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Abstract

The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through the root. Hence, 
studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an im-
portant research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its 
metabolic reprogramming under nitrogen stress conditions. The model was reconstructed based on the available 
information from KEGG, UniProt, and MaizeCyc. Transcriptomics data derived from the roots of hydroponically grown 
maize plants were used to incorporate regulatory constraints in the model and simulate nitrogen-non-limiting (N+) 
and nitrogen-deficient (N−) condition. Model-predicted flux-sum variability analysis achieved 70% accuracy compared 
with the experimental change of metabolite levels. In addition to predicting important metabolic reprogramming in 
central carbon, fatty acid, amino acid, and other secondary metabolism, maize root GSM predicted several metabol-
ites (l-methionine, l-asparagine, l-lysine, cholesterol, and l-pipecolate) playing a regulatory role in the root biomass 
growth. Furthermore, this study revealed eight phosphatidylcholine and phosphatidylglycerol metabolites which, even 
though not coupled with biomass production, played a key role in the increased biomass production under N-deficient 
conditions. Overall, the omics-integrated GSM provides a promising tool to facilitate stress condition analysis for 
maize root and engineer better stress-tolerant maize genotypes.

Keywords:   Abiotic stress, genome-scale metabolic modeling, maize root, metabolomics, nitrogen-deficient stress, 
transcriptomics.
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Introduction

Maize (Zea mays L.) is considered as one of the major sources of 
food for a large portion of the world’s population (Rouf Shah 
et  al., 2016). According to the International Grains Council, 
global maize consumption will climb to new heights in the 
coming years, and the use of maize as food is also forecast to 
expand (International Grains Council, 2019). Nutrients that 
are taken up by roots are essential for maize plant growth, and 
limited nutrient supply can hinder plant growth along with 
discernible phenotypical changes (Hu and Chu, 2020). Among 
these nutrients, nitrogen (N) plays a key role in plant growth. 
N limitation frequently reduces crop growth and yield, and 
contributes to a variety of phenotypical changes including 
expanded root architecture (Mager and Ludewig, 2018), in-
creased root biomass (Mardanov et al., 1998), and root exudate 
profiles (Frey et  al., 2009; Neal et  al., 2012). Although many 
experimental studies are available that study the metabolism as-
sociated with N starvation of maize roots (Tschoep et al., 2009; 
Krapp et al., 2011; Schlüter et al., 2012; Mager and Ludewig, 
2018), they are primarily focused on probing a specific class of 
metabolites, such as amino acids or fatty acids. However, cap-
turing the aggregate effect of maize root physiology on bio-
mass production under N-deficient (N−) condition is essential 
to understand plant-wide reprogramming of its metabolism. 
This sort of reprogramming has been reported as the hallmark 
of metabolism which allows any system to adapt to the changes 
to external conditions (Medina, 2020). Thus, in order to cap-
ture this metabolic reprogramming of maize root under N− 
condition in an integrated manner, developing systems biology 
approaches will allow us to have a dynamic picture of plant 
adaptation to N deficiency.

To develop such a systems biology approach, genome-scale 
metabolic models (GSMs) have been widely used at either 
the organ or the whole-plant level (Shaw and Cheung, 2020). 
A GSM captures most of the known metabolic reactions within 
a biological system (i.e. a prokaryotic/eukaryotic organism or 
an organ/group of organs of a higher order organism) and it 
can predict the flux of reactions by implementing techniques 
such as flux balance analysis (FBA) (Orth et  al., 2010), flux 
variability analysis (FVA) (Mahadevan and Schilling, 2003), and 
parsimonious FBA (Lewis et al., 2010). Typically, reaction flux 
is predicted by solving an optimization problem through maxi-
mizing biomass production. In higher plants, the first GSM 
was reconstructed for Arabidopsis thaliana more than a decade 
ago (Poolman et al., 2009), thus setting up a new direction of 
research with the aid of systems biology. Once the complete 
genome sequences of more plants became available, meta-
bolic reconstruction picked up pace, giving a range of pub-
lished plant GSMs, including crops such as maize (Saha et al., 
2011), rice (Oryza sativa L.) (Poolman et al., 2013; Chatterjee 
et al., 2017), and rapeseed (Brassica napus L.) (Pilalis et al., 2011), 
and model plants such as Arabidopsis (Poolman et al., 2009; de 
Oliveira Dal’Molin et al., 2010; Cheung et al., 2013) and Setaria 

viridis L.  (Shaw and Cheung, 2019). Although these GSMs 
provided reconstruction of whole-plant metabolism, organ-
specific GSMs including those of rapeseed embryo (Hay and 
Schwender, 2011), barley seed (Grafahrend-Belau et al., 2009), 
Arabidopsis leaf (Arnold and Nikoloski, 2014), and maize leaf 
(Simons et  al., 2014; Seaver et  al., 2015), endosperm (Seaver 
et al., 2015), and embryo (Seaver et al., 2015) were developed in 
parallel. These organ-specific GSMs provided better resolution 
of the metabolism in specialized tissues, which can be probed 
further for useful insights into whole-plant physiology. Up to 
now, there has been no maize root-specific GSM available to 
investigate its metabolism/associated reprogramming under 
stress conditions, such as mineral nutrient deficiency, and de-
rive new biological insights that can be tested experimentally.

An important challenge to further sharpen model predic-
tions and thereby decipher meaningful biological information 
from a GSM is to integrate environment/condition-specific 
‘omics’ data into it. Although there is a paucity of environment-
specific ‘omics’ data (i.e. gene expression, protein abundance, 
and metabolite level) for maize root, their availability would 
help constrain the solution space and thus improve final model 
predictions. Proteomics and transcriptomics data can be used to 
apply flux constraints on corresponding reactions determined 
by gene–protein reaction (GPR) associations via a switch [e.g. 
GIMME (Becker and Palsson, 2008), iMAT (Zur et al., 2010), 
and MADE (Jensen and Papin, 2011)] or valve [e.g. E-Flux 
(Colijn et  al., 2009) and PROM (Chandrasekaran and Price, 
2010)] approach. While the switch approaches have a binary 
nature, resulting in all-or-nothing posture to constraining re-
actions which may not reflect the actual condition, valve ap-
proaches provide more flexibility in constraining the solution 
space by incorporating the gene expression/protein abundance 
data as reaction flux constraints. In addition to incorporating 
these reaction regulations, model-generated metabolite levels 
can be qualitatively compared with experimental metabolite 
measurements, thus further characterizing the state of metab-
olism. To this end, flux-sum is used as a proxy of the metab-
olite pool size (Chung and Lee, 2009). However, fast or slow 
kinetics may diminish or expand the size of the pool, without 
changing the corresponding flux.

In this work, maize plants were grown in a hydroponic culture 
system under nitrogen-non-limiting (N+) and N− condition, 
and used to generate root transcriptomics and metabolomics 
datasets. In parallel, a GSM was built for roots in order to in-
corporate transcriptomic and metabolic profiling data into the 
model to simulate the metabolic reprogramming of maize roots 
under N− condition. The model was first validated using a study 
from the literature (Walton et al., 2016) on the effect of the syn-
thetic strigolactone, rac-GR24, on the root and its associated 
metabolic reprogramming. Next, using the E-Flux algorithm 
(Colijn et al., 2009), the transcriptomics data were employed to 
implement regulations in the GSM and subsequently to simulate 
N+ and N− condition. When compared with metabolite meas-
urements, the model-predicted results achieved 70% accuracy 
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concerning the reprogramming of central carbon (C), fatty acid, 
amino acid, and secondary metabolism. In addition, the GSM 
allowed the prediction of regulatory roles of several metabolites 
in root biomass production, such as l-methionine, l-asparagine, 
l-lysine, cholesterol, and l-pipecolate. Eight phosphatidylcholine 
(PC) and phosphatidylglycerol (PG) metabolites not coupled to 
biomass production under N+ conditions were found to play a 
seminal role in the increased biomass growth under N−. Going 
forward, we expect that this maize root GSM will provide a 
powerful tool to study the effect of other abiotic and biotic 
stresses such as phosphate deficiency, salinity, heat stress, drought, 
heavy metal stresses, rot disease, and interactions with beneficial 
microorganisms.

