
13

QID: Robust Mobile Device Recognition via a Multi-Coil
Qi-Wireless Charging System

DELIANG YANG, Michigan State University, USA
GUOLIANG XING, The Chinese University of Hong Kong, China
JUN HUANG, City University of Hong Kong, China
XIANGMAO CHANG, Nanjing University of Aeronautics and Astronautics, China
XIAOFAN JIANG, Columbia University, USA

Recent years have witnessed the increasing penetration of wireless charging base stations in the workplace
and public areas, such as airports and cafeterias. Such an emerging wireless charging infrastructure has pre-
sented opportunities for new indoor localization and identi!cation services for mobile users. In this paper,
we present QID, the !rst system that can identify a Qi-compliant mobile device during wireless charging
in real-time. QID extracts features from the clock oscillator and control scheme of the power receiver and
employs light-weight algorithms to classify the device. QID adopts a 2-dimensional motion unit to emulate
a variety of multi-coil designs of Qi, which allows for !ne-grained device !ngerprinting. Our results show
that QID achieves high recognition accuracy. With the prevalence of public wireless charging stations, our
results also have important implications for mobile user privacy.
CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and
tools; • Computer systems organization→ Sensor networks;
Additional Key Words and Phrases: Qi wireless charging, device recognition, real-time processing
ACM Reference format:
Deliang Yang, Guoliang Xing, Jun Huang, Xiangmao Chang, and Xiaofan Jiang. 2022. QID: Robust Mobile
Device Recognition via a Multi-Coil Qi-Wireless Charging System. ACM Trans. Internet Things 3, 2, Article 13
(March 2022), 27 pages.
https://doi.org/10.1145/3498904

1 INTRODUCTION
Recent years have witnessed the increasing penetration of wireless charging base stations in pub-
lic areas like o"ces, restaurants, and airports, etc. [13]. There is also a trend to embed wireless
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charging base stations in furniture like desks and tables [10, 43]. It is estimated that nearly 600
million wireless charging devices were shipped during the year 2018 [37]. This emerging wireless
charging infrastructure has presented new opportunities for precise user localization, where the
base station learns the location and identi!cation of the mobile device being charged. A number
of di#erent wireless- or ultrasonic-based approaches have been proposed for indoor localization
[27, 30, 44, 47, 50, 54, 57, 58]. Designed for providing continuous location of a moving user, they
often incur signi!cant overhead, e.g., due to the need of large-scale wardriving for collecting !ne-
grained signal !ngerprints. In this work, we exploit wireless charging for a speci!c application sce-
nario, where the user stays right next to the wireless charger, waiting for the phone to be charged.
Therefore, the wireless charger localizes a mobile phone by simply referring to the already-known
location of the registered charger.

Pervasive wireless charging stations provide high localization accuracy and high reliability at
low deployment cost, which will enable a wide range of applications. For instance, a co#ee shop
may recognize its customers when they charge their phones on the co#ee table, and provide cus-
tomized services or location-based advertisements. For another example, when users charge their
phones on the table instrumented with wireless charging during a meeting or lecture, the precise
sitting positions of the users can be determined, which enables interesting interactions such as
sharing documents in an ad-hoc group, sending instant messages, or exploring nearby people [33].
In addition to mobile device localization, the popularity of wireless charging infrastructure also
provides opportunities for user authentication. For instance, a paid wireless charging service may
use the charger to identify the phone and process the payment automatically. Similar applications
can be achieved by using RFID or QRCode, but leveraging the fast-growing wireless charging
technology adds a new solution to them, without changing the user’s natural behaviors during
the authentication process.

To leverage the wireless charging infrastructure for user localization and identi!cation, a key
challenge is to reliably identify the wireless charging unit of mobile devices. Unfortunately, unlike
network interfaces such as Wi-Fi and Bluetooth that have unique and !xed hardware addresses, the
wireless charging unit of commercial o!-the-shelf (COTS) mobile devices typically does not
have a !xed hardware ID. For instance, according to the Qi standard [55], the identity of a power
receiver is de!ned by a Basic Device ID, which can be a software-generated random sequence that
may change each time the power receiver is booted.

In this paper, we present the design, implementation, and evaluation of QID – the !rst practical
system that reliably identi!es Qi-compliant mobile devices based on the hardware !ngerprints.
Speci!cally, QID augments the standard-compliant wireless charging base station to extract fea-
tures from the oscillator, coil, and controller of a Qi-compliant power receiver, while requiring no
retro!tting or modi!cation to existing Qi-compatible mobile devices. QID employs a 2-D motion
controller to emulate the coil array in the Qi reference design (described in Section 3) and regu-
lates the inductive coupling between the power transmitting and receiving coils, which allows for
!ne-grained !ngerprinting of the power receiver while optimizing the e"ciency of power trans-
fer. Experimental results based on 52 Qi-compatible devices show that QID achieves an overall
identi!cation accuracy of up to 89.7%, with an average of 85.3%. QID is currently evaluated with a
relatively small number of devices. It is proven to be ideal for the application scenarios where the
device number is restricted, such as museum guiding device recognition or device authentication
and control in an o"ce environment. We note that the device brands and models distributions in
public are not fully studied, so applying QID to wireless charging stations in public areas such
as airports and shopping malls awaits further research. We leave this part to our future works.
Our results also have important implications for user privacy. With the increasing prevalence of
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wireless charging stations in public areas, how to prevent the leakage of user’s location opens up
new research questions.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 introduces
the background of the Qi speci!cation. Section 4 presents the challenges and the overview of the
QID design. In Section 5, we describe our QID sensor design for device !ngerprint acquisition.
Section 6 presents the QID motion control design. Section 7 discusses the feature selection and
classi!cation at the server side. The implementation and the evaluation results of the QID are
discussed in Section 8 and Section 9. Finally, we conclude this paper and discuss the future work.

