue’s dominated convergence theorem, e + u(z, €) is continuous into L*(R?).
We already know that e — p(e) is continuous by [CJL20, Theorem 1.3], even without
the additional assumption, though with this assumption, it also follows from the
pointwise continuity of u(z,€) since p(e) = ([ u(z,e)dz)'. Now by Lemma 7.7 and
Remark 7.8, it follows that

i l—pf(}%vev)(pﬂ*ﬂ—Qu)d 1—pf V) (pu x u — 2u)dx
11m — ’
é—re 1— pp [(Rev)i * adx 1 — pp [(Rev)u * udx

and the right side is a continuous function of e. It follows from (3.11) that p(e) is
continuously differentiable.
Finally, by (3.10),

(3.12) 2—“ —35( (65p+p)ﬂ*ﬂ4u)
e

and now the limit € — e is controlled by Lemma 7.3 and Remark 7.4, yielding the
proof of (3.4). d

4. Convexity of pe(p): Proof of Theorem 1.5. In this section we prove the
convexity of pe(p) for small p.

First of all, we show that the convexity of p — pe(p) is equivalent to the convexity
of e — ﬁ. Let a prime denote differentiation with respect to e and a dot denote
differentiation with respect to p. Assuming differentiability for now, we have é =
(o)~ and € = —(p’)~3p”. Therefore,

2
(4.1) (o) = 265 g = () P20 = g
Now one computes
(42) i (i) = 300 = o =R = ).

Finally, by Theorem 1.3, p’ > 0, so p — pe(p) is convex if and only if e = S is. We

will now show that % is a convex function of e.

Proof of Theorem 1.5. As in the proof of the monotonicity, we begin by assuming
the w’ and p’ are differentiable and formally compute u” and p”. Start from (3.4) and

differentiate again to find
(4.3)

(—A+de+o)u +4u" = 4p uxu+8 (1 + ep’) puxu +depu xu' +2ep” uxu-+4depuxu”
p
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Therefore
44) v =R, | -4 +4puxu+8 lJrE ") puxu’ + depu’ xu' + 2ep"uxu | .
P PP P P
p
Multiplying by v and integrating,

(4.5) /vu"dx = /ﬁev [—41/ +4puxu+8 (1 + ep') pu v + depu’ * u’]
)

+ 2ep” /(ﬁev)u * udx .

1 " 9 2
e (- 2()
P e \p
and, hence,

" 2
(4.6) 2ep”/(ﬁev)u*udx = —2¢p? /(ﬁev)u*uda: (;) —&-4? (Zp’) /(Rev)u*ud.

By (4.2),

Twice differentiating the second equation in (1.1),

1\” ! e\” 4de
(4.7) 2e () = 4/)—2 +2 () =——p - /vu"dm :
p p p epp

Then by the calculations above,

(4.8) [2e — 2ep? /(ﬁev)u * udx} (;)N

4e,
——p
epp
!/ 4 € / eI ! ! /
— [ Rev|—4u +—|—p |Jpuxu+8|1+4+ —p | puxu +4depu’ xu
e \p P
2

_dr (ep’> /(Rev)u*uda: .
e \p

Note that, by Lemma 1.10 and (1.22),

|:26 — 2ep? /(ﬁev)u * udx] > 2e — 2ep? /u *udx =0

and, hence, if the right side of (4.8) is nonnegative, the convexity is proved. This will
be proved by showing that the largest term on the right is fp% p’ which is of order
p~2 for small p, while all the others are much smaller for small p.

We require some estimates on ||u/||, and in most instances the estimate on ||u/||2

provided by Lemma 1.11 suffices. For example, by Lemmas 1.11 and 7.3,

) / (Rov)dz

< [ Bevllo]lela < Cp~le %
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The others, except one, are similar and the required estimate on p’ is provided by
Theorem 1.3. The exceptional term is

4ep/(ﬁev)u’ *u'dx .
To handle this term we need a good estimate on [[u'|, for p < % in order to use
Young’s inequality and our bound on ||Rev||2. It is much harder to control ||u'||, for
p smaller than 2 than for p greater than 2. Lemma 1.14 proved below says that for
all p > 1 and eg > 0, there is a constant C' depending only on p and ey such that for
all e < eg, |[u/]|, < Cp~te~/2. Then by Young’s inequality, we have

4ep/(ﬁev)u’ x u'dw

< depl|Revllallw'| 5 < Cepe™ /4 (e¥/2)2 = Cp~le /A |

For small e, this is negligible compared to the main term, f—pip’ .
To make this rigorous, we write out the same computation in finite differences as
in the proof of monotonicity. This is straightforward, and left to the reader. 0

5. The condensate fraction: Proof of Theorem 1.6. 1: Let us start by
proving (1.30). Recall (1.15)—(1.16):

(5.1) (=A+2u+4e, )y = (1 —un)v +2peuty 5w, €, = g/u —u(@))v(z) do,
and
(5.2) n = Opeu|u=o-

Note that eg = e, and we write u = ug to denote the solution of the simple equation.
One can show the existence of a solution to this equation in a very similar way to
the proof in [CJL20] that (1.1) has a solution. Furthermore, one can prove that u, is
differentiable with respect to p in the same way as in the proof of the differentiability
of p with respect to e in section 3. The details of these two proofs are left to the
reader.

