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Abstract— We propose a new distributed learning-based
framework for stability assessment of a class of networked
nonlinear systems, where each subsystem is dissipative. The
aim is to learn, in a distributed manner, a Lyapunov function
and associated region of attraction for the networked system.
We begin by using a neural network function approximation
to learn a storage function for each subsystem such that the
subsystem satisfies a local dissipativity property. We next use
a satisfiability modulo theories (SMT) solver based falsifier
that verifies the local dissipativity of each subsystem by deter-
mining an absence of counterexamples that violate the local
dissipativity property, as established by the neural network
approximation. Finally, we verify network-level stability by
using an alternating direction method of multipliers (ADMM)
approach to update the storage function of each subsystem in
a distributed manner until a global stability condition for the
network of dissipative subsystems is satisfied. This step also
leads to a network-level Lyapunov function that we then use
to estimate a region of attraction. We illustrate the proposed
algorithm and its advantages on a microgrid interconnection
with power electronics interfaces.

I. INTRODUCTION

Large-scale networks of nonlinear systems are frequently
encountered in modeling several infrastructure networks. For
example, in power grids, clusters of renewable generators,
storage, and loads, modeled as nonlinear systems, are typ-
ically aggregated to form microgrids, which are networked
to exchange power with each other [1]. Due to the large size
and continually expanding scale of these networked systems,
it is desirable to develop distributed approaches to assess the
stability margins of these systems.

In this context, we consider the problem of assessing the
Lyapunov stability and estimating an associated region of
attraction (stability region) for a networked system comprised
of nonlinear subsystems in a distributed manner. There are
two key challenges in this regard. First, the problem of
finding Lyapunov functions for individual subsystems is
in itself non-trivial due to the nonlinear dynamics of the
subsystems. Second, the stability of a network of nonlinear
subsystems cannot be guaranteed merely by assessing the
stability of individual subsystems.

Typically, the former challenge of finding a Lyapunov
function and estimating a region of attraction has been ad-
dressed using sum-of-squares (SOS) tools [2]- [6]. However,
these approaches typically do not scale well to large systems,
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since a large number of semidefinite programs need to be
solved for SOS decomposition of polynomial systems with
even a few states [2]. Another approach is to employ local
linearizations and adopt quadratic Lyapunov functions to
assess stability. However, this approach is typically conser-
vative in the sense that stability can only be certified in a
small vicinity of an equilibrium point of a nonlinear system,
which may be insufficient to cover the normal range of
operation in several practical applications such as microgrids
in power systems [7], [8]. Recently, neural network based
approximations of Lyapunov functions for nonlinear systems
have been proposed [9], [10], and demonstrated to be less
conservative than quadratic Lyapunov functions using local
linearizations and sum-of-squares approaches.

The latter challenge of assessing the stability of networked
nonlinear systems, based on stability of individual subsys-
tems remains a complex open problem. However, for a
special class of networked systems where each subsystem
is passive or dissipative [11], [12], it is possible to assess
stability of the networked system based on the dissipativity of
individual subsystems and some conditions on the coupling
between subsystems [13], [14]. Furthermore, fully distributed
approaches to stability assessment have also been developed
for such networks of passive or dissipative systems [15], [16].
However, these results are typically confined to local stability
assessments based on linearized system dynamics.

In this paper, we consider the problem of assessing the
Lyapunov stability and region of attraction for a class of
networked systems, where each subsystem is nonlinear and
satisfies a dissipativity property. For this class of systems,
we propose a distributed learning-based stability assessment
approach, summarized as follows. First, we use a neural
network approximation to learn a storage function for each
subsystem such that the subsystem satisfies a local dissi-
pativity property. We use a satisfiability modulo theories
(SMT) solver based falsifier that finds counterexamples to
verify this local dissipativity property using the Lyapunov
function learned by the neural network; when no counterex-
ample is found by the falsifier, the local system is provably
dissipative. Then, the stability of the networked system can
be guaranteed by verifying standard conditions on the local
dissipativity and coupling between dissipative subsystems
[12]. For this purpose, we use an alternating direction method
of multipliers (ADMM) to iteratively update the storage
function for each subsystem until the network-level stability
condition is satisfied. This step also allows us to compute
the network-level Lyapunov function and estimate a region
of attraction for the networked system.



