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Metabolic and expression model of R. palustris

ABSTRACT

Rhodopseudomonas palustris CGA009 (R. palustris) is a gram negative purple non-sulfur
bacteria that grows phototrophically or chemotrophically by fixing or catabolizing a wide array
of substrates including lignin breakdown products (e.g., p-coumarate) for its carbon and nitrogen
requirements. It can grow aerobically or anaerobically and can use light, inorganic, and organic
compounds for energy production. Due to its ability to convert different carbon sources into
useful products in anaerobic mode, this study, for the first time, reconstructed a metabolic and
expression (ME-) model of R. palustris to investigate its anaerobic-photoheterotrophic growth.
Unlike metabolic (M-) models, ME-models include transcription and translation reactions along
with macromolecules synthesis and couple these reactions with growth rate. This unique feature
of the ME-model led to nonlinear growth curve predictions which matched closely with
experimental growth rate data. At the theoretical maximum growth rate, the ME-model
suggested a diminishing rate of carbon fixation and predicted malate dehydrogenase and
glycerol-3 phosphate dehydrogenase as alternate electron sinks. Moreover, the ME-model also
identified ferredoxin as a key regulator in distributing electrons between major redox balancing
pathways. Since ME-models include turnover rate for each metabolic reaction, it was used to
successfully capture experimentally observed temperature regulation of
different nitrogenases. Overall, these unique features of the ME-model demonstrated the
influence of nitrogenases and rubiscos on R. palustris growth and predicted a key regulator in
distributing electrons between major redox balancing pathways, thus establishing a platform

for in silico investigation of R. palustris metabolism from a multi-omics perspective.
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Metabolic and expression model of R. palustris

IMPORTANCE

In this work, we reconstructed the first ME-model for a purple non-sulfur bacterium (PNSB).
Using the ME-model, different aspects of R. palustris metabolism were examined. First, the ME-
model was used to analyze how reducing power entering the R. palustris cell through organic
carbon sources gets partitioned into biomass, carbon dioxide fixation, and nitrogen fixation.
Furthermore, the ME-model predicted electron flux through ferredoxin as a major bottleneck in
distributing electrons to nitrogenase enzymes. Next, the ME-model characterized different
nitrogenase enzymes and successfully recapitulated experimentally observed temperature
regulations of those enzymes. Identifying the bottleneck responsible for transferring electron to
nitrogenase enzymes and recapitulating the temperature regulation of different nitrogenase
enzymes can have profound implications in metabolic engineering, such as hydrogen production
from R. palustris. Another interesting application of this ME-model can be to take advantage of
its redox balancing strategy to gain understanding on regulatory mechanism of biodegradable

plastic production precursors, such as polyhydroxybutyrate (PHB).

KEYWORDS

R. palustris, ME-model, nitrogenase, rubisco, ferredoxin, electron distribution.

INTRODUCTION

R. palustris is an alphaproteobacterium which can grow in diverse metabolic modes such as
phototrophic or chemotrophic growth. Besides, it can grow under aerobic or anaerobic conditions
by using light and organic (e.g., lignin breakdown products) or inorganic compounds as a source
of ATP generation (1,2). Using these metabolic versatilities, R. palustris has emerged as a

potential biotechnological platform for bioremediation (3-5), bioplastics production (6,7),
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bioelectricity generation (8,9), wastewater treatment (10—12), and hydrogen production (13-17).
Furthermore, R. palustris is the only known bacteria to encode all three known nitrogenase
enzymes (2) besides Azotobacter vinelandii (A. vinelandii) (18). R. palustris also encodes both
form I and form II of rubisco. These unique features make R. palustris an ideal microorganism to
be considered as a biotechnological chassis for further metabolic engineering (7). Because of
these unique features, R. palustris has a highly connected metabolic network which requires a

systems-level investigation for better understanding.

One widely accepted systems level investigation tool is the stoichiometric constrain-based M-
model (19). Initial efforts of reconstructing M-models of purple non-sulfur bacteria (PNSB) were
limited to the specific metabolic pathways of interest, such as central carbon metabolism (20),
and electron transport chain (21). However, those pathway specific M-models did not have wider
resolution to capture overall metabolic landscape of PNSBs. To overcome that, comprehensive
M-models were reconstructed for PNSB strains including Rhodobacter sphaeroides (22) and R.
palustris (23). Recently we further refined the R. palustris M-model by integrating the annotated
metabolic pathways for lignin monomer degradation and validated it by using the experimental
data on gene essentiality and metabolic flux analysis for growth under different carbon sources
(24). Although, these M-models were useful to study different metabolic features of PNSB, the
inherent lacking of quantitative characterization of macromolecular machinery synthesis (MMS)
could be problematic and may lead to incorrect predictions of biological scenarios, such as
inaccurate reaction flux and multiple equivalent cellular phenotypic states (25,26). These
inaccuracies can lead to an erroneous understanding of overall metabolic and regulatory features
of an organism and can negatively impact the design-build-test-learn cycle for metabolic

engineering application.
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87  One of the ways to overcome this is the metabolic-expression (ME) modeling approach. ME-
88 model is a resource allocation based model that includes not only the stoichiometric metabolic
89 reactions, but also quantitative MMS information (27). As input, ME-models require the
90 conditions of a steady-state environment and can then output predictions for maximum growth
91 rate, substrate uptake, byproduct secretion, metabolic fluxes, gene expression levels, and protein
92  expression (27). ME-model utilizes a growth optimization function along with coupling
93  constraints that tie flux to transcriptional and translational reactions in the model. These
94  constraints are functions of the growth rate. By including these constraints, ME-models set
95 limitations on fluxes based on transcription as well as translation reactions. Thus far, ME-models
96 were developed only for a few organisms. These models were used to accurately predict cellular
97  composition and gene expression of Thermotoga maritima (T. maritima) (28), fermentation
98  profile of Clostridium ljungdahlii (C. ljungdahlii) (29), overflow metabolism of Saccharomyces
99  cerevisiae (S. cerevisiae) (30), and multi-scale phenotype, enzyme abundance, and acid stress of
100  Escherichia coli (E. coli) (31-33). An ME-model for R. palustris can also be very useful in
101  answering fundamental biological questions, such as growth profiling, isozyme expression
102  prediction, regulation on electron distribution between competing metabolic modules, and

103  temperature regulation of different enzymes.