Define

(5.3) s 1= OpUy|u=0 -

Differentiating (1.15) in p and setting p = 0, one has

(5.4) 24+ 4n)u+ (—A +4e)s = —sv + 4dpes x u + 2pnu x u .
Recalling the definition (1.8) of & := (—A +v +4e(1 —C,,))~ ", we have
(5.5) s = Re(2npu x u — 2u — 4nu).

Furthermore, by (5.2), n = —% [ sv dz, so

(5.6) n= —g /vﬁ(anu xu — 2u — 4nu) dz.
Solving for n yields (1.30), which we recall here:

p [v(x)Reu(x) dx

(5.7) T T [o(@) R 2u(z) — puru(z)) dz’
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2: We now turn to (1.31). First, note that the estimate in (5.27) also holds for

1
(5.8) /(ﬁev)u su do < ||Revlfallull2 < = 0]l (2e) 2
24732
which shows that
(5.9) n= /vﬁe(pu) dz + o(p).

By the resolvent identity, we rewrite

(5.10) Re(pu) = € — Re(v6)
with
(5.11) §=e(pu)

in which %), is defined in (1.40).
2.1: We first prove that

V2e

(5.12) §(z) = 32T o(Ve)
uniformly in . We work in Fourier space: by (1.43),
~ 1 k241
(5.13) E2vek) = — i 1

e\ k2 +1)2 - £3(2vek)

Since S(z) = 0, |S(k)| < |S(0)| = % and, since S is symmetric, S is real, so

N 1 k2 +1 k* 41
(5.14) €2Vek)l < - (\/(’f2 F12-1 Jk2+1)2+ 1)

which is integrable. Next, note that £§(2\/Ek) — 1 and

k2 +1 dk 1
5.15 S e O
(5.15) / ( (k2+1)2-1 ) 83 3722

which yields the leading order term in (5.12). Next, by (5.13) and (5.15),
(5.16)

\/%_ﬁ k241

_ver —i2y/ekx -1 —-1 dk
£@) 3m2  A4m3 (e ) \/(k2 +1)2 — 2—/’6§(2\/Ek)
N ﬁ/ k%41 B k*+1
L\ 2 02 - g8eyery VEFDE -1

By (5.14), the first integrand is absolutely integrable, so

. k241
(5.17) 47\7/2 (em2Veke _q) * —1| dk=o(Ve)

V2 412 — £5(2 /ek)
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uniformly in x. Furthermore, since 2%§ <land1—-(1+ 5)’% < 5 foralle >0,
(5.18)

‘ \/(k2 +1)2— £8@2yek) VE 11 T (412 1)

and, since S is the Fourier transform of (1 — w)v which is absolutely integrable, S is
uniformly continuous, so

k241 k2 +1 . k241 1 — £5(2y/ek)
2

(5.19) r{ri/dk Rl _ 52“2_ — o(y/e).
V2412 - £5@yer)  VEHDT -1
This proves (5.12).
2.2: By (5.10)
(5.20) n = /v{ dx — /(ﬁev)vf dx + o(p)
and by (5.12), since vR.v is integrable (which follows from Lemma 1.10),
(5.21) n= ;/TQE (/v dx — /vﬁev dm) +o(Ve).
Furthermore,
(5.22) lim &, = (A +v)7h

Therefore, by dominated convergence, (we have v&.v < v(—A + v)~!v which is inte-
grable)

(5.23) /v(x)ﬁev(x) dr — /v(x)ap(x) dz,

where ¢ is the solution of the scattering equation (—A 4 v)¢ = v. Furthermore, by
[CJL20, Lemma 4.2],

(5.24) /v(x)gp(m) dx = —4mag + /v(m) dzx.
Inserting this into (5.21), we find

(5.25) T L)

We conclude the proof of (1.31) using the fact that e = 2mpag + o(p), which was
proved in [CJL20, Theorem 1.4].

Remark 5.1. If we knew that 2u — pu * u > 0, we would have from Lemma 7.5
and (1.22) that

(5.26) p/dx Rev(z)(2u(x) — pu xu(x)) < p/da: (2u(z) — puxu(x)) =1

and, then, we would know that n > 0. We can at least prove the positivity of n for
small and large p. By Lemmas 1.1 and 7.3,

1 _1
(5.27) /(ﬁev)de <IRevll2flulls < = IlvlIF(2e) 2.
272

13 5
Therefore 7 > 0 for pe=1/? < 2”;‘)”’; :
1
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6. The momentum distribution: Proof of Theorem 1.7. Equation (1.32)
follows directly by differentiating (1.20) in a computation that is very similar to the
proof of (1.30) in section 5. As was the case there, one first needs to prove that the

solution u, exists and is differentiable, and, as before, we leave those details to the
reader. We now turn to the proof of (1.33). First of all, by (5.8),

(6.1) M(k) = puo(k)(1+ O(p)) / v(x)Re cos(k - x) dx.
Proceeding as in section 5, we use the resolvent identity to rewrite
(6.2) /v(m)ﬁe cos(kz) dx = /v(x)g)e cos(kx) dz — /(vﬁev)(ﬁje cos(kx)) dx

in which Q). is defined in (1.40), so

o(k) — [ e vRev da
k2 + de(1 — pu(k)) -

(6.3) /v(m)ﬁe cos(kzx) dx =
Since v&, < v(—A + v) v which is integrable, by (5.24)
(6.4) /v(x)(—A +v) () = —4mwag + /v(x) dzx,

we have, by dominated convergence, in the limit e — 0 and |k| — 0,

471'(10
k2 + de(1 — pu(k))