2 RELATED WORK
Device identi!cation has been studied for a wide range of communication systems. The existing
techniques can be broadly classi!ed into three categories. One category uses the !ngerprints of
the RF signal introduced by hardware imperfection of frequency generator on the devices. The
next category uses temporal features, i.e., the clock skew introduced by the minor di#erence in
the oscillator among the devices. The clock skew mainly a#ects the time interval of the transmitted
packets. The last category utilizes the sensor hardware !ngerprints on mobile devices. Besides the
device identi!cation, we brie$y compare QID with other localization methods and motion-assisted
cyber-physical systems. Finally, we discuss previous work that enables applications using wireless
charging infrastructure.
RF Signal Fingerprinting. PARADIS [9] identi!ed the source network interface card (NIC)
of an IEEE 802.11 frame through passive radio-frequency analysis. Speci!cally, it uses I/Q origin
o#set, frequency error, and SYNC correlation to distinguish the devices. Caraoke [2] separated de-
vices by their carrier frequency o#set di#erences to avoid wireless collisions in an e-toll transpon-
der network. Similarly, Danev et al. [16] achieved wireless sensor recognition using RF transient
characteristics. Eletreby et al. proposed Choir [20], a system that disentangles collisions in LoRa
LP-WAN by distinguishing the sensor nodes using their time, frequency, and phase o#sets caused
by hardware imperfection. However, these techniques cannot be applied to wireless charging, be-
cause extracting the !ngerprints of RF signals often requires expensive equipment. For example,
[9] used an Agilent 89641S vector signal analyzer to capture the error vectors in the IQ plane.
Moreover, wireless charging adopts resonant coupling to transfer energy, where both the carrier
frequency and amplitude are variable, which makes it impossible to infer the device identity using
the RF signal in wireless charging.
Clock Skew Fingerprinting. Kohno et al. [29] used the TCP timestamp option to estimate a
device’s clock skew. Similarly, Cristea and Groza [15] studied how to !ngerprint smartphones
remotely via the Internet Control Message Protocol (ICMP) timestamp response. While these
two studies focused on tra"c and driver-level signatures, other systems explored hardware-level
features to distinguish devices. Huang et al. [26] used temporal features of Bluetooth baseband
embedded in the chipset !rmware to !ngerprint Bluetooth devices. However, one key di#erence
between these scenarios and wireless charging is that the clock skew !ngerprints of the mobile
device is heavily dependent on the device placement. Moreover, the placement of the device on
the charger pad is unpredictable, which casts signi!cant di"culty in building a precise model for
each device. We will further discuss the challenges in detail in Section 4.
Sensor Fingerprinting. Another device identi!cation technique uses !ngerprints in the sensors,
such as acoustic sensor [6, 17], camera [22, 51], and inertia sensor [18, 60]. For example, Das et al.
[17] utilized manufacturing imperfection in the microphone and speaker to distinguish di#erent
mobile devices using classical machine learning algorithms. Valsesia et al. [51] proposed a com-
pressed camera !ngerprint algorithm to reduce the complexity in feature computation and storage
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requirements, improving the device recognition performance using photoresponse nonuniformity.
Zhang et al. [60] utilized per-device inertial sensor factory calibration data, embedded inside a mo-
bile device !rmware, to extract !ngerprints. Das et al. [18] performed an in-depth study on device
recognition using combined features extracted from accelerometer and gyroscope sensor streams
with machine learning techniques. Although these methods may achieve acceptable accuracy, they
require reading the data or sensor samples from the phone directly, which can be intrusive.
Localization. A major application of our system is to identify and localize mobile devices. Previ-
ous localization systems are based on GPS, angle of arrival (AoA) [23, 58], time of "ight (TOF)
[34, 44, 52], received signal strength (RSS) [4, 59], ultra wideband (UWB) [31, 46], and mul-
tipath signal aggregation [53]. Wireless charging-based localization is similar to landmark-based
approaches such as WiFi AP or Cell-IDs [49], where the location of the charger (access point) is
already known or registered. In this manner, the location of the mobile device can be acquired im-
mediately after the users put the phone on the charging station. Such a user-initiated localization
approach is highly precise. While Cell-ID-based methods usually have an error of up to tens or hun-
dreds of meters, wireless charging infrastructure-based localization can achieve centimeter-level
accuracy. Wireless charging-based localization is also robust compared to AoA/TOF/RSS-based
methods because the location of the former is not a#ected by the dynamics of wireless systems
like signal strength.
Motion-Assisted System Augmentation. Many sensing systems are augmented with the as-
sistance of motion control. Graefenstein et al. [24] used a rotating antenna on a mobile robot to
localize wireless sensor node based on RSSI. They improved the robustness of the measured RSSI
and increased localization accuracy. Similarly, Malajner et al. [36] employed a stepper motor to
rotate the antenna array to estimate the angle of signal arrival (AoA) of the RF transmitter,
achieving low cost and high accurate AoA estimation. Chou et al. [11] added a rotating four-bar
linkage to a mobile platform to extend the 2D laser range !nder to support 3D environmental
sensing and mapping. Although motion platform has been applied to various sensing systems, to
the best of our knowledge, this idea has not been adopted by wireless charging systems. We will
show in Section 9.3 that, with the assistance of a 2-D motion platform, we improve the device
recognition accuracy substantially.
Application Based on Wireless Charging Infrastructure. In our previous work, we have de-
veloped QiLoc [33], a system that extracts the software ID of the charging device and localizes
its location based on the known deployment location of the charging station. Comprehensive API
is provided to implement location-based service, occupancy analysis, and authentication. It also
provides API for location-based services, occupancy analysis, and authentication. However, ac-
cording to the Qi standard [55], the identity of a power receiver can be a software-generated ran-
dom sequence that may change each time the power receiver is booted. Thus, the !ngerprinting
techniques presented in this paper can be integrated with QiLoc to provide a reliable localization
service. Lu et al. [35] proposed a wireless charging network architecture, where multiple wire-
less chargers communicate with the server or adjacent wireless chargers to provide pay-per-use
charging service. However, device recognition during charging is not studied in [35]. Although
their work envisions potential wireless charging applications, they did not consider the situation
where the software ID is unreliable. Our paper focuses on how to accurately recognize the device
under Qi wireless charging with reliable hardware features.

3 BACKGROUND
Qi is an open standard that de!nes wireless power transfer over short distances. A typical Qi
system consists of a power transmitter (PTx) installed on a Qi base station and a power receiver
ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 13. Publication date: March 2022.
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Table 1. PRx Timing Constraints During the Qi Power
Transfer Phase

Parameter Symbol Target (ms) Max (ms)
CEP Interval tinterval 250.0 350.0
RPP Interval treceived 1500.0 4000.0

Fig. 1. Operating points collected in an experiment by manually changing the mobile device placement.

(PRx) attached to or installed in a Qi-compliant mobile device. The PTx comprises a transmitting
coil, called Primary Coil, which generates an oscillating magnetic !eld, that induces an alternating
current in the receiving coil, namely the Secondary Coil, of the PRx. The PRx communicates with
the PTx via backscatter modulation of the current draw, and primarily sends two types of messages
to optimize the power transfer. The control error packet (CEP) carries an integer that indicates
the di#erence between the desired power level and the received power level. The received power
packet (RPP) reports the average level of power received in the past period. Throughout the
process of charging, CEPs and RPPs are transmitted periodically. Table 1 shows the CEP and RPP
intervals speci!ed by the Qi standard. Based on the information in CEPs and RPPs, the PTx adjusts
the carrier frequency and amplitude of the primary power signal to optimize the coupling between
the coils of PTx and PRx. The combination of the carrier wave frequency and amplitude is de!ned
as the operating point. Figure 1 exempli!es a set of operating points collecting in an experiment.
When the phone position changes, the coupling between the PTx and PRx coils varies, such that
the PRx informs the PTx with CEPs to regulate the wireless power output. Then, the wireless
charging adapts to a new operating point eventually. We note that, if the phone placement remains
unchanged, the corresponding operating points will aggregate around a speci!c small region in
Figure 1.

Qi speci!es multiple reference receiver and coil designs [56]. Figure 2 exempli!es one of the
available designs and Samsung Galaxy S3 that supports attachable Qi-compatible PRx modules. It
has a pair of terminals (+5V and GND) that connects to the output of the PRx. In such a design, the
PRx is an independent module and does not communicate with the phone. The attachable PRx
modules provide the wireless charging capacity to those devices that originally do not ship with
the wireless power receivers. In this work, we assume each such module represents a user identity,
since the Qi power receiver is an independent component (either attached outside or pre-installed
inside). It outputs a stable current at 5 V for charging with its maximum capacity most of the time
regardless of the device form factors.
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Fig. 2. An a!achable Qi-compatible power receiver for Samsung Galaxy S3.