104  In this work, the first ever ME-model was reconstructed for R. palustris. The ME-model was
105  able to satisfactorily recapitulate the experimental transcriptomics and proteomics observation
106  from literature (34). Then acetate, succinate, butyrate, and p-coumarate were used as carbon
107  sources to characterize the growth profile of R. palustris which closely matched with
108  experimental growth rate data. In addition, it predicted a diminishing rate of carbon fixation at

109  the theoretical maximum growth rate and consequently predicted malate dehydrogenase and
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110  glycerol-3 phosphate dehydrogenase as alternate electron sinks. Furthermore, the ME-model
111 identified ferredoxin as a key regulator in distributing electrons between major redox balancing
112 pathways, such as carbon and nitrogen fixation. Later, the modeling framework was able to
113 capture experimentally observed temperature regulation of different nitrogenase enzymes, by
114  varying turnover rate of nitrogen fixation reactions. Overall, this modeling approach
115  demonstrated a bottom-up systems-biology approach that can be used to predict and analyze
116  cellular physiology of R. palustris, thereby providing an opportunity to generate experimentally

117  testable hypotheses.

118 RESULTS AND DISCUSSIONS

119  Metabolic and expression model development

120  To reconstruct the ME-model, our previously reconstructed M-model of R. palustris, iRpa940
121 (24), was used as a template for the metabolic transformations. To reconstruct the ME-model,
122 gene-protein-reaction (GPR) relationships for all the reactions, specially nitrogen fixation
123 (catalyzed by Mo-, V-, and Fe-Nase) and carbon fixation (catalyzed by rubisco form I and form
124 1II) reactions, were manually curated from the complete genome sequence of R. palustris (2).
125  Transcription and translation reactions were added for reactions for which GPR relationships are
126 available. Reactions for which GPR associations are not available, it was assumed that an
127  average bacterial enzyme with 31.09 kDa molecular weight (35) catalyzed each individual
128  reaction. Overall, the ME-model contains 1398 reactions, 1483 metabolites, and 751 genes. FIG

129 1 demonstrates the workflow of the ME-model reconstruction.

130  In R. palustris, form I rubisco (LgSg) is comprised of eight large subunits (Lg) and eight small

131  subunits (Sg) (36) and encoded by two genes, rpal559 and rpal560 (2). On the other hand, form
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132 IIrubisco (L,) is comprised of two large subunits both encoded by rpa4641 (2). Between the two
133 forms of rubisco, form I has a higher molecular weight compared to form II (37,38) and therefore
134  requires more carbon investment to synthesize. As rubisco is one of the most abundant enzymes
135  in nature (39), the kinetics of this enzyme have been determined for multiple organisms (36,40).
136  For different rubisco enzymes, it was shown that although form I has higher molecular weight
137  and more carbon investment cost, form II has higher catalytic turnover rate (k) per active site
138  compared to form I (36). Evolutionary selection has played a major role in this counterintuitive
139  observation (41,42). Early in the earth’s history, the concentration of carbon dioxide was higher
140  in the atmosphere and as a result form II rubisco evolved with a lower selectivity and higher
141 k., for carbon dioxide (36). With increasing amounts of oxygen in earth’s atmosphere, form I
142 evolved with a much higher selectivity for carbon dioxide but with a lower k_,; (36). Since k_;
143  values for R. palustris are not available, to account for these evolutionary selections, the k.,
144  values were set to 3.7 s lactive site™! (form I) and 6.6 s~lactive site™! (form II) based on
145  the measurements from other phylogenetically close (43) PNSB strains (Rhodobacter capsulatus

146  (40) and Rhodospirillum rubrum (36), respectively).

147  For the three nitrogenase isozymes, each enzyme is encoded by a series of genes (2) (Mo-Nase
148 by rpa4602 - rpa4633, V-Nase by rpal370 - rpal380, and Fe-Nase by rpal435 - rpal439).
149  Unlike rubisco, k.4; values of different nitrogenase are not available for R. palustris or any other
150  PNSBs. Therefore, the calculated surface accessible surface area (SASA) of each nitrogenase
151  enzyme was used to normalize the mean k., value from E. coli, as discussed in literature (31)
152  (see materials and methods section). These normalized k.,; values were used to define three

153  independent nitrogen fixation reactions.
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FIG 1. Workflow followed to reconstruct the ME-model from a previously published M-model of R.

palustris. Transcription and translation reactions were added on top of the metabolic reactions to come up with ME-
modeling framework. The ME-modeling framework was used to characterize growth rate profiling, competing
metabolic modules, and nitrogenase enzyme activity. From these characterizations, inferences regarding alternate

redox balancing, ferredoxin regulation, and temperature regulation of nitrogenase enzymes were gathered.