(6.5) /v(x)ﬁe cos(kz) dx
S0, as K — 00,

(6.6) /v(ac)ﬁe cos(kz) dx ~ %'

We conclude the proof of the theorem using e ~ 2mpay [CJL20, Theorem 1.4].
7. Bounds on v and K.: Proof of Lemmas 1.1 and 1.10.
LEMMA 7.1. Let K, := (—A+v +4e)~! and

(7.1) up = Kev .
Forallp > 1,
(7.2) Juallp < llullp < 2fually -

Furthermore, the operator K. has a positive kernel K.(x,y) satisfying

(73) Ke(xay) < Y4e(x - y) )

o—2ela]
47|z
Proof. Note that K, = fo‘x’ dte=4etet(A=v) and et(A=) has a positive kernel by the
Trotter product formula. Hence K, has a positive kernel K.(z,y). By the resolvent
identity it then follows that K.(z,y) < Yic(z — ), the kernel for (—A + 4e)~!. By

where Yy (z) 1= , 50 that Yy (z —y) is the kernel of (—A + 4e)™L.
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(1.1), u — uy = 2epKeu x u and, since, K.(x,y) > 0 is nonnegative, so u; < u, and
moreover, by (7.3),

(7.4) u—uy <2epYie *xu*u .
Since [|Yiell1 = 4, it follows from Young’s inequality and (1.22) that for all p > 1
1
(7.5) lu = ullpy < Slullp
and, hence, [[ull, < [lu—wuallp + [urllp < gllullp + luallp. 0

LEMMA 7.2. Let v € L?. Then
1
lull2 < 5_l1vll2 -

Proof. By Lemma 7.1,

1
()

P 1
sl < G [ (8 + 40) 20200k < 150l

Now apply Lemma 7.1 once more. ]
We are now ready to prove Lemma 1.1 which gives bounds on ||u||, for 1 < p < 3.

Proof of Lemma 1.1. As in the previous proof, u; = K.v < Yy *x v. Therefore,
ully < [[Yaellpllvlli and

[Yaellp = (4m) =P (2pV/e)" T3 — p) -

Then by Lemma 7.1, ||ul|, < 2|lu1||p. The final statement is given by Lemma 7.2. 0O
We now turn to the proof of Lemma 1.10.

LEMMA 7.3. For all nonnegative ¢ € L'(R?), ||Rt[l2 < 5= (2e)~Y4||4pl1. For all
real ¢ € LY(R?), [[Retll2 < £(2¢) =4 ([)]|1-

Proof. Let 9. be defined as in (1.40). Then the positive kernels of the operators
f. and Q). are related by (1.42) and, hence, for all positive v

0< R <Y and, hence,  [[Retbll2 < [Yet]2 -

Then by (1.40), for nonnegative ¢ € L', 9.1 € L?(R3) with

(7.6 19013 < gk [ kiR + delt - pali)] 2

(
Recall from (1.43) that

k2 k2 2 o~ R 4
pu(k) =1+ Te (1 + ) — —8(k) where S(k)= /v(l —u)e ke dy

and, hence,
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By (1.1) £S(k) < 1 and, hence, 4e(1 — pti(k)) > v/ k* + 8ek? > V/8e|k|. Therefore

o 2 2m
k? +4e(1 — pu(k *2dk</dkk2+\/§ek *2:47r/ dr i = :
JIGE ) -+ Vel B
For the final part, we apply the bound just proved to the positive and negative parts
of 1) separately. 0

Remark 7.4. Let ?ive be the operator defined in (3.9). It is easy to see that the
same proof yields essentially the same bound for this operator.

LEMMA 7.5. For v >0, and v € L*(R3) N L3(R?), 0 < Kev(x) < 1 for all x, and
Rev(x) < 1 on a set of positive measure.

Proof. As we have already explained, K. preserves positivity and since v < 0,
Kev(x) 2 0. Next, for § > 0, define

ﬁe,ﬁ = (_A + v+ 46([ — Cpu) + (5)_1 = / dte_téeA_v_zle(I_Cpu) .
0

As § decreases toward 0, £ sv(z) increases toward K. sv(x). To show that R.v(z) < 1,
it suffices to show that R, sv(x) < 1 for all 6 > 0.

We next show that £, sv belongs to the Sobolev space Hz(R?) and, hence, is
continuous. This is a consequence of the Kato—Rellich theorem [RS75]: since the
operator 4e — 4epC', is bounded and accretive on all LP, and since we are assuming
v € L?, it follows that the domain of —A + 6 + v + 4e(I — C,,,) is the same as the
domain of —A+§, which is Ho(R?) and, moreover, (—A+v+4e(I—C,,)+6) ™! maps
L?(R3) onto Hy(R3). Since functions in Ha(R?) are continuous, £, sv is continuous.
Let ¢ := R, sv so that, by (1.8),

Atp =0t — 1) + de(t — pux ) + 61 .