In addition to the PRx design, Qi also speci!es more than 30 Type A and 7 Type B PTx designs,
where type A designs have one or more Primary Coils but only one of them can be activated at a
time, while type B designs support an array of Primary Coils and one or more Primary Coils can
be activated to provide wireless power to multiple PRxs simultaneously. Figure 4 [12] shows two
examples of the multi-coil chargers. Compared to the single-coil designs, multi-coil PTx enlarges
the possible coupling area with the PRx, thus providing more $exibility in the device placement.
As a result, the coil array PTx designs become more prevailing on the market.

Qi also supports a serial number of at least 20 bits, also known as the Basic Device ID. However,
a PRx can also use a random number generator to dynamically change the Basic Device ID, so
that every time the user puts the mobile device onto a PTx, the Basic Device ID updates. Such
a random ID invalidates device ID-based applications, which inspires us to design a system to
identify a device using its hardware !ngerprints.

4 DESIGN CHALLENGES AND SYSTEM OVERVIEW
4.1 Design Challenges
In this work, we choose the PRx temporal and control scheme features of the charging process to
identify the mobile device, which include CEP time intervals and values. As discussed in Section 3,
these features can be easily extracted from any Qi-compliant device, which ensures the compati-
bility and easy deployment of our system. However, the following challenges need to be addressed
due to the intrinsic characteristics of the wireless charging environment.
Noise in temporal features caused by power transfer. The wireless power transfer happens
in the rapidly-changing high power electromagnetic !eld between the two coupling coils, casting
more noise than typical RF wireless systems. For instance, as shown in Figure 3(a)(1), the measured
packet intervals have signi!cant $uctuations. The standard deviation of the CEP time interval is
more than 4.4 ms, corresponding to 1.7% error, which makes it di"cult to distinguish between
di#erent charging devices.
Undesirable stable operating point. Qi wireless charging has a well-designed feedback control
loop. The wireless power transfer process is usually stabilized at an operating point within hun-
dreds of milliseconds (3 to 5 CEPs). Although this is a desired feature in terms of maintaining high
charging e"ciency, it brings a major challenge in recognizing the target device. Figure 3(a)(1) and
Figure 3(b)(1) show the experimental result of such a scenario, where the phone remains stationary
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Fig. 3. Examples of feature acquisition in three configurations: (1) stationary PRx; (2) PRx position changed
during charging; (3) QID is enabled.

Fig. 4. Examples of the multi-coil PTx designs in Qi.

on the charging pad. As shown, the selected features, both the CEP time interval and CEP values,
remain unchanged during the charging process, which eventually raises the recognition error rate.
Unconstrained device placement. The third challenge, the most di"cult one in our case, is that
the selected features are dependent on the phone placement. In other words, if the user alters the
PRx position, the feature values can change dramatically. Figure 3(a)(2) and Figure 3(b)(2) demon-
strate how the CEP time interval and control error value change with respect to the phone place-
ment. During the measurement, after we rotate the phone with a random angle, the CEP time inter-
val decreases from about 250 ms to 160 ms, and the Control Error value increases dramatically from
0 to 30. In a real-world scenario, the placement of a mobile phone is often unpredictable. As a result,
the errors are accumulated over time, which eventually renders the recognition unsuccessful.

4.2 System Overview
We now provide an overview of the QID system. The system architecture is shown in Figure 5. It
consists of three components, namely an o#-the-shelf Qi wireless charger, the QID sensor, and the
QID server. The QID sensor is responsible for collecting a selected set of features from wireless
charging and uploading the data to the server, while the QID server is responsible for the feature
extraction and device classi!cation. The QID server can connect to the QID sensor directly (e.g.,
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Fig. 5. The system architecture of QID. It consists of QID sensor and QID server. QID sensor is responsible
for controlling the motion of the charger coil, capturing the signal from the wireless charger, as well as
sending the timestamped packets to QID server. QID server extracts the features from the packet sequence
and classifies the device.

through UART) or it resides on the cloud and communicates with multiple QID sensors through
the Internet, enabling tracking the target device at di#erent charging locations.

The QID sensor can work with most Qi-compliant chargers. It only requires minor modi!cation
to the charger pad circuits. What QID sensor needs from a Qi-compliant charger is a test pin that
outputs the !ltered data bit $ow. We note that such a DATA pin is indispensable for the Qi charging
system because the PTx requires feedback from the PRx. Reading data $ow from the pin does not
a#ect the operation of the Qi charging system. Therefore, thanks to the minimal modi!cation
requirement, QID can be easily integrated with o#-the-shelf Qi chargers. After connecting the test
pin and mounting the charger coil to the QID sensor, the platform is ready for device !ngerprinting.
The QID sensor consists of a motion control hardware component and a software component for
feature collection. The design of the motion unit is discussed in Section 6. The motion unit hosts
the charging pad and moves it according to a certain pattern, within a range of 10 cm. This allows to
!ngerprint PRx dynamically at di#erent relative positions between the PTx and PRx coils, resulting
in higher identi!cation accuracy. We note that the motion unit is connected to a separate control
module, and it does not require a wired connection with the charger itself. As a result, it can be
integrated with any o#-the-shelf charger easily.

The motivation for adopting the motion unit is two-fold. First, it can be easily integrated with
single-coil chargers and improve the performance of classi!cation accuracy as well as power de-
livery. Second, it can emulate many emerging new chargers with multi-coil Qi-compliant power
transmitter design [12, 28, 39]. As described in Section 3, each coil on such transmitter is con-
trolled by an individual switch or a separate bridge. The PTx can select the optimal coil to de-
liver the wireless power to the PRx. Thus it enlarges the coupling area between the PTx and
PRx and provides more $exibility in the device placement. Despite these advantages, it is di"-
cult to exploit the multiple coils of Qi chargers for !ngerprinting in practice, since there exists
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a large number of heterogeneous designs as speci!ed by Qi [56]. To address this challenge, the
QID sensor extends the design of the physical coil array to a mobile coil by equipping the pri-
mary transmitter coil with a motion unit. Such a design e#ectively emulates a variety of di#erent
multi-coil designs of Qi, while it tackles the design challenges mentioned in Section 4.1 for the
following reasons. First, the noise within the temporal features can be controlled and even !l-
tered out in post-processing, because the !ngerprints are collected from multiple coil locations,
a more complete device pro!le can be built. Second, the wireless power transfer process to hop
between di#erent operating points when the charging coils are switched. Thus, we can infer the
PRx control scheme from the transient states between the operating points, which can be used
to di#erentiate di#erent Qi modules. Finally, the feature uncertainty caused by the phone place-
ment can be essentially mitigated because the coil array covers a range of device positions on the
charger pad.