Both of the above mentioned enzymes, nitrogenase and rubisco, play a pertinent role in

maintaining the cellular redox balance during the photoheterotrophic growth of R. palustris by
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162  regenerating oxidized cofactors (44). When the ME-model was used to simulate the
163  photoheterotrophic growth of R. palustris, among three different nitrogenase enzymes, it
164  predicted the expression of Mo-Nase only, which is consistent with literature (45,46). For the
165  same photoheterotrophic growth conditions, between two different forms of rubisco enzymes,
166  the model predicted only the expression of form II rubisco. Although expression of only rubisco
167  form II was expected based on its lower carbon cost and higher efficiency, literature evidence
168  suggested a co-expression of both forms of rubisco during the photoheterotrophic growth of R.
169  palustris (47). The same work suggested that rubisco form I is responsible for providing cellular
170  carbon and dominates under carbon dioxide limiting conditions, whereas rubisco form II
171 balances the intracellular redox potential under carbon and electron abundant conditions (47). In
172 addition, it was also found that expression of the chb operons (responsible for coding both forms
173 of rubisco) during phototrophic growth is highly dependent on the cellular carbon dioxide level
174  (47). To incorporate these findings, a constraint was added to the ME-model to co-express both
175 forms of rubisco based on the total carbon dioxide produced by R. palustris during

176  photoheterotrophic growth (see materials and methods section).

177  Model Validation using experimental transcriptomics and proteomics data

178  To validate the prediction accuracy of the model, experimental transcriptomics and proteomics
179  data were used to qualitatively verify whether the model can predict the direction of these
180  experimental fold changes in different conditions. A previous study, which characterized the
181  anaerobic growth of R. palustris by comparing the transcriptomic and proteomic profiles of
182  cultures grown in the presence of p-coumarate and succinate as sole carbon source, was used for
183  the validation study (34). The study tested fold change of 4810 genes for p-coumarate catabolism

184  considering succinate catabolism as the baseline condition. The transcriptomic analysis resulted
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185 in 369 differentially expressed genes, among which 61 were metabolic genes. Similarly,
186  proteomic analysis resulted in 341 differentially expressed proteins, among which 67 can act as
187  enzymes. In both transcriptomics and proteomics data sets, non-metabolic genes/proteins have
188  functions such as signaling, chromosomal replication, and circadian rhythm. (see supplemental

189  material Table S1 for more details).

190  To generate both gene and protein expression information for the same two conditions of the
191  above-mentioned study (34), the ME-model was simulated for two points where total rubisco
192  flux was maximal for the p-coumarate and succinate uptake, respectively. It was previously
193  reported (44) that carbon fixation is required to maintain redox balance in R. palustris.
194  Therefore, higher growth rate is associated with higher reduced cofactor production, leading to
195  higher rates of carbon fixation. As a result, the decreasing carbon fixation flux with increasing
196  growth (FIG 2) is a theoretical feature predicted by the ME-model. All the experimentally
197  observed and differentially expressed genes and proteins are available in the model. However,
198  for reactions catalyzed by multiple isozymes, the ME-model only predicted the most efficient
199  isozyme based on the k., and molecular weight. As a result, out of these 61 metabolic genes

200  and 67 metabolic enzymes, 23 genes and 34 enzymes were expressed in the model.

201 As part of the transcriptomics data validation, out of 23 genes, the ME-model was able to predict
202 correct gene expression fold change for 21 genes. The model could not predict the downward
203  fold change of 3-oxoacyl-acyl carrier protein reductase (rpa3304) and the 50S ribosomal protein
204 (rpa0918). rpa3304 is one of the genes to convert malonyl-CoA to biotin (48). Biotin is a part of
205  R. palustris cell membrane and from FIG 2 it can be seen that p-coumarate supports more growth
206  than succinate. Thus, the ME-model predicted an upward fold change of rpa3304 for p-

207  coumarate catabolism compared to succinate catabolism. Composition of biotin in cell

10
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208  membrane may be different in different conditions. However, in the ME-model, only protein and
209  nucleotide compositions change with different conditions, while those of cell wall components
210  remain constant (49). This may have caused the mismatch. For incorrect fold change prediction
211 of 50S ribosomal protein, missing reactions, the lack of regulatory mechanisms, and inaccurate

212 k.4 data may have played a role.

213 For proteomics data validation, out of 34 enzymes, the ME-model was able to correctly predict
214  the fold change for 21 enzymes. The ME-model could not correctly predict the downward fold
215  change of 13 different enzymes (see supplemental material Table S1 for more details). These
216  enzymes are mainly associated with purine and pyrimidine metabolism, fatty acid metabolism,
217  and lipopolysaccharide metabolism. These pathways are closely associated with the R. palustris
218  biomass growth. As p-coumarate supports more growth than succinate, the ME-model allocated
219  more proteins for these pathways to sustain the biomass growth. There may be unannotated
220  alternate metabolic pathways with less enzyme investment for producing purine, pyrimidine,
221  fatty acid, and lipopolysaccharide when p-coumarate is utilized as the carbon source, thus
222 causing these discrepancies. As ME-model maximizes the biomass growth rate, such incorrect

223  prediction can be considered as an inherent weakness of the ME-model.

224 Overall, despite these incorrect fold change predictions, the ME-model was able to satisfactorily
225  recapitulate the aggregate experimental transcriptomics and proteomics observations with 91%
226 and 62% accuracy, respectively (see materials and methods section for accuracy calculation).
227  The details of experimental and model predictions can be found in the supplemental material

228  Table SI1.

229  Growth rate vs. substrate uptake and alternate redox balancing strategies

11
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230  Upon the validation with available gene expression and protein abundance data, the model was
231  used to examine how growth, carbon fixation, and nitrogen fixation rates varied with different
232 substrate uptake rate. The goal of this analysis was to investigate how reducing power entering
233 the cell through organic carbon sources gets partitioned into biomass, carbon dioxide fixation,
234  and nitrogen fixation. To perform the analysis, acetate, succinate, butyrate, and p-coumarate
235  were used as substrates. Previous studies have shown that photoheterotrophic growth of R.
236 palustris on acetate, succinate, and butyrate is associated with increasing cellular redox stress
237  based on the oxidation state of different substrates (50). Hence, these substrates were chosen as
238  they cover a wide range of oxidation states. Here succinate (+0.5) and acetate (0) have higher
239  oxidation states compared to R. palustris’ biomass (-0.13) (45), whereas butyrate (-1) and p-

240  coumarate (-0.22) have lower oxidation states (45).
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243 acetate (b) succinate (c) butyrate and (d) p-coumarate. The growth rate with respect to different substrate uptakes

12
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244 follows a non-linear pattern. Flux through nitrogen fixation reaction also follows the similar pattern to growth rate.
245 Carbon fixation reached a peak in the Janusian region and then diminished in the theoretical maximal growth.