Materials and methods

Plant material
Zea mays L., line B73 (Hufford et  al., 2021), were grown in a hydro-
ponic culture system. To eliminate heterogeneity in the germination time, 
imbibition of the seeds was performed at 6  °C in the dark for 3 d in 
Petri dishes containing filter paper moistened with sterile distilled water. 
Seedlings were then transferred onto sand and watered daily on a nutrient 
solution containing 5.6 mM K+, 3.4 mM Ca2+, 0.9 mM Mg2+, 0.9 mM 
H2PO4

−, and 21.5 mM Fe (Sequestrene, Ciba-Geigy, Basel), 23 mM B, 
9 mM Mn, 0.30 mM Mo, 0.95 mM Cu, and 3.50 mM Zn. N was sup-
plied as 1  mM KNO3

−. After 1 week when 2–3 leaves had emerged, 
plants were randomly placed on a 130 liter aerated hydroponic culture 
unit containing a complete nutrient solution (N+) containing 5  mM 
NO3

− (Coïc and Lesaint, 1971) together withi 5 mM K+, 3 mM Ca2+, 
0.4 mM Mg2+, 1.1 mM H2PO4

−, 1 mM SO4
2−, 1.1 mM Cl−, 21.5 µM 

Fe2+ (Sequestrene), 23  µM B3+, 9  µM Mn2+, 0.3  µM Mo2+, 0.95  µM 
Cu2+, and 3.5 µM Zn2+. For growing plants under N− condition, NO3

− 
was supplied as 0.1  mM KNO3

−, an N concentration that has previ-
ously been shown to provide N deficiency stress for most plant species 
(Tercé-Laforgue et al., 2004; Hirel et al., 2005; Amiour et al., 2012). The 
N+ and N− nutrient solutions were replaced daily. The experiment was 
performed in triplicate for each N concentration in the nutrient solu-
tion in separate hydroponic units placed side by side. The six hydroponic 
culture units were kept for 18 d in a controlled-environment chamber in 
2014 (18 May–5 June 2014). Three plants in each hydroponic unit were 
pooled, making three replicates for each of the two conditions. Plants 
were harvested at the 6- to 7-leaf stage between 09.00 h and 12.00 h, and 
separated into shoots and roots. The samples were immediately placed in 
liquid N2 and then stored at –80 °C until further analysis.

RNA preparation
A 50 mg aliquot of total RNA was incubated at 37 °C for 30 min with 
40 U of RNase inhibitor and 25 U of RNase-free DNase (Promega, 
Charbonnieres, France) in 6  ml of 10× buffer (Promega) with 
diethylpyrocarbonate (DEPC)-treated water added to a final volume of 
60 ml. The DNase was removed by phenol/chloroform/isoamyl alcohol 
(25:24:1) extraction, and total RNA was precipitated overnight at –20 °C 
in a 0.1 vol. of ammonium acetate (3 M) and a 2.5 vol. of ethanol (100%), 
and resuspended in DEPC-treated water.

Gene expression profiles using maize cDNA microarrays
Starting with 3  µg of root total RNA, non-modified amplified anti-
sense RNA (aRNA) products were prepared using the Amino Allyl 

MessageAmp™ aRNA Kit (Ambion, Foster City, CA, USA), according 
to the manufacturer’s instructions. Briefly, RNA was transcribed into 
cDNA using reverse transcriptase with a T7 primer that contains a pro-
moter for DNA-dependent RNA polymerase. After RNase H-mediated 
second-strand cDNA synthesis, the double-stranded cDNA (dscDNA) 
was purified and served as a template in the subsequent in vitro tran-
scription reaction. Following this, 2 µg aliquots of aRNA were labeled 
using the SuperSript™ Indirect cDNA Labeling System Kit (Invitrogen, 
Carlsbad, CA, USA) as described in the manufacturer’s protocol, except 
that the purification steps were carried out using QIAquick® PCR col-
umns (QIAGEN, Hilden, Germany). The quantity and quality of each 
intermediate product, including total RNA, dscDNA, aRNA, and labeled 
targets, were evaluated using a Nanodrop ND-1000 spectrophotometer 
and an Agilent Technologies 2100 Bioanalyzer. Whole-genome root tran-
script profiling was performed using the maize 46K arrays obtained from 
the maize oligonucleotide array project (http://www.maizecdna.org/
outreach/resources.html). Transcript abundance in each of the three rep-
licates for vegetative and mature roots at low (N−) and high (N+) N supply 
was determined using a mixture of all the samples (12 in total, each with 
the same mRNA concentration) as a reference. Hybridizations between 
the maize oligonucleotide microarrays and fluorescently labeled sam-
ples were performed in MICROMAX Hybridization Buffer III (Perkin 
Elmer) using the manufacturer’s hybridization and wash conditions and 
a GeneTac™ HybStation (Genomic Solutions, Ann Arbor, MI, USA). 
Before hybridization, 50 pmol Cy3- and 50 pmol Cy5-labeled targets 
were mixed, dried using compressed air, and reconstituted with 115 µl of 
hybridization buffer, followed by denaturing at 90 °C for 3 min. Each hy-
bridization mixture was placed on maize 45K array slides mounted in the 
hybridization station and the hybridizations were performed for 3 h at 
65 °C, followed by 3 h at 55 °C, then 12 h at 50 °C with gentle agitation. 
Thereafter, the arrays were automatically washed with the GeneTac™ 
washing solutions (Genomic Solutions) using the program for multiple 
automatic washes, with a flow time of 40 s. Immediately after the com-
pletion of the final washing step, the arrays were removed from the sta-
tion, briefly immersed in distilled water, and air-dried with ozone-safe 
dry air. Hybridized microarrays were scanned using a GenePix 4000B 
Microarray Scanner (Molecular Devices, Sunnyvale, CA, USA) at 10 μm 
resolution and variable photomultiplier (PMT) voltage to obtain maximal 
signal intensities with <0.05% probe saturation. Subsequent image ana-
lysis was performed with the GenePix Pro (v6.0.1.26) software. Analysis 
included defining the spots, measuring the intensities, flagging spots when 
inadequate quality control parameters were found, and evaluating local 
background. The resulting files, containing all the scan data, were further 
processed using the statistical programming language R (http://www.r-
project.org) together with the packages of the MAnGO project (Version 
0.9.7, Microarray Normalization tool of GODMAP, CNRS BioInfome 
Team). The background level was calculated using morphological oper-
ators (a short closing followed by a large opening) and subtracted. Raw 
data were normalized using a global loess method. Gene annotation was 
provided by the maize oligonucleotide array project mentioned above 
(http://www.maizecdna.org/outreach/resources.html).