In addition to the motion unit, the QID sensor also extracts and timestamps every packet in the
data $ow. A challenge in the design is to ensure the PRx is correctly located and measured. The
details of the QID sensor are discussed in Section 5. The last component, namely the QID server,
reads all the data sent by the QID sensor. As the packet is in byte representation, the server needs
to parse each !eld in the packet. Then, the server performs feature extraction and classi!cation,
which are discussed in Section 7.

5 FEATURE SELECTION AND ACQUISITION
5.1 Selecting Hardware Fingerprints
To reliably identify Qi-compliant devices, QID leverages hardware !ngerprints extracted from
the following three PRx components. The selected !ngerprints should be device-speci!c, time-
invariant, and discriminative. We note that although QID is able to sense many of the analog
signals, such as current magnitude, carrier wave frequency, and duty cycles, we are not going
to employ them as recognition features. These analog features exhibit signi!cant variance as the
operating point changes, such that the feature values largely overlap between di#erent devices,
defying the success in the device identi!cation.
Onboard oscillator. The PRx controller chip of Qi utilizes an internal oscillator to generate the
clock signal. It is well known that oscillators have distinctive drifts due to factors like hardware
manufacturing variations [15, 26, 29]. We thus exploit the drift of the PRx oscillator as a feature
to identify the device under charging. For example, Panasonic AN32258A [41], a commercially
available Qi receiver IC, utilizes an internal oscillator. NXP MWPR1516 [40] also uses an internal
Low Power Oscillator (LPO) as the clock source. We note that the Qi receiver ICs typically have
low clock accuracy as they are not designed for data communication. For instance, the receiver
IC NXP MWPR1516 has a clock accuracy tolerance of as high as ±5%; Rohm BD57011AGWL data
sheet [45] also indicates that the driving frequency of the communication signal is between 1.92
and 2.08 kHz, which corresponds to a 4% frequency error tolerance. In comparison, the clock fre-
quency tolerance is ±50 ppm for Bluetooth [5] and ±40 ppm for Zigbee [1]. Therefore, the clock
drifting e#ect of Qi is highly device-dependent and much more signi!cant than other wireless
communication systems. Although drift variations like this can be used to di#erentiate di#erent
devices, it is di"cult, if not impossible, to directly measure the clock drifts in COTS devices. Our
key observation is that the Control Error Packet (CEP) time interval yields high variance among
the devices around the target value speci!ed in Qi (see Table 1). Figure 6 shows that the CEP time
interval distribution of 42 devices spans a range of (238, 270) ms in the time domain. Therefore,
the PRx oscillator can be inferred and !ngerprinted by measuring the period drift of the control

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 13. Publication date: March 2022.



13:10 D. Yang et al.

Fig. 6. The scaled and zero-meaned CEP time interval distribution of 42 evaluated devices. The first le!ers
of the devices represent the brands of the receivers, while the following digit represents the specific label
in its brand. The error bar shows the standard deviation of the CEP time interval. The corresponding actual
time interval spans a range of (238, 270) ms.

Fig. 7. Heterogeneous power receiver coils. The size and shape of the coils result in di"erent contact range
mean and standard deviation.

packets. However, some devices, for example, “A2” and “C2”, or “F6” and “F7”, yield close CEP time
interval values.
Receiving coil. Di#erent Qi-compliant devices may have di#erent coil shapes, diameters, and
layouts. Generally, a larger PRx coil has a larger contact area between the PRx and the PRx coils,
leading to more $exibility in placing the device. In our scenario, the receiving coil diameter can be
!ngerprinted based on the area that the PTx interacts with the PRx. Figure 7 exempli!es di#erent
!ngerprints extracted from heterogeneous PRx coils. It can be a determinant for device brand, but
not a good indicator of a speci!c device because it is almost identical among the same type of
device. We discuss in detail how to measure the contact range of the PRx coil in Section 6.2.
PRx controller. The Qi standard does not specify the exact period of control packet transmission.
We observe that the periods of the CEPs do di#er across devices of di#erent manufacturers. Such
vendor-dependent controller implementations can be exploited as a !ngerprint to di#erentiate
devices from di#erent manufacturers. For example, Texas Instruments bq51013B [48] sends the
CEPs with an interval of 240 ms, while Panasonic AN32258A sends the CEPs at a period of 160 ms.
This feature is not related to clock error but a value chosen at design time by the manufacturer.
Intuitively, determining the IC manufacturer improves the recognition accuracy by narrowing the
categories of the devices. In addition to the packet period, the value carried in the CEP is also
speci!ed by the receiver IC manufacturers. For example, we observe that the maximum control
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Fig. 8. Temporal Feature Acquisition. Each packet is decoded and timestamped by the microcontroller
(MCU).

error value sent by brand “C” devices is 30, while the brand “Z” devices can send the control error
values as high as 80. Therefore, it is another feature that may distinguish the device brand.

5.2 Temporal Feature Acquisition
We now discuss how the QID sensor collects temporal features of Qi packets. Figure 8 illustrates
such a procedure. First of all, to decode the bits, the QID sensor uses a timer to measure the width
of each pulse. As the data sent by the PRx is encoded with a di#erential bi-phase scheme, we can
convert the pulse widths to bit values. Then, the decoded bits are then grouped into bytes.

A Qi packet consists of preamble, header, payload, and checksum. Next, the QID sensor times-
tamps the packet after the 11th bit in the preamble phase of each packet. The corresponding packet
time interval is then the di#erence between two consecutive timestamps. As described in Section 3,
the Qi protocol de!nes two types of packets that have !xed time intervals. QID sensor mainly ob-
serves and analyzes the CEP time interval to infer the PRx oscillator because the CEP is the most
frequent type of packet that is sent during the wireless charging process. Even if a packet is cor-
rupted due to decoding errors, its timing information is still valid if only the packet interval is in
the desired range. Finally, the timestamped packets are transmitted to the QID server for further
processing.

6 QID MOTION CONTROL
6.1 Motion Platform Design
In this subsection, we present the mechanical design to enable the movement of the charger coil,
as illustrated in Figure 9. It requires two linear slides powered by a stepper motor individually.
First, the bottom slide is !xed on a surface. Next, the upper slide is placed with its axis direction
perpendicular to that of the bottom one. The upper one is attached to the bottom one’s slider.
Finally, the charger coil is attached to the slider of the upper linear slide. The two stepper motors
are controlled independently to drive the coil in an X-Y plane to form a mobile coil. It thus allows
for more $exibility in the PRx placement. The user can place the device at any location and any
angle in the designated area. Correspondingly, we de!ne the axes of the bottom slide and the upper
slide as the x axis andy axis, respectively. As the lengths of the two slides are the same, the working
space of the PTx coil is de!ned as a square area. Our measurement results indicate that the motion
platform can achieve a control accuracy up to 0.2 mm, which is adequate to emulate heterogeneous
PTx coil designs. We envision that the QID motion platform can enable other applications, such
as locating the PRx and searching for the optimal charging operating points, which are critical for
optimizing the charging e"ciency [55]. We leave these applications for future work.
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Fig. 9. Mechanical design - the charger pad is controlled by two stepper motor linear slides, moving in a 2-D
surface.

6.2 QID Sensor Motion Control
In this subsection, we discuss the control schemes for the proposed QID sensor motion platform.