246 In the ME-model, growth rate is a nonlinear function of substrate uptake rate and eventually
247  reaches a theoretical maximum growth rate (FIG 2). This behavior is consistent with known
248  microbial empirical growth models such as Monod growth kinetics (51) and microbial slow
249  growth kinetics (52). Previous work has suggested three distinct growth regions as a function of
250  substrate uptake rate; Strictly Nutrient-Limited (SNL), Janusian, and Strictly Proteome-Limited
251 (SPL) (31). Growth in the SNL region depends heavily on nutrient uptake and adding more
252  nutrient results in more growth. In this region, the relationship between growth rate and substrate
253  uptake is similar to the prediction made from M-models. Contrary to the SNL region, growth in
254  the SPL region (also known as nutrient excess condition) is limited by physiological constraint of
255  protein production and catalysis. Janusian growth is the region where a transition from SNL to
256  SPL takes place. A recent experimental study (45) had characterized the growth of wild-type
257 (WT) R. palustris for acetate, succinate, and butyrate, respectively, under nitrogen-fixing
258  conditions. Table 2 compares between experimentally observed growth rates and those predicted
259 by the model. The growth rate and order predicted by the ME-model for succinate, acetate, and
260  butyrate closely followed the experimental growth rate and order. Compared to other substrates,
261  the ME-model predicted a significantly higher growth rate on p-coumarate. One of our previous
262 works (7), which experimentally examined different strategies for PHB production under non-
263  nitrogen fixing condition, also showed a significantly higher growth on p-coumarate comparing
264  to butyrate and acetate. It was previously reported (7) that, p-coumarate consumption lead to
265 more ATP production compared to acetate, succinate, and butyrate and thus was able to support

266  more growth.

13
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267  Theoretical growth rates predicted by the ME-model were slightly higher compared to the
268  experimental growth rates for all tested substrates (6% for succinate, 5% for butyrate, and 4% for
269  acetate). It was expected as the cell has many more layers of physiological regulations, such as
270  signaling pathways, allosteric regulation, and polymorphism, which were not captured in the
271  ME-modeling framework. Overall, growth rate comparison between the ME-model prediction
272 and experimental study reveals that, like E. coli (31), optimum resource allocation dictates
273 metabolic activities for R. palustris. Supplemental material Table S2 records all the theoretical

274  maximum growth rates for different amount of substrate uptakes.

275  Table 2: Normalized growth rate for different substrate uptakes.

Substrate Experimentally Growth rate from the | Substrate Uptake for
observed growth rate | ME-model (day™1) experimental growth
day™) rate from model

(mmol. gDW~t.day™?

Succinate 0.70 0.74 4.66
Acetate 0.74 0.77 6.47
Butyrate 0.82 0.86 3.69
p-Coumarate - 1.21 2.54

276

277  After characterizing the growth rate with different substrate uptakes, the ME-model was used to
278  characterize nitrogen and carbon fixation rates as a function substrate uptake. For nitrogen
279  fixation, the reaction’s activity followed a similar trajectory as growth vs. substrate uptake (FIG

280  2). Different studies have shown that during WT photoheterotrophic growth, among three

14
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different nitrogenase (Mo-, V-, and Fe-Nase) isozymes encoded in R. palustris’ genome, Mo-
Nase is exclusively expressed (45,46). A. vinelandii which has three different nitrogenases also
exclusively express the Mo-Nase in the WT (53). The ME-model predicted exclusive expression
of Mo-Nase during growth on all four carbon sources. Expression of nitrogenase may be dictated
by its ATP requirements, as Mo-Nase requires the least amount of ATP among three
nitrogenases. In addition, the temperature of the assay plays a role in the expression of different

nitrogenases as discussed later.

Strictly Nutrient Limited Growth Janusian Growth Strictly Proteome Limited Growth

qlxth cits
‘\.:’,,../}I,!b Acetate

FIG 3. Metabolic activities in the (a) strictly nutrient limited growth (SNL), (b) Janusian growth, and (c)

strictly proteome limited growth (SPL). In the theoretical maximum growth, at SPL region, flux through carbon
fixation diminished and reaction flux from ribulose-5 phosphate to ribose-5 phosphate significantly increased. The
increased biomass growth demand can be met by the precursors from the TCA cycle, which showed significant
increase in reaction flux comparing to Janusian growth and SNL. Here gray crosses indicate zero rection flux

through that reaction.

Next, carbon fixation was also characterized with respect to substrate uptake. Unlike nitrogenase,

which closely followed the trajectory of the growth rate, carbon fixation reached a peak flux at
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297  the start of the Janusian region. In the SPL region, when growth is proteome limited, R. palustris
298  optimized protein production to sustain the growing biomass demand. As the cell approaches the
299  theoretical maximal growth, more ribose-5 phosphate is needed to sustain the increasing demand
300 of nucleotides and lipopolysaccharides. To meet that demand at the theoretical maximum
301  growth, the ME-model predicted that R. palustris decreases the expression of
302  phosphoribulokinase (rpa4645) and redirects flux towards ribose-5 phosphate production (FIG

303 3).