Statistical analysis of maize cDNA microarray data
Statistical group comparisons were performed using multiple testing 
procedures to evaluate statistical significance for differentially ex-
pressed genes. Two gene selection approaches were applied, namely 
the Significance Analysis of Microarrays permutation algorithm, and a 
P-value ranking strategy using both z-statistics in ArrayStat 1.0 software 
(Imaging Research Inc.) and moderated t-statistics using a moderated 
t-test available in MAnGO tools (Marisa et al., 2007) and BRBArrayTools 
v3.2.3 packages. For multiple testing corrections, the false discovery rate 
(FDR) procedure was used. Statistical tests were computed and com-
bined for each probe set using the log-transformed data, and a probe set 
was declared to be significant when the adjusted P-value was less than 
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the effective α-level (α=0.05) in at least one of these tests. A filtering 
procedure additionally excluded those data points considered biologic-
ally unreliable due to low signal intensities (Amean <7.0). Transcriptomic 
data were validated by quantitative real-time reverse transcription–PCR 
(qRT–PCR) analysis performed on a selected number of gene transcripts 
up- or down-regulated. The validation process is shown in Fig. 1.

Metabolite extraction and analyses
Frozen maize root previously stored at –80 °C was used for the extraction 
of metabolites. A 100 mg aliquot of the root powder was placed in 1 ml 
of 80% ethanol/20% distilled water for 1 h at 4 °C. During extraction, 
the samples were continuously agitated and then centrifuged for 5 min 
at 15 000  rpm. The supernatant was removed, and the pellet was sub-
jected to a further extraction in 60% ethanol and finally in water at 4 °C. 
All supernatants were combined to form the aqueous alcoholic extract. 
Total N content of 25 mg of frozen root material was determined in an 
elemental analyzer using the combustion method of Dumas (Flash 2000, 
Thermo Scientific, Cergy-Pontoise, France).

Metabolome analysis
All steps were adapted from the original protocol (Fiehn, 2006) following 
the procedure described in the literature (Amiour et al., 2012). All ex-
traction steps were performed in 2 ml Safelock Eppendorf tubes. The 
ground frozen root samples were resuspended in 1 ml of frozen (–20 °C) 
water:chloroform:methanol (1:1:2.5) and extracted for 10 min at 4 °C 
with shaking at 1400 rpm in an Eppendorf thermomixer. Insoluble ma-
terial was removed by centrifugation, and 900 µl of the supernatant were 
mixed with 20  µl of 200  µg ml–1 ribitol in methanol. Water (360  µl) 
was then added and, after mixing and centrifugation, 50 µl of the upper 
polar phase were collected and dried for 3 h in a Speed-Vac and stored 
at –80  °C. Four blank tubes were subjected to the same steps as the 
samples. For derivatization, samples were removed from –80 °C storage, 
warmed for 15 min before opening, and Speed-Vac dried for 1 h be-
fore the addition of 10 µl of 20 mg ml–1 methoxyamine in pyridine. The 
reactions with the individual samples, blanks, and amino acid standards 
were performed for 90  min at 28  °C with continuous shaking in an 
Eppendorf thermomixer. A 90 µl aliquot of N-methyl-N-trimethylsilyl-
trifluoroacetamide (MSTFA) was then added and the reaction continued 
for 30 min at 37 °C. After cooling, 50 µl of the reaction mixture were 
transferred to an Agilent vial for injection. For the analysis, 3  h and 
20 min after derivatization, 1 µl of the derivatized samples was injected 
in the Splitless mode onto an Agilent 7890A gas chromatograph coupled 

to an Agilent 5975C mass spectrometer. The column used was an Rxi-
5SilMS from Restek (30 m with a 10 m Integra-Guard column). The 
liner (Restek # 20 994) was changed before each series of analyses and 
10 cm of the column were removed. The oven temperature ramp was 
70 °C for 7 min, then 10 °C min–1 up to 325 °C, which was maintained 
for 4 min. Overall the total run time was 36.5 min. A constant flow of 
helium was maintained at 1.5231 ml min–1. Temperatures in the gas chro-
matograph were the following: injector, 250  °C; transfer line, 290  °C; 
source, 250 °C; and quadrupole, 150 °C. Samples and blanks were ran-
domized. Amino acid standards were injected at the beginning and end of 
the analyses for monitoring of the derivatization stability. An alkane mix 
(C10, C12, C15, C19, C22, C28, C32, C36) was injected in the middle 
of the analyses for external retention index calibration. Five scans per 
second were acquired. For data processing, Raw Agilent datafiles were 
converted into the NetCDF format and analyzed with AMDIS (https://
chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:amdis). A  home 
retention indices/mass spectra library built from the NIST, Golm, and 
Fiehn databases and standard compounds was used for metabolite iden-
tification. Peak areas were then determined using the quanlynx software 
(Waters) after conversion of the NetCDF file into the masslynx format. 
Statistical analyses were carried out with TMEV (https://mev.tm4.org/). 
Univariate analyses by permutation (one- and two-way ANOVA) were 
first used to select the metabolites exhibiting significant changes in their 
concentration.

Model reconstruction
The primary set of reactions JPrimary [1751 reactions from a combination 
of gene, protein, and reaction information from available public data-
bases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG; 
Kanehisa et al., 2014), UniProt (Bateman, 2019), and MaizeCyc (Monaco 
et al., 2013)], vascular tissue transporters (Vt; 43 transporters), and nutri-
ents JNutrients (eight nutrient sources) supplied to maize root were com-
bined to form the draft model for maize root. Genes with an expression 
level above the cut-off defined by Downs et al. (2013) (i.e. 7.644) were 
categorized as highly expressed. Genes that were expressed at a level 
below the cut-off were categorized as expressed at a low level. When 
building the maize root model, the nutrients included those from the 
soil and those metabolites that can be imported from the vascular tissue. 
Inactive reactions, determined by using the gene expression data and 
GPR associations, were placed into a set termed JInactive (72 reactions). 
Finally, spontaneous reactions and reactions with a GPR relationship that 
only contain genes in the ‘always expressed at a low level’ set were placed 
into the set JNotMeasured (77 reactions). To ensure that the maize root bio-
mass reaction was not blocked given the available nutrients, a GapFill step 
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Fig. 1.  Transcript abundance in roots of maize plants grown under N-limiting (N–) and non-limiting conditions (N+). Three N−-responsive genes 
were selected from the microarray experiment. Quantification of mRNA was performed using qRT–PCR. For the gene encoding a putative 
glucosyltransferase-3 (TC251986), the primers were F: GGGCTCCTGATTTCCACAA and R: TGCTACCTACCTCCCAACAACT. For the gene encoding 
a putative AAA-type ATPase (TC271206), the primers were F: GATGAGGAGAAAGGCAACGA and R: GCACTGCAAGTACCATTACACC. For the gene 
encoding a putative phi-1 (TC 278 144), the primers were F: CTGTCGGGATTGTGTAGCAA and R: CCGGTCCAACAAGTAACG. Each value was 
normalized with the relative transcript abundance of the gene encoding EF1a. Values are the mean ±SE of the three independent samples used for the 
microarray experiment. The t-test was 0.05 for TC251986 and TC278144, and 0.1 for TC271206.
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(Satish Kumar et al., 2007) was performed for the maize root. The fol-
lowing algorithm was used to determine the minimum number of reac-
tions added with a preference for adding reactions from the not measured 
set over reactions in the inactive set (Equation 1):

min
∑

j∈JNotMeasured

yj + 10
∑

j∈JInactive

yj

Subject to: 
∑
j∈J

Sijvj = 0, ∀i ∈ I� [1]

LBj ≤ vj ≤ UBj, ∀j ∈ JPrimary ∪ JNutrients ∪ Vt� [2]

LBjyj ≤ vj ≤ UBjyj, ∀j ∈ JInactive ∪ JNotMeasured� [3]

vbiomass ≥ 0.001� [4]

Here Sij is the stoichiometric coefficient of metabolite i in reaction j, and 
vj is the flux through reaction j. Sets I and J include all metabolites and re-
actions known to occur within maize, respectively. The lower bound, LBj, 
and upper bound, UBj, of reaction j (Equations 2 and 3) are sufficiently 
small and large and are determined by each reaction’s directionality based 
on thermodynamic constraints. The binary variable, yj, is equal to 1 if the 
reaction is added to the model and 0 otherwise (Equation 3). Finally, a 
small amount of flux is forced through the biomass equations (Equation 
4) to ensure biomass is not blocked. From this algorithm, a set of reac-
tions, JSecondary, was added to the maize root models to ensure that flux 
through the biomass reaction is possible.