Now, suppose ||¢||cc > 1. Then, by (1.22), |lpu * ¥]lcc < |%|loo- Let 7 := (]|¢]|co —
llou * ¢lloc)/2 and

U:={z : ¢ >max{||t||cc =7, 1}},
which is open. Then evidently ) is subharmonic on U and, hence, is maximized on
the boundary, but this is impossible, so U is empty, which is, again, impossible. Hence
4]l < 1. Finally by Lemma 7.3, since v € L' (R?), &.v € L*(R3), the set on which
this function exceeds 1/2 has finite measure. |

LEMMA 7.6. For all ¥, € L'(R3) N L?(R?),

o0 < / o) (R () dx = / (Rep)(w) () dr < oo

Proof. For all 6 > 0, the operator R defined in the proof of Lemma 7.5 is
bounded and self-adjoint so that [, ¢(z)(8e,s¢)(x) do = [4s (Re,s0)(2) (z) do By
the monotonicity noted in the proof of Lemma 7.5, the Lebesgue dominated con-
vergence theorem applied separately to the positive and negative parts shows that
lims g [|[Re,5¢0 — Rell2 = 0 and lims g ||Re 59 — Ret)||2 = 0. The finiteness then follows
from Lemma 7.3. O

LEMMA 7.7. For any ¢ € L*(R?) function e — [ (Rev)pda is continuous and,
consequently, if € — @, is continuous into L'(R?), then e — [o, (Rev)@eda is contin-
uous.
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Proof. Let e1,ez > 0, and let p; = p(e;) and u; = u(-,€;), j = 1,2. Then by the
resolvent identity,

(7.7) Re, 0 — Re v = 48, [(e1 — €2) + e2p2C, — €1p1C | Ren -

Multiply by ¢ and integrate:

(7.8)

/(p(ﬁezv)dx—/ ©(Re,v)dz
R3 R3

/3(ﬁe1<ﬁ)[4(61 — e2) +4ezprCy, — €1p1Cy, | Re,vda
R

[Re, pll2ll[4(e1 — e2) + 4eapaClu, — €110, | Re,v]|2

<
< [4]er — ea| + 4leapaug — e1prui|[1]][Re, @ll2]|Re,v]2-

The claim now follows from the bound in Lemma 7.3 and the continuity of e >
ep(e)u(e,-) in L1(R3). The final claim is now evident. |

Remark 7.8. Let ?ive be the operator defined in (3.9). It is easy to see that the
same proof yields the same statement for e — [L;(Rev)edz (keeping € fixed). The
same also holds if we exchange e and é.

Proof of Lemma 1.10. Lemma 7.3 proves (1.45). Lemma 7.6 proves (1.46). Lemma
7.7 proves (1.47). Lemma 7.5 proves (1.48). 0

8. A variant of the HLS inequality: Proof of Theorem 1.13. Recall that
we have defined in (1.52) the operator

(5.1 6:1(e) = [ o=l f(w)ay.

where 0 < 8 < d. Up to a constant multiple, depending only on 3, Gg is the operator
(—=A)~(@=P)/2 By the HLS inequality, for 1 < p < q < oo, related by % = % — %,
there is a constant C' depending only on d, 8, and p such that

(8.2) 1G5 fllq < Clfllp

holds for all f € LP. Evidently we must have 1 < p < ﬁ and hence d/f8 < g < 0o .
To see that ¢ = d/f is unobtainable, note that if f > 0 has compact support,

Jim af? [o =3l 5()do = [ s

Thus for f > 0, it is never the case that Gf € L9 for ¢ < d/f unless f = 0.

Our goal in this section is to prove a theorem asserting that if f is integrable
with [p, fdz =0, and if f decays sufficiently rapidly at infinity, then [|Ga f||, will be
bounded for certain ¢ < d/S. We introduce a norm that measures the decay of f at
infinity, and this involves Lorentz norms. We briefly recall the relevant facts:

For a measurable set A, let |A| denote the measure of A. For 1 < p,q < oo, the
Lorentz p, ¢ quasi-norm of a function f is

o 1/q
(83) 0= ([0« 1> )
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Then L, , consists of the measurable function f such that || f]|,,, < co. For p < oo,
11,00 < oo if and only if for some finite constant C,

(8.4) {z : |f(z)] > A} <CX7P.
That is L ~ is weak L? and hence L, , C L? and, in this case,

1fllp.c < CH2.

Next consider ¢ = 1:

(8.5) /]

il Zp/o {z : |f(z)] > A}YPaX .

By the definitions, Chebychev’s inequality, and the layer cake representation,
g =2 [ 2 Ka = 1) > AV
—p [ (Ve s @] > A o ()] > A7
0

<pIAIE If llpa -

Thus, ||f]l, < pllfllp,1 and hence L, 1 C LP. It would be natural to refer to L, as
strong LP, but this terminology is not standard.

For 1 <p<ooand 1< qg<oo, ||, is equivalent to an actual norm, | - ||, 4,
given by
(56) o =sup{ [ 15dlds < Nl <1} -
g

In particular, ||f|l,.1 is bounded by a universal multiple of

(8.7) / Tl ¢ 1f@)] > A}V

DEFINITION 8.1. Let f be a function such that (1+ |z|)* f(z) € L', and such that
€ Laja—py1 (Laja—py,1 is the Lorentz space with indices d/(d — 3),1). Let f<r
denote f multiplied by the indicator function of the closed ball of radius R, and let
fsri=f— f<r. Given s > d, define

(8.8) Iflls.s = /Rd(l +[al) 7 f () | da + 18{1;13(1 + R fo pllay o

Define the space Lg s to be the space of all measurable functions f for which || f]|a,s <
00.