304  During photoheterotrophic growth under nitrogen fixing condition, carbon and nitrogen fixation
305 plays a major role in maintaining cellular redox balance. However, in the SPL region, as reaction
306  flux of carbon fixation diminished at the theoretical maximum growth, the ME-model predicted
307 two potential candidates to maintain cellular redox balance: malate dehydrogenase and glycerol-
308 3 phosphate dehydrogenase, in addition to nitrogen fixing reaction. Malate dehydrogenase uses
309 NAD+/NADH as cofactors and is encoded by rpa0l92. Similarly, glycerol-3 phosphate
310 dehydrogenase uses NAD+/NADH as cofactors and is encoded by rpa4410. During the switch
311  from the SNL to the SPL region, at the point where carbon fixation starts to diminish, both
312  malate dehydrogenase and glycerol-3 phosphate dehydrogenase fluxes start to increase (FIG 4).
313 At the theoretical maximum growth, flux through malate dehydrogenase and glycerol-3
314  phosphate dehydrogenase reached its maximum. Malate dehydrogenase also plays a role in
315 maintaining redox balance in several other gram negative bacteria, such as organisms including
316 E. coli (54), and Corynebacterium glutamicum (C. glutamicum) (55). Glycerol-3 phosphate
317  dehydrogenase is one of the key enzymes in the fatty acid biosynthesis. It was suggested that for
318  photoheterotrophically grown R. rubrum, it is possible that other biosynthetic pathways such as

319  fatty acid biosynthesis could offer flexibility contributing to the redox balance (56). In addition,
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320 several other organisms such as S. cerevisiae (57) and Kluyveromyces lactis (K. lactis) (58)

321  showed evidence of using glycerol-3 phosphate dehydrogenase to maintain redox balance.
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323 FIG 4 Alternate electron sink for different substrates (a) acetate (b) succinate (c) butyrate and (d). In the

324  Janusian regions, flux through carbon fixation reaction started to diminish. With the diminishing carbon
325 fixation flux, ME-model predicted two alternate electron, malate dehydrogenase and glycerol-3 phosphate
326 dehydrogenase. Reaction flux through these alternate electron sinks reached its peak when flux through carbon

327 fixation completely diminished at the theoretical maximum growth.

328  Carbon fixation vs. Nitrogen fixation — competing metabolic modules for redox balance

329  During photoheterotrophic growth, R. palustris performs a cyclic photophosphorylation (2,21)
330  which means that electrons from photosystem I (PSI) get transported through ferredoxin and the
331  bc, complex and recycled back to PSI through the oxidation and reduction of quinones (59) (FIG
332 5). As there are no terminal electron acceptors, this can cause an accumulation of reduced
333  cofactors resulting in impeded growth of the bacterium. To resolve this, R. palustris employs

334 various electron acceptors to maintain a cellular redox balance. During photoheterotrophic
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growth, the redox-balancing mechanism consists primarily of the CBB pathway (44) and
nitrogen fixation pathway (60). The nitrogen fixation module becomes active when R. palustris
is placed in a nitrogen-limiting environment. Experimental studies have suggested a link between
carbon and nitrogen fixation that is intimately associated with the control of intracellular redox
balance for different PNSBs, such as R. palustris (44), R. capsulatus (61), R. sphaeroides
(60,62), and R. rubrum (60). However, it is still not properly understood what factors decide the
distribution of electrons in these two competing metabolic modules. Here, the ME-model was
used to further analyze the metabolic factors deciding the distribution of electron flux between

carbon and nitrogen fixation in maintaining cellular redox balance.

e NADH Pool
- Electron l
Chain Nmm Oarbonmmn
m ?L
g5 1] ”%‘
Q \a?—-" S ase Fe-Nase  Forml,
succ FuM v
TeAGe NAD+ Pool
bel
~ Electron Transport

Chain

NAD+ Pool
(b) -

FIG 5 Relation between cyclic photophosphorylation and electron distribution between carbon and nitrogen

fixation. (a) Less electron through ferredoxin indicates less flux through nitrogen fixation and more flux through

carbon fixation pathway. As a result, NADH will be more oxidized through carbon fixation reaction (b) More

18


https://doi.org/10.1101/2022.03.03.482919

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.03.482919; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Metabolic and expression model of R. palustris

348 electron through ferredoxin indicates more flux through nitrogen fixation and less flux through carbon fixation

349 pathway. As a result NADH will be more oxidized through nitrogen fixation reaction.

— —ME LOW —B-HIGH - ME LOW -=-HIGH
& 10- Bosr .
3 Acetate 3 Succinate
=
8 )
g 3 07
E
E o o = =—a £
c 08 -
2 s
& 5ot
c = - T - 0
g E = - - n
£ g
E 1 1 L 1 | E= 1 1 Il I I J
%%0 03 _ 06 09 12 15 € %5 5 15 20 25 30 35
Carbon fixation (mmocl/gDW/day) Carbon fixation {(mmol/gDW/day)
(a) (b)
-=-ME LOW  =m=HIGH -=-ME LOW  -m=HIGH
1.2 20-
Butyrate p-Coumarate

0.8

e

0.6 L 1 1
1.5

Nitrogen fixation {mmol/gDW/day)
Nitrogen fixation (mmol/gDW/day)

2.0 25 30 35 S 034 4 5 3 7 :
Carbon fixation (mmol/gDW/day) Carbon fixation (mmol/gDW/day)

350 {c) (d}

£
(=1

351 FIG 6 Relation between carbon fixation and nitrogen fixation with different fluxes via electron transport

352 through ferredoxin (ETFD) for different substrates (a) acetate (b) succinate (c) butyrate and (d) p-coumarate.