A second GapFill step was performed to activate as many reactions 
in the primary set as possible for maize root. The GapFill algorithm dis-
played above was completed successively for each reaction that did not 
carry flux in the primary set by modifying the model constraints in the 
following manner. First, Equation 2 was extended to encompass the sec-
ondary set of reactions to account for their inclusion in the maize root 
model. Second, Equation 4 was applied to reactions of interest rather than 
the biomass reaction. Reactions from JNotMeasured were added as needed; 
however, reactions from JInactive were only included in the final model if 
their addition allowed 10 previously blocked reactions from the active set 
to carry flux. This was done to ensure that reactions with genes that are 
expressed at a low level in the maize root based on transcriptomic data 
were added only if they allow for flux through multiple reactions in the 
primary set.

Eliminating thermodynamically infeasible cycles through flux 
variability analysis
To identify thermodynamically infeasible cycles in the model, FVA 
(Mahadevan and Schilling, 2003) was used by turning off all the nutrient 
uptakes to the cell. The formulation is as follows.

max /min vj

Subject to: 
∑
j∈J

Sijvj = 0, ∀i ∈ I� [5]

LBj ≤ vj ≤ UBj, ∀j ∈ J� [6]

FVA maximizes and minimizes each of the reaction fluxes subject to mass 
balance and environmental, and any artificial (i.e. biomass threshold), con-
straints. The reaction fluxes which hit either the lower or upper bounds 
were defined as unbounded reactions, and were grouped as a linear com-
bination of the null basis of their stoichiometric matrix. These groups 
are indicative of possible thermodynamically infeasible cycles. To elim-
inate the cycles, duplicate reactions were removed, lumped reactions were 

turned off, or reactions were selectively turned on/off based on available 
cofactor specificity information. In this study, FVA was also used to find 
the flux ranges/flux variability of different reactions.

Incorporation of transcriptomics data with the model 
through E-Flux
E-Flux is an extension of FBA that uses transcriptomic data to impose 
upper and lower bounds on reaction fluxes (Colijn et al., 2009; Brandes 
et al., 2012). The rationale behind E-Flux is that, given a limited trans-
lational efficiency and a limited accumulation of enzyme over time, the 
mRNA level can be used as an approximate upper bound on the max-
imum number of metabolic enzymes, and hence corresponding reaction 
rates. The E-Flux algorithm offered the flexibility to constraint the reac-
tion flux based on the association of gene expression with the GPR. In 
addition, in contrast to other transcriptomics data integration methods, 
the E-Flux algorithm utilizes a metabolic network model to directly pre-
dict changes in reaction flux, hence resulting in improved prediction of 
reaction fluxes under N+ and N– condition. The standard FBA involved 
solving the following linear optimization problem:

max vbiomass
Subject to: 

∑
j∈J

Sijvj = 0, ∀i ∈ I� [7]

aj ≤ vj ≤ bj� [8]

where vector v represents a particular flux configuration, S is the stoi-
chiometric matrix, and aj and bj are the minimum and maximum allowed 
fluxes through reaction j. It was assumed that a set of expression meas-
urements for some or all of the genes associated with the reactions in S 
were available. The E-Flux method calculates the upped bound, bj, for the 
jth reaction according to the following function of the gene expression:

bj = (exp ression level of genes associated with reaction j)� [9]

In this study, bj is the exact level of each reaction that was calculated 
through its GPR association [i.e. based on the ‘OR’ (addition of gene 
expressions) and ‘AND’ (minimum of gene expressions) relationship]. If 
the reaction catalyzed by the corresponding enzyme was reversible then 
aj=–bj, otherwise aj=0.

Metabolite pool size calculations through flux-sum analysis
Metabolite pool size were determined based on the flux-sum analysis 
(FSA) method (Chung and Lee, 2009). The flux-sum is a measure of the 
amount of flux through the reactions associated with either the produc-
tion or consumption of the metabolite. The range of the flux-sum or the 
flow through of each metabolite with experimental measurements was 
maximized/minimized as follows:

	



Max/Min 0.5
m∑
j=1

∣∣Sijvj
∣∣

Subject to :
m∑
j=1

Sijvj = 0, ∀i ∈ 1, . . . , n

vj,min ≤ vj ≤ vj,max

vbiomass = vmax
biomass




, ∀i ∈ IE

� [10]

[11]

[12]

Here, set IE represents the set of metabolites with experimental measure-
ments. The formulation was run in an iterative manner for each metab-
olite with experimental measurements and repeated for both conditions. 
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By linearizing the objective function, the resulting formulation became a 
mixed-integer linear programming problem. FSA assumes that any bio-
logical system is under steady state (Equation 10) with specific bounds on 
the reaction fluxes (Equation 11). As a result, the aggregate reaction flux 
associated with productions and consumptions of a specific metabolite 
must be equal with an opposite sign. Hence, in the FSA, the objective 
function is the average of absolute values of both production and con-
sumption reactions of a metabolite. The flux-sum ranges were determined 
at the maximum biomass for the condition as displayed in Equation 12. 
Predictions were made only when the flux-sum ranges did not overlap 
between the background condition and the condition to be compared. 
In this way, the compartment-specific predictions of the flux-sum ranges 
were compared with tissue-specific experimental measurements. As GSM 
is a steady-state model, diminishing or expanding the pool size based on 
fast or slow reaction kinetics is not a possibility here.

Fold change calculations
In FBA, reaction fluxes and optimal pathways are found by solving a 
linear optimization problem, in which usually the growth rate is maxi-
mized subject to pseudo-steady-state mass balance and other environ-
mental constraints. However, degeneracy in metabolic networks leads to 
an infinite number of reaction flux distributions satisfying given con-
straints and the objective function. Moreover, some of these reaction flux 
distributions may bear no or incorrect biological relevance for a given 
condition. To avoid this, while calculating in silico fold change (metab-
olite pool size in N−/metabolite pool size in N+) of metabolites, FSA 
was used to generate a range (minimum and maximum) of metabolite 
pool size, in both N− and N+ conditions. In this study, in silico fold 
change is a qualitative idea, where the flux range of a specific metabolite 
under N− condition is compared with that of the same metabolite under 
N+ conditions. Hence, we only determined in silico fold change for me-
tabolites if flux-sum variabilities in these conditions do not overlap with 
each other. That leads in silico fold change to assume only three qualita-
tive values—overlap, increase, and decrease (see Table 1 for details).

Once the compartment-specific in silico fold change of metabolites 
was calculated, these fold changes were compared with the experimental 
metabolomics data-based fold changes which were measured for the 
whole cell.

Use of the BLASTp algorithm to find homologous genes
Arabidopsis gene sequence data were obtained from the TAIR database 
(http://www.arabidopsis.org/). To identify Arabidopsis gene homologs in 
maize, systematic bidirectional BLASTp (https://blast.ncbi.nlm.nih.gov/
Blast.cgi?PAGE=Proteins) searches were performed against the NCBI 
non-redundant database using the sequences of Arabidopsis genes. The 
screening criterion was E-value 10−10. In the case of multiple homolo-
gous genes for maize, genes were chosen based on the higher Max score.