6.2.1 Contact Area Boundary Detection. The detection of the PRx boundary allows for better
coil movement control. For example, the stepper motor can adapt to a higher speed if the PRx is
out of the contact range, or the trajectory can be optimized to avoid unnecessary moves, such that
the total time needed for collecting su"cient features can be reduced. The QID sensor utilizes a
timer to detect the contact boundary. Each time the QID sensor receives a new packet, it reads the
real-time timer (RTT) to update a value tlast . In the meantime, the QID sensor reads the RTT
with a period of 10 ms to fetch the current time tn and compares it with tlast . Then the condition
that the PRx is out of the contact range is given by:

tn > tlast +Tt imeout ,

where Tt imeout is the allowed time that the PRx does not send any feedback. We choose Tt imeout
to be 350 ms, which is the maximum CEP time interval in the Qi standard, as presented in Table 1.
If the condition is met, the QID sensor determines that the PRx loses its contact with the PTx.

6.2.2 PRx Symmetric Axis Alignment. Next, we discuss how the QID sensor !nds the symmetric
axis of the PRx coil along the y axis. Finding the symmetric axis is important because it is the
reference for the !ngerprinting trajectory.

We assume that the device is in the contact range once the user puts it on the charger pad. The
PRx symmetric axis alignment is achieved as follows. In the beginning, the PTx coil moves along
the positive direction of they axis until it is out of the contact range. Next, it moves to the negative
direction of both x andy axis, reaching the starting point shown in Figure 10(a) (upper left corner).
From there, the coil starts to move in an “S” pattern and sweeps across the PRx coil four times,
generating a sequence of the detected boundary [x0,x1, . . . ,x7]. Then the x value of the symmetry
axis is

xcenter =
1
8

7∑

i=0
xi
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Fig. 10. Trajectory design of the QID sensor.

Finally, the PTx coil is aligned to the xcenter with its y coordinate value right out of the contact
range boundary. This location is the starting point of the coil in the !ngerprinting phase.

We note that, for a multi-coil PTx, this phase can be achieved by switching between the coils
and identifying the one with the highest coupling.

6.2.3 Fingerprinting Trajectory Planning. Now we present the PTx coil trajectory design when
the QID sensor collects !ngerprints from the PRx. We take two factors into account when design-
ing it. On the one hand, it is crucial to ensure the QID sensor captures adequate data from the PRx
in the multi-coil array, such that QID records the complete feature pro!le of the PRx. On the other
hand, the more data points are measured, the more time it takes. Typically four or !ve packets can
be collected during one second. If we plan to record 3,000 CEPs, it may take more than 10 minutes
and exceed the time one leaves the phone on the charger pad. Therefore, we need to !nd a trade-o#
between the spatial data diversity and the measurement delay. In our design, we assume that the
PRx will be left stationary on the platform for a time window of at least 90 seconds, such that the
QID sensor captures adequate !ngerprints for device identi!cation.

The designed !ngerprinting trajectory of the QID sensor is shown in Figure 10(b). It comprises
two sessions, namely the forward one and the backward one. During both sessions, the QID sensor
records all the packets sent by the PRx and uploads them to the server. The forward session starts
from the endpoint of the PRx symmetric axis alignment phase. The PTx coil is driven to move
along the positive direction of the y axis. Once it enters the contact range, the coordinate value
ystar t is recorded. In the meantime, the moving speed of the coil is set to a slower speed. It stops
for 1 second each time after moving forward for about 8 mm (corresponding to 40 control units
in Figure 10(b)) to wait for the operating point hopping, which also mimics the coil switching in
an array. Once the PTx loses contact with the PRx, i.e., the PRx is out of the contact range, the
boundary point yend is recorded, which also marks the end of the forward session. The backward
trace is similar to the center alignment one, which is in “S” shape. The major di#erence is that the
distance ∆x between the farthermost point and the symmetric axis is about 10 mm along the x
axis, corresponding to 50 control units. The movement along the negative y direction is divided
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into six sections. Each of them is
∆y =

yend − ystar t

6
At each turning point, the PTx coil stops for 1 second to wait for the operating point hopping.
After the coil reaches the forward session starting point (xcenter ,ystar t ), the !ngerprinting phase
!nishes. We de!ne a complete scan as the completion of both the forward and backward sessions,
and the data collected during this phase are de!ned as a scan sample correspondingly. It is later
post-processed at the QID server.

There are several reasons why such a trajectory is designed. First of all, it covers the central area
of the contact range. Even if the PRx changes its placement angle next time, the central region
still largely remains overlapping. As a result, the two independent scan samples do not deviate
signi!cantly. Second, the distance ∆x is carefully chosen to accommodate di#erent coil shapes
and sizes. No matter how the PRx is placed, the planned trajectory falls within the contact range
for most of the time. The trajectory is also able to tolerate the symmetric axis alignment error up
to about 8 mm (corresponding to 40 control units). Finally, the same location is !ngerprinted for
at most once, as the forward and backward traces do not overlap except the region where the coil
center enters or exits the contact area.

7 FEATURE EXTRACTION AND DEVICE CLASSIFICATION
In this section, we present how the QID server extracts the features from the measured data and
classi!es the features into di#erent device classes.

7.1 Feature Extraction
We note that the contact range diameter of the receiving coil physical feature can be simply cal-
culated as yend − ystar t . The oscillator features and the PRx control schemes require additional
processing to obtain. We discuss them as follows.

7.1.1 CEP Interval Features. The QID server uses a local maximum searching algorithm to
extract the CEP time intervals that represent the feature of the PRx onboard oscillator. First, all
the CEP time intervals are processed with a !xed bandwidth Gaussian kernel density estimator
(KDE). Unlike the histogram, the Gaussian KDE represents the probability of each point in the
feature space with a !xed-variance Gaussian distribution, i.e., the Gaussian kernel, and then
the estimation output is the averaged sum of all the individual kernel probability estimations. The
output of the KDE is actually the probability density function (PDF) of the CEP time interval.

d (t ) = pd f (t ), t ∈ [40, 270] ms
Note that the variable t here is in time domain representation, while the feature values correspond
to the QID sensor controller timer values.

Next, the QID server extracts the CEP time intervals that achieve local maximums in the PDF.
We observe that the CEP time intervals typically fall into three domains, corresponding to [40,
60], [140, 160], [235, 270] ms in time domain (as shown as the three local maxima in Figure 11).
Therefore, it is feasible to !nd the peaks directly without calculating the derivative of the CEP time
interval PDF. Speci!cally, the three domains are denoted as D1, D2, and D3, respectively. Then the
feature CEP time intervals and their corresponding log-probabilities are

tpi = arg max
t ∈Di

d (t ), i = 1, 2, 3.

pLi = logd (tpi ), i = 1, 2, 3.
The detected peaks of eight independent complete scan samples are marked in Figure 11. The

CEP time interval that corresponds to 240 ms in the time domain is shifted to 0. Although some of
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Fig. 11. Gaussian kernel density estimation of CEP time intervals. The le!ers indicate the device brands. The
number indicates each unique device of its brand. The 0 in the horizontal axis corresponds to 240 ms in real
time scale.

the curves appear close to each other in the !gure, their peak-indexed CEP time interval features
actually span a considerable wide range in the feature space, as shown in Figure 6 and the zoom-in
sub-!gure in Figure 11. In the zoom-in !gure, we see that the indexed time interval values have
little intra-class variability and inter-class similarity. For example, although “C3” and “C6” are from
the same brand, their peak indexes deviate from each other with a distance up to 20, while the three
peak indexes of device “C6” are consistent during the three independent scans that are collected
in a wide time span.