353 Red color lines indicate the relation between carbon fixation and nitrogen fixation when flux through ETFD is set to
354 the solution found from the ME-model. Blue color lines indicate the relation between carbon fixation and nitrogen
355 fixation when ETFD flux is set to a very high value. Yellow color lines indicate the relation between carbon

356 fixation and nitrogen fixation when the ETFD flux values is set between ME and High.

357 To understand the electron distribution, a previous study eliminated rubisco activity in R.
358  palustris and found that the rate of nitrogen fixation did not vary significantly (44). As CBB and
359 nitrogen fixation pathways are two major redox balancing mechanisms, when rubisco was
360 eliminated, nitrogen fixation pathway was likely to carry additional flux load to maintain cellular
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361  redox balance. As this was not the case in the previous experimental study (44), it was suspected
362 that there exists a metabolic bottleneck preventing additional reaction flux through the nitrogen
363  fixation pathway. FIG 5 shows the cyclic photophosphorylation of R. palustris. Here, electrons
364  get transported in a cyclical manner and reduced ferredoxin supplies electrons to nitrogen
365 fixation pathway. Based on the availability of electrons, nitrogen fixation pathway uses reduced
366  cofactors to fix nitrogen. The more electrons supplied by ferredoxin; the more reduced cofactors
367  will be used by nitrogen fixation pathways. Hence, less reduced cofactors will be available for
368  carbon fixation pathway to use. So, electron transport through ferredoxin (ETFD) can be a

369  potential candidate of the previously discussed bottleneck.

370 In order to explore if ETFD is indeed the hypothesized bottleneck, the biomass growth and
371  substrate uptake rate were kept constant and only flux through carbon fixation reaction was
372 varied for increasing flux of electron transport through the ferredoxin reaction (ETFD). At first,
373 flux through ETFD was fixed to the solution found by the ME-model (indicated by the red line in
374  FIG 6). The flux through the nitrogen fixing reaction remained constant with changing flux
375  through carbon fixation reaction. This finding confirmed the presence of the previously
376  hypothesized bottleneck. Increasing flux through ETFD had varying effects on the rate of
377 nitrogen fixation depending on the utilized carbon substrate. When the reaction flux through
378 ETFD was set to values higher than the ME-model solution (indicated by the yellow and blue
379  lines in FIG 6), a very small change in flux through nitrogenase was noticed for growth on
380 acetate. For the other carbon sources, when the reaction flux through ETFD was set to values
381  higher than the ME-model solution (indicated by the yellow and blue lines in FIG 6), a negative
382  correlation was observed between the carbon and nitrogen fixation reaction flux. When the

383  metabolite pool size (See supplemental material Text S1 for metabolite pool size calculation

20
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384  detail) was calculated for different cofactors, acetate produced less reduced cofactors per unit of
385  substrate uptake compared to other substrates. As , in this case, the fixed nitrogen is the sole
386  source of nitrogen, cell prioritize electron transport to nitrogenase rather than rubisco, whose
387  primary function is to maintain the redox balance in the cell. Thus the relation between carbon
388 and nitrogen fixation is less visible for acetate. However, for succinate, butyrate and p-
389  coumarate, more reduced cofactors are produced per unit of substrate uptake. Thus more
390 electrons are available for carbon fixation pathway and the regulation is more visible when
391  ETFD flux is higher for these substrates. These results indicated that reaction flux through ETFD

392  may play a regulatory role in distributing electron flux between carbon and nitrogen fixation.

393  Similar regulation in electron transport between competing metabolic modules, such as
394  respiratory pathways and electron transport, can be observed in model bacteria E. coli (63). A
395  highly organized network of overlapping transcriptional regulatory elements regulates flow of
396 electrons by controlling the expression of different genes in E. coli, including genes involved in
397  substrates uptake, control of mixed-acid fermentation pathways, and controlling cofactor
398  Dbiosynthesis. Further experimentation is required to establish a similar molecular level
399  mechanism for ETFD regulation of electron distribution in competing pathways of R. palustris.
400 The ETFD regulation, hypothesized in this study, can have profound implications in future
401 metabolic engineering efforts of R. palustris. Specially, this regulation can be exploited to

402  increase hydrogen production from R. palustris to achieve energy sustainability goals.

403  Characterization of Mo-, V-, and Fe-Nase nitrogenase enzymes

404  Since ETFD was postulated to play a regulatory role in distributing electron to the nitrogen
405  fixing pathway, the ME-model was next used to characterize how these electrons were used by

406  different nitrogenase enzymes. First, growth was simulated for the WT R. palustris with
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succinate as the substrate. In this case, only Mo-Nase was expressed and the growth vs. substrate
uptake curve (FIG 7 a) followed the pattern identified from the literature (31). Exclusively
expressing the Mo-Nase in the WT was also consistent with previous literature findings (45,46).
Next, the growth vs. substrate uptake graphs (FIG 7 b, c, and d) were developed for three
different mutants of R. palustris, each expressing a single nitrogenase isozyme. When the
theoretical maximum growths for these mutants were compared with WT, it was found that WT
and the Mo-only mutant had the highest growth rate followed by the growth rate of V-only and
Fe-only mutants. When compared with the experimental growth rate data from literature (45) for
WT, Mo-only, V-only, and Fe-only growths followed a similar pattern as predicted by the ME-
model (supplemental material FIG. S1). Theoretically, growth of the WT and -only mutant
strains of R. palustris can be coupled with the ATP requirement, as Mo-nase requires the least

and Fe-nase requires the most amount of ATP for nitrogen fixation.
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420  FIG 7 Growth rate and nitrogen fixation rate for (a) WT R. palustris (b) Mo-only mutant (c) V-only mutant

421 (d) Fe-only mutant for succinate uptake. For each of the case, growth rate and nitrogen fixation closely follow
422 each other. Dotted line in each of the graph indicates the experimentally observed growth.