Simulation software
The General Algebraic Modeling System (GAMS) version 24.7.4 with 
IBM CPLEX solver was used to run FBA and FVA, E-Flux, and the FSA 
algorithm on the model. Each of the algorithms was scripted in GAMS 

and then run on a Linux-based high-performance cluster computing 
system at the University of Nebraska-Lincoln.

Results and discussion

Development and validation of the maize root model

A GSM of maize root was reconstructed using a combin-
ation of gene, protein, and reaction information from available 
public databases such as KEGG (Kanehisa et al., 2014), UniProt 
(Bateman, 2019), and MaizeCyc (Monaco et  al., 2013). The 
draft model was curated as described in the Materials and 
methods. Figure 2 shows how model reconstruction and re-
finement were carried out. The model also included the me-
tabolites that are transported through the phloem and xylem 
tissues supported by literature evidence (Yesbergenova-Cuny 
et  al., 2016). The phloem and xylem tissues were combined, 
for simplicity, in the model and are referred to as the vascular 
tissue. Specific pathways such as the sphingolipid pathway, 
benzoxazinoid pathway, linoleic acid pathway, β-alanine 
pathway, and flavonoid biosynthesis were introduced based 
on genomic annotation and experimental evidence from the 
literature as described in the subsequent sections. The recon-
structed model contains 6389 genes, 4002 reactions, and 4461 
metabolites distributed across six intracellular compartments, 
namely the cytosol, plastid, mitochondria, peroxisome, plasma 
membrane, vacuole, and inner mitochondrial matrix. Biomass 
accumulation is represented in the metabolic model by a root-
specific biomass assuming that the biomass composition does 
not change across different environmental conditions. Within 
the biomass reaction, the stoichiometric coefficients represent 
the proportion of each biomass component ensuring that the 
overall biomass molecular weight is 1 g mol−1 for proper com-
ponent balance (Chan et al., 2017). Growth- and non-growth-
associated ATP maintenance levels were based on available 
measurements for maize root (Roberts et al., 1985; Doncheva 
et al., 2006).

In order to validate the model and to ensure that it 
could simulate biologically relevant situations, a case study 
involving strigolactones was selected. Strigolactones, a group 
of carotenoid-derived terpenoid lactones, can regulate root 
architecture and act as phytohormones and rhizosphere signals 
(Guan et al., 2012; Walton et al., 2016). Strigolactones also pro-
mote the elongation of seminal/primary roots and adventitious 
roots, and they repress lateral root formation (Sun et al., 2016). 
Given the importance of strigolactones, the key question was 
if the maize root model could recapitulate the manifestation 

Table 1.  Three different cases of in silico fold change under N− and N+ conditions for a fictitious metabolite A 

Cases Metabolite pool size (N−) Metabolite pool size (N+) Decision

Case 1 [0.50 0.75] [0.25 0.60] Overlap in flux-sum variability: indeterminate fold change.
Case 2 [0.60 0.75] [0.25 0.50] No overlap in flux-sum variability: increased fold change.
Case 3 [0.15 0.25] [0.35 0.60] No overlap in flux-sum variability: decreased fold change.
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of these effects in terms of metabolic changes. To the best of 
our knowledge, no large-scale combined transcriptomics and 
metabolomics data are available for maize root to adequately 
constrain the model. Thus, the relevant information was gath-
ered from a study performed in A. thaliana (Walton et al., 2016) 
in which the impact of the strigolactone analog rac-GR24 was 
elucidated on the root proteome of the wild type (WT) and 

the signaling mutant more axillary growth 2 (MAX2). The study 
revealed a clear MAX2-dependent rac-GR24 response, which 
indicated an increase in abundance of enzymes involved in 
flavonol biosynthesis. This abundance of enzyme in flavonol 
biosynthesis was reduced in the max2-1 mutant. Details of 
the experimental design and screening of these genes can be 
found in the original paper (Walton et al., 2016). To identify 

Fig. 2.  This figure demonstrates the overall process of the model development and refinement. From different biochemical databases such as KEEG, 
UniProt, and MaizeCyc, the maize root metabolic pathway was reconstructed. From that reconstructed maize root metabolic pathway, a genome-scale 
metabolic model was developed. Experimental omics data for nitrogen optimal (N+) and nitrogen starvation condition (N−) were then integrated with the 
model to analyze metabolic reprogramming of maize root under N−. Different techniques, such as flux balance analysis (FBA), flux-sum analysis (FSA), 
the E-Flux algorithm, and flux variability analysis (FVA) were used to analyze the model and come up with different findings of this study. The maize 
root genome-scale metabolic model can be found in Supplementary Table S1. Experimental transcriptomics and metabolomics data can be found in 
Supplementary Table S2.
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the homologous genes encoding the corresponding proteins 
in maize, a bidirectional BLASTp search was conducted. Later, 
the abundance of those proteins was used to incorporate reac-
tion flux regulations via GPR in the maize root model using 
the E-Flux algorithm for predicting the response of the maize 
root to the synthetic strigolactone rac-GR24.

As the number of homologous genes with measured pro-
tein levels was low, most of the metabolic pathways between 
the WT and rac-GR24-stimulated maize root showed similar 
flux ranges, found using FVA. However, the maize root model 
was able to predict the reduced reaction flux through the 
flavonoid biosynthesis and the phenylpropanoid pathways, 
similar to what was inferred in the original study (Walton 
et al., 2016). Walton et al. reported a reduction of concentra-
tion of flavanone, p-coumaroyl hexose, quercetin glucoside, 
naringenin, and kaempferol glucoside for the max2-1 mutant. 
Through flux-sum variability analysis, a representative of the 
steady-state metabolite pool size, the maize root model also 
predicted shrinkage of metabolite pool sizes of these particular 
metabolites. In addition, through FBA, the model predicted 
reduced flux in the metabolism of some amino acids such as 
valine–leucine–isoleucine metabolism, alanine–aspartate–glu-
tamate metabolism, arginine metabolism, phenylalanine–
tyrosine–tryptophan metabolism, and cysteine–methionine 
metabolism of maize root. 2,4-Dihydroxy-7-methoxy-1,4-
benzoxazin-3-one-glucoside (DIMBOA-glucoside) produc-
tion in the benzoxazinoid pathway also showed decreased flux. 
DIMBOA is a tryptophan-derived heteroaromatic metabolites 
with benzoic acid moieties that are produced in large quan-
tities by maize roots (Cotton et al., 2019). Previous studies have 
shown that benzoxazinoids and their breakdown products are 
biocidal to some soil-borne pathogenic bacteria and fungi 
(Cotton et al., 2019). Hence, the lack of strigolactones in maize 
roots may result in weaker defense against some soil-borne 
pathogens. In addition, galactose metabolism, glutathione 
metabolism, and purine metabolism showed reduced flux. 
Interestingly, steroid metabolism in the rac-GR24-simulated 
maize root showed increased flux which can usually be linked 
to plant growth, reproduction, and responses to various abiotic 
and biotic stresses (Vriet et al., 2012). The validation study is 
summarized in Fig. 3 .

