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ABSTRACT 19 

Rhodopseudomonas palustris CGA009 (R. palustris) is a gram negative purple non-sulfur 20 

bacteria that grows phototrophically or chemotrophically by fixing or catabolizing a wide array 21 

of substrates including lignin breakdown products (e.g., p-coumarate) for its carbon and nitrogen 22 

requirements. It can grow aerobically or anaerobically and can use light, inorganic, and organic 23 

compounds for energy production. Due to its ability to convert different carbon sources into 24 

useful products in anaerobic mode, this study, for the first time, reconstructed a metabolic and 25 

expression (ME-) model of R. palustris to investigate its anaerobic-photoheterotrophic growth. 26 

Unlike metabolic (M-) models, ME-models include transcription and translation reactions along 27 

with macromolecules synthesis and couple these reactions with growth rate. This unique feature 28 

of the ME-model led to nonlinear growth curve predictions which matched closely with 29 

experimental growth rate data. At the theoretical maximum growth rate, the ME-model 30 

suggested a diminishing rate of carbon fixation and predicted malate dehydrogenase and 31 

glycerol-3 phosphate dehydrogenase as alternate electron sinks. Moreover, the ME-model also 32 

identified ferredoxin as a key regulator in distributing electrons between major redox balancing 33 

pathways. Since ME-models include turnover rate for each metabolic reaction, it was used to 34 

successfully capture experimentally observed temperature regulation of 35 

different nitrogenases. Overall, these unique features of the ME-model demonstrated the 36 

influence of nitrogenases and rubiscos on R. palustris growth and predicted a key regulator in 37 

distributing electrons between major redox balancing pathways, thus establishing a platform 38 

for in silico investigation of R. palustris metabolism from a multi-omics perspective. 39 

 40 

 41 
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IMPORTANCE 42 

In this work, we reconstructed the first ME-model for a purple non-sulfur bacterium (PNSB). 43 

Using the ME-model, different aspects of R. palustris metabolism were examined. First, the ME-44 

model was used to analyze how reducing power entering the R. palustris cell through organic 45 

carbon sources gets partitioned into biomass, carbon dioxide fixation, and nitrogen fixation. 46 

Furthermore, the ME-model predicted electron flux through ferredoxin as a major bottleneck in 47 

distributing electrons to nitrogenase enzymes. Next, the ME-model characterized different 48 

nitrogenase enzymes and successfully recapitulated experimentally observed temperature 49 

regulations of those enzymes. Identifying the bottleneck responsible for transferring electron to 50 

nitrogenase enzymes and recapitulating the temperature regulation of different nitrogenase 51 

enzymes can have profound implications in metabolic engineering, such as hydrogen production 52 

from R. palustris. Another interesting application of this ME-model can be to take advantage of 53 

its redox balancing strategy to gain understanding on regulatory mechanism of biodegradable 54 

plastic production precursors, such as polyhydroxybutyrate (PHB). 55 

KEYWORDS  56 

R. palustris, ME-model, nitrogenase, rubisco, ferredoxin, electron distribution. 57 

INTRODUCTION 58 

R. palustris is an alphaproteobacterium which can grow in diverse metabolic modes such as 59 

phototrophic or chemotrophic growth. Besides, it can grow under aerobic or anaerobic conditions 60 

by using light and organic (e.g., lignin breakdown products) or inorganic compounds as a source 61 

of ATP generation (1,2). Using these metabolic versatilities, R. palustris has emerged as a 62 

potential biotechnological platform for bioremediation (3–5), bioplastics production (6,7), 63 
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bioelectricity generation (8,9), wastewater treatment (10–12), and hydrogen production (13–17). 64 

Furthermore,  R. palustris is the only known bacteria to encode all three known nitrogenase 65 

enzymes (2) besides Azotobacter vinelandii (A. vinelandii) (18). R. palustris also encodes both 66 

form I and form II of rubisco. These unique features make R. palustris an ideal microorganism to 67 

be considered as a biotechnological chassis for further metabolic engineering (7). Because of 68 

these unique features, R. palustris has a highly connected metabolic network which requires a 69 

systems-level investigation for better understanding. 70 

One widely accepted systems level investigation tool is the stoichiometric constrain-based M-71 

model (19). Initial efforts of reconstructing M-models of purple non-sulfur bacteria (PNSB) were 72 

limited to the specific metabolic pathways of interest, such as central carbon metabolism (20), 73 

and electron transport chain (21). However, those pathway specific M-models did not have wider 74 

resolution to capture overall metabolic landscape of PNSBs. To overcome that, comprehensive 75 

M-models were reconstructed for PNSB strains including Rhodobacter sphaeroides (22) and R. 76 

palustris (23). Recently we further refined the R. palustris M-model by integrating the annotated 77 

metabolic pathways for lignin monomer degradation and validated it by using the experimental 78 

data on gene essentiality and metabolic flux analysis for growth under different carbon sources 79 

(24). Although, these M-models were useful to study different metabolic features of PNSB, the 80 

inherent lacking of quantitative characterization of macromolecular machinery synthesis (MMS) 81 

could be problematic and may lead to incorrect predictions of biological scenarios, such as 82 

inaccurate reaction flux and multiple equivalent cellular phenotypic states (25,26). These 83 

inaccuracies can lead to an erroneous understanding of overall metabolic and regulatory features 84 

of an organism and can negatively impact the design-build-test-learn cycle for metabolic 85 

engineering application. 86 
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One of the ways to overcome this is the metabolic-expression (ME) modeling approach. ME-87 

model is a resource allocation based model that includes not only the stoichiometric metabolic 88 

reactions, but also quantitative MMS information (27). As input, ME-models require the 89 

conditions of a steady-state environment and can then output predictions for maximum growth 90 

rate, substrate uptake, byproduct secretion, metabolic fluxes, gene expression levels, and protein 91 

expression (27). ME-model utilizes a growth optimization function along with coupling 92 

constraints that tie flux to transcriptional and translational reactions in the model. These 93 

constraints are functions of the growth rate. By including these constraints, ME-models set 94 

limitations on fluxes based on transcription as well as translation reactions. Thus far, ME-models 95 

were developed only for a few organisms. These models were used to accurately predict cellular 96 

composition and gene expression of Thermotoga maritima (T. maritima) (28), fermentation 97 

profile of Clostridium ljungdahlii (C. ljungdahlii) (29), overflow metabolism of Saccharomyces 98 

cerevisiae (S. cerevisiae) (30), and multi-scale phenotype, enzyme abundance, and acid stress of 99 