We show below that if f satisfies the bound
(8.9) |fx)] < M+ )",

then f € L, for all s < r. Taking R = 0in (1.53), we see that || f||¢/@a—g),1 < [Ifll5,s,
and since L% (d=8) Lija-pys Ld/(d=F) Lss. Evidently, L' C Lg,. Thus,
Lss C L' N LY@=8) and, hence, for all f € L, with 3, s as specified, f € L? for all
1< p<d/(d-p),ie., the whole HLS interval including the endpoints.
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THEOREM 8.2. Let f € L for some d+1 > s > d satisfying [ f(x)dz = 0.
Then for all ¢ < d/B such that

d

1 -—
(8.10) Q>6+sfd’

there is a constant C' depending only on q, s, and B such that

(8.11) 1Gsflla < Cliflls.s-

Furthermore, for all 1 < p < oo, there is a constant C' depending only on p, q, s, and
B such that

(8.12) 165 1s < € (17157 py 1715.0) -
where

d _ /
(8.13) g ®—ba__ p po= 2

@ B+p(s—d)’

Remark 8.3. If we take p — oo in (8.13), we find the limiting value of 0 is § =
m. Since for all choices of p, 1 < d/(d — /p") < d/(d — B), the remark after

the definition of the norm || - ||,s provides

| Nas@-prory < Cll - llg,s

and hence (1.56) follows from (8.12). However, it may be that || f||4/(a—g/p) is much
smaller than | f|s,s, as in our application, and then (8.12) gives better bounds.

LEMMA 8.4. Let f € Lgs for some s > d satisfying fRd fdx = 0. Then for a
universal constant C,

1G5(f<ialj2)(@)] < Cllfllg.slz|~BFs=

Proof. By the fundamental theorem of calculus, for |y| < |z|,

1
_ _ d _
oty = ol = [l ) e
0

1

=6 [ [t o)l )]
0

Then for |z| > 2R with R to be chosen below, and |y| < R,

(8.14) le + 9177 — |27 < B27F2 (2 772 (|l ly| + 1yf®) -

Therefore,

[t sentwy = 1o [ Fentuas] < 5255 2al572 [(elal+ )l fentilan.

and then since

/ Fen(y)dy = — / for(y)dy
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(8.15) (Gpf<n(@)] < |2~ / o rl(y)dy + 527422 52 / (ellyl + 912 F<r(w)ldy

Next,

(8.16) /\f>R(y)\dy <R /(1 +lyD)* S W)ldy < RN fllss

and then since 0 < s —d < 1, |y| < Jy|tTa=s(1 + |y)*~¢ < RYFI=s(1 + |y|)*~ ¢,
(8.17) /|y||f<R(y)ldy < R /(1 1y S W)ldy < R fllgs
and similarly if s — d < 2,

(8.18) /IyIQIst(yNdy < R /(1 +ly)* U (W)ldy < R0 fllgs -

Using (8.16) through (8.18) in (8.15) yields

1 52/3+2 ,625+2
-8
’/ oy f<R(y)dy’<(|xﬁRsd+|x|ﬁ+1de1+|x|ﬁ+2de2 171l

Taking R = |x|/2 we have the desired bound. O

In the next lemma, we use O’Neil’s extension of Holder’s inequality to the Lorentz
seminorms [O’N63], recalled below. A special case says that for a universal constant
M,

[ 13lds < Mgl £l

L, ~ is weak LP and hence for p = %, 2| =P lays,00 < 00.

LEMMA 8.5. Let f € LgsN L. Then for a universal constant C,

1G5(f>121/2)@)| < Cllfllg,s(1+ |2])~FFs=D

Proof. Fix any R > 0. Since |z|~? € Lg/g,00, O'Neil’s inequality gives

277 fsrlloo < Clllzl ™ lays,00llf> Rl @)1 -

Thus, for another universal constant C, we have from the definition of the norm ||| s
that

1G5(f>R) @) < Cllfllgs(1 + R)= =,
Again choosing R = |z|/2 yields the result. q

Proof of Theorem 8.2. By the previous two lemmas,
Gaf ()| < Cllfllgslz] P
for some universal C. Pick ¢ such that
(8.19) 1<q<d/f.

For any R > 0 we decompose Ggf = (Gaf)<r + (Gsf)>r, and will estimate the L?
norm of (G f)<r using the HLS inequality as follows. Pick p > 1 so that ||Gs fl|,a/s
can be bounded using the HLS inequality. Then by Holder’s inequality,

1(Gsf)<rlly < NG flLy)s(1Bal R P42,
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where |By| is the volume of the d-dimensional unit ball. By the HLS inequality, since

d d
< 5 < ap

1G5 fllpass < CNfllaya—p/py -

Then, if C' is a universal constant that may change from line to line,

[ 1Gafirde = [ \Gai<nlrde+ [ 1(Gs0)sritda
< OIS a1 BalRYY =207

+ d|Bal(ClIf5.5)? / pa-1-a(B+s—a) gy
R
Y <||f||§/(d_5/p,)Rd‘ﬁq/P + |Hf|“%’st—q(ﬁ+s—d)) 7

where the last displayed integral is convergent on account of (1.55). In the final line,
the first exponent on R is positive on account of (8.19), and the second is negative
on account of (1.55). Now choose

( 11,5 )mp’}d)
pe (Mlss |
HfHd/(dfﬁ/p/) D

The next lemma provides a simple estimate on the £ ; norm that we shall apply
in the next section.