Improved model predictions through incorporation of 
omics data

In order to accurately model N deficiency, transcriptomics and 
metabolomics datasets were generated from the maize plants 
grown in a hydroponic system under N− and N+ conditions. 
These transcriptomics data were incorporated into the root 
model, using the E-Flux algorithm, to study metabolic repro-
gramming of the maize root under N− condition Before the 
integration of transcriptomics data, the FBA predicted a 21% 
reduction of biomass in N− compared with N+ conditions, 
whereas upon the integration of transcriptomics data the trend 

reversed (with a 285% increase in N− condition). For maize, 
it was reported that low N content in the growth medium 
increased primary root growth at the vegetative state (Mager 
and Ludewig, 2018). In N− condition, roots tend to go deeper 
into the medium to scavenge more N (Cai et al., 2012). The 
increased growth of the root in N− condition comes at the ex-
pense of decreased shoot growth (Mardanov et al., 1998; Puig 
et al., 2012). Similar root growth behavior in N− condition was 
observed in other plants including A.  thaliana (Oldroyd and 
Leyser, 2020) and O. sativa L. ssp. japonica (Cai et al., 2012).

To gather further inferences on the increased root bio-
mass production in N− condition, flux-sum variability ana-
lysis for all the biomass metabolites was performed. Except 
for lipids of glycerolipid metabolism, all other metabolites 
showed an increased but non-overlapping metabolic pool 
size under N− condition (Fig. 4). To further investigate the 
flux-sum variability of those lipid metabolites under N− con-
dition, biomass production in the model was fixed between 
its minimum and maximum values. With the reducing bio-
mass growth, the flux-sum ranges of different lipid metabol-
ites in N− condition approached the corresponding flux-sum 
ranges in N+ conditions, When the biomass production under 
N− was fixed to the biomass production in N+, most of the 
lipids showed similar flux-sum variability ranges to those in N+ 
except for 160PC (16:0 phosphatidylcholine), 160PG (16:0 
phosphatidylglycerol), 181PC (18:1 phosphatidylcholine), 
181PG (18:1 phosphatidylglycerol), 182PC (18:2 phosphat-
idylcholine), 182PG (18:2 phosphatidylglycerol), 183PC (18:3 
phosphatidylcholine), and 183PG (18:3 phosphatidylglycerol). 
To investigate these eight metabolites further, flux-sum vari-
ability was conducted for N− with zero biomass requirement, 
which revealed zero flux-sum for all the phosphatidyl me-
tabolites except for those eight metabolites. These eight types 
of lipids were unlikely to be coupled with either an increase 
or a decrease in biomass production under N− and N+ con-
ditions. Among those lipids, four of them (160PG, 181PG, 
182PG, and 183PG) do not contain any nitrogen, while the 
rest contain nitrogen. A close observation of the glycerolipid 
metabolism pathway revealed that S-adenosyl-l-methionine 
from cysteine–methionine metabolism and citicoline from 
glycerophospholipid metabolism are the precursors of these 
four metabolites. S-Adenosyl-l-methionine is directly pro-
duced from l-methionine, and the flux-sum variability com-
parison with the metabolomics data revealed an increased fold 
change of l-methionine in the N− condition. Citicoline is 
produced from the choline phosphate in glycerophospholipid 
metabolism and exhibited a widened reaction flux under N−. 
Hence, increased fold change of l-methionine and widened 
reaction flux for citicoline production played an important 
role in elevated flux-sum ranges of 160PC, 181PC, 182PC, and 
183PC in N− condition.

After investigating biomass production in both conditions, 
the increasing or decreasing trend of metabolite content in 
N− with respect to that measured in N+ was qualitatively 
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compared with the changes in the flux-sum ranges, a repre-
sentative of steady-state metabolite pool size, as determined 
by the model. To this end, a flux-sum variability analysis was 
performed, and the flux-sum ranges that did not overlap be-
tween these conditions were analyzed. A  correct prediction 
is one where the fold change occurs in the same direction 

computationally as well as in the experimental data, whereas 
an incorrect prediction is the one where the fold change oc-
curs in opposite directions. An increase/decrease in the flux-
sum of a metabolite between the N− and the N+ conditions 
was compared with the changes in metabolite concentration. 
After integration of transcriptomics data, the model was able to 

Fig. 3.  Summary of validation of the maize root GSM on the effect of strigolactone on maize root. The gene expression from the MAX2 mutant of 
Arabidopsis root was projected to maize root through a homologous BLASTp search to simulate the effect of the strigolactone analog rac-GR24. Then 
gene expression data were integrated with the maize root model. In silico predictions from that model are shown in the right panel of the figure. Later, 
flux-sum analysis (FSA) was used to calculate the metabolic pool size for specific metabolites under both examined and base conditions. Those flux-
sums were used to calculate the in silico fold change and those in silico fold changes were compared with the experimental metabolomics fold change 
data. The result is presented in the left table. Detail information regarding each step of validation can be found in Supplementary Table S3.
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predict increased fold changes of metabolites between the N− 
and N+ conditions. Metabolomics information was available 
for 73 metabolites, distributed over different compartments; 
out of those 73 metabolites, the model was able to predict fold 
change for 30 metabolites (41.1%). All these 30 metabolites ex-
hibited an increased fold change. The rest of the 43 metabolites 
had overlapping flux-sum variability and the model could not 
predict their in silico fold changes. Figure 5 demonstrates the 
importance of incorporating transcriptomic data as additional 

parameters in the model. In N− condition, the accuracy (the 
ratio of correct prediction after omics data integration and be-
fore omics data integration) increased by >10-fold when the 
flux constraints based on transcriptomics data were incorpor-
ated to the model.

Among the metabolites for which fold change was predicted, 
five metabolites (l-lysine, glycerol-3-phosphate, glycerol, 
l-asparagine, and linoleic acid), were common both before and 
after the integration of transcriptomics data. Of these metabol-
ites, increased fold change of l-lysine was correctly predicted 
by the model only after integration of transcriptomics data. For 
l-asparagine, the model prediction of increased fold change 
was correct after the integration of transcriptomics data. For 
the three other metabolites, the prediction remained incor-
rect both before and after the integration of transcriptomics 
data. l-Asparagine is widely known as a major nitrogen car-
rier in plants in a number of key biological processes such as 
germination, vegetative growth, senescence, and seed filling. 
Initially in the model, both the root biomass and the pool size 
of l-asparagine were higher in N+ compared with N− condi-
tion. Furthermore, after incorporation of transcriptomics data, 

Fig. 5.  Effect of omics-based data integration on the flux-sum prediction 
compared with the experimental trend in metabolite concentration. The 
accuracy in predicting the increasing (up arrow) or decreasing (down 
arrow) trend in metabolite change between N+ and N− is displayed. The 
top left corner of the figure represents the correct/incorrect prediction 
with increased fold change after the integration of omics data. The 
bottom left corner of the figure represents the correct/incorrect prediction 
with decreased fold change after the integration of omics data. The top 
right corner of the figure represents the correct/incorrect prediction with 
increased fold change before the integration of omics data. The bottom 
right corner of the figure represents the correct/incorrect prediction 
with decreased fold change after the integration of omics data. Before 
integration of omics data, there were two correct predictions, nine 
incorrect predictions, and 62 metabolites had an overlap of the flux-sum 
range. After integration of omics data, there were 21 correct predictions, 
nine incorrect predictions, and 43 metabolites had an overlap of the flux-
sum range.

Fig. 4.  A quantitative depiction of the flux-sum variability of different 
biomass components under N− and N+ conditions assuming maximization 
of biomass production. Supplementary Table S2 contains the full list of 
biomass precursors including references. Flux-sum variability of amino 
acids, fatty acids, lignin, carbohydrates, sugar, and nucleotides shrunk to a 
point, while only for lipids did the flux-sum variability show an overlapping 
range. For amino acids, fatty acids, lignin, carbohydrates, sugars, and 
nucleotides, each dot represents an average flux-sum value with an SD. 
*Detailed analysis of lipid metabolism and quantitative flux-sum variability 
for all the biomass components are presented in Supplementary Table S4. 
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both parameters were predicted to be higher in N− condition. 
Hence, the model predicted that the pool size of l-asparagine 
is one of the key indicators for predicting root biomass pro-
duction in N−. Such an accumulation of l-asparagine was also 
observed under other abiotic stress conditions in wheat (Naidu 
et al., 1991; Oddy et al., 2020), Coleus (Gilbert et al., 1998), and 
barley (Yamaya and Matsumoto, 1989).