Escherichia coli (E. coli) (31–33). An ME-model for R. palustris can also be very useful in 100 

answering fundamental biological questions, such as growth profiling, isozyme expression 101 

prediction, regulation on electron distribution between competing metabolic modules, and 102 

temperature regulation of different enzymes. 103 

In this work, the first ever ME-model was reconstructed for R. palustris. The ME-model was 104 

able to satisfactorily recapitulate the experimental transcriptomics and proteomics observation 105 

from literature (34). Then acetate, succinate, butyrate, and p-coumarate were used as carbon 106 

sources to characterize the growth profile of R. palustris which closely matched with 107 

experimental growth rate data. In addition, it predicted a diminishing rate of carbon fixation at 108 

the theoretical maximum growth rate and consequently predicted malate dehydrogenase and 109 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482919doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482919


Metabolic and expression model of R. palustris 

6 

 

glycerol-3 phosphate dehydrogenase as alternate electron sinks. Furthermore, the ME-model 110 

identified ferredoxin as a key regulator in distributing electrons between major redox balancing 111 

pathways, such as carbon and nitrogen fixation. Later, the modeling framework was able to 112 

capture experimentally observed temperature regulation of different nitrogenase enzymes, by 113 

varying turnover rate of nitrogen fixation reactions. Overall, this modeling approach 114 

demonstrated a bottom-up systems-biology approach that can be used to predict and analyze 115 

cellular physiology of R. palustris, thereby providing an opportunity to generate experimentally 116 

testable hypotheses. 117 

RESULTS AND DISCUSSIONS 118 

Metabolic and expression model development 119 

To reconstruct the ME-model, our previously reconstructed M-model of R. palustris, iRpa940 120 

(24), was used as a template for the metabolic transformations. To reconstruct the ME-model, 121 

gene-protein-reaction (GPR) relationships for all the reactions, specially nitrogen fixation 122 

(catalyzed by Mo-, V-, and Fe-Nase) and carbon fixation (catalyzed by rubisco form I and form 123 

II) reactions, were manually curated from the complete genome sequence of R. palustris (2). 124 

Transcription and translation reactions were added for reactions for which GPR relationships are 125 

available. Reactions for which GPR associations are not available, it was assumed that an 126 

average bacterial enzyme with 31.09 kDa  molecular weight (35) catalyzed each individual 127 

reaction. Overall, the ME-model contains 1398 reactions, 1483 metabolites, and 751 genes. FIG 128 

1 demonstrates the workflow of the ME-model reconstruction. 129 

In R. palustris, form I rubisco (L8S8) is comprised of eight large subunits (L8) and eight small 130 

subunits (S8) (36) and encoded by two genes, rpa1559 and rpa1560 (2). On the other hand, form 131 
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II rubisco (L2) is comprised of two large subunits both encoded by rpa4641 (2). Between the two 132 

forms of rubisco, form I has a higher molecular weight compared to form II (37,38) and therefore 133 

requires more carbon investment to synthesize. As rubisco is one of the most abundant enzymes 134 

in nature (39), the kinetics of this enzyme have been determined for multiple organisms (36,40). 135 

For different rubisco enzymes, it was shown that although form I has higher molecular weight 136 

and more carbon investment cost, form II has higher catalytic turnover rate ������ per active site 137 

compared to form I (36). Evolutionary selection has played a major role in this counterintuitive 138 

observation (41,42). Early in the earth’s history, the concentration of carbon dioxide was higher 139 

in the atmosphere and as a result form II rubisco evolved with a  lower selectivity and higher 140 

���� for carbon dioxide (36). With increasing amounts of oxygen in earth’s atmosphere, form I 141 

evolved with a much higher selectivity for carbon dioxide but with a lower ���� (36). Since ���� 142 

values for R. palustris are not available, to account for these evolutionary selections, the ���� 143 

values were set to 3.7 ���	
��
� ������ (form I) and 6.6 ���	
��
� ������ (form II) based on 144 

the measurements from other phylogenetically close (43) PNSB strains  (Rhodobacter capsulatus 145 

(40) and Rhodospirillum rubrum (36), respectively). 146 

For the three nitrogenase isozymes, each enzyme is encoded by a series of genes (2) (Mo-Nase 147 

by rpa4602 - rpa4633, V-Nase by rpa1370 - rpa1380, and Fe-Nase by rpa1435 - rpa1439). 148 

Unlike rubisco, ���� values of different nitrogenase are not available for R. palustris or any other 149 

PNSBs. Therefore, the calculated surface accessible surface area (SASA) of each nitrogenase 150 

enzyme was used to normalize the mean ���� value from E. coli, as discussed in literature (31) 151 

(see materials and methods section). These normalized ���� values were used to define three 152 

independent nitrogen fixation reactions. 153 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482919doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482919


Metabolic and expression model of R. palustris 

8 

 

 154 

FIG 1. Workflow followed to reconstruct the ME-model from a previously published M-model of R. 155 

palustris. Transcription and translation reactions were added on top of the metabolic reactions to come up with ME-156 

modeling framework. The ME-modeling framework was used to characterize growth rate profiling, competing 157 

metabolic modules, and nitrogenase enzyme activity. From these characterizations, inferences regarding alternate 158 

redox balancing, ferredoxin regulation, and temperature regulation of nitrogenase enzymes were gathered. 159 