The key contribution of this work is the combination
of neural network based approaches to learn Lyapunov
functions for nonlinear systems with dissipativity-based sta-
bility analysis for networked systems to develop a scalable
approach for stability assessment of large-scale networked
nonlinear systems. Through a case study on networked
microgrids, we demonstrate that the proposed approach has
the advantage of yielding a less conservative region of
attraction as compared to stability assessement based on
local linearization and quadratic Lyapunov functions, as well
as being more computationally tractable than SOS based
assessments. Further, exploiting the dissipativity property of
the subsystems also makes the approach distributed, and
hence scalable to large-scale networks.

II. PROBLEM FORMULATION

We consider a large scale nonlinear system constituted by
the interconnection of n subsystems. The dynamics of the
i-th subsystem is described by

vi = hi(x;, ), )]

where x; € RPi, u; € R?%, and y; € R are the state,
input, and output of the subsystem ¢, respectively, and the
system dynamics and system output are specified by the
continuously differentiable mappings f; : RP¢ x R% +— RP:
and h; : RP* x R% — R™?, respectively.

We then define the state, input, and output vectors
of the networked system as x = [x{,...,x}]T, u =
[l ug,...ou;]" and y = [y{,y5,...,y,]". respec-
tively. Then, the dynamics of the networked system consti-
tuted by the interconnection of these n subsystems can be

written as

%x; = £i (x4, 0),

x = f(x,u), y=h(xu), @)

where f = [f,... f]T,and h=[h],... h]]T, and the
subsystems are coupled with each other through a nonlinear
map

u=g(y), (3)

where the nonlinear map g(-) describes the coupling between
the subsystems.

Without loss of generality, assume that the equilibrium
point of (2) is given by (z*,u*,y*) = o, where o is the
origin of the state space. For simplicity in the formulation,
we further restrict consideration to a linear approximation of
the coupling between subsystems (3), given by

u= My “4)

where M € R%*Yi ig the Jacobian matrix of g evaluated
at o. Then, the dynamics of the networked system consti-
tuted by the interconnection of these n subsystems can be
represented as

x =f(x,u), y=h(x,u), u=»My, (5)

for all (x,u,y) € Bo, where B, is a neighborhood around
the origin o.

Further, we assume that each subsystem satisfies a local
dissipativity property, as follows.

Assumption 1. (Dissipative System [12]) Every subsystem

i € {1,2,...,n}, described by (1) is locally dissipa-

tive wit}1 respect to a supply rate function r;(w;,y;) =
11 12

[ ;z } R; [ uz }7 where R; = [ gzzl gég } , if there

exists a continuously differentiable storage function Vi -

RP: — R that satisfies the following conditions:

Vi(xi) >0, Vi(0o) =0, VVifi(xi,w;) < ri(w;,y:), (6)

for all (x;,u;,y;) € Bo,, where B,, is a neighborhood
around the origin o.

Next, we introduce the following definitions.

Definition 1 (Lyapunov function and Region of Attraction
[17]). For the system (5), a continuous differentiable scalar
function V' (x) is a strict Lyapunov function valid in a region
Vs = {x : |x[|, < S} if the following conditions are
satisfied: (i) V(o) =0, (#) V(x) > 0 for all x € Vs, (4i7)
V= VV(x)x < 0, for all x € Vs\o. Further, the region
Vs is defined as the region of attraction of the equilibrium
point o, that is, x(0) € Vs = lim;_, x(t) = o.

The stability of the networked system (5) can be as-
sessed by identifying a Lyapunov function V(x) satisfying
Definition 1. If the subsystems are dissipative as described
in Assumption 1, then such a Lyapunov function for the
networked system can be obtained from the local storage
functions of each subsystem as follows.

Proposition 1 (Proposition 2.1, [12]). Consider the net-
worked system (5) where each subsystem i € {1,2,...,n}
given by (1) satisfies Assumption 1. If

T
M M
where R (R1, Ry ,Ry,) =
[ Ri! Ri? i
R i
R R22 S ¥
R21 R22

then, (7) the origin o is stable equilibrium of the networked

system (5), and (ii) V(x) = 3. Vi(z;) is a Lyapunov
i=1

function of the networked system (5).

In general, for nonlinear systems, sum-of-squares ap-
proaches [2]- [6] can be employed to assess stability, either
directly or by determining storage functions in the case of
dissipative systems [18]. Alternatively, local linearizations of
(5) may be used to compute a quadratic Lyapunov function.
However, these approaches are typically conservative in their
estimation of the region of attraction [7], [8] and computa-
tional tractability [2]. Further, they are not typically scalable



to large networked systems. In this context, we address the
following problem.