Before integration of transcriptomics data, the decreased fold 
change of glycine in N− was correctly predicted. Following 
the integration of transcriptomics data, the flux-sum range of 
glycine in N+ and N− condition overlapped with each other. 
In this study, we found that glycine translocation in the root 
through vascular tissues played an important role in this overlap. 
If we refer to the work of Yesbergenova-Cuny et  al. (2016), 
it has been found that glycine and arginine each represented 
3% of the total phloem sap amino acid content. Thus, under 
N−, once the flux of glycine through vascular tissue was set to 
85% of that of arginine, we observed that the metabolite pool 
size of glycine no longer overlapped between the N+ and the 
N− condition, leading to a correct decreased fold change pre-
diction from the model after transcriptomics data integration. 
Glycine is thus an example for which transcriptomics data in-
tegration in the model can lead to erroneous flux prediction.

By incorporating transcriptomics data, the fold change in 
the content of several key components of the tricarboxylic acid 
(TCA) cycle such as 2-oxoglutarate, succinate, fumarate, and 
malate were correctly predicted. 2-Oxoglutarate is a key inter-
mediate of the TCA cycle as it is the main provider of the C 
skeleton to the ammonium assimilatory pathways leading to 
the synthesis of glutamine and glutamate (Huergo and Dixon, 
2015). Other metabolites of the TCA cycle, such as succinate, 
play an important role during the process of symbiotic atmos-
pheric N2 fixation (Flores‐Tinoco et  al., 2020), whereas fu-
marate works as a C sink for both phenylalanine and tyrosine 
in higher plants (Hockin et al., 2012). In root nodules, malate 
is the primary substrate for bacteroid respiration, providing en-
ergy to sustain the activity of the nitrogenase enzyme and thus 
the rate of N2 fixation. Furthermore, the fold changes of several 
key amino acids such as lysine, arginine, methionine, cysteine, 
leucine, histidine, and valine that are essential for plant growth 
and development were correctly predicted by the model (Fig. 
6). In addition, the model predicted an increase in the choles-
terol and l-pipecolate contents, both being key components of 
root biomass production, notably under N− condition. Overall, 
following integration of transcriptomics data, true prediction 
of metabolite fold change increased from 18% to 70%. In add-
ition, the false prediction rate of metabolite fold change de-
creased from 82% to 30%.

Besides these correct predictions, fold changes for O-acetyl-
l-serine and urea, both having decreased experimental fold 
change, were predicted incorrectly by the model even after 
the integration of transcriptomics data. For these two metab-
olites, flux-sum range overlapped between the N− and N+ 
conditions, leading to the impossibility to predict changes in 

their content before transcriptomic data integration. Even after 
transcriptomic data integration, we were not able to correctly 
predict changes in their abundance. Although we found that 
O-acetyl-l-serine was predominantly transported from leaves 
to the roots and that a minimum flux of O-acetyl-l-serine 
was necessary to sustain maximum biomass production in N− 
condition, the model prediction remained incorrect. A similar 
situation occurred for urea, where at maximum biomass pro-
duction, when the reaction flux of arginine to urea production 
was reduced by 50%, the model prediction was still incorrect. 
Missing pathways or reactions, lack of regulatory constraints, 
and inadequate flow regulations through the vascular tissue 
under N− condition could explain why these predictions were 
incorrect.

Flux range variations under nitrogen stress condition 
in a hydroponic system reveal important metabolic 
reprogramming

Upon confirming that the model can capture the aggregate 
metabolic variations, we investigated the metabolic reprogram-
ming under N− using FVA. To this end, assuming that root 
biomass is maximized, the flux range of a specific reaction in 
N− was compared with the flux range in N+ in order to study 
the metabolic reprogramming under N−.

The flux range of reactions in different metabolic path-
ways is shown in Fig. 7. Central C metabolism (CCM) plays 
an important role in the metabolic network and is composed 
of the flow of C from nutrients in the different cell types 
via the vascular tissues to build the important components 
of root biomass production. The main pathways of the CCM 
are glycolysis/gluconeogenesis, the pentose phosphate (PP) 
pathway, and the TCA cycle. Figure 6 shows how different 
metabolites from these pathways work as precursors for several 
biomass components. In glycolysis, the linear pathway from 
glyceraldehyde-3 phosphate to acetyl-CoA showed an ele-
vated reaction flux except for the shrinkage in the reaction 
flux for the interconversion between glyceraldehyde-3 phos-
phate and glycerone phosphate. In the PP pathway, break-
down of ribose-5 phosphate to ribose, glycerate-3 phosphate 
production from glyceraldehyde-3 phosphate, and production 
of gluconate-6 phosphate from glucose-6 phosphate exhib-
ited widened reaction flux. In the TCA cycle, most of the 
reactions showed a widened reaction flux which was con-
sistent with the experimental metabolomics data and metab-
olite pool size calculations shown in Fig. 6. In order to have 
a perspective on the energy metabolism, flux-sum variability 
analysis of ATP was performed showing that its increase in 
N– condition was well correlated with these increased fluxes 
through the TCA cycle. Since CCM metabolites work as pre-
cursors to produce molecules that play a seminal regulatory 
role under abiotic stress conditions, in the following sections 
we will discuss metabolic reprogramming of different path-
ways under N− condition.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/73/1/275/6374527 by U

niversity of N
ebraska-Lincoln Libraries user on 24 M

ay 2022



286  |  Chowdhury et al.

Plant sphingolipid metabolites have important roles as 
signaling molecules during both biotic and abiotic stresses 
(Ali et al., 2018). Sphingolipid metabolism starts by combining 

l-serine and palmitoyl-CoA to produce 3-dehydro-d-
sphinganine. Under N− condition, the flux going through the 
reaction catalyzed by the sphingosine kinase enzyme, which 

Fig. 6.  Prediction from the model for the production of carbon skeletons and the subsequent synthesis of key amino acids in central carbon metabolism. 
On each panel, the first column with a letter indicates different amino acids or metabolites from the TCA cycle. M indicates the prediction from the model 
and E indicates the result from the experimental study. Upward arrows indicate an increased metabolic pool size of a metabolite in the N− compared with 
the N+ condition. Downward arrows indicate decreased metabolic pool size of a metabolite in N− compared with N+. The standard abbreviations for the 
different carbon and nitrogen metabolites were used. The flux-sum level in each condition can be found in Supplementary Table S5.
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produces sphingosine 1-phosphate, increased. Sphingosine 
1-phosphate plays a critical role as a signaling molecule during 
different stress conditions, by regulating cell growth, and sup-
pressing programmed cell death (Spiegel and Milstien, 2003). 
In contrast, the interconversion between lactosylceramide and 

glucosylceramide exhibited a reduced flux in N− condition. 
Similar to sphingolipid metabolism, the reaction flux producing 
the final product of benzoxazinoid biosynthesis, DIMBOA, in-
creased in N− condition. DIMBOA acts as a signaling mol-
ecule to attract the plant growth-promoting rhizobacteria 

Fig. 7.  Each pie chart represents metabolic reprogramming of a specific metabolic pathway with a N+ base condition and N− examined condition. 
Each component of the pie chart represents one of the five categories mentioned in the key. Each key shows how flux range of reactions change in the 
examined condition (N−) compared with the base condition (N+). The associated percentage in the pie chart represents the percentage of overall reactions 
of a specific pathway falling into each of the categories. Supplementary Fig. S1 shows a representation of the number of reactions in each category for a 
specific metabolic pathway.
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Pseudomonas putida KT2440 (Niemeyer, 2009; Neal et al., 2012; 
Costa-Gutierrez et al., 2020). Such a signaling role could also 
be important during root growth in N− condition.