Both of the above mentioned enzymes, nitrogenase and rubisco, play a pertinent role in 160 

maintaining the cellular redox balance during the photoheterotrophic growth of R. palustris by 161 
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regenerating oxidized cofactors (44). When the ME-model was used to simulate the 162 

photoheterotrophic growth of R. palustris, among three different nitrogenase enzymes, it 163 

predicted the expression of Mo-Nase only, which is consistent with literature (45,46). For the 164 

same photoheterotrophic growth conditions, between two different forms of rubisco enzymes, 165 

the model predicted only the expression of form II rubisco. Although expression of only rubisco 166 

form II was expected based on its lower carbon cost and higher efficiency, literature evidence 167 

suggested a co-expression of both forms of rubisco during the photoheterotrophic growth of R. 168 

palustris (47). The same work suggested that rubisco form I is responsible for providing cellular 169 

carbon and dominates under carbon dioxide limiting conditions, whereas rubisco form II 170 

balances the intracellular redox potential under carbon and electron abundant conditions (47). In 171 

addition, it was also found that expression of the 
�� operons (responsible for coding both forms 172 

of rubisco) during phototrophic growth is highly dependent on the cellular carbon dioxide level 173 

(47). To incorporate these findings, a constraint was added to the ME-model to co-express both 174 

forms of rubisco based on the total carbon dioxide produced by R. palustris during 175 

photoheterotrophic growth (see materials and methods section). 176 

Model Validation using experimental transcriptomics and proteomics data 177 

To validate the prediction accuracy of the model, experimental transcriptomics and proteomics 178 

data were used to qualitatively verify whether the model can predict the direction of these 179 

experimental fold changes in different conditions. A previous study, which characterized the 180 

anaerobic growth of R. palustris by comparing the transcriptomic and proteomic profiles of 181 

cultures grown in the presence of p-coumarate and succinate as sole carbon source, was used for 182 

the validation study (34). The study tested fold change of 4810 genes for p-coumarate catabolism 183 

considering succinate catabolism as the baseline condition. The transcriptomic analysis resulted 184 
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in 369 differentially expressed genes, among which 61 were metabolic genes. Similarly, 185 

proteomic analysis resulted in 341 differentially expressed proteins, among which 67 can act as 186 

enzymes. In both transcriptomics and proteomics data sets, non-metabolic genes/proteins have 187 

functions such as signaling, chromosomal replication, and circadian rhythm. (see supplemental 188 

material Table S1 for more details). 189 

To generate both gene and protein expression information for the same two conditions of the 190 

above-mentioned study (34), the ME-model was simulated for two points where total rubisco 191 

flux was maximal for the p-coumarate and succinate uptake, respectively. It was previously 192 

reported (44) that carbon fixation is required to maintain redox balance in R. palustris.  193 

Therefore, higher growth rate is associated with higher reduced cofactor production, leading to 194 

higher rates of carbon fixation. As a result, the decreasing carbon fixation flux with increasing 195 

growth (FIG 2) is a theoretical feature predicted by the ME-model. All the experimentally 196 

observed and differentially expressed genes and proteins are available in the model. However, 197 

for reactions catalyzed by multiple isozymes, the ME-model only predicted the most efficient 198 

isozyme based on the ���� and molecular weight. As a result, out of these 61 metabolic genes 199 

and 67 metabolic enzymes, 23 genes and 34 enzymes were expressed in the model. 200 

As part of the transcriptomics data validation, out of 23 genes, the ME-model was able to predict 201 

correct gene expression fold change for 21 genes. The model could not predict the downward 202 

fold change of 3-oxoacyl-acyl carrier protein reductase (rpa3304) and the 50S ribosomal protein 203 

(rpa0918). rpa3304 is one of the genes to convert malonyl-CoA to biotin (48). Biotin is a part of 204 

R. palustris cell membrane and from FIG 2 it can be seen that p-coumarate supports more growth 205 

than succinate. Thus, the ME-model predicted an upward fold change of rpa3304 for p-206 

coumarate catabolism compared to succinate catabolism. Composition of biotin in cell 207 
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membrane may be different in different conditions. However, in the ME-model, only protein and 208 

nucleotide compositions change with different conditions, while those of cell wall components 209 

remain constant (49). This may have caused the mismatch. For incorrect fold change prediction 210 

of 50S ribosomal protein, missing reactions, the lack of regulatory mechanisms, and inaccurate 211 

���� data may have played a role. 212 

For proteomics data validation, out of 34 enzymes, the ME-model was able to correctly predict 213 

the fold change for 21 enzymes. The ME-model could not correctly predict the downward fold 214 

change of 13 different enzymes (see supplemental material Table S1 for more details). These 215 

enzymes are mainly associated with purine and pyrimidine metabolism, fatty acid metabolism, 216 

and lipopolysaccharide metabolism. These pathways are closely associated with the R. palustris 217 

biomass growth. As p-coumarate supports more growth than succinate, the ME-model allocated 218 

more proteins for these pathways to sustain the biomass growth. There may be unannotated 219 

alternate metabolic pathways with less enzyme investment for producing purine, pyrimidine, 220 

fatty acid, and lipopolysaccharide when p-coumarate is utilized as the carbon source, thus 221 

causing these discrepancies. As ME-model maximizes the biomass growth rate, such incorrect 222 

prediction can be considered as an inherent weakness of the ME-model. 223 

Overall, despite these incorrect fold change predictions, the ME-model was able to satisfactorily 224 

recapitulate the aggregate experimental transcriptomics and proteomics observations with 91% 225 

and 62% accuracy, respectively (see materials and methods section for accuracy calculation). 226 

The details of experimental and model predictions can be found in the supplemental material 227 