LEMMA 8.6. Suppose that for some constant M, |f(z)] < M(1+|z|)~". Then for
all s < r, there is a constant C depending only on s such that

(8.20) Iflls.s < CM .
Proof. Note that {z : |f(2)] > A} C {z : |z| < (M/)\)'/"} and, hence,

d/r
1Bl (A1) A< MO+ R)™,
0, A>M1+R)".

N

(8.21) {z : [f>r(@)] > A} < {

One then computes that for p’ > g,
1f>rllp

M4+R)~"
<Md/7"p'p/|Bd‘1/p// A~ g
0

— Mpl|Bd‘1/p, ( ) (1 _’_R)d/PI*T )

1
1—d/rpy

We take p = d/f, so that p’ = d/(d — ) > d/r and, hence, we have

1> Rl a-).1 < MP|Bal 7 ( ) (1+R)* "< OM(1+ R)y*7+ .

1
1—d/rp
Next,
/ (1 + |z))*~ 4 f(z)|dz < M/ (1+ |z))* " ddz < CM .
R4 R4
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9. Bounds on u’: Proof of Theorem 1.14. Recall from (1.7) that
(9.1) u = Rep, where ¢ =2 (1+p’6> pu* u — 4du
p

and since u € LP for all p, ¢ € LP for all p. We need bounds on ||u'||; for small values
of ¢, close to 1, and to obtain these we shall need bounds on ||u'||4 for large values of
q. These are relatively easy to obtain using what we know about the operators ).
and R..

The operator ). stands in the same relation to £ = (—A+v+4e(I—C,,)) ! as
does G, := (—A +4e)~! to K, := (—A + v +4e)~ 1. In particular, all four operators
have positive kernels and we have that for all =,y

(9-2) Ke(2,y) < Ge(z,y)  and  Re(z,y) < Yelw,y) -

By the resolvent identity, K. = K. + 4eK.C,,Rc. Therefore, by (9.2), for all
[ =0,
Ref S Geof +4eGCpuef -
The kernel of G, Ge(x,y) = Yi.(x — y), where the function Yj., is defined in
Lemma 7.1. Since Yy is a probability density, it follows from Young’s inequality
that 4eG. is a contraction on LP for all p. Likewise, since pu is a probability density,

it follows in the same way that C,, is a contraction on LP for all p. Hence for any
nonnegative function f, and any ¢ > 1,

[Refllg < NGefllg + 146G Cruefllg < Gefllg + [1Defllq -

Applying this to the positive and negative parts of ¢ separately, yields

(9-3) [u'llq < [Reptllg + 1Reo-llq < 2[1Geipllq + 2[Dellq -

We now estimate these terms to prove the following.

LEMMA 9.1. There is a constant C independent of e, such that for all 3/2 < q <
(xj7
Il < G222

Proof. Since G.p = Yy * ¢, Young’s inequality yields
[Gelly < [Yaellpll#llr
where 1 +1/q = 1/p+1/r. Y4 € LP for 1 < p < 3 with ||Vse||, < Ce=G=P)/2P (In
what follows, the constant denoted by C will change from line to line.) Also, ||¢||, <
Cllu||p for all p by the definition of ¢ and the bound on p’ provided by Theorem 1.3.

Taking ¢ = oo and p = r = 2, we have from Lemma 1.1, ||Gep|/oo < Ce'/2. Taking
g=3/2and p=r=6/5[|Gep|l3/2 < Ce=/2. It then follows that for 3/2 < ¢ < oo,

(9-4) IGeglly < Cemt/23/20

The operator Q). is also a convolution operator, but somewhat more complicated.
It has a useful factorization that we now describe.
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Note that the Fourier transform renders ). as the operation of multiplication by
[k% + de(1 — pti(k))]~t. Recall that

_ k2 2\?  p

where S(k) = [v(1 —u)e~**dz, £S(k) < 1, and, hence,

’ 2e

1+ H(k)

(9.5) (k% + de(1 — pu(k))] ' = T T 8172

with

~ —1/2
~ 16e2(1 — £ S(k))
Hk):=11 2e —1.
(k) ( + k% + 8ek?

Since limy, o0 §(k) =0, His integrable.

It is more work to see that its inverse Fourier transform, H(x) is also integrable,
but we show this below. It turns out that H(x) is not nonnegative. Had this been
the case we would have that ||H||; = H(0). To compute this, we expand

(9.6) 2%§(k) =1+ Bk + O(kY).

Therefore,

/H(x)dw =H(0)=(1+2eB8)"2—1<efb .
The following lemma shows that ||H||; is not quite so small for small e, but is indeed
still small.