423  Contrary to the pattern observed for succinate uptake, when other carbon sources were used as
424  substrates, V-Nase exhibited higher growth comparing to Mo-Nase, Fe-Nase, and even WT
425  (supplemental material FIG. S2-S4). Previous studies have observed that the Mo-Nase is more
426  sensitive towards decreasing temperature compared to the other isozymes, such as V-Nase (45).
427  FIG 8a qualitatively summarized this idea. Since the experimental values used in that study were
428  generated at 19 °C, it is possible that Mo-Nase may have less selectivity towards fixing nitrogen
429 rate than other substrates. The effect of decreasing assay temperature on the activity of
430  nitrogenase is complex. It was reported (64) that for the Mo-Nase of 4. vinelandii, the rate of
431  nitrogen reduction at 10 °C is very low despite continued hydrolysis of ATP. In the case of Mo-
432 Nase of Klebsiella pneumoniae (K. pneumoniae), decreasing the temperature not only curtails
433  electron flux, but also results in the preferential loss of activity towards nitrogen as a substrate

434 compared with H" or ethyne (C,H,) (65).

435  This modeling framework was further used to investigate the decreased growth rate of Mo-Nase
436  at lower temperature. From Arrhenius equation (66) it is known that turnover rate of an enzyme,
437 k.4, increases exponentially with the increasing temperature. As k... is one of the temperature
438  sensitive parameters in this study, k... values of Mo- and V-Nase were varied to see at what
439  point V-Nase growth rate exceeds that of Mo-Nase or Mo-Nase does the same compared to V-
440  nase. At first, the k.., of V-Nase was increased to a very high value, but the growth rate of V-
441  Nase was still lower than the WT and Mo-Nase. It indicates that the sensitivity of V-Nase

442  activity with respect to temperature is very low. This finding is consistent with previously
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443  published work on another gram negative bacteria, Azotobacter chroococcum (67). Later, the
444 k... of Mo-Nase was decreased to a very low value, and at that low k_,;, Mo-nase growth was
445  actually lower than the V-Nase and higher than the Fe-Nase, which is similar to the finding from
446  literature (45). Therefore, by tuning the k.., ME-model was able to capture the experimentally
447  observed temperature sensitivity of different nitrogenase enzyme. FIG 8b qualitatively

448  summarized the effect of k_,; on growth of Mo-only and V-only strains of R. palustris.

ot Mo-Nase™ Kcat, venase Kot vnvase™ Keat, Mo-Nase Gyonase™ Cviomnase G\ ase™ OttorNase
A A
IS
©
R
X € -
I= 3 Growth on V-Nase
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449 (a) (b)

450  FIG 8 A qualitative representation of temperature regulation of Mo-Nase and V-Nase, and effect of k_,; on
451 the growth of Mo-only and V-only mutant. (a) From literature, it is known that V-Nase has less sensitivity with
452 respect to temperature comparing to the Mo-Nase. The prediction from this ME-model corroborates that finding. (b)
453 As k.4 1s a parameter which is a function of temperature, from Arrhenius equation, we know that with reducing
454  temperature, k4. also reduces. With reducing k..., at one stage, growth for Mo-only mutant falls below the growth
455 of V-only mutant, capturing the experimentally observed temperature regulation of Mo- and V-Nase.

456  Conclusion. In this work, the first ever ME-model of R. palustris was developed. Growth rates

457  predicted by the ME-model for different substrates closely matched with experimental growth

458 rate data. The ME-model also predicted a diminishing carbon fixation at the theoretical
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459  maximum growth and subsequently malate dehydrogenase and glycerol-3 phosphate
460  dehydrogenase as alternate electron sinks. Furthermore, the ME-model postulated electron
461  transport through ferredoxin as a key regulatory feature to distribute reduced cofactor pools
462  between carbon and nitrogen fixation pathways. Finally, ME-modeling framework successfully

463  captured experimentally observed temperature regulation of different nitrogenase enzymes.

464  Going froward, this ME-model can be used as a powerful platform to further characterize
465  different features of R. palustris metabolism. Specially characterizing a complete profile of
466  environment specific isozyme expressions and optimal protein allocation. Furthermore, this ME-
467  model can be used to design and fine-tune mutants of R. palustris for metabolic engineering
468  purpose. One such application can be to produce PHB, a bioplastic precursor, which has
469  potential to replace petroleum-based plastics. Under anaerobic-photoheterotrophic growth of R.
470  palustris, PHB can work as an electron sink (7). Our previous effort (7) successfully established
471  three design strategies to select the ideal lignin breakdown products (LBPs) for commercial PHB
472  production from R. palustris. This ME-modeling framework can be further used to gain similar
473  regulatory insights, as discussed in this paper, on how electrons are distributed in PHB producing

474  pathways when different LBPs are used as substrates.

475 MATERIALS AND METHODS:

476  ME-model of R. palustris:

477  In addition to the metabolic reactions from the M-model, ME-model consists of translation and
478  transcription reactions along with metabolic reactions (FIG 9). In order to model transcription

479  and translation reaction, GPR association of each reaction is required. The initial GPR
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association was collected from literature (59). Later that GPR association was manually curated

using the detail genome annotation from literature (2).

o +
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FIG 9 R. palustris ME-model reconstruction. In the M-model, only metabolic reactions are incorporated to

perform genome-scale metabolic modeling. However, in the ME-modeling framework, transcription and translation

process are also incorporated, adding two separate layer of regulation for metabolic reaction. Each layer of

regulation are coupled with the biomass growth through catalytic turnover rate and the biomass growth. This process
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487 is known as coupling and the coupling parameter is in the form of kL, where u indicates the growth rate and k..
cat

488  indicates the catalytic turnover rate for that.