Table S1. 228 

Growth rate vs. substrate uptake and alternate redox balancing strategies 229 
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Upon the validation with available gene expression and protein abundance data, the model was 230 

used to examine how growth, carbon fixation, and nitrogen fixation rates varied with different 231 

substrate uptake rate. The goal of this analysis was to investigate how reducing power entering 232 

the cell through organic carbon sources gets partitioned into biomass, carbon dioxide fixation, 233 

and nitrogen fixation. To perform the analysis, acetate, succinate, butyrate, and p-coumarate 234 

were used as substrates. Previous studies have shown that photoheterotrophic growth of R. 235 

palustris on acetate, succinate, and butyrate is associated with increasing cellular redox stress 236 

based on the oxidation state of different substrates (50). Hence, these substrates were chosen as 237 

they cover a wide range of oxidation states. Here succinate (+0.5) and acetate (0) have higher 238 

oxidation states compared to R. palustris’ biomass (-0.13) (45), whereas  butyrate (-1) and p-239 

coumarate (-0.22) have lower oxidation states (45).  240 

 241 

FIG 2 Strictly Nutrient-Limited (SNL), Janusian, and Strictly Proteome-Limited (SPL) regions for (a) 242 

acetate (b) succinate (c) butyrate and (d) p-coumarate. The growth rate with respect to different substrate uptakes 243 
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follows a non-linear pattern. Flux through nitrogen fixation reaction also follows the similar pattern to growth rate. 244 

Carbon fixation reached a peak in the Janusian region and then diminished in the theoretical maximal growth. 245 

In the ME-model, growth rate is a nonlinear function of substrate uptake rate and eventually 246 

reaches a theoretical maximum growth rate (FIG 2). This behavior is consistent with known 247 

microbial empirical growth models such as Monod growth kinetics (51) and microbial slow 248 

growth kinetics (52). Previous work has suggested three distinct growth regions as a function of 249 

substrate uptake rate; Strictly Nutrient-Limited (SNL), Janusian, and Strictly Proteome-Limited 250 

(SPL) (31). Growth in the SNL region depends heavily on nutrient uptake and adding more 251 

nutrient results in more growth. In this region, the relationship between growth rate and substrate 252 

uptake is similar to the prediction made from M-models. Contrary to the SNL region, growth in 253 

the SPL region (also known as nutrient excess condition) is limited by physiological constraint of 254 

protein production and catalysis. Janusian growth is the region where a transition from SNL to 255 

SPL takes place. A recent experimental study (45) had characterized the growth of wild-type 256 

(WT) R. palustris for acetate, succinate, and butyrate, respectively, under nitrogen-fixing 257 

conditions. Table 2 compares between experimentally observed growth rates and those predicted 258 

by the model. The growth rate and order predicted by the ME-model for succinate, acetate, and 259 

butyrate closely followed the experimental growth rate and order. Compared to other substrates, 260 

the ME-model predicted a significantly higher growth rate on p-coumarate. One of our previous 261 

works (7), which experimentally examined different strategies for PHB production under non-262 

nitrogen fixing condition, also showed a significantly higher growth on p-coumarate comparing 263 

to butyrate and acetate. It was previously reported (7) that, p-coumarate consumption lead to 264 

more ATP production compared to acetate, succinate, and butyrate and thus was able to support 265 

more growth. 266 
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Theoretical growth rates predicted by the ME-model were slightly higher compared to the 267 

experimental growth rates for all tested substrates (6% for succinate, 5% for butyrate, and 4% for 268 

acetate). It was expected as the cell has many more layers of physiological regulations, such as 269 

signaling pathways, allosteric regulation, and polymorphism, which were not captured in the 270 

ME-modeling framework. Overall, growth rate comparison between the ME-model prediction 271 

and experimental study reveals that, like E. coli (31), optimum resource allocation dictates 272 

metabolic activities for R. palustris. Supplemental material Table S2 records all the theoretical 273 

maximum growth rates for different amount of substrate uptakes.  274 

Table 2: Normalized growth rate for different substrate uptakes. 275 

Substrate Experimentally 

observed growth rate 

�	���) 

Growth rate from the 

ME-model ��	���) 

Substrate Uptake for 

experimental growth 

rate from model 

(mmol. �����. �	��� 

Succinate 0.70 0.74 4.66 

Acetate 0.74 0.77 6.47 

Butyrate 0.82 0.86 3.69 

p-Coumarate - 1.21 2.54 

 276 

After characterizing the growth rate with different substrate uptakes, the ME-model was used to 277 

characterize nitrogen and carbon fixation rates as a function substrate uptake. For nitrogen 278 

fixation, the reaction’s activity followed a similar trajectory as growth vs. substrate uptake (FIG 279 

2). Different studies have shown that during WT photoheterotrophic growth, among three 280 
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different nitrogenase (Mo-, V-, and Fe-Nase) isozymes encoded in R. palustris’ genome, Mo-281 

Nase is exclusively expressed (45,46). A. vinelandii which has three different nitrogenases also 282 

exclusively express the Mo-Nase in the WT (53). The ME-model predicted exclusive expression 283 

of Mo-Nase during growth on all four carbon sources. Expression of nitrogenase may be dictated 284 

by its ATP requirements, as Mo-Nase requires the least amount of ATP among three 285 

nitrogenases. In addition, the temperature of the assay plays a role in the expression of different 286 

nitrogenases as discussed later. 287 

 288 

FIG 3. Metabolic activities in the (a) strictly nutrient limited growth (SNL), (b) Janusian growth, and (c) 289 

strictly proteome limited growth (SPL). In the theoretical maximum growth, at SPL region, flux through carbon 290 

fixation diminished and reaction flux from ribulose-5 phosphate to ribose-5 phosphate significantly increased. The 291 

increased biomass growth demand can be met by the precursors from the TCA cycle, which showed significant 292 

increase in reaction flux comparing to Janusian growth and SNL. Here gray crosses indicate zero rection flux 293 

through that reaction. 294 

Next, carbon fixation was also characterized with respect to substrate uptake. Unlike nitrogenase, 295 

which closely followed the trajectory of the growth rate, carbon fixation reached a peak flux at 296 
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the start of the Janusian region. In the SPL region, when growth is proteome limited, R. palustris 297 

optimized protein production to sustain the growing biomass demand. As the cell approaches the 298 

theoretical maximal growth, more ribose-5 phosphate is needed to sustain the increasing demand 299 

of nucleotides and lipopolysaccharides. To meet that demand at the theoretical maximum 300 

growth, the ME-model predicted that R. palustris decreases the expression of 301 

phosphoribulokinase (rpa4645) and redirects flux towards ribose-5 phosphate production (FIG 302 