LEMMA 9.2. There is a constant C independent of e such that

C

H g 1/2
|H(z)| < e AP

and, in particular, for a different C still independent of e, |H||; < e'/2C.
Proof of Lemma 9.2. Recall that

16¢%(1 — £5(k))
k|4 + 8e|k|2

Hk):=1+Gk) V=1,  where G(k):=

The proof is very similar to that of Theorem 1.2, except simpler: one shows that H
and A2H are integrable with HH||1 + ||A2H||1 < 061/2 The claim now follows from
the Riemann-Lebesgue lemma. |

We can now explicitly specify the factorization of 9. mentloned above: let R
be the Riesz potential operator acting by Rw |k~ Hp . Let B be the Bessel

potential operator acting by By = (|k|? +8e)~ 1/2w( ). Let 7-[ be the operator acting
by Hip = H(k)y (k). Then by (9.5),

(9.7) . = HBR + BR .
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Since H and B are convolution operators with integrable kernels, they are bounded
on LP for all p with B, the kernel of B, satisfying || B||; = (8¢)~'/2. Hence there is a
constant C' independent of e such that

(9-8) 1Deelly < Ce™ 2Rl -
Since

1
272

Ro(a) = 55 [ o= ol 2elo)dy = 55 0a0(a).

we can apply the HLS inequality to estimate |Ry||,: for 3/2 < g < oo, related by

é = % — %, there is a constant C' depending only on ¢ such that

(9.9) IRfllg < Cllfll3q/(q+3)

holds for all f € LP.

Going back to (9.8), we obtain [|Dell; < Ce™V2|¢|l34/(344), and then by the
definition of ¢ and the bound on p’ provided by Theorem 1.3, with C' changing from
line to line,

(9.10) 1Deplly < Ce™ 2 [[ullsg/(s1q) -

By Lemma 1.1, ||ul|, < Ce™37P)/2P and, hence, we obtain

(9-11) 1Delly < Cem3/ .

Using this and (9.4) in (9.3) we see that for small e, (9.4) is the dominant term. 0O

To estimate ||u'||, for p < 3/2, we will use Theorem 8.2, but now we need a
different expression for u/. By the resolvent identity,

Re = @6 - EDCU.R@ s

and then by (9.1),

(9.12) U = Rep = Yep — Vevhep = Ve —v') .

We therefore define v := ¢ — v’/. By Lemma 9.1, «’ € L?, and since we assume that
v € L2, vu' is integrable. Thus, 1 is integrable. Furthermore,

2 2 2 2 d2
(9.13) /djdx:—sp’—f—/vu'dx:f;p'—f—kffe:().
p p p p dep

We next show that ¢ inherits a bound of the form |p(x)] < Ce™3/2(1 + |z|*)~!
from wu.

LEMMA 9.3. Let f be any nonnegative function satisfying f(x) < ﬁ and 0 <

[ fx)de =071
C

Uf*f(x)gm

for the same constant C.
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Proof.
[ et i
ly|>]z|/2
C
< of(z —y)———d
/|y|>|x/2 =y Y
C C
< of(r—y dy <
/|y|>|w/2 ( )1+ |z /2[* L+ |z/2[4
and

/ aof(x—y)f(y)dy
lyl<lz|/2

C
< —— o f(y)dy
/|y<x|/2 1+ |z —yl* )
C C
< Y fy)dy = ————— . O
/h,qw T3 Jep2r W = T

It now follows that with e, defined as in Theorem 1.3, on account of the bound
on p' proved there, and on account of Theorem 1.2, there is a constant independent
of e such that for all e < ey,

(9-14) ()] < Ce™2(1+ Jal )~

Now Lemma 8.6 provides an estimate on ||¢|2,s for all s < 4. We then need a
bound on ||vu'||2,s, and for this we shall use the estimate on ||v/||, for large ¢ that we
have just proved.

LEMMA 9.4. Let v be such that (1 + |z|?)v(z) € L¥(R3) in addition to our usual
hypothesis that (1 + |z|*)v(z) € L*(R3) N L2(R3). Then for all 3 < s < 4 there is a
constant C' such that for all e < e,

flowll2,s < Ce™®/* .
Proof. We first estimate ||vs ru/||3,1. For small A\, we use

lo>ru'lls _ [losrllallw/]l2
A h A

Hz @ Jusrd/(2)] > A} <
and, hence, for any L > 0,
L 3
[ Ha s losnu' @] > A3 < Glos rlly 122
0

For large A\, we use

[[v> rllsllv'lls
2\

lv> re|I3

o+ o ()] > AH < 1200

<
and, hence, for any L > 0

/ o o |osru'(@)] > AHY2dA < 3llos rlls /|l L712 .
L
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Optimizing in L, we find

o 3 3 4/3 4/3
jg o+ Josm/(2)] > A}YPdA < (Hv>RH1/|\ 1527 (sl p®) "
(9.15) S 131 ol o

1/9 8/3 1/9 8/9
(9.16) fmn/nnﬂuwnu/.
By Lemma 9.1, |J/||3/°|u/[|¥/° < Ce=3/4. Also, for all p > 0, [Jusg||S < R778|||z|Pu|3,

so that ||U>R||8/9 < RP8/9)||zfPo||3®. Likewise, |[us g3/ < R=49|z|*[|3/°. Us-
ing (9.16) when R < 1 and choosing p = 3 when R > 1, we see that

8/9 1/9
< Ce™3||2Pollg"° ||| o]y -

sup(1+ R)
R>0
Finally, using Lemma 9.1

[+ lah oo

< </RS(1 + ;l:|)2v2(x)dx)1/2 /]| < Ce=5/4 </RS(1 + |:17|)2v2(x)d1:>1/2 .