7.1.2 CEP Value Features. QID also !ngerprints the controller of a PRx based on the statistic of
the recorded CEP values during a complete scan. What the CEP value di#ers from the CEP time
interval is that the former can only take integer values. We analyze CEP values using probability
mass function (PMF). Speci!cally, we compute the PMF of the CEP values as

p (V ) =

∑N
i=1 1{vi == V }

N

whereV is the absolute CEP value, ranging from 0 to 127, 1{a == b} is an indicator function, and N
is the total number of CEPs in a scan sample. In particular, N is chosen to be one of the CEP value
features because it is an indirect measurement of the frequency that the PRx sends CEPs. As we
note in Section 5.1, it is a PRx controller implementation-speci!c feature rather than the oscillator
drift. We !nd that the PMF of the CEP values is not a good feature, as the PMFs span a wide range
of [0, 127], which introduces high variance in the output features. We also observe that even the
same device may generate di#erent PMFs within di#erent scan samples. To reduce the variance
in the output CEP value features, we further group the CEP values into seven ranges. For each
range, the probabilities of the CEP values within the range are summed up. Speci!cally, the seven
ranges are: 0, [1, 5], [6, 10], [11, 20], [21, 30), 30, (30, 127]. We choose these ranges empirically by
correlating the statistical patterns of the ranges with the device brand.

Table 2 summarizes the features used in classi!cation. These features are collected in both steady
charging states and operating point switching transient states, through which QID extracts the

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 13. Publication date: March 2022.



13:16 D. Yang et al.

Table 2. The List of Features Extracted from a Complete Scan

Feature Group Feature Value Range

Oscillator
feature

Domain 1 CEP interval [40, 60] ms
Domain 1 CEP interval peak log-probability
Domain 2 CEP interval [140, 160] ms
Domain 2 CEP interval peak log-probability
Domain 3 CEP interval [235, 270] ms
Domain 3 CEP interval peak log-probability

Sample time Time needed in a complete scan >0
Contact range The range that PRx interacts with PTx [220, 260] control unit

PRx controller
feature

Number of packets >0
CEP value = 0 frequency [0, 1]
CEP value ∈ [1, 5] frequency [0, 1]
CEP value ∈ [6, 10] frequency [0, 1]
CEP value ∈ [11, 20] frequency [0, 1]
CEP value ∈ [21, 30) frequency [0, 1]
CEP value = 30 frequency [0, 1]
CEP value ∈ (30, 127] frequency [0, 1]

Fig. 12. Comparison of the CEP value frequency for 4 di"erence devices. G0 to G7 correspond to the seven
PRx controller feature frequency range in Table 2.

!ngerprints in the oscillator, coil, and controller for classi!cation. We envision that the PRx con-
troller features can separate the device brand and the oscillator features can then further separate
the devices within the same brand. Figure 12 shows the frequency distribution grouped by the CEP
value range for four di#erent devices. As we can see, di#erent PRx brands exhibit signi!cantly dis-
tinct CEP value preferences during the wireless charging feedback control. Therefore, these PRx
controller features can be used to categorize the device brand e#ectively.

7.2 Classification
The QID server classi!es Qi-compliant devices by an ensemble classi!er, also known as “bagging
classi!er”, comprising of Support Vector Machine (SVM) [7], AdaBoost [21] with decision tree
as weak learner, decision tree classi!er [8], k-Nearest Neighbor (kNN) [14], and Linear Dis-
criminant Classi#er (LDC) [38]. The bagging algorithm in our design utilizes a voting system,
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Fig. 13. Classification process with a bagging classifiers in QID server.

as shown in Figure 13. When three or more classi!ers are outputting the same device label, the bag-
ging classi!er chooses it as the !nal decision. Otherwise, the output of the SVM is chosen because
it has relatively higher accuracy than the other classi!ers. We design this classi!er architecture by
tuning the classi!ers empirically.

The QID server stores all the extracted features and their corresponding device labels in a feature
table. Then it utilizes the repeated random sub-sampling cross-validation, also known as Monte
Carlo cross-validation [19], to split the data into training and testing sets randomly. Finally, the
classi!er models are trained with the training set and validated with the testing set. The mean
and the standard deviation of accuracy from the results of the sub-sampling experiments are
recorded. It is shown [25] that cross-validation evaluation introduces neighborhood bias to the
time-continuous sliding window frame data, which results in overly optimistic model evaluation
estimations. However, in our experiments, each of the samples is collected in a wide span in the
time domain. In other words, all the features extracted from a complete experiment scan are inde-
pendent of each other. As a result, the cross-validation is suitable for our experiments.

The objective of the QID server is focused on classifying the device into one of the known
classes. This design is applicable to the scenarios where the devices are already !ngerprinted. For
instance, a company may register and !ngerprint all the work devices of employees, and then use
QID to track the location of each device. However, QID can be easily extended to recognize new
devices via online learning. For instance, by setting a detection threshold in the classi!er, QID can
identify whether the newly collected sample corresponds to any device that is already recorded.
If the sample’s probability of corresponding to an existing device is low, QID can recognize the
device as a new one.

8 IMPLEMENTATION
In this section, we present the implementation of the QID system. Figure 14 shows a QID sensor
prototype.
QID sensor base station. The base station is the mechanical component of the QID sensor, which
is built on a clear acrylic board. The two stepper motor linear sliders enable the motion along the x
andy direction respectively, with a moving distance of 90 mm each. A switch is added to one end of
each screw, such that the MCU can reset the position each time the system is powered on. Another
clear acrylic board (not shown in the !gure) supported by four nylon hex spacers is the surface that
the mobile device is put on. The cost of the mechanical components is less than $20. Therefore, it
is feasible to be massively deployed in the public area. We note that the dimensions of the motion
unit can be further reduced by adopting other mechanical structures, such as transitional planar
cable-driven movement system [32].
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Fig. 14. A prototype of the QID sensor.

Embedded controller and motor driver. At the center of the QID sensor, the Atmel SAMG53N19
[3] MCU is employed, which is responsible for decoding and timestamping packets, driving the
stepper motors, and sending collected data to the QID server. The MCU supports the UART commu-
nication with the server via a USB virtual COMM port. The motor driver IC is Toshiba TB6612FNG,
which shares the power with the Qi PTx. The peak motor driving current is around 150 to 200 mA,
which is negligible to the Qi wireless charging system because a typical COTS USB charger can
provide a 2000 mA current at 5 V.
Qi-compatible power transmitter. We choose a COTS GMYLE Mini Qi Charging Pad as the PTx,
which is connected to the MCU via a data $ow debug pin. The PTx coil is extended with a pair
of wires, which provides extra $exibility, such that the coil moves without dragging the charger
circuit board around.
The QID server. At the server side, the feature extraction and classi!cation modules are imple-
mented using approximately 1,100 lines of Python codes, including the pySerial UART library
for the QID sensor communication handler and the machine learning library scikit-learn [42]
for classi!cation.