3).  303 

During photoheterotrophic growth under nitrogen fixing condition, carbon and nitrogen fixation 304 

plays a major role in maintaining cellular redox balance. However, in the SPL region, as reaction 305 

flux of carbon fixation diminished at the theoretical maximum growth, the ME-model predicted 306 

two potential candidates to maintain cellular redox balance: malate dehydrogenase and glycerol-307 

3 phosphate dehydrogenase, in addition to nitrogen fixing reaction. Malate dehydrogenase uses 308 

NAD+/NADH as cofactors and is encoded by rpa0192. Similarly, glycerol-3 phosphate 309 

dehydrogenase uses NAD+/NADH as cofactors and is encoded by rpa4410. During the switch 310 

from the SNL to the SPL region, at the point where carbon fixation starts to diminish, both 311 

malate dehydrogenase and glycerol-3 phosphate dehydrogenase fluxes start to increase (FIG 4). 312 

At the theoretical maximum growth, flux through malate dehydrogenase and glycerol-3 313 

phosphate dehydrogenase reached its maximum. Malate dehydrogenase also plays a role in 314 

maintaining redox balance in several other gram negative bacteria, such as organisms including 315 

E. coli (54), and Corynebacterium glutamicum (C. glutamicum) (55). Glycerol-3 phosphate 316 

dehydrogenase is one of the key enzymes in the fatty acid biosynthesis. It was suggested that for 317 

photoheterotrophically grown R. rubrum,  it is possible that other biosynthetic pathways such as 318 

fatty acid biosynthesis could offer flexibility contributing to the redox balance (56). In addition, 319 
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several other organisms such as S. cerevisiae (57) and Kluyveromyces lactis (K. lactis) (58) 320 

showed evidence of using glycerol-3 phosphate dehydrogenase to maintain redox balance. 321 

 322 

FIG 4 Alternate electron sink for different substrates (a) acetate (b) succinate (c) butyrate and (d). In the 323 

Janusian regions, flux through carbon fixation reaction started to diminish. With the diminishing carbon 324 

fixation flux, ME-model predicted two alternate electron, malate dehydrogenase and glycerol-3 phosphate 325 

dehydrogenase. Reaction flux through these alternate electron sinks reached its peak when flux through carbon 326 

fixation completely diminished at the theoretical maximum growth. 327 

Carbon fixation vs. Nitrogen fixation – competing metabolic modules for redox balance 328 

During photoheterotrophic growth, R. palustris performs a cyclic photophosphorylation (2,21) 329 

which means that electrons from photosystem I (PSI) get transported through ferredoxin and the 330 

�
� complex and recycled back to PSI through the oxidation and reduction of quinones (59) (FIG 331 

5). As there are no terminal electron acceptors, this can cause an accumulation of reduced 332 

cofactors resulting in impeded growth of the bacterium. To resolve this, R. palustris employs 333 

various electron acceptors to maintain a cellular redox balance. During photoheterotrophic 334 
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growth, the redox-balancing mechanism consists primarily of the CBB pathway (44) and 335 

nitrogen fixation pathway (60). The nitrogen fixation module becomes active when R. palustris 336 

is placed in a nitrogen-limiting environment. Experimental studies have suggested a link between 337 

carbon and nitrogen fixation that is intimately associated with the control of intracellular redox 338 

balance for different PNSBs, such as R. palustris (44), R. capsulatus (61), R. sphaeroides 339 

(60,62), and R. rubrum (60). However, it is still not properly understood what factors decide the 340 

distribution of electrons in these two competing metabolic modules. Here, the ME-model was  341 

used to further analyze the metabolic factors deciding the distribution of electron flux between 342 

carbon and nitrogen fixation in maintaining cellular redox balance. 343 

  344 

FIG 5 Relation between cyclic photophosphorylation and electron distribution between carbon and nitrogen 345 

fixation. (a) Less electron through ferredoxin indicates less flux through nitrogen fixation and more flux through 346 

carbon fixation pathway. As a result, NADH will be more oxidized through carbon fixation reaction (b) More 347 
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electron through ferredoxin indicates more flux through nitrogen fixation and less flux through carbon fixation 348 

pathway. As a result NADH will be more oxidized through nitrogen fixation reaction. 349 

  350 

FIG 6 Relation between carbon fixation and nitrogen fixation with different fluxes via electron transport 351 

through ferredoxin (ETFD) for different substrates (a) acetate (b) succinate (c) butyrate and (d) p-coumarate. 352 

Red color lines indicate the relation between carbon fixation and nitrogen fixation when flux through ETFD is set to 353 

the solution found from the ME-model. Blue color lines indicate the relation between carbon fixation and nitrogen 354 

fixation when ETFD flux is set to a very high value.  Yellow color lines indicate the relation between carbon 355 

fixation and nitrogen fixation when the ETFD flux values is set between ME and High.  356 