In fatty acid metabolism, the concentration of triacylglycerol 
and free fatty acids increased in Arabidopsis under N− (Gaude 
et  al., 2007). Fatty acid accumulation was also observed in 
other photosynthetic organisms such as Chlamydomonas 
reinhardtii (James et al., 2011; Wase et al., 2014), Prochlorococcus 
marinus (Tolonen et al., 2006), and Auxenochlorella protothecoides 
(Andeden et al., 2021) under N− condition. We also observed 
an accumulation of fatty acid in maize roots under N–. The 
flux of reactions producing octadecanoic acid, hexadecanoyl-
CoA, dodecanoic acid, octanoic acid, and hexadecenoic acid 
significantly increased under N−. A  similar pattern of accu-
mulation was observed for different unsaturated fatty acids 
(e.g. icosenoic acid, icosadienoic acid, behenic acid, nervonic 
acid, arachidic acid, and lignoceric acid). To facilitate growth 
at the vegetative stage of plant development, plants main-
tain a certain stoichiometry in C, N, and phosphorus content 
(Ye et al., 2014). This stoichiometry represents an optimal in-
corporation of macronutrients in order to produce biomass. 
However, if there is a shortage of N, C cannot be incorporated 
into N-containing molecules to sustain root growth and is thus 
stored as fatty acid when the C:N cellular ratio is higher (Wase 
et al., 2014). Hence, accumulation of fatty acids in maize roots 
appears to be an important metabolic signature representative 
of N deficiency.

Several amino acids act as precursors for the synthesis of im-
portant plant secondary metabolites and signaling molecules 
which play important physiological roles in a number of abi-
otic stresses. These signaling molecules, such as polyamines, are 
derived from arginine (Alcázar et al., 2006). Proline is another 
type of molecule that accumulates, acting as an osmoprotectant 
or a compatible solute, during abiotic stresses (Per et al., 2017). 
The family of amino acids derived from aspartate are also in-
volved in energy production under abiotic stress conditions 
(Kirma et al., 2012). In plants, where hormone levels are modi-
fied under various abiotic stresses, cysteine acts as one of the 
essential precursors (Amir, 2010). Similarly, other amino acids 
such as lysine play an important role as a precursor for the syn-
thesis of a number of metabolites involved in immune signaling 
when there is an abiotic stress (Chen et al., 2018; Hartmann 
et  al., 2018), and glycine, serine, and threonine are involved 
in phospholipid synthesis (Wattenberg, 2021). A broad spec-
trum of secondary metabolites with multiple biological func-
tions are further derived from the aromatic amino acids, such as 
phenylalanine, tyrosine, and tryptophan, or from intermediates 
of their synthesis pathways (Tzin and Galili, 2010). Plants have 
evolved different strategies to minimize the adverse effects of 
abiotic stress conditions, and several of them are connected 
to amino acid metabolism (Hildebrandt, 2018). A general ac-
cumulation of amino acids was observed in different plants 
exposed to abiotic stresses (Lugan et  al., 2010; Aleksza et  al., 
2017; Huang and Jander, 2017; Ferreira Júnior et  al., 2018; 

Batista-Silva et  al., 2019). In this study, an accumulation of 
amino acids was also observed under N− condition. Overall, 
under N−, the flux of all reactions involved in arginine–proline, 
alanine–aspartate–glutamate, cysteine–methionine, valine–leu-
cine–isoleucine, and histidine biosynthesis showed elevated re-
action flux. In the β-alanine pathway, under N–, most of the 
reactions showed elevated reaction flux, except for the deg-
radation of 3-oxopropanoate to acetyl-CoA, which exhibited 
reduced reaction flux. As acetyl-CoA is the precursor of fatty 
acid biosynthesis, to meet the increasing fatty acid demand, an 
increased dissociation of malonyl-CoA to acetyl-CoA during 
β-alanine biosynthesis was observed. In the glycine–serine–
threonine biosynthesis pathway, similar to β-alanine, most of 
the reactions showed elevated fluxes under N−. Interestingly, 
under N− condition, interconversion between glycine and 
threonine was in favor of threonine production. The experi-
mental metabolomics data also showed that there was an in-
crease in threonine compared with that observed for glycine 
(Fig. 6). Similarly, in the phenylalanine–tyrosine–tryptophan 
biosynthesis pathway, most of the reactions showed elevated 
flux, except for the reactions in the linear pathway, producing 
chorismite from shikimic acid.

In plants, increased starch accumulation in the leaves is an-
other metabolic reprogramming observed under N−, such as in 
duckweed (Yu et al., 2017), Arabidopsis (Krapp et al., 2011), and 
maize (Amiour et  al., 2012). In this study, a similar pattern of 
starch accumulation in the roots was observed. Reaction flux 
from amylose to starch showed elevated flux. Similarly, the dis-
sociation of starch to α-d-glucose-1 phosphate showed reduced 
flux under N− condition. Starch functions as one of the largest 
sources of C sink in a plant. During vegetative growth, the roots 
and immature leaves are the largest C sinks. Then, following 
the transition to reproductive growth, floral, reproductive, and 
storage organs become the largest sinks for C. However, if nutri-
ents become limited at any stage of the life cycle, more C is al-
located to the roots in order to increase soil mineral acquisition, 
resulting in a shift in the relative sink balance and C partitioning 
within the plant (Eghball and Maranville, 1993). In N− condi-
tion, a similar pattern of partitioning was observed for other C 
sinks such as lignins, where the linear pathway from p-coumaric 
acid to p-hydroxy-phenyl lignin showed an increased flux. 
Overall, this metabolic reprogramming under N− provided im-
portant insights relating to the phenotypic changes of the roots 
in relation to the underlying metabolism.

In this work, a GSM for maize root was reconstructed 
which, upon incorporation of omics data, revealed important 
metabolic reprogramming under N− condition. The recon-
struction of the maize root GSM predicted the increased root 
biomass production under N−. Beside predicting important 
metabolic reprogramming in CCM, fatty acid metabolism, 
amino acid metabolism, and several other secondary metab-
olisms, maize root GSM also revealed that several metabol-
ites, such as l-methionine, l-asparagine, l-lysine, cholesterol, 
and l-pipecolate, were important compounds involved in 
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root biomass production. Furthermore, this study revealed 
that eight PC and PF metabolites, not directly coupled with 
biomass production, played an important role in root growth 
under N− condition.

Future research will be focused on the reconstruction of 
tissue-specific models for kernel, stalk, and tassel. Then, this 
root GSM will be combined with those tissue-specific models 
and the previously reconstructed maize leaf model (Simons 
et al., 2014) to develop a whole-plant maize GSM. A whole-
plant GSM will be useful to elucidate the flow of different 
micro- and macronutrients from the root to the shoots and 
to the reproductive organs in a maize plant. Furthermore, a 
whole-plant maize GSM will allow the study of metabolic 
reprogramming under various other stress conditions such as 
phosphate deficiency, salinity, drought and thermal stresses, 
heavy metal accumulation, elevated levels of CO2, and in the 
presence of beneficial soil microorganisms. Such studies will 
allow the identification of key metabolic pathways and markers 
representative of these stresses, which can potentially be used 
to select maize genotypes adaptive to diverse favorable or un-
favorable environmental conditions.
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