Problem 1. Given the networked system (5) where each
subsystem is dissipative and satisfies Assumption 1, we aim
to develop a distributed approach to assess the stability of the
networked system (5) by (i) learning local storage functions
Vi(x;) at each subsystem i € {1,2,...,n}, (i) verifying
the stability condition (7), and (iii) computing the Lyapunov
function V' (x) and the associated region of attraction using
Proposition 1.

We describe our solution approach and detailed algorithm
in the next section.

III. DISTRIBUTED LEARNING OF NEURAL LYAPUNOV
FuNcTION

We propose a distributed approach for learning a Lya-
punov function for the networked system described in (5)
and characterizing its stability region. As mentioned before,
finding a Lyapunov function through the SOS method does
not scale well to large systems. Though we can leverage on
the recently proposed idea of learning a Lyapunov function
using neural networks [8]-[10], the training time and com-
putational complexity of this approach will also scale expo-
nentially with the dimension of the system. In particular, this
can be prohibitively high for networked systems constituted
by the interconnection of a large number of subsystems.

The key idea of our proposed approach is to decompose
the problem of learning a Lyapunov function for the whole
system into a distributed learning problem, where the di-
mension of each subproblem is much smaller than that of
the centralized problem. In particular, given a supply rate
function r;, we will learn a local neural storage function for
each subsystem ¢ by adapting the approach proposed in [9].
We will verify the dissipativity condition (6) with respect
to the learned local neural storage function and the assumed
supply rate function using an SMT solver. We will then verify
the global stability condition given in (7). If this condition
is not satisfied, we will update the supply rate function
of each subsystem using an ADMM approach and repeat
the above procedure. Once this procedure converges, by
Proposition 1, we will have a neural Lyapunov function for
the whole system obtained as the sum of local neural storage
functions. The stability region of the system can also be
computed using this neural Lyapunov function. The training
time and computation complexity of this approach will scale
only linearly in the number of subsystem as opposed to the
exponential scaling of any centralized approach.

We now give the details of each step below.

A. Learning Local Neural Storage Function

We will follow the neural Lyapunov framework proposed
in [9] with some modification for learning a local neural
storage function for each subsystem. We will design a loss
function that penalizes any violation of the dissipativity
condition given in (6). In particular, we will use the following

empirical loss function for each subsystem i:

[max(—Vgi (24),0)

o+ max(0, YV, () fi(wi, wi) = riuss )|, ©)

where 0, is the parameter of the local neural storage function
%i, r; is the supply function, and N is the number of training
samples. We will train a neural network for each subsystem
using the above loss function until convergence.

Any deep learning algorithm using neural networks can
only give an empirical guarantee with respect to its loss
function. So, the parameters of the neural network obtained
by minimizing the above empirical loss function may not
provably yield a storage function that satisfies the condition
for dissipativity (6). Following the approach used in [9], we
construct a falsifier which searches for a counterexample that
violates the dissipativity condition. If the falsifier finds a
counterexample, that is added to the training data and the
neural network is re-trained.

The falsification constraint is specified using the following
first-order logic formula over real numbers:

s u) = (20 2 il 2 21 ) A (200 > il 2 20, ) A

(Voulw) <0 v VVa, @) fiws,u) = rifus ) = 0)),
(10)

where ¢;, is a small positive constant to avoid issues such
as arithmetic underflow in numerical verification algorithms,
and ¢, is a general upper bound. We use the SMT solver
dReal [19] to solve the falsification constraint above.

Under the conditions given [9], [19], [20] the SMT solver
is guaranteed to return counterexamples if there are any. If
the falsifier is not able to find any counterexample, we stop
the training and accept the local neural storage function.
More precisely, at the end of this learning phase, we will
get a local neural storage function f/gi for each subsystem
with respect to the storage function r; we considered.

B. Distributed Learning of Lyapunov Function

After learning the local neural storage function for each
subsystems, we form a candidate neural Lyapunov function
V(x) for the whole system as, V(z) = >V, (x;). We
can then verify if this candidate is indeed a valid Lyapunov
function by checking the condition (7). If this condition is not
satisfied, we will update the earlier used supply rate function
r; of each system and repeat the procedure described in
the previous subsection. Since the supply rate function r;
is completely specified by the matrix R;, we will use an
alternating direction method of multipliers (ADMM) method
for updating the supply rate functions as suggested in [12,
Chapter 6]. We describe the procedure below.

To bring the condition (7) to the canonical optimization
form, we will define the indicator function Iggpa as

R) ::{ 0 if (7) holds true
(0.]

Lotobal (R1, - - -
¢ ’ otherwise.

(1)



Similarly, to bring the dissipativity condition (6) of each
subsystem to the optimizations form, we define n indicator
functions Tjpcar,; as

0 if (6) holds true

. (12)
00 otherwise.