489  This GPR association can be accessed in supplemental material Table 3. The overall ME-model
490  reconstruction procedure was conducted in accordance to the COBRAme protocol (49) which is
491  summarized in FIG 2. The ME-model is a multi-scale model; hence it requires the addition

492  of coupling constraints to relate different cellular processes to each other. The coupling

u

cat

493  constraints are in the form of —. Here yu is the growth rate and k.., approximates the effective

of

494  turnover rate for the different macromolecules. Detailed mathematical description for k”

cat

495  different macromolecular process and values of different parameters can be found in the

496  supplemental material Text S1 and in the original COBRAme protocol (49).

1 was used, which was

497  To calculate k., for different enzymes, a mean k., value of 65 s~
498  reported for the E. coli in another ME-modeling framework (31). This mean k.., was modified
499  for each enzyme based on the solvent accessible surface area (SASA), following the same ME-
500 modeling framework (31). SASA can be defined as is the surface area of an enzyme that is

501  accessible to a solvent. Also, a previous study (68) reported a correlation between SASA and

502  molecular weight of the enzyme as following:

3
SASA = (molecular weight of the enzyme)4 ...(1)

503  Overall, the following equation was used to calculate k 4 ¢nzyme fOr each enzyme, based on the
504 mean turnover rate (Kcqt meqn)> mean SASA (SASA,qn), and SASA for the specific enzyme

505 (SASAenzyme)-

SASA
kcat,enzyme = kcat,mean X ﬁ (2)
mean
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506  For transcription reactions, RNA polymerase is needed to produce the required mRNA for the
507 protein production. RNA polymerase of R. palustris consists of five subunits: two alpha ()
508  subunits, a beta () subunit, a beta prime subunit (8"), and a small omega (w) subunit (69). In the
509 model each individual subunits were synthesized to form the RNA polymerase. Later, these

510 RNA polymerase transform different nucleotide to mRNA.

511  For translation reactions, ribosomal RNA is required to transform amino acids into different
512  proteins. R. palustris utilizes 70S ribosomes, each consisting of a small (30S) and a large (50S)
513  subunit (70). The large subunit is composed of a 5S RNA subunit (120 nucleotides), a 23S RNA
514  subunit (2900 nucleotides), and 31 proteins. The small subunit is composed of a 16S RNA
515  subunit (1542 nucleotides) and 21 proteins (70). It was also assumed that tRNA charging of
516  amino acid to the ribosome was not a rate limiting process in the translation reaction. Hence no

517  macromolecular synthesis of tRNA was included in the model.

518  For each transcription or translation reaction in the ME-model, an amount of a biomass protein
519  and biomass mRNA were produced with a stoichiometry equal to the molecular weight (in kDA)
520 of the protein or mRNA being made. FIG 9 shows an example of this where the translation
521  reaction produces both the catalytic protein as well as the biomass protein. Similarly, the
522  transcription reaction produces mRNA required for the protein synthesis and also biomass
523 mRNA requirements. The biomass protein and mRNA participate in the ME-model biomass
524  dilution reaction, restricting the total biomass components production equal to the rate of

525  biomass dilution.

526  Transcription and translation reactions were included for all reactions for which GPR are
527  available. For remaining pathways, an enzyme was used with an average length of 283 amino

528 acids and molecular weight of 31.09 kDA.
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529  To capture the differential expression of the carbon fixing isozymes, a constraint was added to

530 the ME-model to account for the co-expression of both rubisco form I and form II as follows:

_ H cat rubisco I
Vrubiscor = |~ vCOZ vCOZ max k - (3)
cat,rubisco Il
531 In equation (1), Vyypisco s Tepresents the expression of rubisco form I, which is a function of
532  carbon dioxide generation (Z vcoz), growth rate (u), theoretical maximum growth rate (tt,qx),

533  carbon dioxide generation at theoretical maximum growth rate (Z Vco, max), and effective

534  catalytic rate of rubisco form I (kcat‘mbisco ,) and rubisco form II (kmt'mbisco ,,).

535  For each of the substrate, the total ATP production by the ME-model was capped according to

536  the following equation proposed in the literature (7):

Q)ISJSH

S _ ,,ace

Upsit = Vpsni gace " (4)
PSII

537  Here “S” and “ace” refer to different substrates and acetate, respectively. Also, @3¢,y and BEE,
538 refer to the photosynthetic yield of different substrates and acetate respectively. Photosynthetic

539 yields for different substrates are collected from literature (7).
540  Accuracy calculation in the validation study:

541  In the validation study, using the ME-model, aerobic growth of R. palustris was simulated with
542  p-coumarate and succinate as sources of carbon and (NH,),SO, as a sole source of nitrogen.
543  From the ME-model, fluxes of transcriptomics and proteomics reactions were calculated for both
544  carbon sources. Considering the transcriptomics and proteomics reaction fluxes for succinate
545 uptake as the baseline condition, fold changes for all the gene expression and protein was

546  calculated for p-coumarate uptake. If the fold change is greater than 1, it was noted as
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547  upregulated. If the fold change is less than 1, it was noted as downregulated. Once the
548  upregulated/downregulated fold changes of transcription and translation reactions were
549  calculated, that fold changes were compared with the literature (34). If both fold changes, from
550 the ME-model and the experimental study, showed same direction (upregulated or
551  downregulated) of fold change, then the prediction is correct. Otherwise the prediction is
552  incorrect. Accuracy was then calculated as a percentage between correct prediction and total

553  predictions.

554  Simulation tools and software:

555  The General Algebraic Modeling System (GAMS) version 24.7.4 with IBM CPLEX solver was
556  used to run pFBA algorithm on the model. The algorithm was scripted in GAMS and then run on
557 a Linux-based high-performance cluster computing system at the University of Nebraska-

558  Lincoln.
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All the codes used in this work can be found in the following GitHub directory:

https://github.com/ssbio/palustris ME_model
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