To understand the electron distribution, a previous study eliminated rubisco activity in R. 357 

palustris and found that the rate of nitrogen fixation did not vary significantly (44). As CBB and 358 

nitrogen fixation pathways are two major redox balancing mechanisms, when rubisco was 359 

eliminated, nitrogen fixation pathway was likely to carry additional flux load to maintain cellular 360 
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redox balance. As this was not the case in the previous experimental study (44), it was suspected 361 

that there exists a metabolic bottleneck preventing additional reaction flux through the nitrogen 362 

fixation pathway. FIG 5 shows the cyclic photophosphorylation of R. palustris. Here, electrons 363 

get transported in a cyclical manner and reduced ferredoxin supplies electrons to nitrogen 364 

fixation pathway. Based on the availability of electrons, nitrogen fixation pathway uses reduced 365 

cofactors to fix nitrogen. The more electrons supplied by ferredoxin; the more reduced cofactors 366 

will be used by nitrogen fixation pathways. Hence, less reduced cofactors will be available for 367 

carbon fixation pathway to use. So, electron transport through ferredoxin (ETFD) can be a 368 

potential candidate of the previously discussed bottleneck. 369 

In order to explore if ETFD is indeed the hypothesized bottleneck, the biomass growth and 370 

substrate uptake rate were kept constant and only flux through carbon fixation reaction was 371 

varied for increasing flux of electron transport through the ferredoxin reaction (ETFD). At first, 372 

flux through ETFD was fixed to the solution found by the ME-model (indicated by the red line in 373 

FIG 6). The flux through the nitrogen fixing reaction remained constant with changing flux 374 

through carbon fixation reaction. This finding confirmed the presence of the previously 375 

hypothesized bottleneck. Increasing flux through ETFD had varying effects on the rate of 376 

nitrogen fixation depending on the utilized carbon substrate. When the reaction flux through 377 

ETFD was set to values higher than the ME-model solution (indicated by the yellow and blue 378 

lines in FIG 6), a very small change in flux through nitrogenase was noticed for growth on 379 

acetate. For the other carbon sources, when the reaction flux through ETFD was set to values 380 

higher than the ME-model solution (indicated by the yellow and blue lines in FIG 6), a negative 381 

correlation was observed between the carbon and nitrogen fixation reaction flux. When the 382 

metabolite pool size (See supplemental material Text S1 for metabolite pool size calculation 383 
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detail) was calculated for different cofactors, acetate produced less reduced cofactors per unit of 384 

substrate uptake compared to other substrates. As , in this case, the fixed nitrogen is the sole 385 

source of nitrogen, cell prioritize electron transport to nitrogenase rather than rubisco, whose 386 

primary function is to maintain the redox balance in the cell. Thus the relation between carbon 387 

and nitrogen fixation is less visible for acetate. However, for succinate, butyrate and p-388 

coumarate, more reduced cofactors are produced per unit of substrate uptake. Thus  more 389 

electrons are available for carbon fixation pathway and the regulation is more visible when 390 

ETFD flux is higher for these substrates. These results indicated that reaction flux through ETFD 391 

may play a regulatory role in distributing electron flux between carbon and nitrogen fixation. 392 

Similar regulation in electron transport between competing metabolic modules, such as 393 

respiratory pathways and electron transport, can be observed in model bacteria E. coli (63). A 394 

highly organized network of overlapping transcriptional regulatory elements regulates flow of 395 

electrons by controlling the expression of different genes in E. coli, including genes involved in 396 

substrates uptake, control of mixed-acid fermentation pathways, and controlling cofactor 397 

biosynthesis. Further experimentation is required to establish a similar molecular level 398 

mechanism for ETFD regulation of electron distribution in competing pathways of R. palustris. 399 

The ETFD regulation, hypothesized in this study, can have profound implications in future 400 

metabolic engineering efforts of R. palustris. Specially, this regulation can be exploited to 401 

increase hydrogen production from R. palustris to achieve energy sustainability goals.  402 

Characterization of Mo-, V-, and Fe-Nase nitrogenase enzymes 403 

Since ETFD was postulated to play a regulatory role in distributing electron to the nitrogen 404 

fixing pathway, the ME-model was next used to characterize how these electrons were used by 405 

different nitrogenase enzymes. First, growth was simulated for the WT R. palustris with 406 
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succinate as the substrate. In this case, only Mo-Nase was expressed and the growth vs. substrate 407 

uptake curve (FIG 7 a) followed the pattern identified from the literature (31). Exclusively 408 

expressing the Mo-Nase in the WT was also consistent with previous literature findings (45,46). 409 

Next, the growth vs. substrate uptake graphs (FIG 7 b, c, and d) were developed for three 410 

different mutants of R. palustris, each expressing a single nitrogenase isozyme. When the 411 

theoretical maximum growths for these mutants were compared with WT, it was found that WT 412 

and the Mo-only mutant had the highest growth rate followed by the growth rate of V-only and 413 

Fe-only mutants. When compared with the experimental growth rate data from literature (45) for 414 

WT, Mo-only, V-only, and Fe-only growths followed a similar pattern as predicted by the ME-415 

model (supplemental material FIG. S1). Theoretically, growth of the WT and -only mutant 416 

strains of R. palustris can be coupled with the ATP requirement, as Mo-nase requires the least 417 

and Fe-nase requires the most amount of ATP for nitrogen fixation. 418 

  419 
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FIG 7 Growth rate and nitrogen fixation rate for (a) WT R. palustris (b) Mo-only mutant (c) V-only mutant 420 

(d) Fe-only mutant for succinate uptake. For each of the case, growth rate and nitrogen fixation closely follow 421 

each other. Dotted line in each of the graph indicates the experimentally observed growth. 422 

Contrary to the pattern observed for succinate uptake, when other carbon sources were used as 423 

substrates, V-Nase exhibited higher growth comparing to Mo-Nase, Fe-Nase, and even WT 424 

(supplemental material FIG. S2-S4). Previous studies have observed that the Mo-Nase is more 425 

sensitive towards decreasing temperature compared to the other isozymes, such as V-Nase (45). 426 