Hlocal,i(Riavﬂi) = {

Now, the problem of finding a Lyapunov function for the

whole system can be written as the following optimization
problem:

n
min Z Hloaa],i (Ri, V&) + Hglobal (Z1, Tt Z”)
(Ri\Ve,,Zi)7—y i=1

st. Ri—Z;,=0 fori=1,...,n. (13)

Here Z;s are auxiliary variables of R;s that allow the entire
optimization problem to be partitioned into n 4+ 1 simpler
ones, and then to be solved in a distributed manner. The
iterative steps of the algorithm are as follows:

R = argmin | R; — ZF + SF||%,
R; s.t. (6)

(14a)

arg min Z |REY — Z; + SE||2, (14b)
(Zi)py st (D52

SHTL = RAFL _ ZEFL 4 Gk

(ZHl)?:l =

K2

(14c)

where ;s are matrices to establish consensus among the all
the R;s and ||.|| is the Frobenius norm.

For each subsystem ¢, at each iteration k, the above
described optimization approach gives a supply rate function
Rf“ close to ZF suggested by the global problem. For the
newly obtained supply rate function Rf“, we retrain the
neural network to get a new local storage function %i. We
repeat this procedure until convergence or until a termination
condition is reached.

We formally present our algorithm in Algorithm 1.

Algorithm 1 Distributed Neural Lyapunov Function Learn-
ing Algorithm

1: Input: Initial supply rate matrices (R;)}_,, tolerance
level ¢, initial consensus metrics (.S;)™,
2: Output: Local neural storage functions (f/gi)?:l, global
Lyapunov function V = 3" Vj,
3. repeat
Learn (Vp,)?_, according to the procedure described
in Section III-A, for the current supply rate functions
(Ri)iy
Update (Z;), according to (14b)
Update (S;)"_; according to (14c)
Update (R;)}_; according to (14a)
until (Zz ||Rz — ZzH > 0)

® W

IV. CASE STUDIES

In this section, we illustrate the proposed algorithm in
the context of networked microgrids, and compare its results
with the a centralized neural Lyapunov based approach [7],
[8], and a local linearization approach.

PCC2

PCC1

()

PCC3

Fig. 1. Networked Microgrids [8]

A. Test System Description and Simulation Setup

We consider three networked microgrids (MGs) with
power electronics (PE) interfaces shown in Fig. 1. These
MGs are connected in a distribution network. They can share
power through their PE interfaces. The dynamics of each MG
depends on the control scheme deployed in the PE interface
[8]. Without loss of generality, suppose that a voltage angle
droop control scheme [7], [8], [21], is deployed in all PE
interfaces. With the time-scale separation assumption [7], the
fast dynamics of the phase angle of the voltage at the i-th
interface can be described by [7], [22], [23]

;0 = Bi(P; — P;) — 03,4 € {1,2,3},

where §; is the deviation of the voltage phase angle at the i-
th PCC (Point of Common Coupling) from its nominal value
0F; P; is the real power injection to the i-th PCC; P} is the
nominal value of P;; and «; and f3; are programmable control
parameters of the power electronic interface. Nominal values
07 and P are determined by the system operator according
to economic dispatch [24]. The ¢-th microgrid is coupled with
the other microgrids for power sharing through distribution
lines. The net power output of each microgrid can be written
as the sum of the power exchanged by the microgrid with
other microgrids, and the power used by the microgrid itself
locally, using standard AC power flow equations as follows.
The net power output of the ¢-th microgrid is given by:

Py =) EiEpYi cos(65, + 0ix — vir)+E; Guiyi € {1,2,3},
k#i

where FE; is the voltage magnitude at the ¢-th microgrid,

assumed to be constant because of the time-scale separation

assumption [24]; &, = 6; — g3 07, = 07 — 05, and Yii, G,

and oy are distribution line parameters. The dynamics of

the networked microgrids can then be written as

% = Ax + Bg(Cx),
X= [61a62763]T7 A= dlag <—17—1,_1> ,
aq (6] Qs
B:diag,’(ﬁl’&?ﬂf‘)7 C=1
a1 Qg Q3
g(x) = [91(x), g2(x), g3 (x)] "

9i(x) = Pf = EiEx Y cos(55, + 0ix — vir) — E; G
k#i



As discussed in Section II, we would first obtain a linear
approximation of the map g; to implement the proposed ap-
proach in Section III. We obtain such a linear approximation
by assuming d;; to be small, which leads to sin(d;x) &
and cos(d;x) ~ 1. Using this approximation, after some basic
algebra, we can express g(x) = Mz.