9 EVALUATION
In this section, we present the performance evaluation of QID based on 52 Qi-compliant devices.
We !rst present the evaluation settings and then discuss feature analysis, measurement delay anal-
ysis, classi!cation accuracy, feature backward search, and accuracy breakdown test.

9.1 Evaluation Se!ings
We evaluate 52 Qi-compliant devices in total, including 7 Google Nexus 4 (labeled as “N”) and 45 at-
tachable PRx modules from six di#erent manufacturers, including DigiYes, Hugchg, and RAVPower.
We note that the ICs in these modules are widely used in mainstream mobile devices. For example,
the Texas bq51013B in the DigiYes modules is also adopted by Google Nexus 5. For each device, we
conduct 10 complete independent scans to collect !ngerprints. In total, there are 520 scan samples.
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Fig. 15. Point cloud illustration.

To simulate the users’ device placement behavior in the real world, we alter the phone placement
manually. Speci!cally, for the !rst scan, the phone is aligned with the x axis of the motion plane.
For the next seven scans, the device is rotated counter-clockwise for 45◦ each time. For the last two
scans, the phone is placed on the pad at a random angle. As shown in Figure 15, merely using the
sample collected in one experiment may lead to biased results because the features are extracted
from a limited number of couplings between the two coils. While the data points from multiple
measurement rounds are aggregated, the point cloud covers the majority of the contact range
between the two coils, providing adequate ground truth for classi!cation, which can accommo-
date unpredictable device placements.

To quantify the contribution of the motion platform, we repeat this whole process for once,
conducting 10 independent measurement rounds, without moving the charger coil with respect to
the PRx. We consider this as our baseline and will discuss it in Section 9.3.

In classi!cation, the training-testing split ratio is 7: 3. In other words, 7 out of the 10 samples
for each device are randomly chosen to train the QID classi!er model, and the remaining scan
samples are for testing. Such a process is repeated 10 times. The average accuracy and the standard
deviation of each classi!er are reported. In addition, the hyperparameters in all the implemented
classi!ers are tuned by the grid search. As discussed in Section 7.2, we assume all the devices are
already !ngerprinted and recorded in the database.

9.2 Measurement Delay
The measurement delay is de!ned as the time delay from the moment when the power receiver is
booted to the moment that the server produces a device label. Speci!cally, the measurement delay
TM is

TM = T1 +T2 +T3 +T4

where T1 is the coil symmetric axis alignment time, T2 is the !ngerprinting time, T3 is the fea-
ture extraction time, and T4 is the classi!cation time. The means and standard deviations of these
measurement delay terms are presented in Table 3.

As one can see, the !ngerprint phase timeT2 is around 55.5 s, which contributes the most to the
total measurement delay. Thus, reducing the time T2 is crucial in further optimizing the measure-
ment delay TM .
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Table 3. The Measurement Delay in the QID System

Symbol De!nition Mean (s) Std (s)
T1 Coil symmetric axis alignment time 8.050 0.927
T2 Fingerprinting time 55.478 6.092
T3 Feature extraction time 0.147 0.006
T4 Classi!cation time 0.001 N/A

Fig. 16. The cross-validation score and device brand
detection accuracy of di"erent classifiers.

Fig. 17. The impact of feature selection on the classi-
fication accuracy. G1: classification without the CEP
time interval features; G2: all features are included,
but they are measured without the motion platform;
G3: classification performance using the CEP time in-
terval features only; G4: all features are included.

The measurement delay is actually acceptable due to the characteristics of wireless charging.
First, unlike other wireless communication systems where the user is usually in mobility, the charg-
ing process usually takes more than 10 minutes, during which the user device remains stationary.
Second, in the targeted scenarios, such as a co#ee shop that o#ers location and personalized ser-
vices to customers, the users need to register their devices before using such user-identi!cation
service. During the registration process, QID can collect 8-10 di#erent samples for future recogni-
tion. Finally, previous systems that exploit clock drifts for device identi!cation have similar delay
performance. For example, BlueID [26] takes 21 seconds for data tra"c or 65 seconds for voice traf-
!c to guarantee the low measurement error. In [29], it takes the system hours to collect enough
packets in order to distinguish devices. Therefore, the 60-second measurement delay in QID is
actually acceptable.

9.3 Classification Accuracy
We !rst present the overall test accuracy of the cross-validation study. The overall accuracy is
the ratio of the number of correctly classi!ed scan samples to the size of the test set. Figure 16
shows the means and standard deviations of the implemented classi!ers from 10 repeated random
sub-sampling cross-validation folds. As shown in the !gure, all of the implemented classi!ers can
recognize the device brand with a mean validation accuracy up to 96.1%. Particularly, the bagging
classi!er identi!es the brand with up to 97.9% mean accuracy. The mobile device brand classi!-
cation accuracy is of interest because of the following two reasons. First, it is the foundation of
device recognition. As mentioned in Section 5.1, although the CEP interval is a good device sepa-
rator, it confuses some devices from di#erent brands. If the device brand is successfully identi!ed,
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Fig. 18. Confusion matrix of the 52 evaluated devices.

the QID server can reduce the range of device candidates and increase the overall device classi-
!cation accuracy. Moreover, brand recognition can enable applications like device brand-speci!c
advertisements. For device identi!cation, the bagging classi!er achieves an average accuracy of
85.2%. The highest accuracy achieved by QID is 89.7%. To illustrate the classi!er performance, a
confusion matrix is plotted in Figure 18. Generally, the misclassi!ed samples are from devices of
the same brand that have close clock drifts. For instance, there are two devices, namely “C8” and
“Z3”, whose all three test samples are misclassi!ed. However, some devices are classi!ed into a
di#erent brand due to their close values in feature space. We note that, di#erent classi!ers have
closed performance. In other words, the recognition accuracy in the QID system largely depends
on the feature quality, instead of the classi!ers.

Next, we quantify the performance of the motion platform, namely the multi-coil array. The
G2 in Figure 17 shows the baseline result, where the motion unit is not enabled. Each device is
sampled without the motion control for 55 seconds, corresponding to the delay T2 in Section 9.2.
We plot the classi!cation accuracy of QID in Figure 17 G4 for comparison. As we can see, the
device recognition rate increases by 17% by both SVM and bagging classi!er when the motion
platform is enabled. The brand recognition accuracy is also boosted by 8%. It is indicated that
the motion platform plays an important role in achieving reliable and su"cient device features
for classi!cation due to its ability to extract !ngerprints from more spots, which captures a more
complete pro!le of a device.

9.4 Impact of Feature Selection
Not all features are equally important. Figures 19 and 20 show the distribution of two features
respectively, obtained from 42 out of the 52 devices, namely the total number of packets per scan
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Fig. 19. Number of packets per scan feature distribution of 42 devices (10 samples per device).