FIG 8a qualitatively summarized this idea. Since the experimental values used in that study were 427 

generated at 19 ��, it is possible that Mo-Nase may have less selectivity towards fixing nitrogen 428 

rate than other substrates. The effect of decreasing assay temperature on the activity of 429 

nitrogenase is complex. It was reported (64) that for the Mo-Nase of A. vinelandii, the rate of 430 

nitrogen reduction at 10 �� is very low despite continued hydrolysis of ATP. In the case of Mo-431 

Nase of Klebsiella pneumoniae (K. pneumoniae), decreasing the temperature not only curtails 432 

electron flux, but also results in the preferential loss of activity towards nitrogen as a substrate 433 

compared with H+ or ethyne �C�H�� (65). 434 

This modeling framework was further used to investigate the decreased growth rate of Mo-Nase 435 

at lower temperature. From Arrhenius equation (66) it is known that turnover rate of an enzyme, 436 

����, increases exponentially with the increasing temperature. As ���� is one of the temperature 437 

sensitive parameters in this study, ���� values of Mo- and V-Nase were varied to see at what 438 

point V-Nase growth rate exceeds that of Mo-Nase or Mo-Nase does the same compared to V-439 

nase. At first, the ���� of V-Nase was increased to a very high value, but the growth rate of V-440 

Nase was still lower than the WT and Mo-Nase. It indicates that the sensitivity of V-Nase 441 

activity with respect to temperature is very low. This finding is consistent with previously 442 
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published work on another gram negative bacteria, Azotobacter chroococcum (67). Later, the 443 

���� of Mo-Nase was decreased to a very low value, and at that low ����, Mo-nase growth was 444 

actually lower than the V-Nase and higher than the Fe-Nase, which is similar to the finding from 445 

literature (45). Therefore, by tuning the ����, ME-model was able to capture the experimentally 446 

observed temperature sensitivity of different nitrogenase enzyme. FIG 8b qualitatively 447 

summarized the effect of ���� on growth of Mo-only and V-only strains of R. palustris. 448 

 449 

FIG 8 A qualitative representation of temperature regulation of Mo-Nase and V-Nase, and effect of ���� on 450 

the growth of Mo-only and V-only mutant. (a) From literature, it is known that V-Nase has less sensitivity with 451 

respect to temperature comparing to the Mo-Nase. The prediction from this ME-model corroborates that finding. (b) 452 

As ���� is a parameter which is a function of temperature, from Arrhenius equation, we know that with reducing 453 

temperature, ���� also reduces. With reducing ����, at one stage, growth for Mo-only mutant falls below the growth 454 

of V-only mutant, capturing the experimentally observed temperature regulation of Mo- and V-Nase. 455 

Conclusion. In this work, the first ever ME-model of R. palustris was developed. Growth rates 456 

predicted by the ME-model for different substrates closely matched with experimental growth 457 

rate data. The ME-model also predicted a diminishing carbon fixation at the theoretical 458 
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maximum growth and subsequently malate dehydrogenase and glycerol-3 phosphate 459 

dehydrogenase as alternate electron sinks. Furthermore, the ME-model postulated electron 460 

transport through ferredoxin as a key regulatory feature to distribute reduced cofactor pools 461 

between carbon and nitrogen fixation pathways. Finally, ME-modeling framework successfully 462 

captured experimentally observed temperature regulation of different nitrogenase enzymes. 463 

Going froward, this ME-model can be used as a powerful platform to further characterize 464 

different features of R. palustris metabolism. Specially characterizing a complete profile of 465 

environment specific isozyme expressions and optimal protein allocation. Furthermore, this ME-466 

model can be used to design and fine-tune mutants of R. palustris for metabolic engineering 467 

purpose. One such application can be to produce PHB, a bioplastic precursor, which has 468 

potential to replace petroleum-based plastics. Under anaerobic-photoheterotrophic growth of R. 469 

palustris, PHB can work as an electron sink (7). Our previous effort (7) successfully established 470 

three design strategies to select the ideal lignin breakdown products (LBPs) for commercial PHB 471 

production from R. palustris. This ME-modeling framework can be further used to gain similar 472 

regulatory insights, as discussed in this paper, on how electrons are distributed in PHB producing 473 

pathways when different LBPs are used as substrates. 474 

MATERIALS AND METHODS: 475 

ME-model of R. palustris: 476 

In addition to the metabolic reactions from the M-model, ME-model consists of translation and 477 

transcription reactions along with metabolic reactions (FIG 9). In order to model transcription 478 

and translation reaction, GPR association of each reaction is required. The initial GPR 479 
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association was collected from literature (59). Later that GPR association was manually curated 480 

using the detail genome annotation from literature (2). 481 

  482 

FIG 9 R. palustris ME-model reconstruction. In the M-model, only metabolic reactions are incorporated to 483 

perform genome-scale metabolic modeling. However, in the ME-modeling framework, transcription and translation 484 

process are also incorporated, adding two separate layer of regulation for metabolic reaction. Each layer of 485 

regulation are coupled with the biomass growth through catalytic turnover rate and the biomass growth. This process 486 
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is known as coupling and the coupling parameter is in the form of �

����
, where � indicates the growth rate and ���� 487 

indicates the catalytic turnover rate for that. 488 

This GPR association can be accessed in supplemental material Table 3. The overall ME-model 489 

reconstruction procedure was conducted in accordance to the COBRAme protocol (49) which is 490 

summarized in FIG 2. The ME-model is a multi-scale model; hence it requires the addition 491 

of coupling constraints to relate different cellular processes to each other. The coupling 492 

constraints are in the form of �

		
�
. Here � is the growth rate and ���� approximates the effective 493 

turnover rate for the different macromolecules. Detailed mathematical description for �

		
�
 of 494 

different macromolecular process and values of different parameters can be found in the 495 

supplemental material Text S1 and in the original COBRAme protocol (49). 496 

To calculate ���� for different enzymes, a mean ���� value of 65 ��� was used, which was 497 

reported for the E. coli in another ME-modeling framework (31). This mean ���� was modified 498 

for each enzyme based on the solvent accessible surface area (SASA), following the same ME-499 

modeling framework (31). SASA can be defined as is the surface area of an enzyme that is 500 

accessible to a solvent. Also, a previous study (68) reported a correlation between SASA and 501 

molecular weight of the enzyme as following: 502 

����   �!"#�
$#	% &���'� "( �'� �)*�!��


�  … �1� 

Overall, the following equation was used to calculate ����,
����
 for each enzyme, based on the 503 

mean turnover rate (����,�
��), mean SASA (�����
��), and SASA for the specific enzyme 504 

(����
����
). 505 

����,
����
    ����,�
�� , ����
����


�����
��

 … �2� 
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For transcription reactions, RNA polymerase is needed to produce the required mRNA for the 506 

protein production. RNA polymerase of R. palustris consists of five subunits: two alpha (.) 507 

subunits, a beta (/) subunit, a beta prime subunit (/�), and a small omega (0) subunit (69). In the 508 

model each individual subunits were synthesized to form the RNA polymerase. Later, these 509 

RNA polymerase transform different nucleotide to mRNA. 510 

For translation reactions, ribosomal RNA is required to transform amino acids into different 511 

proteins. R. palustris utilizes 70S ribosomes, each consisting of a small (30S) and a large (50S) 512 

subunit (70). The large subunit is composed of a 5S RNA subunit (120 nucleotides), a 23S RNA 513 

subunit (2900 nucleotides), and 31 proteins. The small subunit is composed of a 16S RNA 514 

subunit (1542 nucleotides) and 21 proteins (70). It was also assumed that tRNA charging of 515 

amino acid to the ribosome was not a rate limiting process in the translation reaction. Hence no 516 

macromolecular synthesis of tRNA was included in the model. 517 

For each transcription or translation reaction in the ME-model, an amount of a biomass protein 518 

and biomass mRNA were produced with a stoichiometry equal to the molecular weight (in kDA) 519 

of the protein or mRNA being made. FIG 9 shows an example of this where the translation 520 

reaction produces both the catalytic protein as well as the biomass protein. Similarly, the 521 

transcription reaction produces mRNA required for the protein synthesis and also biomass 522 

mRNA requirements. The biomass protein and mRNA participate in the ME-model biomass 523 

dilution reaction, restricting the total biomass components production equal to the rate of 524 

biomass dilution. 525 

Transcription and translation reactions were included for all reactions for which GPR are 526 

available. For remaining pathways, an enzyme was used with an average length of 283 amino 527 

acids and molecular weight of 31.09 kDA. 528 
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To capture the differential expression of the carbon fixing isozymes, a constraint was added to 529 

the ME-model to account for the co-expression of both rubisco form I and form II as follows: 530 


������� �   12 3 
���
4 �

����

3 
���,�
�
5 , ����,������� �

����,������� ��

… �3� 

In equation (1), 
������� � represents the expression of rubisco form I, which is a function of 531 

carbon dioxide generation 6∑ 
���
8, growth rate ���, theoretical maximum growth rate ������, 532 

carbon dioxide generation at theoretical maximum growth rate 6∑ 
���,�
�
8, and effective 533 

catalytic rate of rubisco form I 6����,������� �8 and rubisco form II 6����,������� ��8. 534 

For each of the substrate, the total ATP production by the ME-model was capped according to 535 

the following equation proposed in the literature (7): 536 


����
�  
����

��

9����

�

9����
��
  . . . �4� 

Here “S” and “ace” refer to different substrates and acetate, respectively.  Also, 9����
�  and 9����

��
  537 

refer to the photosynthetic yield of different substrates and acetate respectively. Photosynthetic 538 

yields for different substrates are collected from literature (7). 539 

Accuracy calculation in the validation study: 540 

In the validation study, using the ME-model, aerobic growth of R. palustris was simulated with 541 

p-coumarate and succinate as sources of carbon and �;<����=� as a sole source of nitrogen. 542 

From the ME-model, fluxes of transcriptomics and proteomics reactions were calculated for both 543 

carbon sources. Considering the transcriptomics and proteomics reaction fluxes for succinate 544 

uptake as the baseline condition, fold changes for all the gene expression and protein was 545 

calculated for p-coumarate uptake. If the fold change is greater than 1, it was noted as 546 
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upregulated. If the fold change is less than 1, it was noted as downregulated. Once the 547 

upregulated/downregulated fold changes of transcription and translation reactions were 548 

calculated, that fold changes were compared with the literature (34). If both fold changes, from 549 

the ME-model and the experimental study, showed same direction (upregulated or 550 

downregulated) of fold change, then the prediction is correct. Otherwise the prediction is 551 

incorrect. Accuracy was then calculated as a percentage between correct prediction and total 552 

predictions. 553 

Simulation tools and software: 554 

The General Algebraic Modeling System (GAMS) version 24.7.4 with IBM CPLEX solver was 555 

used to run pFBA algorithm on the model. The algorithm was scripted in GAMS and then run on 556 

a Linux-based high-performance cluster computing system at the University of Nebraska-557 

Lincoln. 558 

SUPPLEMENTARY MATERIALS 559 

Supplemental material is available online only. 560 

FIG S1-S4, PDF file, 0.01 MB. 561 

TABLE S1, DOCX file, 1.7 MB 562 

TABLE S2, DOCX file, 0.05 MB 563 

TABLE S3, DOCX file, 0.2 MB 564 

TEXT S1, DOCX file, 0.03 MB 565 
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All the codes used in this work can be found in the following GitHub directory: 567 

https://github.com/ssbio/palustris_ME_model 568 
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