For e < ey, this is the dominant power of e. 0

Proof of Theorem 1.14. By Lemma 9.1, it only remains to get a bound on ||u/||,
for 1 < p < 3/2, and for this we make use of (9.12). By (9.7) and (9.8), for all ¢ > 1,

lu'llg < Ce™2)1Gallq

where 1 = ¢ — vu/'.
We check that v satisfies assumptions of Theorem 8.2. First of all, by (9.13) and
the discussion just above it, ¢ € L'(R?®) and [ ¢ = 0. Next, by the triangle inequality,

pllz.s < I2pu s u+ 2ep'u s u — dulla,s + loulz,s
By Theorem 1.2, there is a constant C' such that
12pu % u(z) + 2ep'u * u(z) — du(z)| < Cp~te V2(1 + |z])~*
It now follows from Lemma 8.6 that for all 3 < s < 4,
20w % u + 2ep'u % u — 4ulla,s < Cp~te /2.
Next it follows from Lemma 9.4 that
||
Therefore, for any ey > 0, there is a constant C' such that for all e < e,

Ill2s < Cp~le V2

We now apply (8.12) of Theorem 8.2: in the limit s — 4 and p — oo, we would
have

< Cp~le V4,

IRYllq < 1115 2572 -
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We have that [[¢[l2.s < Ce™3/2 and, for e < e,, the dominant contribution to |43
comes from ||vu’||3 < [|v]|p[[w||l3p/(p—3) Which holds for any p > 3. By Lemma 9.1,
using the assumption that v € L3(R?), |lov/||3 < Ce™'+3/2P for all 3 < p < 8. This
would yield a bound proportional to e~19/16+15/160 e can come arbitrarily close to
this, so, chosing p < 5, we certainly have

IRYlly < Ce™

and then the result follows from (9.8) with ¢ in place of . |

10. Explicit solution: Proof of Theorem 1.8. Given an integrable function
u(z) satisfying 0 < u(z) < 1, we seek to find p, e, and a nonnegative potential v(z)
such that u(z) then solves (1.1). Since we must have p~! = [wudz, the choice of u
fixes p. Then pick any e > 0, and if u solves (1.1) for this p, e, and some potential
v(x), we must have

_ —Au+2e(2u — pu* u)
(10.1) v = T

The remaining question then is whether this potential v is nonnegative and integrable.
We look for a solution in the form of a Cauchy kernel

c
10.2 ur) = —5—5=
( ) (z) (1+ b222)?
since this has the expected decay rate and since it is easy to compute u * .
By direct computations, we find that

1 b3 e _ Ikl 272 ¢?
10.3 = —_——-- Ak — — o b —
(103) r Jdx u(zx) en?’ k) p oo v b3(4 + b%22)?
S0
6c(5 + 2b%22) 12¢b?(220* — 1)
10.4 2u — = =77 -
(104) B G I ) P e C
Therefore,
(10.5)  — Au+2e(2u — pu *u)
B 126$666(26 —b%) + bzt (9e — TH?) + 46222 (3e — 2b%) + (5e + 16b?)
- (1+ b222)4 (4 + b222)? v
that is,

205 (2e — b?) + brat(9e — 7b?) + 4b%2? (3e — 2b2) + (5e + 16b?)
(14+b222)2(4 + b222)2((1 4 b222)2 — ¢) ’

(10.6) w(z)=12¢

The denominator is nonnegative for 0 < ¢ < 1, and the leading power is |z|'2. The
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leading power in the numerator is |z|®, unless 2e = b2, and the coefficient is nonneg-
ative if and only if 2e > b2, If 2e = b?, then the leading term is |z|*, but with a
negative coefficient. So we must have at least 9¢ > 7b%, all of the coefficients in the
numerator are nonnegative, and, hence, the numerator is nonnegative. This provides
the condition (1.34)

(10.7) LSS

= and c<1,

NoNEEN|

and we see that when this condition is satisfied, v(x) decays at infinity like |z| =%, so
that (14 |z|*)v(z) is integrable, but with [ |z|*v(z)dz = cc.

We conclude this section with some remarks.

1: For large |z|,

c

Theorem 1.2 states that if v were integrable, then

VITP

10.9 ~N—
(10.9) U g

where by (1.27)

(10.10) B = p/dm 228 (z).
From (10.2) and (10.6) we find that

2
(10.11) 8= %.

Therefore, by (10.3)

V2 b2
(10.12) t8 _ ¢ 3 ¥
2m2pyJext  brat e

This agrees with (10.8) if and only if 2e = b?, but then the potential is negative for
large |z|. This is not a contradiction since our potentials v(z) never satisfy [ |z[*vdz <
oo when they are nonnegative so that Theorem 1.2 does not apply. However, this
does imply that there are solutions, such as the one constructed above, in which z2v
is integrable, z%v is not, and (10.9) does not hold.

2: By (10.4), we see that

(10.13) 2u—puxu = 0.

Recalling the discussion surrounding (3.6) and (5.26), the monotonicity of e(p), and
the fact that n > 0 would follow directly from this inequality. The fact that it holds
for the explicit solution is further evidence that this inequality holds in general.

Acknowledgment. We are very grateful to Markus Holzmann for many enlight-
ening discussions on the physics of the Bose gas and for sharing his detailed numerical
results on the Bose gas.
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