The control parameters and reference values for the volt-
ages, angles, and power outputs are reported in Table. I.

B. Distributed Stability Assessment

Following the approach in Section III-A, we begin by
learning an approximation of the local storage function
f/z(xz) for each microgrid. For this purpose, we use a neural
network with a single hidden layer of size 6, and tanh
activation functions. The training sample size and learning
rate used are 2000 and 0.01 respectively. We then verify
the local dissipativity of each subsystem using the learned
storage function using an SMT-based falsifier with uniform
lower and upper bounds of ¢, = 0.05 and ¢,, = 0.8
respectively for all ¢ € {1,2,3}. Finally, we employ the
ADMM based distributed approach in Algorithm 1 to adjust
the learned storage functions to guarantee the global stability
condition 7. In Algorithm 1, the initial R; and S; for each
1 are chosen as —0.5 0. and 00

0.1 -0.5 0 0
The tolerance ¢ to decide the convergence of our distributed
algorithm is set to be 1076.

With the above parameters, Algorithm 1 returns a neural
Lyapunov function as well as three local neural storage
functions. The Lyapunov function and its time derivative are
visualized in Fig. 2 (some plots are omitted due to space
constraints). Given d3 = 0, Fig. 2-(a) visualizes the learned
Lyapunov function in the J;-02-V space. Fig. 2-(b) also
shows a similar plot. Fig. 2-(c) visualizes the time derivative
of the neural Lyapunov function. We note that while the
algorithm learns a Lyapunov function with a linear approx-
imation of the coupling relationship, the time derivative is
evaluated based on the original nonlinear dynamics without
any approximation. From the figures, it is clear that the neural
Lyapunov function is positive definite and its time derivative
is non-positive in the region Vs, which makes it a valid
Lyapunov function satisfying Definition 1.

Based on the network-level Lyapunov function (labelled
as DNL) learned using Algorithm 1, we estimate the ROA
for the nonlinear networked microgrids, and compare it
with the ROA estimated by the neural Lyapunov function
learned by the centralized method (labeled as CNL) proposed

respectively.

TABLE I
CONTROL PARAMETERS AND REFERENCE SETPOINTS OF THE THREE
MICROGRID NETWORK [7]

MG 1 | MG 2 MG 3
@ 12 10 0.8
Bs 12 12 12
5 0 55.67° | —45.37°

Ei(p.u.) 1 1.05 0.95

Pr(pu) | 0.1706 | 1.4578 | -0.0013

TABLE 11
AREA OF PROJECTED ROA ESTIMATED BY THE THREE METHODS

Plane | DNL | CNL [7] | QL
51,02 | 1374 | 2.058 | 0.178
52,03 | 1325 | 1965 | 0.154
51,05 | 1379 | 2.074 | 0.180

in [7], as well as the ROA using a quadratic Lyapunov
function (labeled as QL) corresponding to linearization of
the dynamics [25]. As seen in Fig. 3 and Table II, the
ROA estimated by DNL method is comparable to the ROA
estimated by CNL method and is much less conservative than
the ROA estimated by the QL method.

To summarize the case study, we observe that the proposed
distributed algorithm can effectively assess the stability of
networked nonlinear systems in a scalable manner, while
being less conservative than typical SOS or linearization
based approaches.

V. CONCLUSION

This paper proposes a novel distributed learning-based
framework for assessing Lyapunov stability of a class of
networked nonlinear systems, where each subsystem is dis-
sipative. The objective of the proposed framework is to
construct a Lyapunov function in a distributed manner and
to estimate the associated region of attraction for the net-
worked system. We begin by leveraging a neural network
function approximation to learn a storage function for each
subsystem such that a local dissipativity property is satisfied
by each subsystem. We next use a satisfiability modulo
theories (SMT) solver based falsifier that verifies the local
dissipativity of each subsystem by determining an absence of
counterexamples that violate the local dissipativity property,
as established by the neural network approximation. Finally,
we verify network-level stability by using an alternating
direction method of multipliers (ADMM) approach to update
the storage function of each subsystem in a distributed
manner until a global stability condition for the network
of dissipative subsystems is satisfied. This step also leads
to a network-level Lyapunov function that we then use to
estimate the region of attraction. We illustrate the proposed
algorithm and its advantages on a three networked microgrids
with power-electronic interfaces. Future work will test and
validate the proposed algorithm in larger networked systems
and investigate how to learn controllers with provable per-
formance for large-scale networked systems.
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