Fig. 20. The frequency of CEP value equaling 0 distribution of 42 devices (10 samples per device).

and the frequency of the CEP value 0. The distribution of other CEP value frequencies yields similar
trends as shown in Figure 20 and is thus omitted. These two features contain more noise than the
CEP interval (as shown in Figure 6). Nonetheless, intuitively, these features are able to separate
device classes to some extent. We next conduct the backward search to evaluate the e#ectiveness
of each selected feature.

We perform two case studies. In the !rst case “G1”, we evaluate the bagging classi!er without
the CEP time interval features, i.e., the onboard oscillator !ngerprints. In other words, only the
CEP value features are used. In the second case “G3”, we evaluate the bagging classi!er with only
the CEP time interval features. The results of these two case studies are shown in Figure 17. We ob-
serve that the device recognition accuracies of both the bagging and the SVM classi!er degrade to
about 21% in G1, which indicates the signi!cant contribution of the onboard oscillator !ngerprint
to device identi!cation performance. Another observation is that, although the CEP value features
fail in device recognition, they are still able to distinguish the brands with 75% accuracy by the
bagging classi!er. Next, we compare G3 and G4. We can see that both the device and brand recog-
nition accuracies of the bagging classi!er are improved by about 2.5% by adding the CEP value
features to the CEP time interval features. This indicates that although the CEP value features are
not as important as the onboard oscillator !ngerprints, it helps QID to reduce uncertainty and
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Fig. 21. Device recognition accuracy changes with the number of devices.

achieve higher accuracy. However, as the number of devices increases, the chance of CEP inter-
val (PRx oscillator) feature overlapping is expected to increase. In such a case, the PRx controller
!ngerprints will provide the necessary device brand identi!ers, thus reducing the collision in the
feature space.

9.5 Recognition Accuracy Breakdown
Another characteristic of the QID system is how robust the selected !ngerprints are. In other
words, how is the classi!er performance in$uenced when more devices are added to the feature
database? Here we present the results of the recognition accuracy breakdown. In this case study,
we evaluate both the device and brand recognition accuracy of the bagging classi!er with respect
to a sequence of the device numbers from 5 to 50, with an increment of 5. For each device number
Ni in the list, we !rst randomly choose Ni devices out of the 52 devices and then perform the
Monte Carlo cross-validation on their scan samples 10 times to obtain the mean test accuracy. For
each Ni , such process is repeated for six rounds. Finally, the mean and standard deviation from the
results of these six rounds are recorded, as shown in Figure 21. The brand recognition accuracy
keeps at a high level around 97% regardless of the increase in the number of devices. However, the
device recognition accuracy decreases by about 1.3% each time the number of devices increases
at increments of 5. If this trend continues, when the number of devices reaches about 180, the
device accuracy decreases to 50%. However, we note that the power receivers may have much
higher diversity regarding the device brand in real-life scenarios than that in our evaluation setting.
Therefore, the QID can potentially bene!t from the high brand accuracy and thus accommodate
more devices than the number of device 180 calculated above.

10 CONCLUSION AND DISCUSSION
In this paper, we present our design and implementation of QID, the !rst system that recognizes
Qi power receiver during wireless charging using !ngerprints from the onboard oscillator, coil
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characteristics, and control scheme of the wireless charging system. QID also employs a move-
ment unit to emulate the multi-coil power transmitters and allow for !ne-grained !ngerprinting.
Our evaluation results show that QID achieves an overall identi!cation accuracy of up to 89.7%,
with an average of 85.2%. Moreover, QID is able to recognize the device brand with an average
accuracy of 97.9%. Therefore, we demonstrate the feasibility of leveraging public wireless charging
infrastructure for tracking mobile users and providing ID/location-based services. Our results
also open up new research questions on how to prevent the leakage of user’s location with the
increasing wireless charging station deployment in public.

QID has several limitations. First of all, unlike other wireless communication systems where pas-
sive remote sensing and recognition are possible, QID adopts a user-initiated device recognition
approach. This narrows its applications because it requires physical contact between the device
and the sensor. However, this could also be an advantage because it leverages the user’s awareness
and thus protects the user’s privacy. Second, at this stage, QID requires motion parts to achieve
!ne-grained !ngerprinting. We envision achieving device recognition in wireless charging using
only stationary multi-coil arrays. However, since the commercially available multicoil chargers
do not provide interfaces for device recognition yet, our QID sensor implementation mainly fo-
cuses on emulating a multi-coil array with motion control. We expect no motion unit is needed
in the future implementation and deployment. Nevertheless, the mechanical structure could be
possibly re-designed to achieve a smaller form factor. Third, the number of devices evaluated in
QID is limited. Though it is currently ready for constrained applications like museum guiding de-
vice recognition, it is not yet tested in wider open public spaces like airports and shopping malls.
We’ve seen that the recognition accuracy decreases as the devices in the same brand increase.
However, the device brand and models distribution in the real world are not yet clear for us. It
is possible that we can explore extra device !ngerprints for improving QID classi!cation perfor-
mance. We leave this part to our future works. Fourth, QID only targets the existing version of
Qi wireless charging. The wireless charging standards are evolving rapidly and may be subject to
change. However, it is not necessarily bad news to QID. The new coil designs, for example, with
a larger coupling area, will introduce additional features for recognizing the devices. Finally, we
note that the charging process may cause several short-time charging disruptions (about 1 to 2
seconds each) due to the discoupling between the PTx and PRx coils. In such a case, the user expe-
rience may be potentially impacted. However, as discussed above, the measurement delay is about
55 seconds. After a device is successfully identi!ed, the PTx coil will move to a position (or switch to
a particular physical coil) that achieves the maximum coil coupling to continue the power delivery
process.

Our !ndings have important implications on the user privacy. Privacy is a primary concern in
device recognition systems like QID. In fact, the Qi speci!cation itself keeps device information
securely. For example, QID can only identify a device based on the physical !ngerprints of the
Qi PRx module. It will not and cannot record any information about the phone itself including
operating system, phone number, as well as battery-related values, such as voltage level, energy
percentage, and health record.

From another perspective, the public should be aware of their privacy when using wireless
charging because it would possibly leak the location information of a particular device. Hackers
may precisely localize a targeted user for malicious purposes. There are su"cient reasons for the
Qi PRx module to o#er users the choice to generate their Device ID in a random manner. The
mobile phone manufacturer and the mobile phone operating system should also o#er the choice
to shut down the wireless charging functionality when the user intends to. To the best of our
knowledge, they are not implemented in any Qi-based wireless chargeable device yet. Mitigating
such a possible user privacy breach is left for future work.
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In the future, we plan to design a compact coil antenna to extract the data directly from the
wireless power interface, such that the QID sensor can be non-intrusive to the PTx. We will also
explore new !ngerprinting trajectories to further reduce the measurement delay. Although the
users usually initialize their mobile device registration by themselves in our targeted scenarios,
we still aim to design e"cient online machine learning algorithms to classify unknown devices,
such that QID provides an easy-to-use interface and enables a wider range of applications. We can
achieve this by quantifying the similarity between the incoming sample features with the ones
already in our database. If the di#erence exceeds a threshold, QID determines the sample belongs
to a device that has not been seen before.
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